人教版九年级上册数学学案:24.1.4圆周角(一)

合集下载

新人教版九年级上册数学教案:24. 1. 4 圆周角

新人教版九年级上册数学教案:24. 1. 4 圆周角

24. 1. 4 圆周角第1课时圆周角的概念和圆周角定理教学目标1.理解圆周角的概念,会识别圆周角.2.掌握圆周角定理,并会用此定理进行简单的论证和计算.重点难点重点:圆周角的概念和圆周角定理.难点:用分类讨论的思想证明圆周角定理,尤其是分类标准的确定.教学过程活动一:复习类比,引入概念1.用几何画板显示圆心角.2.教师将圆心角的顶点进行移动,如图.(1)当角的顶点在圆心时,我们知道这样的角叫圆心角,如∠AOB.(2)当角的顶点运动到圆周时,如∠ACB这样的角叫什么角呢?学生会马上猜出:圆周角.教师给予鼓励,引出课题.3.总结圆周角概念.(1)鼓励学生尝试自己给圆周角下定义,估计学生能类比圆心角给圆周角下定义,顶点在圆周上的角叫圆周角,可能对角的两边没有要求.(2)教师提问:是不是顶点在圆周上的角就是圆周角呢?带着问题,教师出示下图.学生通过观察,会发现形成圆周角必须具备两个条件:①顶点在圆周上;②角的两边都与圆相交.最后让学生再给圆周角下一个准确的定义:顶点在圆周上,两边都与圆相交的角叫圆周角.(3)比较概念:圆心角定义中为什么没有提到“两边都与圆相交”呢?学生讨论后得出:凡是顶点在圆心的角,两边一定与圆相交,而顶点在圆周上的角则不然,因此,学习圆周角的概念,一定要注意角的两边“都与圆相交”这一条件.设计意图:采用类比圆心角的定义,迁移得到圆周角的定义.为了强调圆周角的两边要和圆相交,通过上图,学生能准确、深入理解圆周角的概念,明确定义中的两个条件缺一不可,通过圆心角和圆周角概念的比较,加深了学生对概念的理解.活动二:观察猜想,寻找规律1.教师出示同一条弧所对圆周角为90°,圆心角为180°和同一条弧所对圆周角为45°,圆心角为90°的特殊情况的图形.提出问题:在这两个图形中,对着同一条弧的圆周角和圆心角,它们之间有什么数量关系?由于情况特殊,学生观察、测量后,容易得出:对着同一条弧的圆周角是圆心角的一半.2.教师提出:在一般情况下,对着同一条弧的圆周角还是圆心角的一半吗?通过上面的特例,学生猜想,得出命题:一条弧所对的圆周角等于它所对的圆心角的一半.设计意图:圆周角和圆心角联系的桥梁是它们所共同对着的那条弧,在特殊情况下,较易发现它们之间的关系,符合从特殊到一般的认识规律.活动三:动手画图,证明定理1.猜想是否正确,还有待证明.教师引导学生结合命题,画出图形,写出已知、求证.2.先分小组交流画出的图形,议一议:所画图形是否相同?所画图形是否全面?3.利用实物投影在全班交流,得到三种情况.若三种位置关系未出现全,教师利用电脑演示同一条弧所对的圆周角的顶点在圆周上运动的过程,得出同一条弧所对的圆心角和圆周角之间可能出现的不同位置关系,得到圆心角的顶点在圆周角的一边上、内部、外部三种情况.4.引导学生选一种最特殊、最容易证明的“圆心角的顶点在圆周角的一边上”进行证明,写出证明过程,教师点评.5.引导学生通过添加辅助线,把“圆心角的顶点在圆周角的内部、外部”通过转化成“圆心角的顶点在圆周角的一边上”的情形,进行证明,若学生不能构造过圆周角和圆心角顶点的直径,教师给予提示,然后小组交流讨论,上台展示证明过程,教师点评证明过程.6.将“命题”改为“定理”,即“圆周角定理”.设计意图:让学生动手面出图形,一方面让学生深入了解圆周角,另一方面让学生在动手操作中体会圆心与圆周角具有三种不同的位置关系,为后面证明中的分类讨论做好铺垫,从特殊的位置关系“圆心在圆周角的一边上”的情形入手证明,再把这种情形作为基本图形,将其他两种情形转化为第一种情形,降低了证明的难度,有利于探索圆周角与圆心角及其所对弧的关系.同时,通过此定理的证明,要使学生明确,要不要分不同情况来证明,主要看各种情况的证明方法是否相同,相同者不需分,不相同者必须对各种不同情况逐个加以证明,感悟分类讨论的数学思想.活动四:达标检测,反馈新知1.教材第88页练习第1题.2.如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC=60°,那么∠BOC=________.3.如图,AB、AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.(答案:1.略;2.120°;3.120°.)活动五:归纳小结,作业布置归纳小结:1.圆周角概念及定理.2.类比和一般到特殊的数学方法及分类讨论、转化与化归的数学思想.第2课时圆周角定理的推论和圆内接多边形教学目标1.能推导和理解圆周角定理的两个推论,并能利用这两个推论解决相关的计算和证明.2.知道圆内接多边形和多边形外接圆的概念,明确不是所有多边形都有外接圆.3.能证明圆内接四边形的性质,并能应用这个性质解决简单的计算和证明等问题.重点难点重点:圆周角定理的两个推论和圆内接四边形的性质的运用.难点:圆内接四边形性质定理的准确、灵活应用以及如何添加辅助线.教学过程活动一:温习旧知1.圆周角定理的内容是什么?2.如图,若︵BD的度数为100°,则∠BOC=________,∠A=________.3.如图,四边形ABCD中,∠B与∠1互补,AD的延长线与DC 所夹∠2=60°,则∠1=________,∠B=________.4.判断正误:(1)圆心角的度数等于它所对的弧的度数.( )(2)圆周角的度数等于它所对的弧的度数的一半.( )(答案:1.略;2.100°,50°;3.120°,60°;4.略.)设计意图:在本节课一开始设计“温习旧知”这个环节,不只是对上一节课知识的简单回顾,用意在于要由“旧知”引出“新知”.三个具体问题既全面地“温习旧知”,又为下面的教学环节搭起支架.活动二:探索圆周角定理的“推论”1.请同学们在练习本上画一个⊙O.想一想,以A、C为端点的弧所对的圆周角有多少个?试着画几个.然后教师引导学生:观察下图,∠ABC、∠ADC、∠AEC的大小关系如何?为什么?让学生得出结论后,教师继续追问:如果把这个结论中的“同弧”改为“等弧”,结论正确吗?2.教师引导学生观察下图,BC是⊙O的直径.请问:BC所对的圆周角∠BAC是锐角、直角还是钝角?让学生交流、讨论,得出结论:∠BAC是直角.教师追问理由.3.如图,若圆周角∠BAC=90°,那么它所对的弦BC经过圆心吗?为什么?由此能得出什么结论?4.师生共同解决教材第87页例4.设计意图:通过设计问题串让学生了解几个推论的由来,同时培养学生的探索精神.活动三:探索圆内接四边形的性质1.教师给学生介绍以下基本概念:圆内接多边形与多边形的外接圆;圆内接四边形与四边形的外接圆.2.要求学生画一画,想一想:在⊙O上任作它的一个内接四边形ABCD,∠A是圆周角吗?∠B、∠C、∠D呢?进一步思考,圆内接四边形的四个角之间有什么关系?3.先打开几何画板,验证学生的猜想,然后再引导学生证明,最后得出结论:圆内接四边形的对角互补.4.课件展示练习:(1)如图,四边形ABCD内接于⊙O,则∠A+∠C=________,∠B +∠ADC=________;若∠B=80°,则∠ADC= ________,∠CDE=________;(2)如图,四边形ABCD内接于⊙O,∠BOD=100°,则∠BAD=________,∠BCD=________;(3)四边形ABCD内接于⊙O,∠A∶∠C=1∶3,则∠A=________;(4)如图,梯形ABCD内接于⊙O,AD∥BC,∠B=75°,则∠C=________.(5)观察并思考:在(1)题图中,∠B和∠CDE什么关系?想一想对于圆的任意内接四边形都有这样的关系吗?(答案:(1)180°,180°,100°,80°;(2)130°,50°;(3)45°;(4)75°;(5)相等,都有.)设计意图:活动三展示的是本节课的最重要的探究活动,共分为四个环节.第1个环节简单介绍相关概念,由于概念简单,教师不必纠缠;第2个环节“要求画一画,想一想”,学生在教师的引导之下进行思考,初步得出结论;第3个环节先用几何画板从实验的角度去探究结论的正确性,然后教师再引导学生用所学知识证明结论;第4个环节的练习是圆内接四边形的性质的应用.四个环节层层递进,步步深入.活动四:基础练习1.教材第88页练习第5题.2.圆的内接梯形一定是________梯形.3.若四边形ABCD为圆内接四边形,则下列哪个选项可能成立( )A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4 B.∠A∶∠B∶∠C∶∠D=2∶1∶3∶4C.∠A∶∠B∶∠C∶∠D=3∶2∶1∶4 D.∠A∶∠B∶∠C∶∠D=4∶3∶2∶1(答案:1.略;2.等腰;3.B.)活动五:课堂小结与作业布置课堂小结:1.本节课我们学习了圆周角定理的两个推论和圆内接四边形的重要性质,要求同学们理解圆内接四边形和四边形的外接圆的概念,理解圆内接四边形的性质;并初步应用性质进行有关问题的证明和计算.2.我们结合几何画板探索出圆内接四边形的性质,在这一过程中用到了许多数学方法(实验、观察、类比、分析、归纳、猜想等).因此,同学们要逐步学会并应用这些方法去探讨有关的数学问题,提高我们的数学实践能力与创新能力.。

人教版数学九年级上册24.1.4圆周角(第1课时)优秀教学案例

人教版数学九年级上册24.1.4圆周角(第1课时)优秀教学案例
(二)过程与方法
1.采用启发式教学,引导学生通过观察、实践、合作交流等过程,自主发现圆周角的性质和判定定理。
2.设计丰富的教学活动,如小组讨论、问题解决、实例分析等,培养学生主动探究、合作学习的习惯。
3.创设生活情境,让学生在实际问题中运用圆周角知识,提高学生分析问题和解决问题的能力。
4.注重培养学生的几何直观和空间想象能力,通过作图、观察、推理等环节,发展学生的几何思维。
二、教学目标
(一)知识与技能
1.让学生掌握圆周角的概念,理解圆周角与圆心角的区别与联系,能准确判断并命名圆周角。
2.引导学生通过观察、推理,掌握圆周角定理,并能运用定理解决相关问题。
3.培养学生运用圆周角定理进行计算和证明的能力,提高学生的几何逻辑思维。
4.让学生学会运用圆周角知识解决生活中的实际问题,增强学生的知识应用能力。
4.小组之间进行成果展示和交流,共享学习经验,培养学生的团队协作能力和表达能力。
(四)反思与评价
1.鼓励学生在课后进行自我反思,总结自己在学习圆周角过程中的收获和不足,为下一阶段的学习制定合理的学习计划。
2.教师对学生的学习过程和结果进行评价,关注学生的知识掌握、技能运用、情感态度等方面的表现,给予积极的反馈和建议。
2.学生通过观察和思考,初步感知圆周角的概念。
(二)讲授新知
1.教师引导学生通过画圆、量角等活动,探究圆周角的定义和性质。
“请大家拿出圆规和直尺,画一个圆,并在圆上任选三个点,组成两个圆周角。观察这两个圆周角的大小,大家发现了什么规律?”
2.教师根据学生的发现,总结圆周角的定义和性质。
“圆周角是指圆上任意两点与圆心所组成的角。圆周角的度数是360度,且圆周角等于其所对的圆心角的两倍。”

人教版数学九年级上册24.1.4圆周角(1) 教学设计

人教版数学九年级上册24.1.4圆周角(1) 教学设计

教学设计1. 探究活动一:圆周角概念角的顶点在圆上,角的两边与圆的位置关系都有哪些类型?请同学们尝试画一画.O O2.圆周角:我们把顶点在圆上,并且两边都与圆相交的角,叫做圆周角.如图,∠ACB为⊙O的圆周角,所对的弦为AB,AB3.练习:判断下列图形中的角是不是圆周角,并说明理由:P 2,P 3,得到三个圆周角∠MP 1N ,∠MP 2N ,∠MP 3N ,分别测量这三个角的角度,并记录下来.∠MP 1N=__________, ∠MP 2N=_________, ∠MP 3N=_________. 发现:当点P 在优弧MN 上运动时,∠P 始终是55°,当点P 在劣弧MN 上运动时,∠P 变为125°. 2. 探究活动三:圆周角与圆心的位置关系. 通过观察得到点P 在优弧MN 上的三种位置关系:即圆心在圆周角外,圆心在圆周角的一边上,圆心在圆周角内。

3. 探究活动四:圆周角与圆心角的关系. 分别证明这三个位置中,圆心角与圆周角的关系 (1)圆心在圆周角的一边上OMNOMNOMNOMNOMNOMN证明:∵ OA=ON ,∴ ∠A =∠N .又∵ ∠MON 是△AON 的外角,∴ ∠MON =∠A +∠N , ∴ ∠MON =2∠A ,(2)圆心在圆周角内(3)圆心在圆周角外4.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半.如图,∠P 是MN 所对的圆周角,∠O 是MN 所对的圆心角,∴∠P =1∠O .证明:连接BO 并延长,交⊙O 于点E.∵∠1=12∠3, ∠2=12∠4,证明:连接CO 并延长,交⊙O 于点F .∵∠1=12∠3,∠OCN =12∠FON ,如图,∠P ,∠Q 是MN 所对的圆周角,则∠P =∠Q2.等弧所对的圆周角相等.已知:如图,MN 与''M N 相等,求证:∠P=∠Q.3.圆周角定理推论(一)同弧或等弧所对的圆周角相等.1.探究活动六:特殊的角度证明:∵∠P =12∠O ,∠Q =12∠O ,证明:连接OM ,ON ,OM’,ON’.∵MN =''M N , ∴∠MON =∠M ’ON ’. ∵∠P =12∠MON ,∠Q =1∠M ’ON ’.发现: 当∠O 变为180°,即MN 是圆O 直径时,∠P =90°,反之,圆周角∠P 为90°时,圆心角∠O 则为180°.2.圆周角定理推论(二)半圆(或直径)所对的圆周角是直角. 90°的圆周角所对的弦是直径.3.练习1.如图①,已知AB 是⊙O 的直径,点C 在⊙O 上,若∠CAB =40°, 则∠ABC =_______°.2.如图②,△ABC 的顶点都在⊙O 上,BD 是⊙O 直径,若∠CBD =21°,则∠A =_______°.O P OPMN 为⊙O 直径, ∠MPN=_____°.∠MPN=90°, ∠MON=_____°.例:如图,⊙O的直径AB为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O于点D,求BC,AD,BD 的长.1.圆周角、圆心角与弧之间的关系提高题:如图,圆上分布着7个点,A1,A2,……,A7,从A1起顺次连接A3,A5,A7,A2,A4,A6,A1,得到“七角星”,则∠A1+∠A2+……+∠A7=_______。

人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿

人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿
2.生生互动:组织学生进行小组讨论,让他们相互分享解题思路和方法,提高合作能力。此外,设计一些小组竞赛活动,激发学生的学习积极性,培养他们的团队精神。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我采用以下方式导入新课:
1.创设情境:通过展示一幅美丽的圆形喷泉图片,引导学生观察并思考:为什么喷泉的水流会呈现出圆形?这与我们今天要学习的圆周角有什么关系?
这些媒体资源在教学中的作用是:直观展示几何图形,降低学生的认知难度;激发学生的学习兴趣,提高他们的学习积极性;丰富教学手段,提高教学效果。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:在课堂提问环节,我将鼓励学生积极发言,及时给予肯定和鼓励,营造轻松、愉快的课堂氛围。同时,针对学生的疑问,给予耐心解答,引导他们深入思考。
在整个课程体系中,圆周角定理及推论处于几何模块的圆部分,是圆的基本性质和定理之一。在此之前,学生已经学习了圆的基本概念、圆的对称性以及圆的弦、弧等相关知识。本节课的主要知识点包括:圆周角的定义、圆周角定理及推论、圆内接四边形的性质等。
(二)教学目标
1.知识与技能目标:
(1)理解圆周角的概念,掌握圆周角定理及其推论。
在教学过程中,我预见到以下问题或挑战:
1.学生在理解圆周角定理的证明过程时可能存在困难。
2.部分学生对几何图形的空间想象能力较弱,影响解题效果。
3.课堂时间有限,可能无法充分满足所有学生的学习需求。
为应对这些问题,我将在课堂上增加师生互动,及时解答学生的疑问,并通过实际操作活动,培养学生的空间想象能力。课后,我将通过作业完成情况、课堂表现和学生反馈来评估教学效果。
4.数学游戏:设计一些与圆周角相关的数学游戏,让学生在游戏中学习,提高他们的学习积极性。

人教版九年级上册数学教案:24.1.4圆周角

人教版九年级上册数学教案:24.1.4圆周角
其次,在新课讲授环节,我强调了圆周角定理和推论的重要性,并通过案例分析让学生体会这些定理在实际问题中的应用。然而,学生在独立解决问题时,对定理的运用还不够熟练。这可能是因为我对定理的讲解和示例还不够充分,导致学生在实际操作时遇到困难。
在实践活动环节,我让学生分组讨论和实验操作,目的是让他们在实践中掌握圆周角的知识。从成果展示来看,大部分学生能够完成实验任务,但仍有部分学生操作不够规范,对圆周角的测量和计算存在误差。这说明我在指导学生实验操作时,还需要更加细致地讲解和演示。
3.能够利用圆周角定理证明圆内接四边形的性质,如对角互补等。
4.通过实际操作,培养学生的观察能力、空间想象力和逻辑思维能力。
二、核心素养目标
1.培养学生运用几何直观和空间想象力,理解圆周角的概念及其与圆心角的关系,提高几何图形的认识和分析能力。
2.强化学生逻辑推理和数学论证的能力,通过圆周角定理及推论的探究和运用,培养严谨的数学思维和推理素养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆周角的基本概念。圆周角是顶点在圆周上,两边都与圆相交的角。它是研究圆性质的重要角度之一,对于解决与圆有关的问题至关重要。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有一个圆,其半径为r,我们需要计算圆上两个点对应的圆周角。通过案例分析,我们学习如何应用圆周角定理来解决这个问题。
五、教学反思
在今天的课堂上,我们探讨了圆周角的概念、性质和应用。回顾整个教学过程,我觉得有几个方面值得思考和改进。
首先,关于圆周角定义的引入,我尝试通过日常生活中的例子让学生感受到圆周角的存在,激发他们的学习兴趣。从学生的反应来看,这个方法还是比较有效的。但在实际操作中,我发现有些学生对圆周角的理解仍然不够深入,可能需要我在课堂上更加形象、直观地展示圆周角的特点。

人教版数学九年级上册24.1.4《圆周角定理》教学设计

人教版数学九年级上册24.1.4《圆周角定理》教学设计

人教版数学九年级上册24.1.4《圆周角定理》教学设计一. 教材分析人教版数学九年级上册24.1.4《圆周角定理》是本节课的主要内容。

圆周角定理是圆周角定理系列中的重要定理之一,也是后续学习圆的性质和圆的方程的基础。

本节课的内容包括圆周角定理的证明和应用。

教材通过丰富的例题和练习题,帮助学生理解和掌握圆周角定理,并能够运用到实际问题中。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,对角的性质有一定的了解。

但是,对于圆周角定理的理解和运用还需要进一步引导和培养。

因此,在教学过程中,需要注重引导学生通过观察和操作,发现和总结圆周角定理的规律。

三. 教学目标1.了解圆周角定理的内容和证明过程。

2.能够运用圆周角定理解决实际问题。

3.培养学生的观察能力、操作能力和推理能力。

四. 教学重难点1.圆周角定理的证明过程。

2.圆周角定理在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作,发现和总结圆周角定理的规律。

2.运用多媒体辅助教学,展示圆周角定理的证明过程,增强学生的直观感受。

3.通过例题和练习题,让学生在实际问题中运用圆周角定理,巩固所学知识。

六. 教学准备1.多媒体教学设备。

2.圆规、直尺等绘图工具。

3.相关例题和练习题。

七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾相似三角形的性质和角的性质。

让学生思考:在圆中,圆周角和圆心角之间有什么关系?2.呈现(10分钟)展示圆周角定理的证明过程,引导学生观察和理解证明方法。

通过多媒体动画演示,让学生更直观地感受圆周角定理的应用。

3.操练(10分钟)让学生分组讨论,尝试解决一些与圆周角定理相关的问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)呈现一些例题和练习题,让学生独立解答。

教师选取部分学生的解答进行讲解和分析,巩固所学知识。

5.拓展(10分钟)引导学生思考:圆周角定理在实际问题中的应用。

人教版九年级上册数学24.1.4圆周角优秀教学案例

人教版九年级上册数学24.1.4圆周角优秀教学案例
(二)讲授新知
1.利用多媒体课件,讲解圆周角的定义及其性质。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.运用几何图形,解释圆周角定理及其推论。
在讲授新知环节,我将利用多媒体课件,讲解圆周角的定义及其性质。通过动画演示,让学生直观地感受圆周角的形成过程。在此基础上,我会运用几何图形,解释圆周角定理及其推论。在这个过程中,注重引导学生积极参与,鼓励他们提出问题,以便更好地理解和掌握圆周角的知识。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论。
2.让学生通过合作、交流,共同探究圆周角的性质。
3.组织学生展示讨论成果,分享彼此的想法和收获。
三、教学策略
(一)情景创设
1.利用多媒体课件,展示生活中的圆周角实例,引导学生认识圆周角。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.设计有趣的数学问题,激发学生的求知欲。
在情景创设方面,我将运用多媒体课件,以生动形象的方式展示圆周角的特点,帮助学生建立起空间观念。通过展示生活中的圆周角实例,引导学生认识圆周角,激发他们的学习兴趣。同时,设计有趣的数学问题,激发学生的求知欲,让他们在解决问题的过程中,自然而然地引入圆周角的知识。
人教版九年级上册数学24.1.4圆周角优秀教学案例
一、案例背景
本节内容为人教版九年级上册数学24.1.4圆周角,旨在让学生掌握圆周角的定义、性质及其在几何中的应用。通过对圆周角的学习,培养学生观察、思考、推理的能力,提高他们的空间想象力。
圆周角是圆心角的一种,它在圆中具有重要的地位。在本节内容中,学生需要了解圆周角的定义、性质,并能运用圆周角定理解决实际问题。在教学过程中,我将结合生活实例,引导学生认识圆周角,并通过小组合作、讨论交流的方式,让学生探究圆周角的性质,从而提高他们的合作意识和解决问题的能力。

人教版九年级数学上册学案:24.1.4圆周角导学案

人教版九年级数学上册学案:24.1.4圆周角导学案

课题:圆周角第一课时一、学习目标:1、理解圆周角的概念,能辩识圆周角。

2、理解圆周角与圆心角及其所对弧的关系。

3、会运用圆周角定理解决简单问题。

二、学习重点:圆周角概念及圆周角定理.三、学习难点:圆周角定理的探索过程。

四、学习过程:活动一:探究圆周角定义:1、阅读教材内容,回答下列问题什么是圆周角?你觉得像什么样的角是圆周角?2、运用圆周角的定义,判断下列各图中,各图中的角是不是圆周角?并说出判断理由.......(1)(2)(3)(4)(5)活动二:探究圆周角定理1、量一量结论:在同一个圆中,同弧所对的圆周角有_____个,同弧所对的圆周角________。

2、猜一猜根据度量结果和观察结论猜想::已知:在⊙O中,»BC所对的圆周角是∠A,圆心角是∠BOC求证:∠A=12∠BOC证明:Ⅰ:圆心在圆周角一边上时证明:如图,当圆心在圆周角的一边上的时候,圆周角∠BAC的边 AB部分就是⊙O的直径,因此给证明思路的寻找带来了不少方便,这时的图案更像什么图案?(“红旗”图案)Ⅱ: 圆心在圆周角内部时Ⅲ:圆心在圆周角外部时圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.活动三 例题讲解:例1:在⊙O 中, AB 是⊙O 的一条弦,圆周角∠CBD=30° ,∠BDC=20°, 求∠A例2:书87页例4 活动四:学习小结请你选择下面一个或几个关键词谈本节课的体会:知识、方法、思想、收获、喜悦、困惑、成功…… 活动五:课后作业闪动角撤消辅助线作辅助线分离右旗还原右旗分离左旗还原左旗87654321DCBA1、如图1,AB 是⊙O 的直径,»»BCBD =,∠A=30°,则∠BOD=_______。

图1 图22、如图,∠A 是⊙O 的圆周角,∠A=40°,求∠OBC 的度数。

3、已知⊙O 中弦AB 的等于半径,求弦AB 所对的圆心角和圆周角的度数。

人教版数学九年级上册教学设计24.1.4《圆周角》

人教版数学九年级上册教学设计24.1.4《圆周角》

人教版数学九年级上册教学设计24.1.4《圆周角》一. 教材分析《圆周角》是人教版数学九年级上册第24章的一部分,主要介绍了圆周角的定义、性质和应用。

通过本节课的学习,学生能够理解圆周角的概念,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的定义、半径、直径等。

同时,学生也具备了一定的观察、分析和解决问题的能力。

但是,对于圆周角的定义和性质,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

三. 教学目标1.知识与技能:理解圆周角的定义,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。

2.过程与方法:通过观察、分析和归纳,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。

四. 教学重难点1.圆周角的定义和性质。

2.运用圆周角解决实际问题。

五. 教学方法1.讲授法:通过讲解圆周角的定义和性质,引导学生理解和掌握相关知识。

2.案例分析法:通过分析具体案例,让学生更好地理解圆周角的运用。

3.小组讨论法:通过小组讨论,培养学生的团队合作意识和解决问题的能力。

六. 教学准备1.课件:制作相关的课件,包括圆周角的定义、性质和应用等方面的内容。

2.案例:准备一些具体的案例,用于分析和解决实际问题。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)利用课件呈现圆周角的定义和性质,让学生初步了解并掌握相关知识。

3.操练(15分钟)让学生通过观察和分析具体的案例,运用圆周角的知识解决问题,巩固所学内容。

4.巩固(5分钟)让学生完成一些练习题,检查对圆周角知识的掌握程度,并对存在的问题进行讲解和辅导。

5.拓展(5分钟)引导学生进一步思考和探讨圆周角在实际问题中的应用,培养学生的解决问题的能力。

【人教版】九年级上册数学教案:-24.1.4 圆周角(1)

【人教版】九年级上册数学教案:-24.1.4  圆周角(1)

24.1.4 圆周角1.掌握圆周角定理及其推论并能应用其进行简单的计算与证明.2.掌握圆内接多边形的有关概念及性质.3.在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法.一、情境导入你喜欢看足球比赛吗?你踢过足球吗?第十九届世界杯决赛于2014年在巴西举行,共有来自世界各地的32支球队参加赛事,共进行64场比赛决定冠军队伍.比赛中如图所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守到圆上C处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究探究点一:圆周角定理如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于( )A.25°B.30°C.35°D.50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC=130°,∠AOB=180°,∴∠BOC=50°,∴∠D=25°.故选A.探究点二:圆周角定理的推论【类型一】利用圆周角定理的推论求角如图,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B =( )A .150°B .75°C .60°D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等”得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°,故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( )A .30° B.45° C .60° D .75°解析:由BD 是直径得∠BCD =90°.∵∠CBD =30°,∴∠BDC =60°.∵∠A 与∠BDC 是同弧所对的圆周角,∴∠A =∠BDC =60°.故选C.【类型二】利用圆周角定理的推论求线段长如图所示,点C 在以AB 为直径的⊙O 上,AB =10cm ,∠A =30°,则BC 的长为________.解析:由AB 为⊙O 的直径得∠ACB =90°.在Rt △ABC 中,因为∠A =30°,所以BC =12AB=12×10=5cm.【类型三】利用圆周角定理的推论进行有关证明如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C ,∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.探究点三:圆的内接四边形及性质【类型一】利用圆的内接四边形的性质进行计算如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD =________度.解析:∵四边形ABCD 是圆内接四边形,∴∠B +∠ADC =180°.∵四边形OABC 为平行四边形,∴∠AOC =∠B .又由题意可知∠AOC =2∠ADC .∴∠ADC =180°÷3=60°.连接OD ,可得AO =OD ,CO =OD .∴∠OAD =∠ODA ,∠OCD =∠ODC .∴∠OAD +∠OCD =∠ODA +∠ODC =∠D =60°.【类型二】利用圆的内接四边形的性质进行证明如图,已知A ,B ,C ,D 是⊙O 上的四点,延长DC ,AB 相交于点E .若BC =BE .求证:△ADE 是等腰三角形.解析:由已知易得∠E =∠BCE ,由同角的补角相等,得∠A =∠BCE ,则∠E =∠A . 证明:∵BC =BE ,∴∠E =∠BCE .∵四边形ABCD 是圆内接四边形,∴∠A +∠DCB =180°.∵∠BCE +∠DCB =180°,∴∠A =∠BCE .∴∠A =∠E .∴AD =DE .∴△ADE 是等腰三角形.方法总结:圆内接四边形对角互补.三、板书设计教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用.在圆中,利用圆周定理及其推论求相关的角度时,注意辅助线的添加及多种可能情况的考虑.。

人教版数学九年级上册:24.1.4 圆周角 教案(附答案)

人教版数学九年级上册:24.1.4 圆周角  教案(附答案)

24.1.4 圆周角第1课时圆周角定理及其推论教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.掌握圆周角定理及其两个推论,能在证明或计算中熟练的应用它们处理相关问题.预习反馈阅读教材P85~87,完成下列问题.1.顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.3.如图所示,OA,OB是⊙O的两条半径,点C在⊙O上.若∠AOB=90°,则∠ACB的度数为45°.4.圆周角定理的推论:同弧或等弧所对的圆周角相等.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5.如图所示,点A,B,C在圆周上,∠A=65°,则∠D的度数为65°.第5题图第6题图6.如图,A,B,C均在⊙O上,且AB是⊙O的直径,AC=BC,则∠C=90°,∠A=45°.例题讲解知识点1 圆周角定理例1 (教材补充例题)如图所示,点A ,B ,C 在⊙O 上,连接OA ,OB ,若∠ABO =25°,求∠C 的度数.【解答】 ∵OA =OB ,∠ABO =25°, ∴∠BAO =∠ABO =25°. ∴∠AOB =130°. ∴∠C =12∠AOB =65°.【跟踪训练1】 如图,点A ,B ,C 在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 大小为60°.知识点2 圆周角定理的推论例2 (教材P87例4)如图,⊙O 的直径AB 为10 cm ,弦AC 为6 cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.【解答】 连接OD. ∵AB 是直径,∴∠ACB =∠ADB =90°. 在Rt △ABC 中,BC=AB2-AC2=102-62=8(cm).∵CD平分∠ACB,∴∠ACD=∠BCD.∴∠AOD=∠BOD.∴AD=BD.又在Rt△ABD中,AD2+BD2=AB2,∴AD=BD=22AB=22×10=52(cm).例3(教材补充例题)如图,△ABC的顶点都在⊙O上,AD是⊙O的直径,AD=2,∠B=∠DAC,则AC=1.【归纳总结】 1.圆周角定理及其推论中的转化思想:(1)弧是圆周角、圆心角的中介,通过弧可实现圆周角、圆心角之间的转化;(2)在同圆或等圆中,90°的圆周角和直径之间可以相互转化.2.圆周角定理及其推论中常用的辅助线:当题目中出现直径时,通常作出直径所对的圆周角,可得直角,然后结合直角三角形解决问题,即“见直径作直角”.3.利用圆周角定理及其推论进行证明时常用的思路:(1)在同圆或等圆中,若要证弧相等,则考虑证明这两条弧所对的圆周角相等;(2)在同圆或等圆中,若要证圆周角相等,则考虑证明这两个圆周角所对的弧相等;(3)当有直径时,常利用直径所对的圆周角为直角解决问题.【跟踪训练2】如图所示,点A,B,C在⊙O上,已知∠B=60°,则∠CAO=30°.第2题图第3题图【点拨】 连接OC ,构造圆心角的同时构造等腰三角形.【跟踪训练3】 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠B =58°.巩固训练1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则圆周角∠BAC 的度数为50°.第1题图 第2题图2.如图所示,OA 为⊙O 的半径,以OA 为直径的⊙C 与⊙O 的弦AB 相交于点D ,若OD =5 cm ,则BE =10__cm .【点拨】 利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线. 3.如图所示,在⊙O 中,∠AOB =100°,C 为优弧AB ︵的中点,则∠CAB 的度数为65°.第3题图 第4题图4.如图,OA ,OB ,OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC. 证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB.同理∠BOC =2∠BAC.∵∠AOB=2∠BOC,∴∠ACB=2∠BAC.【点拨】看圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.课堂小结圆周角的定义、定理及推论.第2课时圆内接四边形教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆各个推论,能在证明或计算中熟练的应用它们处理相关问题.预习反馈阅读教材P87~88,完成下列问题.1.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆.如图,四边形ABCD是⊙O的内接四边形,⊙O是四边形ABCD的外接圆.第1,2题图第3题图2.圆内接四边形的对角互补.如图,∠A+∠C=180°,∠B+∠D=180°.3.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠A=50°,∠BCD =130°.例题讲解例 如图所示,已知AB 是⊙O 的直径,∠BAC =32°,D 是AC ︵的中点,那么∠DAC 的度数是多少?【解答】 连接BC.∵AB 是⊙O 的直径,∴∠ACB =90°. 又∵∠BAC =32°, ∴∠B =90°-32°=58°.∴∠D =180°-∠B =122°(圆内接四边形的对角互补). 又∵D 是AC ︵的中点,∴∠DAC =∠DCA =12(180°-∠D)=29°.【跟踪训练1】 已知圆内接四边形ABCD 中,∠A ∶∠B ∶∠C =1∶3∶5,则∠D 的度数为90°.【跟踪训练2】 如图,在⊙O 的内接四边形ABCD 中,点E 在DC 的延长线上.若∠A =50°,则∠BCE =50°.巩固训练1.如图,⊙O 的内接四边形ABCD 中,∠A =120°,则∠BOD 等于120°.第1题图第2题图2.如图所示,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=56°,∠E=32°,则∠F=36°.课堂小结圆内接四边形的对角互补.。

人教版数学九年级上册教案:24.1.4 圆周角

人教版数学九年级上册教案:24.1.4 圆周角

24.1.4 圆周角教案一、【教材分析】教学目标知识技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明.过程方法1、培养学生观察、分析、想象、归纳和逻辑推理的能力;2、渗透由“特殊到一般”,由“一般到特殊”,体验分类讨论的数学思想方法.情感态度敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.教学重点圆周角定理及定理的三个推论的应用.教学难点圆周角定理的证明,三个推论的灵活应用.二、【教学流程】教学环节问题设计师生活动二次备课情景创设观察与思考:(教师边演示自制教具边介绍,其中底面圆片上标注好有关的字母、线条)假设这是一个圆柱形的房子,同学们可以站在房中通过圆弧形玻璃窗AB向外观看外面的风景,同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?同学丙、丁分别站在其它靠墙的位置D和E,他们的视角创设问题情境,开展学习活动,引起学生学习的兴趣(∠ADB和∠AEB)和同学乙的视角相同吗?自主探究探究一作一个圆,并在圆中画出两个圆周角,根据你画出的角,(1)说出圆周角的顶点的位置,两边与圆的关系是什么?(2)说出圆周角与圆心角的异同点?一是角的顶点必须在圆周上,二是角的两边必须和圆相交.圆周角与圆心角的异同点:顶点的位置不同,角的两边都和圆相交.探究二1、拿出课前准备好的圆形纸片,先在上面任意画一个圆周角∠BAC,然后画出同弧所对的圆心角∠BOC,再分别量出∠BAC和∠BOC的度数,比较一下,你有什么发现?小组交流一下,能得出什么共同结论?同弧所对的圆周角的度数恰好等于这条弧所对的圆心角的度数的一半.2、为了进一步探究上面的发现,请同学们将刚才的圆形纸片沿圆周角的顶点A和圆心O对折,小组交流、归纳,看看这时折痕和圆周角∠B AC的位置可能有哪几种关系?分别一一画出来.3、利用第2题的图形,分别证明图a、图b、图c中的∠B OC=2∠B AC.让学生动手画圆,观察、思考、交流,归纳得出圆周角的两个特征.学生按照教师的要求画图、测量、思考,回答教师提出的问题.让学生交流、讨论并归纳,指导帮助学生,鼓励学生大胆猜想.学生折纸、观察、交流,教师参与小组活动,归纳出:⑴在圆周角的一条边上(如图a);⑵在圆周角的内部(如图b);⑶在圆周角的外部(如图c).学生自己独立完成图培养学生动手画图、动脑和动口相结合探究问题的能力通过学生自己画图、测量、归纳,展示同弧所对的圆周角与圆心角的度数关系,引导学生理解,同时为下面定理的证明作好准备.通过制作演示折纸,培养学生动手操作的能力,促进学生参与教学的意识的形成.CA ABOCB图c图b图aBODOCDA4、用自己的语言说出圆周角定理的内容是什么?(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;(2)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;(3)在同圆或等圆中,相等的圆周角所对的弧相等;5、利用上面的结论,完成下列问题:如图,在⊙O中,(1)∠C与∠D相等吗?为什么?(2)若AB是直径,则∠C= ,∠D= (3)若∠C=90°,则弦AB是⊙O的直径吗?(4)若圆周角∠ACB与∠DAB相等,则它们所对的弧相等吗?为什么?通过以上4个小题的解答,你又能得到什么结论?归纳一下. a的证明.对于图b、图c两种情况的证明,我们可以先尝试让学生小组交流,寻找证题方法,教师可以参与小组讨论,及时给予引导、点拨,然后板书展示证明过程,最后全班进行点评,引导学生体会“转换化归”在解决从特殊到一般问题时的应用思路和方法.以小组为单位讨论、探索,教师参与其中,指导帮助学生完成问题的解答.最后归纳得出圆周角定理的推论:先让学生自己看课本,认识圆的内接多边形、多边形的外接圆的概念,再运用学过的知识探索圆内接四边形的性质:学会分类讨论、转换化归是教学突破的关键通过观察、交流、归纳,锻炼学生的逻辑思维能力,体验分类讨论的数学思想方法运用已经学会的知识解决新问题,培养学生解决问题的能力,养成探究习惯.圆内接四边形的对角互补.探究三1、什么是圆的内接多边形?什么是多边形的外接圆?2、画一个圆内接四边形ABCD,它有什么性质,你是如何得到的?与同学交流一下.尝试应用1、教材第88页练习1、22、如图,四边形ABCD为⊙O的内接四边形,∠BOD=110°,则∠BAD=∠BCD=3、教材第87页例44、足球场上正在进行激烈的比赛,队员甲、队员乙正准备射门,是队员甲直接射门好,还是传给队员乙让队员乙射门好,为什么?教师出示题目,学生独立思考、解答学生解答完毕后,小组交流后以小组为单位展示小组的成果.教师巡视,帮助学习有困难的学生,并适时指导、点拨,不断提升、总结学生交流,师生互动,通过问题的训练,加深学生对圆周角定理及推论、圆内接四边形的性质的理解与应用.ACDB.OB DAC.O甲. D.乙补偿提高1、如图,AB是⊙O的直径,∠BAC=30°,点D在圆上,则∠ADC等于( )A. 30°B.40°C.50°D.60°2、求证:如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.教师出示题目,学生练习时,教师巡视、辅导,进一步了解学生的掌握情况.教师帮助学生完成并总结,要求学生熟记第2题的结论,以后可以直接应用.学有余力的学生选做,达到培优的目的.小结与作业小结:通过这节课的学习,你有什么收获?作业:1.必做题:教材第88页练习3,习题24.1第89页5,6题2、选做题如图,点A,B,D,E在⊙O上,弦AE,BD的延长线相交于点C,若AB是⊙O的直径,D是BC的中点.(1)试判断AB与AC之间的大小关系,并给出证明;(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点?(直接写出结论)教师提出问题,学生独立回答,教师在学生总结后进行补充,并根据学生的回答,结合结构图总结本节知识.教师布置作业,动员分层要求.学生按要求课外完成,通过课后作业巩固本节知识.供学生课后探讨、研究使学生能够回顾、总结、梳理所学知识.A CDB.OAC.OBD三、【板书设计】24.1.4 圆周角四、【教后反思】本节课首先设计了一个问题情境,展示了圆心角与圆周角的位置关系,引出圆周角的概念.然后通过测量、猜想,得出同弧所对的圆周角等于圆心角的一半的结论.接着通过让学生折纸,观察与思考,利用分类讨论的思想方法,分三种情况给出系统的证明及思维过程.至此我们利用迁移、转化的思想方法化未知为已知,将圆周角的问题转化为圆心角来求解.其后为进一步探索圆周角的其他性质,我们又以设置的问题为导线,将学生带入到教学活动中,同时再次通过交流、讨论、合作、归纳出圆周角定理的三个推论,并运用它们进行解题,实现从认识到应用的转化.AAB O CB图c图b图aBO D OCDA。

人教版初三数学上册24.1.4圆周角定理.1.4圆周角(1)教学设计

人教版初三数学上册24.1.4圆周角定理.1.4圆周角(1)教学设计

24.1.4圆周角⑴一、教学目标知识与技能:1. 了解圆周角的概念,会证明圆周角定理及其推论;2. 能在具体的图形中正确识别一条弧所对的圆周角,能够应用定理或推论解决简单的问题过程与方法:1.通过画图、观察、度量、猜想、证明、归纳、应用等方式,体会几何探究的一般过程;2. 结合圆周角定理的探索与证明的过程,进一步体会分类讨论、化一般为特殊的转化的思想.情感态度价值观:从足球入题,回归足球,一方面激发学生学习的兴趣,另一方面,学生在分析问题、解决问题的同时体会数学与生活的紧密联系二、教学重难点重点:圆周角定理(理由:与圆心角一样,圆周角也是研究圆时重点研究的一类角,圆周角定理及其推论既是圆心角、弦、弧之间关系的继续,又是后续研究圆与其他平面图形的桥梁和纽带);难点:分情况证明圆周角定理(理由:学习本节课内容时,学生已经具备一定的逻辑推理能力,但对于一个几何命题要分情况讨论证明的经验还是很缺乏)三、教学过程(一)创设情景问题1萃英中学在足球对抗赛中,丁羽、王荆轲两名队员互相配合向对方球门MN进攻,当王荆轲带球冲到A点时,丁羽已经冲到B点,当时比赛还剩下一分钟,在这样的紧要关头,王荆轲不采取直接射门,而要将球传给他的队友丁羽呢?(二)初识圆周角问题2图中这么多角,哪些角是我们所熟悉的?追问1:这个熟悉的角叫什么名字?追问2:圆心角有什么特点?问题3再仔细观察下,除此之外,图中哪些角还比较特殊?追问1特殊在哪里?追问2:我们可以给这个特殊的角起个怎么样的名字?追问3:结合你自己的发现,你能给圆周角下个定义吗【设计意图】结合图形,获得圆周角定义,理解圆周角的概念练习:判断下列各图中的角是否是圆周角?请说明理由归纳总结:如果要判断一个角是否为圆周角,必须满足两个条件:①顶点在圆上;②角的两边都和圆相交•【设计意图】同时呈现有关圆周角的正例和反例,有利于学生对圆周角概念的本质属性与非本质属性进性比较,巩固对概念的理解•(三)探究圆周角探究任务1:圆周角定理1.画一画(1 )在0 O中,画出弧BC所对的圆周角,可以画几个?(2)画出弧BC所对的圆心角•.量量分别量出图中弧BC所对的圆心角以及圆周角的度数 3.想一想弧BC所对的圆心角以及圆周角的度数存在怎样的数量关系?(结合几何画板动态演示)【设计意图】引导学生经历观察、猜想、操作、分析、验证、交流等基本数学活动,探索圆周角的性质,同时使用《几何画板》进一步演示和验证,在动态环境中研究圆周角与圆心角的关系,在某种量变化的过程中让学生体会观察不变的数量关系,帮助学生更好地理解圆周角定理• 4.分一分为了验证这个发现,先请同学们想一想圆心0和圆周角有几种位置关系?5.证一证猜想:一条弧所对的圆周角等于它所对的圆心角的一半已知:/ BOA, / BCA分别是同一条弧所对的圆周角和圆心角;求证:1 / BCA= / BOA.2思考:在我们得到的圆心与圆周角的三种位置关系中,哪一种位置关系比较特殊?归纳总结:【设计意图】将一般情况化为特别情况,体会了化归的数学思想,学生通过证明三种情况, 感受分类证明的必要性,有利于逻辑推理能力的提升探究任务2:探究特殊情况,获得推论问题4我们知道,一条弧可以对着不同的圆周角,这些圆周角之间有什么关系?也就是说(1)首先考虑一种特殊情况:当圆心(0)在圆周角(/ ACB)的一边(AC)上时思考:能否将(2)(3)两种情况转化为第(1 )种情况?⑵当圆心(0)在圆周角(/ ACB)的内部时⑶ 当圆心(0)在圆周角(/ ACB)的外部时同弧所对的圆周角之间有什么关系?如图,AB、AC、BD、CD是O O的弦, 如果/ A=44 ° 则/ BOC= .如果/ BOC=50 °,则/ A= ________ .如果/ A=35 °,则/ BDC= ________ .问题5在同一个圆中,等弧所对的圆周角之间有何数量关系?【设计意图】让学生经历观察、猜想、证明得出推论的探索过程,得到圆周角定理的推论, 进一步认识与圆有关的角和弧之间的关系• (四)巧用圆周角1寻找圆周角练一练:如图,点A、B、C、P在O O上,请找出图中所有相等的圆周角•变式:如图,点A、B、C、P 在O O 上,/ APC=Z CPB = 60那么△ ABC是等边三角形吗?为什么?2、构造圆周角问题解决1 :萃英中学在足球对抗赛中,丁羽、王荆轲两名队员互相配合向对方球门MN进攻,当王荆轲带球冲到A点时,丁羽已经冲到B点,此时王荆轲为什么迅速传球给丁羽呢?问题解决2:萃英中学在足球对抗赛中,丁羽、王荆轲两名队员互相配合向对方球门MN进攻时,秦明浩已经冲到C点,此时丁羽是直接射门好,还是迅速传球给秦明浩呢?归纳总结:BCE(五)课堂小结(1 )本节课学习了哪些主要内容?(2)我们是如何证明圆周角定理的?在证明过程中用到了哪些思想方法?(六)作业布置作业本四、课后反思与圆心角一样,圆周角也是研究圆时重点研究的一类角,圆周角定理及其推论为圆有关的角的计算,证明角相等,弧、弦相等等数学问题提供了十分便捷的方法和思路,既是圆心角、弦、弧之间关系的继续,又是后续研究圆与其他平面图形的桥梁和纽带•圆周角定理的重要性不言而喻•因此,怎么上这节课,怎么样让学生感悟蕴含其中数学思想方法,是我一直思考的问题•思考问题1:圆周角定理的证明要采用完全归纳法,分情况证明,学习本节课内容时,学生已经具备一定的推理能力,但对于一个几何命题要分情况证明的经验还很缺乏,我应该怎么去引导?因此,在教学过程中,有了如下思考:①让学生动手画圆周角,让学生在动手操作中体会圆心与圆周角具有三种不同的位置关系;同时,利用几何画板演示,在动态环境中体会圆心与圆周角具有三种不同的位置关系,为后面证明分类讨论做好铺垫•②学生合作交流,通过度量事先画的一条弧所对的圆心角和圆周角的度数,探究并猜想它们之间的数量关系,然后再利用计几何画板来验证,让学生在某种量变化的过程中让学生体会观察不变的数量关系,帮助学生更好地理解圆周角定理•思考问题2 :本节课内容比较多,如何把握和调节时间?如果从课堂完整性考虑,应该要探究完圆周角定理及推论1,推论2,但是考虑到我们班的学生基础不是很好,为了更好地落实各项基本技能,本节课在课堂设计上我做了适当的调节,只探究了圆周角定理及推论 1.思考问题3 :如何渗透数学思想方法?①本节课选取一些比较贴近学生的生活素材--足球,激发学生的学习兴趣,同时让学生从生活问题抽象出数学问题,感受建模的思想•②圆周角定理的探索与证明的过程,进一步体会分类讨论、化一般为特殊的转化的思想等.“路曼曼其修远兮,吾将上下而求索”,通过这节课的准备,我也了解到了作为老师,成长的道路是漫长的,我会一直努力的!。

九年级数学上册(人教版)24.1.4圆周角(第一课时)优秀教学案例

九年级数学上册(人教版)24.1.4圆周角(第一课时)优秀教学案例
(二)问题导向
1. 引导探究:引导学生观察、分析圆周角与圆心角的关系,引导学生归纳总结圆周角定理;
2. 解决问题:让学生运用圆周角定理解决实际问题,提高解决问题的能力;
3. 拓展思考:设计拓展性问题,如“圆周角定理在其他几何图形中的应用”,引导学生深入思考,提高逻辑思维能力。
问题导向环节是本节课的核心部分。在这一环节,我会引导学生观察、分析圆周角与圆心角的关系,让学生通过自主探究,归纳总结出圆周角定理。在解决问题环节,我会设计不同难度的题目,让学生运用所学知识解决实际问题,提高解决问题的能力。此外,我还会设计拓展性问题,激发学生的思考兴趣,提高学生的逻辑思维能力。
2. 问题情境:设计具有启发性的问题,如“圆周角与圆心角有什么关系?”,引导学生主动探究,引发思考;
3. 实践情境:让学生亲自动手作图,体验圆周角定理的应用,提高实践能力。
在情景创设环节,我会注重引导学生观察生活中的圆形物体,让学生感受到数学与生活的紧密联系。通过设计具有启发性的问题,激发学生的求知欲,引导学生主动探究。同时,我会组织学生进行实践操作,让学生在动手实践中体验圆周角定理的应用,提高实践能力。
(三)学生小组讨论
1. 讨论问题:让学生分组讨论如何运用圆周角定理解决实际问题;
2. 分享讨论成果:鼓励学生分享讨论过程中的收获和感悟,互相学习;
3. 教师指导:针对学生的讨论情况进行点评,引导学生进一步思考。
在学生小组讨论环节,我会提出讨论问题,让学生分组讨论如何运用圆周角定理解决实际问题。在讨论过程中,我会巡回指导,关注学生的讨论情况。讨论结束后,鼓励学生分享讨论成果,互相学习。最后,我会针对学生的讨论情况进行点评,引导学生进一步思考。
2. 问题导向的教学方式:通过设计具有启发性的问题,如“圆周角与圆心角有什么关系?”引导学生主动探究,引发思考。这种问题导向的教学方式,能够有效地激发学生的求知欲,培养学生的逻辑思维能力,并且能够让学生在学习过程中始终保持积极的状态。

人教版九年级数学上册24.1.4《圆周角》优秀教学案例

人教版九年级数学上册24.1.4《圆周角》优秀教学案例
2.引导学生通过讨论、交流、分享等方式,共同探讨圆周角的性质,提高他们的合作交流能力。
3.教师要关注小组合作的过程,及时发现和解决问题,确保小组合作活动的有效进行。
4.利用小组合作评价,鼓励学生积极参与,培养他们勇于承担责任的精神。
(四)总结归纳
1.引导学生对所学知识进行反思,巩固所学内容,提高他们的自我学习能力。
2.探究性学习的设计:在教学过程中,我设计了具有挑战性和梯度的问题,引导学生逐步深入探讨圆周角的性质和定理。同时,我鼓励学生提出问题,培养他们敢于质疑的精神,使他们在问题中发现问题、解决问题。这种探究性学习的设计有效地培养了学生的独立思考能力和解决问题的能力。
3.小组合作的学习方式:我设计了小组合作探究活动,让学生在小组内部分工合作,共同完成任务,培养他们的团队协作能力和沟通能力。通过小组合作,学生能够相互学习、相互帮助,提高了他们的合作交流能力,同时也增加了课堂的活力和互动性。
2.通过实物展示或模型制作,让学生直观地感受到圆周角的形成过程,帮助学生建立圆周角的概念。
3.设计具有启发性的问题,引导学生思考圆周角与日常生活的联系,提高他们的实际应用能力。
4.创设轻松愉快的学习氛围,使学生在愉悦的情感状态下学习,提高他们的学习效率。
(二)讲授新知
1.引导学生通过观察、操作、推理等方法,自主探索圆周角的性质,培养他们的独立思考能力。
2.引导学生通过观察、操作、推理等方法,自主探索圆周角的性质,培养他们的独立思考能力。
3.在问题解决过程中,教师要给予学生及时的点拨和指导,帮助他们克服困难,提高他们的解决问题的能力。
4.鼓励学生提出问题,培养他们敢于质疑的精神,使他们在问题中发现问题、解决问题。
(三)小组合作
1.设计小组合作探究活动,让学生在小组内部分工合作,共同完成任务,培养他们的团队协作能力。

人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论优秀教学案例

人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论优秀教学案例
2.教师设计具有挑战性和实践性的任务,引导学生通过小组合作完成任务,提高他们的实践能力。
3.教师关注每个小组的学习进度,及时给予指导和鼓励,使他们在合作中共同成长。
(四)总结归纳
1.教师引导学生进行总结,让学生回顾本节课所学的内容,巩固知识点。
2.教师通过归纳总结,提炼出圆周角定理的重要性和应用价值,使学生能够更好地理解和掌握。
3.教师对学生的学习情况进行评价,鼓励他们继续保持良好的学习态度。
(五)作业小结
1.教师布置相关的作业,让学生巩固所学知识,提高他们的应用能力。
2.教师要求学生.教师对学生的作业进行批改和评价,及时给予反馈,帮助学生提高。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我注重导入新课,讲授新知,引导学生进行小组讨论,进行总结归纳,以及布置作业小结。通过这五个方面的教学内容与过程,我希望能够为学生提供一个全面、深入的学习平台,帮助他们更好地理解和掌握圆周角定理及推论,提高他们的数学素养。
在教学过程中,我关注每一个学生的学习状态,及时给予反馈和鼓励,使他们在课堂上充分展示自己。针对不同学生的学习需求,我采取个性化的辅导措施,使他们在原有基础上得到提高。
此外,我还注重培养学生的团队协作能力和表达能力。在课堂讨论环节,我鼓励学生积极参与,表达自己的观点,与他人交流,从而提高他们的沟通能力和合作意识。
3.学生通过小组合作、讨论交流,培养他们的团队合作精神和沟通能力,提高他们的人际交往能力。
4.学生能够在学习过程中,养成积极思考、主动探究的良好学习习惯,培养他们的自主学习能力。
作为一名特级教师,我始终坚持以学生为中心,关注每一个学生的全面发展。在教学过程中,我注重知识的传授与技能的培养,更注重学生过程与方法的体验,以及情感态度与价值观的塑造。通过制定这份详细的教学目标,我希望能够为学生提供一个全面、深入的学习平台,帮助他们更好地理解和掌握圆周角定理及推论,提高他们的数学素养。

人教版-数学-九年级上册-24.1.4 圆周角(1) 教案

人教版-数学-九年级上册-24.1.4 圆周角(1) 教案

24.1.4 圆周角(第一课时)一、教学目标(一)学习目标1. 掌握圆周角的相关概念和定理,并会运用.2. 掌握圆周角和圆心角的关系.3.探索圆周角的性质和直径所对圆周角的特征.4.能运用圆周角的性质解决问题.(二)学习重点圆周角和圆心角的关系.(三)学习难点能运用圆周角的性质解决问题.二、教学设计(一)课前设计1.预习任务(1)把顶点在圆上,并且两边都与圆相交的角叫做圆周角。

(2)在同圆或等圆中,同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

(3)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

2.预习自测(1)如图,在⊙O 中,已知∠AOB=120°,则∠ACB=_________.【知识点】网圆周角定理.【数学思想】数形结合有。

【解题过程】解:∵∠AOB=120°,点C在⊙O上,∴∠ACB=12∠AOB=60°.故答案为:60°【思路点拨】根据∠AOB的度数利用圆周角定理,即可得出∠ACB的度数.【答案】60°(2)如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为.【知识点】网圆周角定理;三角形内角和定理.【数学思想】数形结合【解题过程】解:连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°﹣2×28°=124°;而∠C=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故答案是:62°.【思路点拨】连接OB.根据等腰△OAB的两个底角∠OAB=∠OBA.三角形的内角和定理求得∠AOB=124°;然后由圆周角定理求得∠C=62°.【答案】62°.(3)如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=.【知识点】网圆周角定理;圆心角、弧、弦的关系.【数学思想】数形结合【解题过程】解:∵AD为⊙O的直径,∴∠ABD=90°,∵AC=BC,∠ABC=75°,∴∠BAC=∠ABC=75°,∴∠C=180°﹣∠ABC﹣∠BAC=30°,∠CBD=∠ABD﹣∠ABC=15°,∴∠D=∠C=30°,∴∠BED=180°﹣∠CBD﹣∠D=135°.故答案为:135°.【思路点拨】由AD为⊙O的直径,∠ABC=75°,且AC=BC,可求得∠ABD=90°,∠D=∠C=30°,继而可得∠CBD=15°,由三角形内角和定理,即可求得答案.【答案】135°.(4)如图,点A.B.C在⊙O上,∠A=36°,则∠O=.【知识点】网圆周角定理.【数学思想】数形结合【解题过程】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°.【思路点拨】根据同弧所对的圆心角是圆周角的2倍得出结论.【答案】72°.(二)课堂设计1.知识回顾(1)在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(3)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.2.问题探究探究一圆周角定义,圆周角和圆心角关系. ★▲●活动① 以旧引新教师演示图片:展示一个圆柱形的海洋馆.教师:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB 观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.问题1:如图:同学甲站在圆心O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C ,他们的视角(AOB ∠和ACB ∠)有什么关系?教师:这两个角所对的弧相同,顶点的位置不同:AOB ∠的顶点在圆心,ACB ∠的顶点在圆上。

人教版九年级上册24.1.4圆周角24.1.4圆周角一课时课程设计

人教版九年级上册24.1.4圆周角24.1.4圆周角一课时课程设计

人教版九年级上册24.1.4圆周角一课时课程设计1. 教学目标1.1 知识目标•知道圆周角的概念和计算方法•掌握圆周角的度数和弧度的转换•能够利用圆周角求解问题1.2 能力目标•培养学生观察能力和分析问题的能力•增强学生解决实际问题的能力•提高学生的口算和思维能力2. 教学内容2.1 圆周角的概念2.2 圆周角的度数和弧度的转换2.3 度数制、弧度制和坐标制下的圆周角计算2.4 圆周角相关问题的解决3. 教学重难点3.1 教学重点•圆周角的概念•圆周角的度数和弧度的转换•利用圆周角求解相关问题3.2 教学难点•圆周角的度数和弧度的互相转换•圆周角相关问题的解决方法4. 教学过程4.1 导入环节引导学生回忆上课所学的知识,通过让学生在黑板上画出圆,并要求学生给出圆的定义,引出圆周角的概念。

并通过数学公式及图像展示圆周角的定义,及其对应的公式。

4.2 讲授环节4.2.1 圆周角的度数和弧度的转换通过教师演示和举例,讲解圆周角的度数和弧度的转换方法,并对转换的原理进行详细解释。

并通过联系实际问题,让学生感性理解和掌握弧度制下圆周角的计算方法及其应用。

4.2.2 圆周角的计算方法介绍度数、弧度制以及坐标制下的圆周角计算方法,并通过实例演示来让学生掌握这些方法和技巧。

4.3 练习环节让学生进行课堂练习和小组练习,通过独立思考和小组合作互相讨论,提高学生的口算和思维能力。

并在练习过程中,及时帮助学生发现问题和解决问题。

4.4 课堂总结回顾本节课所学的知识点,对区分度数、弧度制以及坐标制下的圆周角的公式和计算方法进行归纳总结,以及对课堂练习的重点难点问题进行梳理,并对当堂课所涉及的知识点进行全面复习说明。

5. 教学评估5.1 教学方法结合口头解答、白板演示、互动问答和小组合作等多种教学方法,以加深学生对圆周角相关概念和计算方法的理解和掌握。

5.2 评估方法课堂练习、平时作业和单元测试的方式来进行学生对圆周角相关知识点的评估,评估主要侧重于学生对圆周角相关概念的把握程度、计算能力和能力应对实际问题的能力。

人教版(2012)九年级数学上册 24.1.4圆周角 教案

人教版(2012)九年级数学上册 24.1.4圆周角 教案

24.1.4圆周角(1)教学设计教学目标:1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、培养学生观察、分析、想象、归纳和逻辑推理的能力;3、体会分类讨论的思想,渗透由“特殊到一般”,由“一般到特殊”的数学方法.教学重点:圆周角的概念和圆周角定理及推论。

教学难点:发现并证明圆周角定理。

教学过程一、情景导入:下图是一个圆柱形的海洋馆的横截面示意图, 人们可以通过玻璃窗AB 观看窗内的海洋动物 , 同学甲站在圆心O ,同学乙站在C , 同学丙站在D ,同学丁站在 E,他们都说自己的位置好,如果你是海洋馆的工作人员,你怎么评价他们的意见?二、认识圆周角 1、复习提问:(1)什么是圆心角?答:顶点在圆心的角叫圆心角.(2)圆心角的度数定理是什么?答:圆心角的度数等于它所对弧的度数.(如右图) 2、引题圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB ,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角 3、概念辨析:1判断下列各图形中的是不是圆周角,并说明理由.学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.三.探究圆周角的性质乙CBA甲丙丁EO B CO 1O 2O 3O 41、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系,然后通过“画一画”和“量一量”,引导学生得出同弧所对的圆周角和圆心角的关系。

设计说明:由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用玲珑画板从动态的角度进行演示,验证学生的发现.四.证明圆周角定理及推论问题1:观察你所画图形,思考圆心角与圆周角之间有几种位置关系?学生讨论弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)设计说明:后两种都化成了第一种情况,教师再次利用玲珑画板从动态的角度进行演示转化过程,这体现了数学中的分类方法,体现数学中的化归思想.(对A层学生渗透完全归纳法)结论:一条弧所对的圆周角的度数等于____________________________ (圆周角定理)问题2:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?问题3:在⊙O中,若= ,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G ,是否得到= 呢?让学生分析、研究,并充分交流.注意:①问题解决,只要构造圆心角进行过渡即可;②若= ,则∠C=∠G;但反之不成立.老师组织学生归纳:1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)试一试:试找出下图中所有相等的圆周角.问题3:(1)一个特殊的圆弧——半圆,它所对的圆周角是什么样的角?(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?学生通过以上两个问题的解决,在教师引导下得推论半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、 垂直关系创造了条件,要熟练掌握. 五、运用提升 例题引领例题:如图,△ABC 的顶点A 、B 、C 都在⊙O 上,∠C =30 °,AB =2,则⊙O 的半径是多少?设计说明:圆周角定理的简单应用, 让学生交流:①解题思路;②辅助线的方法;③解题推理过程(要规范). 跟踪训练1、如左图,点A 、B 、C 、D 在⊙O 上,∠BAC =35°,则∠BDC = °,理由是 ,∠BOC = °,理由2、右图中相等的圆周角有本节课你认识了什么?掌握了哪些定理?有什么收获?引导学生思考,议论、发现结论.由学生口述证明结论的成立.这样由学生通过观察、促使知识转化为技能,发展成能力,从而提高应用的素养. 七、作业布置活动【活动】设疑激趣、引发思考 评论 . 播放视频、运用拓展学到这里,我们轻松一下,欣赏一段精彩的视频回放。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
C
B
A
第五课时 圆周角(一)
一、学习目标
1.知道圆周角的概念,会在具体的图形中辨认圆周角;
2.会证明并记住圆周角定理,能运用其进行简单的计算与证明(重、难点)
二、学习过程
【复习回顾】
________ ____的角叫做圆心角. 【自主探究】
知识点一 圆周角
圆周角:顶点在 ,并且两边 的角叫做圆周角。

【对应练习】
1.判断下列各图形中的角是不是圆周角,并说明理由.
2.指出图中的圆周角,并指出各圆周角所对的弧。

3.一条弧所对的圆心角有 个,所对的圆周角有 个。

知识点二
完成课本84页“探究”, 写出你所得出的结论并证明。

归纳:在同圆和等圆中,同弧和等弧所对的圆周角 ,都等于 。

【对应练习】1、如图,已知A 、B 、C 在⊙O 上,∠COA =100°,则∠CBA =( )
A. 40°
B. 50°
C. 80°
D. 200°
3、如图,点A 、 B 、C 是⊙O 上的三点,若∠BOC =56°,则∠A =___________°
4、100º的弧所对的圆心角等于_______,所对的圆周角等于_______。

知识点三
问题:在⊙O 中,若
=
,能否得到∠C=∠G 呢?根据什么?
反过来,在⊙O 中,若有∠C=∠G ,能否得到 = 呢?
归纳:在同圆或等圆中,相等的圆周角所对的弧 . 【典例评析】
例1.如图,△ABC 内接于 ⊙O ,∠C = 45º, AB =4 ,求⊙O 的半径是多少?
O C
B
A
三、达标练习
1.课本练习第1题
2、如图,点D 在以AC 为直径的⊙O 上,如果∠BDC =20°,那么∠CAB = .
3、如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于( ) A.80° B. 50° C. 40° D. 20°
4、如图,在⊙O 中,∠ACB =∠D =60°,AC =3,则△ABC 的周长为_________。

5、如图,⊙O 中,∠AOB = 130º,则∠ACB=______。

6、下列命题中是真命题的是( ) (A )顶点在圆周上的角叫做圆周角。

(B )60º的圆周角所对的弧的度数是30º
(C )一弧所对的圆周角等于它所对的圆心角。

(D )120º的弧所对的圆周角是60º
四、小结
本节课的收获是 。

五、布置作业
习题24.1第4、12题
O D
C B A
第2题
O C
F
G
D E
第3题
O
B
C
A
第5题
A
B
D C
O .
第4题。

相关文档
最新文档