第五节 定积分的应用

合集下载

定积分的应用

定积分的应用

定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。

本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。

1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。

通过使用定积分,可以轻松解决这个问题。

以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。

这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。

2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。

例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。

同样地,在力学中,定积分可以用于计算物体所受的力的功。

这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。

3. 经济学中的应用经济学也是定积分的应用领域之一。

在经济学中,我们经常需要计算一段时间内的总收益或总成本。

通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。

这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。

4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。

在概率密度函数中,曲线下的面积表示了该事件发生的概率。

通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。

这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。

综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。

无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。

通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。

高考数学复习: 定积分的概念与微积分基本定理、定积分的简单应用

高考数学复习: 定积分的概念与微积分基本定理、定积分的简单应用

的图形的面积S,正确的是 ( )
A.S= 10 (x-x2)dx C.S= 10 (y2-y)dy
B.S= 10 (x2-x)dx D.S= 10 (y- y )dy
【解析】选A.根据题意,如图所示,阴影部分为曲线 y=x2与y=x所围成的图形,其面积S= 10 (x-x2)dx.
2.(选修2-2P67T7改编)直线y=3x与曲线y=x2围成图形
b a
f(x)dx=_F_(_b_)_-_F_(_a_)_,这个结论叫做微积
分基本定理,又叫做牛顿-莱布尼茨公式.其中F(x)叫做
f(x)的一个原函数.为了方便,常把F(b)-F(a)记成
F(x)|ab ,即
b a
f(x)dx=F(x)
|ab
=F(b)-F(a).
【常用结论】 1.定积分应用的两条常用结论 (1)当曲边梯形位于x轴上方时,定积分的值为正;当曲 边梯形位于x轴下方时,定积分的值为负;当位于x轴上 方的曲边梯形与位于x轴下方的曲边梯形面积相等时, 定积分的值为零.
(1)设函数y=f(x)在区间[a,b]上连续,则
b a
f(x)dx
= ab f(t)dt.
(
)
(2)若函数y=f(x)在区间[a,b]上连续且恒正,
则 ab f(x)dx>0. ( )
(3)若
b a
f(x)dx<0,那么由y=f(x),x=a,x=b以及x轴
所围成的图形一定在x轴下方. ( )
(4)微积分基本定理中的F(x)是唯一的. ( )
第五节 定积分的概念与微积分基本定理、
【知识梳理】 1.定积分的概念与几何意义 (1)定积分的定义 如果函数f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi-1<xi<…<xn=b将区间[a,b]等分成n个

高等数学第五章定积分及其应用

高等数学第五章定积分及其应用

⾼等数学第五章定积分及其应⽤第五章定积分及其应⽤第⼀节定积分概念1、内容分布图⽰★曲边梯形★曲边梯形的⾯积★变速直线运动的路程★变⼒沿直线所作功★定积分的定义★定积分存在定理★定积分的⼏何意义★定积分的物理意义★例1 ★定积分的近似计算★例2★内容⼩结★课堂练习★习题5-1 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1利⽤定积分的定义计算积分01dx x 2?.讲解注意:例2的近似值.⽤矩形法和梯形法计算积分-102dx ex讲解注意:第⼆节定积分的性质1、内容分布图⽰★性质1-4★性质5及其推论★例1★性质6★例2★例3★性质7★例4★函数的平均值★例5★内容⼩结★课堂练习★习题5-2★返回2、讲解注意:例1⽐较积分值dx e x ?-2和dx x ?-2的⼤⼩.讲解注意:例2估计积分dx xπ+03sin 31的值.讲解注意:例3估计积分dx xxππ/2/4sin 的值.讲解注意:例4设)(x f 可导1)(lim =+∞→x f x 求且,,dt t f tt x x x ?++∞→2)(3sin lim .讲解注意:例5计算纯电阻电路中正弦交流电t I i m ωsin =在⼀个周期上的()功率的平均值简称平均功率.讲解注意:第三节微积分基本公式1、内容分布图⽰★引例★积分上限函数★积分上限函数的导数★例1-2★例3★例4★例5★例6★例7-8 ★例9★例10★例11★例12★例13★例14★内容⼩结★课堂练习★习题5-3★返回2、讲解注意:3、重点难点:4、例题选讲:例1?x tdt dxd 02cos 求[].讲解注意:例2dt e dxdx t ?321求[].讲解注意:例3.)()((3);)()((2);)((1).,)(00sin cos )(?-===x x x x t f dt t x f x F dt t xf x F dt e x F x f 试求以下各函数的导数是连续函数设讲解注意:例4求.1cos 02x dte x t x ?-→讲解注意:设)(x f 在),(+∞-∞内连续0)(>x f .证明函数且,??=xxdtt f dtt t x F 00)()()(在),0(+∞内为单调增加函数.f 例5讲解注意:例6],1[)ln 21()(1上的最⼤值与最⼩在求函数e dt t t x I x ?+=.值讲解注意:例7求.dx x ?12讲解注意:例8求.1dxx ?--12讲解注意:例9设求??≤<≤≤=215102)(x x x x f ?2讲解注意:例10.|12|10-dx x 计算讲解注意:.cos 1/3/22?--ππdx x 计算例11讲解注意:例12求.},max{222?-dx x x讲解注意:例13计算由曲线x y sin =在,0π之间及x .轴所围成的图形的⾯积x =x =A讲解注意:例14?,./5.,362了多少距离问从开始刹车到停车刹车汽车以等加速度到某处需要减速停车速度⾏驶汽车以每⼩时s m a km -=汽车驶过设讲解注意:第四节换元法积分法和分部积分法1、内容分布图⽰★定积分换元积分法★例1★例2★例3★例4★定积分的分部积分法★内容⼩结★课堂练习★习题5-4★返回★例5★例6★例7★例16★例17★例182、讲解注意:3、重点难点:4、例题选讲:例1计算.sin cos /25?πxdx x讲解注意:例2?a0dx 计算.0a >)(-2x 2a讲解注意:例3计算.sin sin 053?π-dx x x讲解注意:例4计算定积分dx x x ++412.2?讲解注意:例5当)(x f 在],[a a -上连续,,,)(x f 为偶函数当当有(1)(2)则 ??-=aaadx x f dx x f 0)(2)()(x f 为奇函数有?-=aa dx x f 0)(.;讲解注意:例6.--+dx e x x x 计算讲解注意:例7计算.11cos 21122?--++dx x xx x讲解注意:例8若)(x f 在]1,0[上连续证明,(1)?=00)(cos )(sin dx x f dx x f ;(2)πππ=)(sin 2)(sin dx x f dx x xf ,由此计算?π+02cos 1sin dx x x x ./2π/2π讲解注意:例9计算.arcsin 0?xdx 1/2讲解注意:例10计算.2cos 10+x xdx/4π讲解注意:例11计算.sin 0?xdx /2π2x讲解注意:例12.1dx e x 计算1/2讲解注意:例13.1)1ln(102++dx x x 求定积分讲解注意:例14-22ln e e dx x x求.讲解注意:例15.,612ln 2x e dt xt 求已知?=-π讲解注意:例16).(,)(13)()(1022x f dx x f x x x f x f 求满⾜⽅程已知? --=讲解注意:例17证明定积分公式xdx I n n n 0--?-??--?-=n n n n n n n n n n ,3254231,22143231π为正偶数.为⼤于1的正奇数./2π/2π??讲解注意:例18?π05.2cos dx x 求讲解注意:第五节定积分的⼏何应⽤1、内容分布图⽰★平⾯图形的⾯积A ★例1 ★例2 ★平⾯图形的⾯积B ★例3 ★例4 ★平⾯图形的⾯积C ★例5 ★平⾯图形的⾯积D★例6 ★例7 ★例8 旋转体★圆锥★圆柱★旋转体★旋转体的体积★例9 ★例 10 ★例 11 ★平⾏截⾯⾯积为已知的⽴体的体积★例 12 ★例 13 ★内容⼩结★课堂练习★习题5-5 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1]1,1[]1,0[2之间的⾯积.和轴上⽅在下⽅与分别求曲线-∈∈=x x x x y讲解注意:例2],1[ln 之间的⾯积.轴上⽅在下⽅与求e x x y =讲解注意:例3.1,1,03所围图形⾯积与直线求=-===x x y x y讲解注意:例44,0,042所围图形⾯积.和直线求由曲线===-=x x y x y讲解注意:例5.2所围成平⾯图形的⾯积与求由抛物线x y x y ==讲解注意:例642,2,所围成图形的⾯积.求由三条直线=-=+=y x y x x y422围成图形的⾯积与求+-==x y x y讲解注意:例8.0cos sin 之间所围图与在和求由曲线π====x x x y x y 形的⾯积讲解注意:例9r 圆锥体的直线、h x =及x 轴围直线连接坐标原点O 及点),(r h P 成⼀个直⾓三⾓形.x 轴旋转构成⼀个底半径为计算圆锥体的体积.h ,将它绕⾼为,的讲解注意:例10.12222y x V V y x by a x 和积轴旋转所得的旋转体体轴和分别绕求椭圆=+讲解注意:例112,22轴旋转⽽成的旋转体的体积.轴和所围成的图形分别绕求由曲线y x x y x y -==讲解注意:例12⼀平⾯经过半径为R 的圆柱体的底圆中⼼计算这平⾯截圆柱体所得⽴体的体积.并与底⾯交成,,⾓讲解注意:例13.的正劈锥体的体积的圆为底、求以半径为h R ⾼位平⾏且等于底圆直径的线段为顶、讲解注意:第六节积分在经济分析中的应⽤1、内容分布图⽰★由边际函数求原经济函数★需求函数★例1★总成本函数★例2★总收⼊函数★例3★利润函数★例4由边际函数求最优问题★例5★例6其它经济应⽤★例7⼴告策略★消费者剩余★例8★国民收⼊分配★例9★返回2、讲解注意:3、重点难点:4、例题选讲:例1),80,(80,4) (,==-='q pp qp格的函数关系.时即该商品的最⼤需求量为且边际需求的函数已知对某商品的需求量是价格求需求量与价讲解注意:例2, 90,2)(0.2 ==ceqCq 求总成本函数.固定成本的函数若⼀企业⽣产某产品的边际成本是产量讲解注意:例310,40),/(2100)(个单位时单位时的总收⼊及平均收⼊求⽣产单位元单位时的边际收⼊为已知⽣产某产品-='q q R q 并求再增加⽣产所增加的总收⼊.讲解注意:例45,10,413)(,225)(0==-='-='q c q q C q q R 时的⽑利和纯利.求当固定成本为边际成本已知某产品的边际收⼊讲解注意:例5吨产品时的边际成本为某企业⽣产q )/30501)(吨元q q C +='(?,900试求产量为多少时平均成本最低元且固定成本为讲解注意:例6q q q C q q R ,1(3)?(2);54(1)),/(/44)(),/(9)(+='-='求总成本函数和利润函数.万元已知固定成本为当产量为多少时利润最⼤万台时利润的变化量万台增加到试求当产量由其中产量万台万元成本函数为万台万元假设某产品的边际收⼊函数为以万台为单位.边际讲解注意:例70.02,10%,,100000,130000)(,.10%,1000000t e t 则决如果新增销售额产⽣的利润超过⼴告投资的美元的⼴告活动对于超过按惯例⾏⼀次类似的总成本为以⽉为单位下式的增长曲线⼴告宣传期间⽉销售额的变化率近似服从如根据公司以往的经验平均利润是销售额的美元某出⼝公司每⽉销售额是美元的⼴告活动.试问该公司按惯例是否应该做此⼴告.1000000公司现在需要决定是否举定做⼴告讲解注意:8例.2,318)(-=CS q q D 并已知需求量为如果需求曲线为个单位试求消费者剩余,表⽰某国某年国民收⼊在国民之间分配的劳伦茨曲线可近似地由讲解注意:第七节⼴义积分1、内容分布图⽰★⽆穷限的⼴义积分★⽆穷限的⼴义积分⼏何解释★例1★例2★例3★例4★例5★例6★⽆界函数的⼴义积分例7★例8★例9★例10★例11★例12★例13★内容⼩结★课堂练习★习题5-7★返回★2、讲解注意:3、重点难点:4、例题选讲:例1?∞+-0.dx e x 计算⽆穷积分讲解注意:例2.sin 0的收敛性判断⽆穷积分∞+xdx讲解注意:例312?∞+∞-+x dx计算⼴义积分讲解注意:例4计算⼴义积分.1sin 12∞+dx x x 2/π讲解注意:例5计算⼴义积分∞+-pt dt e 且0>p 时收敛p 是常数,(). t 0讲解注意:例6证明⼴义积分∞+11dxx p当1>p 时收敛当1≤p 时发散.,讲解注意:例7计算⼴义积分).0(022>-?a x a dxa讲解注意:例8证明⼴义积分11dx x q当1""讲解注意:例9计算⼴义积分.ln 21x dx讲解注意:例10计算⼴义积分.30dx1=x 瑕点)1(2/3-x .讲解注意:例11计算⼴义积分?∞+03+x x dx1().讲解注意:例12.)1(arcsin 10-dx x x x计算⼴义积分讲解注意:例13.11105?∞+++x x x dx 计算⼴义积分讲解注意:。

定积分的应用

定积分的应用

定积分的应用定积分是微积分中的重要概念,它在数学和实际问题的解决中扮演着关键的角色。

本文将探讨定积分的应用,并结合实例详细说明其在解决各类问题中的重要作用。

一、定积分的概念定积分是微积分中的一种运算符号,表示在一定区间上的函数曲线与坐标轴所围成的面积。

通常用符号∫ 表示,即∫f(x)dx,其中f(x)为被积函数,dx表示积分变量。

定积分的结果是一个数值。

二、定积分的几何意义定积分的几何意义是曲线与坐标轴所围成的面积。

例如,我们可以通过计算函数曲线与x轴之间的面积来求取定积分。

这种面积计算方法可以应用于各种形状的曲线,包括折线、曲线、圆弧等。

三、定积分的物理应用定积分在物理学中有广泛的应用。

例如,当我们需要计算物体的质量、体积、位移、功等物理量时,可以通过定积分来进行计算。

定积分可以将一个连续变化的物理量表示为无限个微小变化的和,从而得到准确的结果。

四、定积分的经济学应用定积分在经济学领域也被广泛应用。

例如,当我们需要计算市场供求曲线下的固定区间所代表的消费者剩余或生产者剩余时,可以通过定积分来计算。

定积分可以将变化的价格和数量转化为面积,以方便计算。

五、定积分的工程应用在工程学中,定积分也具有重要的应用价值。

例如,在力学领域,当需要计算曲线所代表的力的作用效果时,可以通过定积分来计算。

定积分可以将一个连续变化的力量表示为无限个微小作用力的和,从而得到准确的结果。

六、定积分的统计学应用再一个例子的统计学领域中,定积分同样发挥着重要作用。

例如,在概率密度函数下计算所得的面积可以表示某一事件发生的概率。

定积分可以将一个连续变化的概率密度函数表示为无限个微小概率的和,从而得到准确的概率结果。

七、定积分的计算方法定积分的计算方法有多种,例如,常用的有牛顿-莱布尼茨公式、变量替换法、分部积分法等。

根据不同的问题和函数形式,选择合适的计算方法对于准确求解定积分非常关键。

八、结语定积分作为微积分中的重要概念,在各个领域中均得到了广泛的应用。

定积分的应用

定积分的应用

定积分的应用定积分是微积分中的重要内容之一,经常被应用于实际问题的解决中。

本文将从三个方面来论述定积分的应用。

一、定积分在几何中的应用首先,定积分可以用于求曲线下面的面积。

以 y=f(x) 为例,若f(x)>0,则曲线 y=f(x) 与 x 轴的两点 a、b 组成的图形的面积为S=∫baf(x)dx这时,可以将曲线 y=f(x) 分成许多小块,每块宽度为Δx,高度为 f(xi),从而可以得到其面积为ΔS=f(xi)Δx因此,当Δx 趋于 0 时,所有小块的面积之和就等于图形的面积,即∑ΔS→S因此,用定积分就可以求出图形的面积。

其次,定积分还可以用于求旋转体的体积。

以曲线 y=f(x) 在 x 轴上旋转360°为例,其体积为V=π∫baf(x)^2dx这里,π为圆周率。

最后,定积分还可以用于求某些奇特图形的长、面积等等。

二、定积分在物理中的应用物理中也有许多问题可以通过定积分来解决。

比如,运动问题中的速度、加速度,可以通过位移的变化来求得。

若某运动物体的速度为 v(t),则其位移 s(t) 为s(t)=∫v(t)dt同样,若某运动物体的加速度为 a(t),速度为 v(t),则其位移为s(t)=∫v(t)dt=∫a(t)dt最后,定积分还可以用于求密度、质量等物理量。

三、定积分在工程中的应用定积分在工程中的应用也非常广泛。

比如,在流体力学中,对于一条管道中的液体,可以通过惯性和重力等因素,求出其中液体的流量和压力。

而这些流量和压力可以通过定积分计算得出。

在电学中,电量、电荷、电流和电势等都可以通过定积分来求解。

在结构设计中,定积分也常常被用来计算约束力、杠杆比例等。

总之,定积分在几何、物理和工程等领域中都有着广泛应用。

熟练地掌握定积分的方法和应用,对于科学研究和实际问题的解决都有着非常积极的帮助。

定积分的应用通用课件

定积分的应用通用课件

计算需求弹性
总结词
定积分在计算需求弹性方面具有重要应用,帮助企业了解市场需求并制定相应的营销策 略。
详细描述
需求弹性是衡量市场需求对价格变动敏感度的指标,对于企业的定价和营销策略具有指 导意义。通过定积分,可以将需求函数转化为弹性函数,从而帮助企业了解市场需求并
制定相应的营销策略。
预测市场趋势和销售量
详细描述
分部积分法的关键是选择合适的函数对,使得其中一个函数的导数容易计算, 而另一个函数的原函数容易找到。通过分部积分法,可以将复杂的定积分转化 为简单的定积分,从而简化计算过程。
03
定积分在几何学中的应用
计算平面图形的面积
01 矩形面积
对于任意长度a和宽度b的矩形,其面积A=a×b。
02 圆形面积
06
定积分在其他领域的应用
在信号处理中的应用
信号的强度变化
定积分可以用来计算信号的强度 变化,例如声音信号的振幅变化

信号的平滑处理
通过定积分,可以对信号进行平滑 处理,消除噪声和干扰,提高信号 质量。
信号的滤波
定积分可以用于信号的滤波,例如 低通滤波器和高通滤波器的设计。
在控制系统中的应用
控制系统的稳定性分析
定积分的应用通用课 件
目录
• 定积分的概念与性质 • 定积分的基本计算方法 • 定积分在几何学中的应用 • 定积分在物理学中的应用 • 定积分在经济学中的应用 • 定积分在其他领域的应用
01
定积分的概念与性质
定积分的定义
定积分是积分的一种,是函数在某个区间上的积分和的 极限。定积分常用于计算平面图形的面积、体积、平面 曲线的长度等。
控制系统的误差分析
定积分可以用来分析控制系统的稳定 性,例如判断系统的收敛性和稳定性 。

定积分的几何应用

定积分的几何应用

定积分的几何应用定积分是微积分中的重要概念,它有着广泛的应用。

其中之一就是在几何学中的应用。

本文将探讨定积分在几何学中的具体应用,并解释其背后的原理和意义。

一、平面图形的面积通过定积分,我们可以计算出复杂平面图形的面积。

假设有一个曲线方程y=f(x),该曲线与x轴所围成的图形为A。

我们可以将A分解成无限个极小的矩形条,然后通过求和的方式来逼近A的面积。

具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。

然后,在每个小区间中,选择一个x值作为代表点,记作xi。

根据代表点xi和函数f(x)的值,我们可以计算出相应小矩形的高度为f(xi)。

由于每个小矩形的宽度Δx非常小,因此在计算总面积时,可以通过求和的方式逼近。

即可以得到如下的定积分表达式:A = ∫[a,b] f(x) dx其中[a,b]表示x的取值范围。

通过对上述定积分进行求解,即可得到图形A的面积。

二、曲线的弧长除了计算平面图形的面积外,定积分还可以用来计算曲线的弧长。

假设有一个曲线L,其方程为y=f(x)。

我们希望计算出曲线L的弧长。

与计算面积类似,我们同样可以将曲线L分解为无限个极小的线段,然后通过求和的方式来逼近曲线L的弧长。

具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。

然后,在每个小区间中,选择一个x值作为代表点,记作xi。

根据代表点xi和函数f(x)的值,我们可以计算出相应线段的长度为Δs。

同样地,由于每个小线段的长度Δs非常小,因此在计算总弧长时,可以通过求和的方式逼近。

即可以得到如下的定积分表达式:L = ∫[a,b] √(1 + [f'(x)]^2) dx其中[a,b]表示x的取值范围,f'(x)表示函数f(x)的导数。

通过对上述定积分进行求解,即可得到曲线L的弧长。

三、体积与质量除了平面图形的面积和曲线的弧长外,定积分还可以用来计算体积和质量。

当我们需要计算一个曲线绕某个轴旋转一周所形成的立体的体积时,定积分就派上用场了。

《数学定积分的应用》课件

《数学定积分的应用》课件

线性性质
定积分具有线性性质,即对于两个函数的和或差 的积分,可以分别对每个函数进行积分后再求和 或求差。
区间可加性
定积分具有区间可加性,即对于任意两个不重叠 的区间[a, b]和[b, c],有 ∫(a,c)f(x)dx=∫(a,b)f(x)dx+∫(b,c)f(x)dx。
积分中值定理
如果函数f(x)在区间[a, b]上连续,那么至少存在 一个点ξ∈[a, b],使得∫(a,b)f(x)dx=f(ξ)(b-a)。
电路中的电流和电压
要点一
总结词
定积分在电路分析中用于计算电流和电压,通过求解电路 中的微分方程,可以得到电流和电压的分布。
要点二
详细描述
在电路分析中,电流和电压的变化规律通常由微分方程描 述。通过应用定积分,可以将电路中的电压和电流表示为 时间的函数。然后通过求解这个微分方程,可以得到电流 和电压在整个电路中的分布情况。
详细描述
对于曲线形构件,其质量可以通过定积分计算。首先,确定构件的材料密度分 布,然后对密度函数在构件的体积上进行积分,得到构件的总质量。
引力场的强度
总结词
通过定积分计算引力场的强度
详细描述
在引力场中,物体受到的引力大小与物体质 量成正比,与物体之间的距离的平方成反比 。通过定积分计算在某一空间区域内的引力 场强度,即在该区域内所有物体产生的引力 对该点的合力。具体地,将引力函数在空间 区域上进行积分,得到该区域内的引力场强 度。
dx进行计算。
功和压力
总结词
定积分可以用于计算变力做功和压力。
详细描述
对于一个质点在力F(x)=f(x)*dx的作用下沿直线运动 ,力F所做的功可以通过计算定积分得出,公式为 ∫(b a) f(x) dx。

定积分的应用

定积分的应用

定积分的应用在我们的生活中,有很多场景都需要用到定积分。

而在数学上,定积分也起到了重要的作用。

定积分可以计算曲线下的面积,如求函数 $f(x)$ 在区间 $[a,b]$ 上的面积。

接下来,我们将介绍一些常见的定积分的应用。

一、曲线下的面积假设我们有一个区间 $[a,b]$,以及一个函数 $f(x)$。

我们可以使用定积分来计算这个函数在该区间上的曲线下的面积。

这个面积可以用下面的式子来计算:$$ S=\int_{a}^{b}f(x)dx $$ 其中,$\int$ 表示定积分。

如果我们以 $f(x)\geq 0$ 的形式进行了定义,那么定积分就可以计算出曲线下的正面积。

例如,如果我们要计算函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积,我们可以通过下面的定积分来计算:$$ S=\int_{0}^{1}x^2dx $$利用积分的定义,可以将该式子化简为:$$ S=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}f(x_i)\Deltax=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}x_i^2\Delta x $$ 其中,$\Delta x=\frac{1}{n}$ 且 $x_i=i\Delta x$。

如果我们取 $n=100$,你会发现:$$ S=0.010050167\cdots $$ 这时,我们就可以知道函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积为约为 $0.010050167$。

二、体积类似于计算曲线下的面积,定积分也可以用于计算体积。

我们可以使用定积分来计算旋转曲面的体积,例如旋转曲面、扫描曲面等。

例如,假设我们需要计算曲线 $y=x^2$ 从 $x=0$ 到 $x=1$ 周围在 $y$ 轴旋转一周所形成的立体的体积,我们可以使用下面的公式计算出体积:$$ V=\int_{0}^{1}\pi y^2dx $$替换掉 $y=x^2$ 的值,我们得到:$$ V=\int_{0}^{1}\pi x^4dx $$ 计算该定积分的结果为:$$ V=\frac{\pi}{5} $$ 所以,曲线$y=x^2$ 从 $x=0$ 到 $x=1$ 周围所形成的立体的体积为$\frac{\pi}{5}$。

《高中定积分的应用》课件

《高中定积分的应用》课件
总结词
定积分在计算曲线形状的质量分布方面具有广泛应用,有助于理解物体的重心和转动惯量等物理量。
详细描述
对于曲线形状的物体,我们可以通过定积分计算其质量分布,进而求出物体的重心和转动惯量。这对于分析物体 的稳定性和运动特性具有重要意义。
电场强度与电势的计算
总结词
在电场分析中,定积分用于计算电场强度和电势,有助于深入理解电场的性质和分布。
详细描述
在解决涉及多个函数的定积分问题时,需要仔细分析这 些函数之间的关系,如一个函数可能对另一个函数求导 或积分,或者两个函数之间存在特定的关系等。
复杂几何形状的分析与计算
总结词
对复杂几何形状的深入分析是解决问题的必要步骤。
详细描述
在解决涉及复杂几何形状的定积分问题时,需要深入理 解几何形状的特点,如面积、体积等,并能够运用适当 的公式进行计算。同时,还需要理解如何将复杂的几何 形状分解为更简单的部分,以便于解决定积分问题。
详细描述
在经济学中,边际分析通过计算边际成本、 边际收益和边际利润等指标,帮助企业决策 者判断生产、定价和销售等方面的最优策略 。弹性分析则通过计算需求价格弹性、供给 价格弹性等指标,分析市场价格的变动对需 求和供给的影响,进而影响市场均衡和资源 配置。
成本与收益计算
总结词
成本与收益计算是经济学中重要的财务分析 工具,用于评估企业的经营绩效和投资回报 。
THANK YOU
定积分的几何意义
总结词
定积分的几何意义有助于直观理解定积分的应用。
详细描述
定积分的几何意义表示一个曲线下的面积。通过计算定积分,可以求出曲线下某 个区间上的面积,从而解决一些实际问题,如求物体的质量、速度等。
定积分的计算方法

定积分的应用教案

定积分的应用教案

定积分的应用教案第一章:定积分的概念1.1 引入定积分的概念解释定积分的定义:定积分是函数在区间上的积累效果,表示为∫ab f(x)dx。

强调定积分表示的是函数在区间上的面积或长度。

1.2 定积分的性质介绍定积分的性质:线性性质、保号性、可积函数的有界性等。

通过示例说明定积分的性质在实际问题中的应用。

第二章:定积分的计算方法2.1 牛顿-莱布尼茨公式介绍牛顿-莱布尼茨公式:如果F(x) 是函数f(x) 的一个原函数,∫ab f(x)dx = F(b) F(a)。

解释原函数的概念:原函数是导函数的不定积分。

2.2 定积分的换元法介绍换元法的步骤:选择适当的代换变量,求导数,计算新积分。

通过具体例子演示换元法的应用。

第三章:定积分在几何中的应用3.1 平面区域的面积解释平面区域面积的概念:平面区域内所有点的坐标的绝对值的平均值。

利用定积分计算平面区域的面积,示例包括矩形、三角形、圆形等。

3.2 曲线围成的面积介绍利用定积分计算曲线围成的面积的方法:选择适当的上下限,计算定积分。

通过具体例子演示计算曲线围成的面积。

第四章:定积分在物理中的应用4.1 定积分与力的累积解释力的累积概念:力在一段时间内的积累效果。

利用定积分计算力的累积,示例包括恒力作用下的位移、变力作用下的位移等。

4.2 定积分与功的计算介绍利用定积分计算功的方法:计算力与位移的乘积的定积分。

通过具体例子演示计算功的应用。

第五章:定积分在经济学中的应用5.1 定积分与总成本解释总成本的概念:企业在生产一定数量产品所需的成本。

利用定积分计算总成本,示例包括固定成本和变动成本的情况。

5.2 定积分与总收益介绍利用定积分计算总收益的方法:计算产品的售价与销售数量的乘积的定积分。

通过具体例子演示计算总收益的应用。

第六章:定积分在概率论中的应用6.1 定积分与概率密度解释概率密度的概念:随机变量在某个区间内的概率。

利用定积分计算概率密度,示例包括均匀分布、正态分布等。

定积分的计算及应用

定积分的计算及应用

定积分的计算及应用定积分是微积分中的重要内容,主要用于计算曲线下的面积、求函数的平均值和求解各种几何问题。

本文将介绍定积分的计算方法和应用。

一、定积分的计算方法1.函数的不定积分和定积分在介绍定积分之前,先来了解一下不定积分。

不定积分是求函数的原函数,即给定一个函数f(x),求出它的一个原函数F(x),满足F'(x)=f(x)。

然后,定积分是不定积分的一个推广。

对于一个函数f(x),我们可以将其在[a,b]区间内的曲线下的面积分成无穷多个矩形小面积,然后将这些小面积相加,得到的极限值就是函数f(x)在[a,b]区间上的定积分。

2.基本积分法则计算定积分常用的方法是基本积分法则,它是通过一些基本的积分公式来计算积分。

下面是一些常见的基本积分公式:- 常数函数积分:∫k dx = kx + C,其中k为常数,C为常数;- 幂函数积分:∫x^n dx = (x^(n+1))/ (n+1) + C,其中n≠-1,C 为常数;- 指数函数积分:∫e^x dx = e^x + C,C为常数;- 三角函数积分:∫sin(x) dx = -cos(x) + C, ∫cos(x) dx = sin(x) + C,C为常数。

3.定积分的计算方法对于函数f(x)在[a,b]区间上的定积分,有以下计算方法:-用基本积分法则计算不定积分F(x);-确定积分上下限,将F(x)在a和b处的值代入,得到F(b)-F(a);-F(b)-F(a)即为函数f(x)在[a,b]区间上的定积分。

二、定积分的应用1.曲线下的面积定积分最常用的应用是计算曲线下的面积。

给定一个函数f(x),要计算它在[a,b]区间上曲线下的面积,可以通过定积分来实现。

具体步骤如下:-将[a,b]区间划分成n个小区间,每个小区间的宽度为Δx=(b-a)/n;- 在每个小区间上确定一个点xi,其中i=1,2,3,...,n;- 计算每个小区间上的矩形面积,即ΔS= f(xi) * Δx;-将n个小矩形的面积相加,即S≈Σ(ΔS);- 当n趋向于无穷大时,即Δx趋向于0,Σ(ΔS)趋向于定积分∫f(x)dx。

初中数学知识归纳定积分的计算和应用

初中数学知识归纳定积分的计算和应用

初中数学知识归纳定积分的计算和应用初中数学知识归纳——定积分的计算和应用定积分是数学中重要的概念之一,具体来说,它是用来计算曲线与x轴之间的面积的。

在初中数学中,我们通常不会涉及具体的计算过程,但是了解其基本原理和应用是十分重要的。

下面将介绍定积分的计算方法和应用。

一、定积分的计算方法1. 几何意义定积分的计算可以理解为曲线与x轴之间的面积计算。

对于一个函数f(x),我们可以通过定积分来计算函数在区间[a, b]上的点与x轴之间的面积。

具体而言,这个面积可以被分成许多矩形的和,每一个矩形的高度为f(x),宽度为dx。

当我们将这些矩形的面积相加,并让dx无限接近于0时,我们就可以得到一个近似的结果。

通过极限的推导,我们可以得到定积分的计算公式:∫[a, b] f(x)dx。

2. 基本计算方法在初中数学中,我们主要了解一些基础的函数的定积分计算方法,例如多项式函数、幂函数和三角函数等。

对于多项式函数,我们可以使用基本的求导公式来计算其定积分。

例如,对于函数f(x) = ax^n,其中a和n为常数,我们可以使用公式∫x^n dx = (1/n+1)x^(n+1) + C,其中C为常数,来计算其定积分。

对于幂函数和三角函数,我们可以使用换元法和分部积分法来计算其定积分。

通过合适的变量替换和部分积分,我们可以将原函数转化为更简单的形式,从而进行计算。

3. 数值计算方法在实际问题中,我们常常无法找到函数的原函数,无法直接计算定积分。

这时,我们可以使用数值计算方法来近似计算定积分的值。

常用的数值计算方法有矩形法和梯形法。

矩形法将区间分成若干个小矩形,然后计算这些小矩形的面积之和作为定积分的近似值。

梯形法则是将区间分成若干个梯形,计算这些梯形的面积之和作为定积分的近似值。

随着小矩形或梯形越来越多,近似值也会越来越接近真实值。

二、定积分的应用1. 几何应用定积分的最主要的应用之一就是计算曲线与x轴之间的面积。

例如,我们可以通过定积分来计算椭圆、抛物线和心形线等曲线的面积。

绕轴旋转体的体积

绕轴旋转体的体积

o
取以dx为底的窄边梯形绕 x轴
x
x x ? dx
旋转而成的薄片的体积为 体积微元,
dV ? ? [ f (x)]2 dx
? ? V ?
b
?[
f ( x)]2 dx
?
b ? y 2 dx
a
a
类似的当考虑连续曲线段 绕y 轴旋转一周所形成的立体体积为
? V ?
d
?
[
?
(
y)]2
dy
c
y
d y x ? ? ( y) c
分别绕 x 轴,y 轴旋转一周所生成的旋转体的体积
y
y
x x
解:绕 x 轴旋转体的体积
? ? Vx ? ? ?12 ?2 ?
2 ? ( x 2 )2 dx 04
? 2? ? ?
16
2 x4dy
0
? 2? ? ? ?x5 2 ? 8?
16 5
5
y
0
绕 y 轴旋转体的体积
? ? Vy ?
1
?(
0
4 y )2 dy? ?
? ? 6? a3
?
2 (sin7 t ? sin9 t)dt ?
32 ? a 3
0
105
利用对称性
?
2?
? a 3 ? 0
(1 ?
cos t)3 d t
? 16?
? a 3 ? 0
sin 6
t 2
dt
(令 u
?
t) 2
? ? 32? a 3
? 2
sin 6
u
du?
32?
a3
?5
?3
?1
??
0

定积分及其应用

定积分及其应用


b
b
b
f ( x)dx f (t)dt f (u)du .
a
a
a
2o. 当 T 0, 分点个数 n ;但反之不然 .
3o. 若 f 在 [a, b] 的某一个积分和的极限 不存在 ,
或若 f 在 [a, b] 的某两个积分和的极限 都存在但 极限值 不相等 ,则 f ( x) 在 [ a , b ] 上不可积 .
dx x
1dx, 03
4
0
3
1 sin3
dx x
3
.
第44页
例 5
估计积分
2
4
sin xdx的值. x
解 f ( x) sin x , x [ , ]
x
42
0 x , x tan x.
2
f ( x)
x cos x sin x x2
cos x( x tan x) x2
第26页
怎样的分法,也不论在小区间[ xi1 , xi ]上
点i 怎样的取法,只要当|| T || 0 时,和 S 总趋于
确定的极限I ,我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限
n
b
a
f ( x)dx
I
lim ||T ||0 i 1
f (i )xi
积分和 或黎曼和
T 0 i 1
f (i )xi
n
lim
f (a b a i) b a
.
n i1
n
n
第29页
例1
利用定义计算定积分
1 x2dx. 0
解 xi
T 把 [0,1] n xi xi1

定积分的应用

定积分的应用

定积分的应用定积分是数学中的一个重要概念,它在许多领域中具有广泛的应用。

本文将介绍定积分的基本概念和性质,并探讨其在几何学、物理学和经济学等领域中的应用。

首先,让我们回顾一下定积分的定义。

在数学中,定积分是一个函数与另一个函数之间的一种关系,通常表示为∫f(x)dx。

其中,f(x)是被积函数,x是积分变量,dx表示对x的微小变化。

定积分表示的是函数f(x)在给定区间[a,b]上的面积或曲线下的总体积。

定积分具有以下几个重要的性质。

首先,如果f(x)是[a,b]上的连续函数,那么定积分存在且唯一。

这一性质保证了定积分的可靠性和确定性。

其次,定积分的值可以通过积分的上限和下限来计算。

换句话说,定积分是一个函数的区间值。

最后,定积分的值可以通过一种基本定理来计算,即牛顿—莱布尼茨公式。

该公式告诉我们,如果F(x)是f(x)的一个原函数,那么定积分可以通过求F(x)在区间[a,b]上的差值来计算。

在几何学中,定积分有着广泛的应用。

通过计算曲线下的面积,我们可以求解两个曲线之间的交集、计算物体的体积等。

例如,如果我们要求解一个曲线和x轴之间的面积,我们可以将该曲线表示为y=f(x),然后计算∫f(x)dx在所给区间上的值。

同样地,我们可以使用定积分来计算曲线的弧长,通过公式∫√(1+(dy/dx)^2)dx来实现。

定积分在几何学中的应用还包括求解曲线的重心和弦长等问题。

物理学是另一个应用定积分的领域。

在物理学中,物体的质量、力、功和能量等都与空间的分布有关。

通过将物体分成许多微小的部分,并计算每个部分的质量或力的大小,我们可以使用定积分来对整个物体的质量或力进行求和。

例如,我们可以使用定积分来计算一个线密度为λ(x)的细线段的质量,通过公式∫λ(x)dx来实现。

同样地,我们可以使用定积分来计算一个变力F(x)在区间[a,b]上所做的功,通过公式∫F(x)dx来实现。

定积分在物理学中的应用还包括计算速度、加速度和热量等。

高数第五章定积分及其应用(第129-163页,共35页张勇)

高数第五章定积分及其应用(第129-163页,共35页张勇)

129第五章 定积分及其应用§5.1 学习的要求1. 理解定积分的概念及几何意义,了解可积的条件.2. 掌握定积分的基本性质.3. 理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法.4. 熟练掌握牛顿—莱布尼茨公式.5. 掌握定积分的换元积分法和分部积分法6. 理解无穷区间的广义积分,掌握其计算方法.7. 熟练掌握定积分求平面图形面积和掌握平面图形绕坐标轴旋转所成的旋转体体积 8. 会用定积分求变力直线做功和不均匀细棒的质量.§5.2内容提要一、 定积分的概念 (一)定积分的概念定义 设函数)(x f y =在区间],[b a 上有定义,用任一组分点: 01....a x x =<<,i n x x b <<<=把区间],[b a 分成n 个小区间),...3,2,1](,[1n i x x i i =-在每个小区],[1i i x x -上任意取一点i ξi i i x x ≤≤-ξ1() 用函数值)(i f ξ与该区间的长度1--=∆i i i x x x 相乘,作和式i ni i x f ∑=∆1)(ξ 如果不论对区间],[b a 采取何种分法及i ξ如何选取,当 {}0(max (1)i x x x i n ∆→∆=∆≤≤)时,和式的极限存在,则称函数)(x f 在],[b a 上可积,此极限称为函数在区间],[b a 上的定积分(简称积分).记为dx x f ba)(⎰,即1()()limnbiiai x f x dx f x ξ=∆→=∆∑⎰,其中变量x 称为积分变量,)(x f 称为被积函数,dx x f )(称为被积表达式b a ,分别称为积分下限和积分上限, ],[b a 称为积分区间.⎰badx x f )( 是 一个常量(b a ,为常数),其值只与被积函数和积分上下限有关,与积分变量用什么字母无关.(二).几何意义 1. 若)(x f ≥0,定积分⎰ba dx x f )(表示曲线)(x f y =,直线x =a 和x =b 以及x 轴所围成的曲边梯形的面积. 2. 若)(x f ≤0,定积分⎰badx x f )(表示相应曲边梯形面积的负值.(三) 定积分存在定理定理 如果函数)(x f 在区间],[b a 上连续,则)(x f 在],[b a 上的定积分必定存在. 二 、定积分的性质130 性质1 若],,[b a x ∈恒有)(x f =1,则有⎰⎰-==⋅bab aa b dx dx 1.性质2 ⎰ba dx x f )(=-⎰abdx x f )(.性质3 ⎰=badx x kf )(⎰badx x f k )( (k 是常数)性质4⎰⎰⎰±=±b ab abadx x f dx x f dx x f x f )()()]()([2121推论1 112[()()]()()()bb bbn n aaaaf x f x dx f x dx f x dx f x dx ±±=±±±⎰⎰⎰⎰性质5 ],[b a c ∈∀,则⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(推论2 c b a ,,为任意的常数⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(.性质6(积分中值定理) 若函数)(x f 在],[b a 上连续,则至少存在一点ξ()b a ,(∈ξ),使⎰badx x f )(=))((a b f -ξ三 、牛顿—莱布尼茨公式 (一) 积分上限函数1. 定义 设)(x f 在],[b a 上连续,],,[b a x ∈则)(t f 在],[x a 上可积 , 即⎰xadt t f )(存在,因此⎰xadt t f )(是上限x 的函数,记为()x φ=⎰xadt t f )(,称)(x φ为积分上限函数(或变上限积分) .2.积分上限函数的导数设)(x f 在],[b a 上连续, )(x φ在],[b a 上可导,则⎰∈==xa b a x x f dt t f dxd x ].,[),()()('φ )(x φ就是)(x f 在],[b a 上的一个原函数.(二)牛顿—莱布尼茨公式定理 如果函数()F x 是连续函数)(x f 在区间],[b a 上的任一原函数, 则)()()(a F b F dx x f ba-=⎰,这个公式称为牛顿—莱布尼茨公式,也称为微积分学基本定理. 公式表明:一个连续函数在区间],[b a 上的定积分等于它的任一原函数在区间],[b a 上的增量.四. 定积分的换元法和分部积分法 (一) 定积分的换元法设函数)(x f 在区间],[b a 上连续,令)(t x φ=,如果 (1) )(t φ在[βα,]上连续,当],[βα∈t 时, )(t φ的值不超出],[b a ,且有连续导函数)('t φ;(2) b a ==)(,)(βφαφ, 则⎰badx x f )(=⎰βαφφdx t t f )('))((.用)(t x φ=进行变换时,积分限也要随之换成新变量t 的积分限,不必像不定积分那样将变量还原.131(二)定积分的分部积分法设函数),(x u )(x v 在],[b a 上具有连续的一阶导数 ),('),('x v x u 则''bb aaba uv dx u vdx uv =-⎰⎰;或bbaaba udv vdu uv =-⎰⎰ .(三)偶,奇函数在对称区间],[a a -上的积分(1)当)(x f 是],[a a -上连续的偶函数时,⎰⎰-=aaadx x f dx x f 0)(2)(;(2)当)(x f 是],[a a -上连续的奇函数时,⎰-=aadx x f 0)(.五.广义积分(反常积分)(一) 无穷区间上的积分(无穷积分)定义 设)(x f 在区间[,)a +∞上连续,取b a >,若极限lim ()bab f x dx →∞⎰,则称此极限值为 )(x f 在),[+∞a 上的广义积分,记作 ⎰+∞adx x f )(=lim ()bab f x dx →∞⎰;(1)类似地,可以定义如下反常积分⎰∞-bdx x f )(=lim()baa f x dx →-∞⎰; (2)⎰-∞∞-dx x f )(=⎰∞-cdx x f )(+⎰+∞cdx x f )(lim()caa f x dx →-∞=⎰+lim()bcb f x dx →+∞⎰, (3)其中c 为任何实数;当(1)(2)(3)式右端极限存在时,反常积分收敛,否则是发散的. (二) 无界函数的积分定义 设)(x f 在],(b a 上连续,且lim ()x af x +→=∞,取0>ε若极限0lim ()ba f x dxεε+→⎰存在,则称此极限为无界函数)(x f 在],[b a 上的广义积分,记作⎰badx x f )(=0lim ()ba f x dx εε++→⎰.类似地,可定义在x b =附近无界函数()f x 的反常积分⎰b adx x f )(=0lim ()b af x dx εε-→⎰,以及在(a ,b )内一点x c =附近无界函数()f x 的反常积分⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(=0lim ()c af x dx εε-→⎰+0lim ()bc f x dx εε++→⎰.六 定积分的应用(二) 定积分的元素法.(1) 任取],[b a 上的代表性的小区间[,]x x dx + ,作出欲求量Q 在此小区间上增量Q ∆的近似值即微元: dx x f dQ )(= .(2)求积分,Q =⎰badx x f )(.注:关键是找出微元,例如求面积要找出“面积微元”,求体积要找出“体积微元”等. (三)定积分的几何应用1)平面图形的面积(1)直角坐标系下的面积公式①由曲线(),()(()())y f x y g x f x g x ==≥与)(,b a b x a x <==所围成的图形面积132 S=⎰-badx x g x f )]()([;②由曲线 (),()(()())x y x y y y φϕφϕ==≥与)(,d c d y c y <==所围成的图形面积[()()]dcs y y dy φϕ=-⎰.(2)极坐标系下的面积,求立体的体积由曲线],,[),(βαθθ∈=r r 与两条射线βθαθ==, 所围成的曲边扇形的面积 21()2s r d βαθθ=⎰. 2)已知平行截面的面积,求立体的体积设某立体由一曲面和垂直于x 轴的两个平面 b x a x ==,围成,用垂直于x 轴的平面去截这个立体,若截面面积()A x (b x a ≤≤)是已知的连续函数,则该立体体积()baV A x dx =⎰.3)旋转体的体积①连续曲线))((b x a x f y ≤≤=与b x a x =-,及x 轴所围成的图形绕x 轴旋转一周所得的旋转体体积⎰=bax dx x f V )(2π②连续曲线))((d y c y x ≤≤=φ与d y c y ==,及y 轴所围成的图形绕y 轴旋转一周所得的旋转体体积⎰=dcy dy y V )(2φπ.(三)定积分在物理上的应用 1.变力沿直线作功变力)(x f 作用于物体,使物体由点a x =移动到b x =,)(x f 在],[b a 上连续,由微元法,任取],[b a 上的小区间[,],x x dx +其上的变力)(x f 近似看着常数,得功元素dx x f dw )(=,以a 到b 求定积分,得所求的功 w =⎰badx x f )(.2.非均匀直线细棒的质量.直线细棒的线密度为∈=x x ),(ρρ],[b a ,在],[b a 上由微元法,任取],[b a 上的小区间[,],x x dx +其上的密度近似看着常数,得质量元素 dx x dm )(ρ=,从a 到b 求定积分,得到所求的直线细棒的质量m =⎰badx x )(ρ.3. 非均匀细棒的转动惯量细棒AB 的方程为,b kx y +=密度∈=x x ),(ρρ],[b a ,任取],[b a 上的小区间],[dx x x +,视该小区间上密度与],[dx x x +对应的细棒段CD 到转轴x 轴的距离y 为常数,得转动惯量微元dx x b kx k dx x k ydI x )()(1)(12222ρρ++=+=转动惯量为 ⎰++=bax dx x b kx k I )()(122ρ§5.3基本例题及分析133例1.比较下列积分的大小关系.(1)⎰21sin dx x x 与⎰212)sin (dx x x ; (2)⎰⎰++1010)1ln(1dx x dx xx 与. 分析 在积分上下限都相同的情况下,积分大小由被积函数的大小决定. 比较两个函数的大小可以根据函数本身的图形关系、利用单调函数的定义等方法来判断.解 (1)当0x >时sin x x <,当1<x <2时,有1sin >x x ,即有 ,sin )sin (2xx x x > 则⎰⎰<21212)sin (sin dx x x dx x x . (2) 令0)0(),1ln(1)(=+-+=F x x xx F ,,)1(11)1(1)('22x xx x x F +-=+-+= 当0x >时,0)('<x F 时,()F x 单调下降,0)0()(,0=<>F x F x ,即)1l n (1x xx+<+, 则⎰⎰+<+1010)1ln(11dx x dx x .例2.估计积分1214xe ⎰的值.解 当]21,41[∈x 时, x y =单增, x y arcsin=单增, u e y =是单增,所以x xe x f y arcsin )(==在]21,41[也是单增的,因此)21()()41(f x f f <<,由641111(),()4422f e f e ππ==,得 6411()42e f x e ππ<<,同时积分得42141681)(161ππe dx x f e <<⎰. 例3.设)(x f 在a x =处连续,求极限ax dt t f xaax -⎰→)(lim.分析 x a →时,分子趋向()aaf t dt ⎰(=0),所以是型极限,一般对变上限积分很常用“(())()xaf t dt f x '=⎰”这种运算方式,所以很自然想到用洛必达法则求解.解 这是型未定式,用洛必达法则求解. 原式=)(1)(lim)'())((lim'a af x xf a x dt t tf ax xa ax ==-→→⎰.134 例 4. 设)(x f 在 ],[b a 上连续,且)(x f >0,证明:方程⎰⎰=+xaxbdt t f dt t f 0)(1)( 在区间),(b a 内恰有一个根.分析 证明根的存在可以考虑零点定理:连续函数的端点函数值符号相反则函数至少有一个零点(即函数值为0的点),如果函数是单调函数,则只能有一次穿过x 轴.本例中出现变上限积分,一般要用到它的导数,注意变上限积分函数的自变量由变上限确定.证 设 )(x F =⎰⎰+xaxbdt t f dt t f )(1)(,由于)(x f 连续, )(x f >0,则)(1x f 连续,所以)(x F 在],[b a 上也连续.又因为11()0,()()0()()ab b b a a F a dt dt F b f t dt f t f t ==-<=>⎰⎰⎰,由零点定理可知, )(x F =0在),(b a 内至少有一个根.又.0)(1)()('>+=x f x f x F 则)(x F 在],[b a 上单增,()0F x =在 ],[b a 上最多有一个根,由上述证明可知:)(x F 在),(b a 内恰好有一个根.例5. 计算下列积分 (1)⎰94sin dx xx ; (2)⎰2052sin cos πxdx x ;(3)⎰-adx x a x222(a >0); (4) ⎰---1221x x dx ;(5)⎰-+1)1ln(e dx x ; (6)⎰-+223)cos (sin ππdx x x .分析 (1)题出现了复合函数和其中间变量的导数,比较明显是用凑微分法;另外也项,可以尝试第二换元法.(2)题先用倍角公式化简后明显是用凑微分法的情形.(32xdx -的组成,所以用第二换元法的三角代换法.(4)题同(3)题,另外注意到和(arcsin )x '=.(5)题是幂函数乘对数函数的积分,显然用分部积分.(6)题的上下限是对称区间,根据奇偶函数在对称区间的积分来做.解:(1)法一:,21x d dx x=⎰⎰-=-==949494)3cos 2(cos 2cos 2sin 2sin xx d x dx xx .法二:(用第二换元法). 令,2,,2tdt dx t x x t === 当x =4时, t =2;当x =9时t =3,则93332422sin 22sin 2cos 2(cos 2cos3)t tdt tdt tt ===-=-⎰⎰⎰.(2)原式=2⎰⎰=-=-=2020276672cos 72cos cos 2sin cos πππx x xd xdx x .135(3)令tdt a dx t t a x cos ),20(,sin =≤≤=π,当x =0时, t =0;当x =a 时, t =2π,则22422220(sin )(cos )(cos )sin cos axa t a t a t dt at tdt ππ==⎰⎰⎰4422201cos 4sin 2442a a t tdt dt ππ-==⎰⎰4420sin 4()8416a t a t ππ=-=.(4)法一:用第二换元积分法,令sec ,sec tan x t dx t tdt ==,当2-=x 时,π32=t ;当1-=x 时, t =π,则⎰⎰⎰---=-=-=-12323223)1()tan (sec tan sec 1πππππdt dt t t t t x x dx . 法二:运用恒等变形和凑微分法. 当[2,1],x ∈--x =-1()x'==,令1u x =,则1121/----=⎰⎰11/2arcsin ()263u πππ--==---=-. (5)1111ln(1)ln(1)(1)[(1)ln(1)](1)ln(1)e e e e x dx x d x x x x d x ----+=++=++-++⎰⎰⎰11001(1)11e e e x dx e x x --=-+=-=+⎰ . (6)积分区间关于点对称, x 3sin 是奇函数,x 3cos 是偶函数.原式=/2/232/2/2sin cos 02cos 2xdx xdx xdx πππππ--+=+=⎰⎰⎰.例6.求证(sin )(sin )2xf x dx f x dx πππ=⎰⎰.分析 等式两边被积函数均含有)(sin x f ,注意到sin()sin t t π-=,如果t x -=π,其上下限互换了,并注意到定积分与积分变量用什么符号无关.证 令t x -=π,,dt dx -=,当0=x 时, t =π;当x =π时, t =0.00(sin )()(sin())()()(sin )xf x dx t f t dt t f t dt ππππππ=---=--⎰⎰⎰=()(sin )(sin )(sin )t f t dt f t dt tf t dt πππππ-=-⎰⎰⎰,而定积分与积分变量无关,得⎰⎰=ππ00)(sin )(sin dx x xf dt t tf ,整理得⎰⎰=πππ)(sin 2)(sin dx x f dx x xf .例7.计算⎰∞-0sin xdx e x .136 分析 被积函数的指数函数乘正弦函数,两次同型的分部积分就可以解出原函数.本题是广义积分,其实就是先求定积分,然后取上限或下限的极限.解:由不定积分⎰⎰---+-=xdxe x e xdx e x x x cos sin sin =dx x e x e x e xx x )sin (cos sin -+-----⎰,则⎰++-=--c x x e dx ex x)cos (sin 21sin ,⎰⎰∞-∞→-=00sin lim sin b xb x xdx e xdx e . 则 0lim[(/2)(sin cos )]x bb e x x -→∞-+=2/1)2/12cos sin (lim =++-∞→b b eb b 则⎰∞-0sin xdx e x 收敛,其值为1/2.例8.求曲线24x y -=与直线x =4, x 轴, y 轴在区间[0,4]上围成图形的面积S . 解S =42424222330224(4)(4)(4(34)16x dx x dx x dx x x x x -=-+-=-+-=⎰⎰⎰.例9.求由曲线θ2cos 22=r 所围成图形在r =1内的面积.分析 本题没有明确指出极坐标下θ的变化范围,那么肯定要根据已知条件找出来,注意2r >0. 题意是求两个图形围成的图形面积,而r =1是一个半径为1的圆,它和曲线一定要相交,所以首先要求出交点,从而确定积分的限.解 由 θ2cos 22=r 0≥ ,则 cos20θ≥,2,2244ππππθθ-≤≤-≤≤.令 {22cos21r r θ==,得6πθ±= ,交点(1,6π±).由于对称性,先计算第一象限内的部分.当6/0πθ<<时, r =1 ,阴影部分面积⎰⎰===660211212121πππθθd d r A ;当46πθπ<<时,,2cos 22θ=r 阴影部分的面积为2442661112cos 2(1222A r d d ππππθθθ===⎰⎰323)(421-+=+=πA A A .例10.求由曲线22x y -=与直线0),0(=≥=x x x y . 围成的平面图形绕x 轴旋转而成的旋转体体积.分析 两曲线围成图形的旋转体体积可以看成大的旋转体去掉小的旋转体,曲线绕x 轴旋转,任意点x 处的截面半径是()r y f x ==,旋转体体积微元是22()y dx f x dx ππ=.解 解方程组{22y xy x ==-且x 0≥,得x =1.则所求旋转体的体积为111222240(2)(45)x V x dx x dx x x dx πππ=--=-+⎰⎰⎰137=π513058(4)23515x x x π-+=例11.自地面垂直向上发射火箭,火箭质量为m , 试计算将火箭发射到距离地面高度为h 处所做的功.解:设地球质量M ,半径为R ,坐标原点在地心,地球对于r 点处火箭的引力大小为2rMmGf = (r 是地心到火箭的距离) . 火箭从r 处到dr r +处. 引力近似看成不变,为2)(rMmG r f =, 则功元素为dr r f dW )(=,2111()()()R R R R RRRRhhhhMm W dW f r dr Gdr GMm GMm r rR R h++++====-=-+⎰⎰⎰.§5.4 教材习题选解习题 5-11、判断题(1)定积分⎰ba x f )(由被积函数)(x f 与积分区间],[b a 确定. (√)(2)定积分⎰b a dx x f )(是x 的函数. (×) (3)若⎰=b adx x f 0)(,则0)(=x f . (×)(4)定积分⎰badx x f )(在几何上表示相应曲边梯形面积的代数和. (√)2、选择题(根据右图(见教材P122图)写出答案): (1)⎰=bdx x f 0)((B );(A )21A A +; (B )21A A -; (C )12A A +; (D )231A A A -+. (2)⎰=dcC dx x f )()(;(A )32A A +; (B )32A A -; (C )23A A -; (D )213A A A -+. (3)⎰=d dx x f 0)((C ).(A )321A A A ++;(B )321A A A -+;(C )321A A A +-;(D )213A A A +-.习题 5-21、判断题 (1)⎰⎰=2112)()(dx x f dx x f ;(×)138 (2)当c x f =)(时,⎰⎰+=11)()(a adx x f dx x f ;(√)(3)⎰⎰=babadx x f k dx x kf )()(只对非零常数k 成立;(×)(4)⎰⎰⎰±=±bababadx x f k dx x f k dx x f k x f k )()()]()([22112211;(√)(5)⎰⎰⎰--+=ππππππ2339929sin sin sin xdx xdx xdx . (√)2、已知⎰=10341dx x ,⎰=10231dx x ,⎰=1021xdx ,⎰=201cos πxdx ,⎰=201sin πxdx ,求定积分:(1)130(421)x x dx ++⎰;(2)120(2)x dx +⎰;(3)11(3)3x dx +⎰; (4)130(1)x dx +⎰; (5)220sin 2x dx π⎰; (6)20(sin cos )a x b x dx π+⎰.解 (1)⎰⎰⎰⎰=+⨯+⨯=++=++101010103331212414124)124(dx xdx dx x dx x x ;(2)⎰⎰⎰⎰⎰=+⨯+=++=++=+1010*******2231642143144)44()2(dx xdx dx x dx x x dx x ; (3)⎰⎰⎰=+=⨯+⨯=+=+101010611629131213313)313(dx xdx dx x ;(4)⎰⎰⎰⎰⎰⎰+++=+++=+10101010123231333)133()1(dx xdx dx x dx x dx x x x dx x419121331341=+⨯+⨯+=; (5)2222200001cos 11111sin cos (2)22222224x x dx dx dx xdx ππππππ-==-=⨯-=-⎰⎰⎰⎰; (6)⎰⎰⎰+=⨯+⨯=+=+2020211cos sin )cos sin (πππb a b a xdx b xdx a dx x b x a .3、设)(x f 和)(x g 在],[b a 上连续,且)()(0x g x f ≤≤试用定积分的几何意义说明⎰⎰≤babadx x g dx x f )()(.解 令)()()(x f x g x h -=,则在],[b a 上,≥)(x h 0,()0b ah x dx ∴≥⎰,即⎰⎰⎰≥-=-b a b a badx x f dx x g dx x f x g 0)()())()((,()()bbaaf x dxg x dx ≤⎰⎰.4、用第3题的结论比较定积分的大小: (1)⎰21xdx 与⎰212dx x ;(2)⎰43ln xdx 与⎰432)(ln dx x ;(3)⎰20πxdx 与⎰20sin πxdx ;(4)⎰10sin xdx 与⎰12sin xdx .139解(1) 在[1,2]上,x x >2,⎰⎰<∴21212dx x xdx .(2) 在[3,4]上,ln 1x >,知2ln (ln )x x <∴⎰43ln xdx <⎰432)(ln dx x .(3) 在]20[π,上,x x x f sin )(-=,'()1cos 0f x x =-≥,即()f x 在]2,0[π是增函数,显然在]20[π,上,当0=x 时,)(x f 取到最小值0,即在]20[π,上0sin )(≥-=x x x f ,有sin x x ≤,则220sin xdx xdx ππ>⎰⎰.(4) 在[0,1]上,0sin 1x <<,2sin sin x x >⎰⎰>∴1012sin sin xdx xdx .习题 5-31、判断题 (1)当⎰=Φxadt t f x )()(时,)()('x f x =Φ;(√)(2)对任意函数)(x f 有⎰-=baa Fb F dx x f )()()(;(×)(3)⎰=--122)11(πdx x;(×)(4)0sin 20=⎰kxdx π. (√)2、计算定积分(2))0()13(211>+-⎰+a dx x x x a ;(3)⎰+2142)1(dx xx ;(4)4dx +⎰; (5)⎰+33121x dx ; (6)⎰--212121xdx ; (7)⎰>+a a x a dx 3022)0(; (8)⎰-4221x dx; (9)⎰-1024xdx ; (10)⎰-+++11241133dx x x x ; (11)⎰23sin πxdx ; (12)dx x |sin |20⎰π;(13)⎩⎨⎧>-≤=1,121,)(2x x x x x f ,求⎰20)(dx x f ; (14)⎰+π0)cos 3sin 2(dx x x ; (15)⎰402tan πxdx ;(16)⎰++212123dx xx x ; (17)⎰+π02)2cos (dx xe x .140 解(2)1211(3)a x x dx x +-+⎰1123|)|ln 2(++-=a x x x0211)1ln(2)1()1(23-+-+++-+=a a a)1ln(22523++++=a a a a .(3) ⎰+2142)1(dx x x 8212463)3131(3183138)3131(2133==--⨯-=-=-x x .(4) ⎰⎰+=+=+94942232194)2132()()1(x x dx x x dx x x)1621832()81212732(⨯+⨯-⨯+⨯= 6145621110)8316()28118(=+=+-⨯=.(5) ⎰+33121xdx663arctan 331πππ=-==x .(6)⎰--212121x dx 3)6(6arcsin 2121πππ=--==-x. (7)220dx a x +aa a xaa 3031arctan130ππ=-⋅==. (8)⎰-4221x dx 5ln 213ln 31ln 2153ln 21|11|ln 2142-=-=+-=x x . (9) ⎰-1024xdx60arcsin 21arcsin 2arcsin 10π=-==x . (10) ⎰-+++11241133dx x x x ⎰-++++-+=112222143)1(3)1(3dx x x x x x ⎰⎰⎰--+++++=1111222141)1(23x dx x x d dx 1111211113arctan 4)1ln(233----++-=x x x x 2604[()]2444πππ=-++--=-.(11)⎰23sin πxdx⎰=---=-=-=2020203232)10()10(31cos cos 31)(cos )1(cos πππx x x d x .141(12)dx x |sin |20⎰π⎰⎰+-=-=ππππππ0202cos cos sin sin xx xdx xdx4)11()11(=+++=.(13) ⎰⎰⎰=-+=-+=-+=21212121032312)02(31)(3)12()(x x x dx x dx x dx x f .(14)⎰+π)cos 3sin 2(dx x x ⎰⎰+-=+=ππππ0sin 3cos 2cos 3sin 2x x xdx xdx4)00(3)11(2=-++=(15)⎰402tan πxdx ⎰-=-=-=4040241)(tan )1(sec οππx x dx x .(16)⎰++212123dx xxx 42121)2t t t dt =++)13253(2)222322453(2)3253(22135++-+⋅+⋅=++=t t t1568215142-=. (17) ⎰+π02)2cos (dx x e x ⎰⎰++=ππ002cos 1dx x dx e x 12)00(21)02()1(sin 2121000-+=-+-+-=++=πππππππe e x x e x.3、设k 为正整数,证明:(1)sin 0kxdx ππ-=⎰;(2)⎰-=ππ0cos kxdx .证明 :(1)⎰⎰---=---=-==ππππππππ0))cos((cos 1cos 1)(sin 1sin k k k kx k kx kxd k kxdx ; (2)⎰⎰---=--===ππππππππ0))sin((sin 1sin 1)(cos 1cos k k k kx k kx kxd k kxdx .4、设某公司拟在市场推出一种新产品,据市场预测,产品最终可占有全国市场的4%,即每年可销售480万元,产品刚上市时大家陌生,故开始时达不到预测数,若收益函数变化率])1(11[480)('3+-=t t R (万元/年),问第二年的收益为多少?第三年呢? 解 第二年的收益为:⎰⎰+-=21213])1(11[480)('dt t dt t R32446]4121191212[480])1(121[480212=⋅--⋅+=+⋅+=t t (万), 第三年的收益为:142 ⎰⎰+-=32323])1(11[480)('dt t dt t R 31468]91212161213[480])1(121[480212=⋅--⋅+=+⋅+=t t (万).习题 5-41、判断题:(1)定积分换元时要交换上、下限;(×)(2)⎰-=++2232110)2)(cos 1(ππdx x x x ;(√) (3)222sin 4cos x u udu π=⎰⎰;(√) (4)dx xdx x e e +-=+⎰⎰--11)1ln(11;(×) (5)⎰-=--124)1(πdx x . (√)2、计算定积分(1)⎰+2024t dt; (2)⎰+10431dx x x ; (3)dt t t ⎰-211; (4)31e ⎰; (5)21211cos dt t tππ⎰; (6)⎰203cos sin πxdx x ; (7)⎰+ωπϕω02)(sin dt t ; (8)⎰-222cos cos ππxdx x ; (9)222)1(x xdx+⎰; (10)⎰-121dx x ; (11)⎰>-2022)0(a a xa dx.解(1)⎰+224t dt ⎰⎰===40402821sec 4)tan 2(tan 2πππdu u u d u t . (2) ⎰+10431dx x x ⎰=+=++=1014442ln 41)1ln(411)1(41x x x d . (3) dt tt ⎰-21121122220011(1)2111u u u d u du t u u u =+-+==+++⎰⎰ 22arctan 22)111(21010102π-=-=+-=⎰u u du u .(4)31e⎰222221122221111111()2222t t t t t t d e t e dt dt tx etet e-----=⋅=====⋅⎰⎰⎰.143(5)22111cos dt t t ππ⎰2121111cos ()sin sin sin 12d t t t ππππππ=-=-=-=-⎰. (6)⎰203cos sin πxdx x ⎰=-===2204341)01(41sin 41)(sin sin ππxx xd . (7)20sin ()tdt πωωϕ+⎰1cos 2()2tdt πωωϕ-+=⎰11cos 2()(2())24t t d t ππωωωϕωϕω=-++⎰ 011sin 2()[sin(22)sin 2]24242t πωπππωϕπϕϕωωωωω=-+=-+-=. (8) ⎰-222cos cos ππxdx x 222222sin 213sin 61)cos 3(cos 21ππππππ---+=+=⎰x x dx x x 32)11(21)11(61=++--=. (9) 2220)1(x xdx +⎰222201(1)(1)2x d x -=++⎰52)151(211121202=--=+-=x . (10) ⎰-1021dx x ⎰⎰⎰+===202022022cos 1cos )(sin cos sin πππdu u udu u ud u x 42sin 414)2(2cos 4121202020πππππ=+=+=⎰u u ud u . 969323 (11)20a ⎰⎰⎰===60606cos )sin (sin πππdu u a u a d ua x . 3、计算定积分: (1)10xxe dx -⎰; (2)0sin t tdt π⎰; (3)120arcsin xdx ⎰;(4)1arctan x xdx ⎰; (5)⎰202cos πxdx e x ; (6)⎰π2sin xdx x .解(1) 11111102()1xx xx xxe dx xdx e xee dx e ee ------=-=-+=--=-⎰⎰⎰;(2)00sin (cos )cos cos sin t tdt td t t ttdt tπππππππ=-=-+=+=⎰⎰⎰.(3)111122220001arcsin arcsin (arcsin )26xdx x xxd x π=-=⋅-⎰⎰⎰112222011(1)(1)1122122122x d x πππ-=++-=+⋅+-⎰.144 (4) 211112220000111arctan arctan (arctan )22821x dx x xdx x x x d x x π=-=-+⎰⎰⎰ 112001111(1)[arctan )]8218242dx x x x πππ=--=--=-+⎰. (5)⎰22cos πxdx e x ⎰⎰-==202022022)(sin sin )(sin πππx x x e xd x e x d e⎰⎰⎰-+=+=-=202020220222)(cos 2cos 2)(cos 2sin 2πππππππx xxxe xd x e e x d e e xdx e e22024cos x e e xdx ππ=--⎰,⎰-=∴202)2(51cos πx x e xdx e . (6)⎰π2sin xdx x ⎰⎰+-=-=πππ22cos 2cos )(cos xdx x x x x d x222202(sin )2sin 2sin 2cos 4xd x x xxdx xππππππππ=+=+-=+=-⎰⎰.4、求定积分(1)⎰--+12511x dx ;(2)⎰-10221dt t t ;(3)⎰414ln dx xx ;(4)11ln e x dx x +⎰;(5)⎰-ππxdx x 34sin ;(6)⎰-+11231)1cos (dx x x .解(1) ⎰--+12511x dx 6ln 51)1ln 6(ln 51|511|ln 51511)511(511212=-=+=++=----⎰x x x d .(2) ⎰-1221dt t t ⎰⎰⋅=⋅=202022)cos (sin )(sin cos sin sin ππdu u u u ud u u t 222220000111cos 411sin 2cos 444288u udu du u udu ππππ-===-⎰⎰⎰201sin 4163216u πππ=-=. (3) ⎰414ln dx xx 2222221111ln 1()ln ln 4t d t tdt t t t dt t t ==-⎰⎰ 12ln 22ln 221-=-=t .(4) 11ln ex dx x +⎰2211113(1ln )(1ln )(1ln )[(11)1]222e e x d x x =++=+=+-=⎰.145(5) ⎰-ππxdx x 34sin 0=(奇函数).(6)⎰-+11231)1cos (dx x x ⎰⎰⎰--=+=+=11111231220)cos (dx dx dx x x (奇函数). 5、证明在区间],[a a -上,若)(x f 为偶函数,则⎰⎰-=aaadx x f dx x f 0)(2)(.证明00()()()aa a af x dx f x dx f x dx --=+⎰⎰⎰,对0()()af x d x -⎰,令x u =-,有00()()()()()()()()()()aaaaaf x d x f u d u f u d u f u d u f u d u -=--=-=-=⎰⎰⎰⎰⎰,又因为积分与变量形式无关,知()()()()aaf u d u f x d x =⎰⎰,从而⎰⎰-=aaadx x f dx x f 0)(2)(.6、设k 为自然数,试证: (1)2cos kxdx πππ-=⎰;(2)2sin kxdx πππ-=⎰.证明 (1)⎰⎰⎰----+=+=ππππππππkxdx x dx kx kxdx 2cos 212122cos 1cos 2111cos 2(2)sin 2(00)444kxd kx kxk kkππππππππ--=+=+=+-=⎰. (2)21cos 211sin cos 2222kx kxdx dx xkxdx ππππππππ-----==-⎰⎰⎰ ⎰--=--=-=-=ππππππππ)00(412sin 41)2(2cos 41k kx k kx kxd k .7、证明:⎰⎰>+=+11122)0(11x x x x dx x dx . 证明 1211111112212211()1111111x t x x x x x d dx t t dt dt x t t t t==-=-+=+++⎰⎰⎰⎰ 11221111x xdt dx t x ==++⎰⎰.(积分与变量形式无关,只与积分上下限和函数有关)习题 5-51、某河床的横断面如下图所示(图形见教材P134),为了计算最大排洪量,需要计算它的横断面的面积,试根据图示的测量数据(单位:m )用梯形法计算其横断面面积.解26.67277279.529.55.225.21.121.10(4)(36+++++++++++≈⎰dx x f146 )22.222.21.421.46.6++++++)2.21.46.6779.55.21.1(4+++++++= 6.145=(2m ). 2、用矩形法,梯形法与抛物线法近似计算定积分⎰21xdx ,以求2ln 的近似值(取10=n ,被积函数值取四位小数).解 取10=n ,分点为:10=x ,1.11=x ,2.12=x ,…,9.19=x ,210=x 且101=∆x矩形法:用外接矩形21(1 3.4595+2.7282)0.7187710x ≈+=⎰,或者用内接矩形211(0.5 3.4595+2.7282)0.6687710dx x ≈+=⎰梯形法:2111( 1.5000 3.4595+2.7282)0.6938102dx x ≈⨯+=⎰,抛物线法:211(1.50002 2.72824 3.4595)0.69316*5dx x ≈+⨯+⨯=⎰.习题 5-61、计算反常积分 (1)41x dx ⎰∞+;(2)dx e ax-+∞⎰0(0a >);(3)⎰∞+a dx x x ln (0a >);(4)⎰∞+∞-++222x x dx ; (5)⎰-121x xdx ;(6)⎰-e x x dx 12)(ln 1;(7)xdx e xsin 0-+∞⎰;(8)⎰242cos ππx dx . 解(1)41x dx ⎰∞+31)1lim (3131331341=--=-==--+∞→∞+--∞+⎰b x dx x b .147(2) dx eax-+∞⎰ae e a e aax d e a ab b axax 1)lim (11)(1000=--=-=--=-+∞→∞+--∞+⎰.(3) ⎰∞+adx x x ln +∞=-===+∞→∞+∞+⎰)ln ln lim (21ln 21)(ln ln 222a b x x xd b aa (发散).(4) ⎰∞+∞-++222x x dx∞+∞-∞+∞-+=+++=⎰)1arctan(1)1()1(2x x x dlim arctan(1)lim arctan(1)a b a b →+∞→-∞=+-+πππ=--=)2(2.(5)⎰-121x xdx101)1(1lim 211)1(21201022=-+---=---=+→⎰εεxx d . (6)⎰-ex x dx 12)(ln1101(ln )lim arcsin(ln )122ee x x εεππ+→-===-=⎰.(7)xdx e xsin 0-+∞⎰(cos )cos cos ()xxx e d x e xxd e +∞+∞+∞---=-=-+⎰⎰00lim cos cos 0(sin )a x a e a e e d x +∞--→+∞=-+-⎰01sin sin xx e xxde +∞+∞--=-+⎰xdx e e b e x bb sin 0sin sin lim 10-∞+-+∞→⎰-+-=xdx e x sin 10-+∞⎰-=,21sin 0=∴-∞+⎰xdx e x . (8) ⎰242cos ππx dx 2242004sec lim tan lim tan()12xdx x πππεπεεπε++-→→===--=+∞⎰(发散). 2、求分开数值为1C 的两个相反电荷所需要的能量,假定正负电荷开始相距1m ,将一个电荷移动至另一个电荷的无穷远处.解 设两个相反电荷的横坐标分别为0,1,则将2C 移至无穷远处所需能量为2221111()(lim ()1)a C k dx kC kC kC x xa+∞+∞→+∞=-=-+=⎰.习题 5-71、判断题(1)微元dx x f dA )(=是所求量A 在任意微小区间].[dx x x +上部分量A ∆的近似值;(√)148 (2)由曲线2x y =与3x y =围成图形面积为⎰-=13)(dx x x A ; (×)(3)由曲线3x y =与x y =在[0,1]上围成图形绕y 轴旋转所得旋转体体积⎰-=126)(dy y y V ππ; (√)(4))(x f y =在任意微小区间],[dx x x +上的弧微分为21y ds '+=. (×) 2、将阴影部分的面表用定积分表示出来(图形见教材P144): 解 (4)令223x x =+,有(1)(3)0x x +-=,∴两曲线交点横坐标为1-=a ,3=b ,∴ ⎰--+=312)32(dx x x A .4、求由曲线围成图形的面积(1)xy 1=与直线x y =及2=x ;(2)x e y =,xe y -=与直线1=x ; (3)x y ln =,2ln =y ,7ln =y ,0=x ;(4)22,4y x x y =+=;(5)2x y =与直线x y =及x y 2=.解(1) ⎰-=---=-=-=212122ln 23)021(2ln 2|)|ln 2()1(x x dx x x A .(2) 21)11(1)()(11-+=+-+=+=-=⎰--e e e e e e dx e e A xxxx(3) 由ln y x =,有yx e =,则⎰=-===7ln 2ln 7ln 2ln 527yy edy e A .(4) 由242y y =-有2280y y +-=,即(2)(4)0y y -+=, 解得两曲线交点纵坐标为4-=a ,2=b ,从而2232244(4)(4)18226y y y A y dx y --=--=--=⎰.(5) 显然2x y =与x y =交点横坐标为0,1,2x y =与x y 2=交点横坐标为0,2,⎰⎰⎰⎰-+=-+-=1021102122)2()2()2(dx x x xdx dx x x dx x x A67)311()384(21)3(2213212=---+=-+=x x x .5、求由曲线围成图形的面积: (1)θρcos 2=,0=θ,6πθ=;(2))cos 1(2θρ+=a ,0=θ,πθ2=.解(1) 266001(2cos )(1cos 2)2A d d ππθθθθ==+⎰⎰66011sin 2262264ππππθθ=+=+⋅=+.149(2) θθθθθππd a d a A )cos cos 21(2)]cos 1(2[212202220++=+=⎰⎰ 2203cos 22(2cos )22a d πθθθ=++⎰ππθθθπ222026)003(2)42sin sin 223(2a a a =++=++=.6、求曲线围成图形绕指定轴旋转所得旋转体的体积:(1)042=+-y x ,0=x 及0=y ,绕x 轴;(2)42-=x y ,0=y 绕x 轴;(3)12222=+by a x ,绕x 轴;(4)x y =2,y x =2,绕y 轴;(5)x y sin =,x y cos =及x 轴上的线段]2,0[π绕x 轴旋转.解(1) 因为 dx x dV 2)42(+=π,所以3222222(24)4(44)4(24)3x V x dx x x dx x x πππ---=+=++=++⎰⎰8324(88)33ππ=--+-=.(2) 因为 dx x dV 22)4(-=π,所以dx x x V )168(2422+-=⎰-π2235)16385(-+-=x x x ππ15512=.(3) 因为 2222(1)x dV y dx b dx aππ==-,所以a aa a x a xb dx a x b V ---=-=⎰)31()1(322222ππ234ab π=.(4) 因为 dy y y dy y dy y dV )()()(4222-=-=πππ,所以2514013()()02510y y V y y dy πππ=-=-=⎰.(5) 因为 xdx dV 2sin π=,]4,0[π∈x ,xdx dV 2cos π=,]2,4[ππ∈x ,224204sin cos V xdx xdx πππππ=+⎰⎰4(1cos 2)2x dx ππ=-⎰)2(4)2cos 1(224-=++⎰πππππdx x .7、有一铸铁件,它是由三条线:抛物线2110y x =,11012+=x y 与直线10=y 围成的图形,绕y 轴旋转而成的旋转体,算出它的重量(长度单位是厘米(cm),铁的比重是7.8g/cm 3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r dV x dx h
圆锥体的体积
2
y
P
r
o
h
x
V
h
0
r r x hr 2 x dx 2 . 3 h 3 0 h
2
2
3 h
二、旋转体的体积
类似地,如果旋转体是由连续曲线
y 轴所围 x ( y ) 、直线 y c 、 y d 及 成的曲边梯形绕y 轴旋转一周而成的立体,
x R2 R ( x)dx (30 )dx 100 100 5 x 2 150 (30 x ) 250(百元); 10 100
150 ' 150
定积分在经济上的应用
例2 已知某锅炉厂每年生产 x 台锅炉时,固定成本为 100 万元,边际成本函数为 C′(x)=0.2x+4(万元 /台), 求总成本函数 C(x);如果每台锅炉的销售单价为 20 万元,且生产的锅炉可以全部售出,求总利润函数 L(x),并问每年生产多少台时,才能获得最大利润 ?
例 3 计算由曲线 y x 3 6 x 和 y x 2 所围成
y x3 6x
的图形的面积.
解 两曲线的交点
y x2
(0,0), ( 2,4), ( 3,9).
选 x 为积分变量 x [2, 3]
y x3 6x 2 y x
(1) x [2, 0], dA1 ( x 3 6 x x 2 )dx ( 2) x [0,3], dA2 ( x 2 x 3 6 x )dx
y f ( x)
dA
面 积 元 素
A lim f ( x )dx a f ( x )dx.
b
o a x x dx bx
定积分的元素法
当所求量U 符合下列条件:
(1)U 是与一个变量 x 的变化区间a , b有关 的量; ( 2 ) U 对 于 区 间 a , b 具 有 可 加 性 , 就 是 说,如果把区间 a , b分成许多部分区间,则 U 相应地分成许多部分量,而U 等于所有部
定积分在经济上的应用
解 由于变上限的定积分是被积函数的一个原函数,因此可变成 本就是边际成本函数在[ 0, x]上的定积分,又已知固定成本为 100 万元,即 C(0)=100,因此生产 x 台的总成本函数为
C ( x) (0.2t 4)dt C (0) (0.1t 4t ) 100 0 0
定积分在经济上的应用
企业在[0,T]这一段时间内的收入流的变化率为f(t), 连续复利的年利率为r.为了能够利用计算单笔款项现值的 方法计算收入流的现值,将收入流分成许多小收入段, 相应地将区间[0,T]平均分割成长度为Δt的小区间. 当Δt很小时,f(t)在每一子区间内的变化很小,可看做常数, 在t与t+Δt之间收入的近似值为f(t)Δt,相应收入的现值为 f(t) Δte-rt,再将各小时间段内收入的现值相加并取极限, 可求总收入的现值为
体积为
y
d
2 [ ( y )] dy
V
d
c
x ( y)
c
o
x
二、旋转体的体积
注: 如果旋转体是由连续曲线 旋转一周而成的立体,体积为

直线x=a、x=b及x 轴所围成的曲边梯形绕 y 轴
V y 2 x | f ( x ) | dx
a
b
平行截面面积为已知的立体的体积 2.平行截面面积为已知的立体的体积
旋转体就是由一个平面图形饶这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.
圆柱
圆锥
二、旋转体的体积
一般地,如果旋转体是由连续曲线 y f ( x ) 、 x 轴所围成的曲边梯形绕 直线 x a 、 x b 及 x 轴旋转一周而成的立体,体积为多少?
取积分变量为x ,
y
y f ( x)
定积分在经济上的应用
二、投资问题
在第二章我们已经介绍了连续复利的概念,在此基础上 进一步讨论有关投资的问题.对于一个正常运营的企业而 言,其资金的收入与支出往往是分散地在一定时期发生的, 比如购买一批原料后支出费用,售出产品后得到货款等等. 但这种资金的流转在企业经营过程中经常发生,特别对大 型企业,其收入和支出更是频繁的进行着. 在实际分析过程中为了计算的方便,我们将它近似地 看做是连续地发生的,并称之为收入流(或支出流).若已 知在t时刻收入流的变化率为f(t)(单位:元/年、元/月等), 那么如何计算收入流的现值呢?
2
成的图形的面积.
解 两曲线的交点
y x4
y2 2 x y x4
( 2,2), (8,4).
选 y 为积分变量
y2 2 x
y [2, 4]
A dA 18.
2 4
2 y dA y 4 dy 2
一、平面图形的面积
2
x
x
0.1x 2 4 x 100
设销售 x 台得到的总收益函数为 R(x),根据题意有 R(x)=20x. 由于 L(x)=R(x)- C(x)=20x- (0.1x 2 + 4x+100) =16x- 0.1x 2 - 100 由 L′ (x)=16- 0.2x=0,得 x=80,且 L″ (80)=- 0.2< 0,所以每年生产 80 台时,才能获得最大利润,最大利润为 L(80)=16×80- 0.1×802- 100=540.
一、已知边际函数求总量的问题 例 1 已知生产某种产品 x 个单位时的总收益 R 的变化率 (边际收益 )为 R′ (x)=30- x/5(百元 /单位 )(x≥ 0), (1)求生产 100 个单位时的总收益; (2)求生产 100 个单位到 150 个单位时总收益的增加量 .
定积分在经济上的应用
y f ( x)
y
y f2 ( x) y f1 ( x )
o
a
x x xb
x
a
xx
b
曲边梯形的面积
曲边梯形的面积
A a f ( x )dx
b
A a [ f 2 ( x ) f1 ( x )]dx
b
一、平面图形的面积
例 1 计算由两条抛物线 y 2 x 和 y x 2 所围成的 图形的面积.
第一节 定积分的元素法
定积分的元素法
回顾 曲边梯形求面积的问题
曲边梯形由连续曲线
y
y f ( x ) ( f ( x ) 0) 、 x 轴与两条直线 x a 、
y f ( x)
x b 所围成。
b a
o a
b x
A f ( x )dx
面积表示为定积分的步骤如下:
定积分的元素法
x [a , b] o x x dx 在[a , b]上任取小区 间[ x , x dx ], x 轴旋转而成的薄 取以dx 为底的窄边梯形绕
片的体积为体积元素, dV [ f ( x )]2 dx
x
旋转体的体积为 V [ f ( x )]2 dx
a
b
二、旋转体的体积
例6 连接坐标原点O 及点 P ( h, r )的直线、直线
x h及 x 轴围成一个直角三角形. 将它绕 x 轴旋
转构成一个底半径为 r 、高为 h 的圆锥体,计算 圆锥体的体积.
解 直线 OP方程为
y
P
r y x h
r
o
h
x
取积分变量为x , x [0, h]
在[0, h]上任取小区间[ x , x dx ],
二、旋转体的体积
以 dx 为底的窄边梯形绕 x 轴旋转而成的薄片的 体积为
解 (1)总收益 R(x)是边际收益的原函数,生产 100 个单位时的总收益 R1, 就是 x=0 到 x=100 时总收益的增加量,所以有
R1
100
0
R ( x)dx
'
100
0
x (30 )dx 5
x 2 100 (30 x ) 2000(百元); 10 0
(2)产量从 100 个单位到 150 个单位时总收益的增加量 R2 为
底圆方程为
x 2 y 2 R2
垂直于x轴的截面为直角三角形
1 2 2 A ( x ) ( R x ) tan , 截面面积 2 R 2 1 3 2 2 立体体积 V R tan . (R x ) tan dx 3 2 R
定积分在经济上的应用
前面我们用元素法解决了定积分在几何上的 一些应用,本节将讨论定积分在经济上的应用问 题.
20 0.05t
200e
200 0.05t 20 dt e 0 0.05
=4000(1- e )=2528.4. 假 设 回 收 期 为 T 年 , 则 由 公 式 (1) 知
现值=

T
0
f (t )e dt
rt
定积分在经济上的应用
例3 某企业将投资 800 万元生产一种产品,假设在投资的 前 20 年该企业以 200 万元/年的速度均匀地收回资金,且按 年利率 5%的连续复利计算,试计算该项投资收入的现值及 投资回收期.
定积分在经济上的应用
解 现值为 依题知 f(t)=200, 由公式(1)知投资总收入的 现值= 0
如果立体上垂直于一定轴的各个截面面积
为已知,那么,这个立体的体积也可用定积分 来计算. A x 表示过点x
且垂直于x轴的
o
a
x x dx
b
x
截面面积.
dV A( x )dx ,
A x 为x的已知连续函数
立体体积 V
相关文档
最新文档