2008-2017陕西省历年中考数学——圆试题汇编

合集下载

最新-2017陕西历年中考数学——圆试题汇编

最新-2017陕西历年中考数学——圆试题汇编

精品文档年陕西中考数学试题汇编——圆—20172008一、选择题上一点,且OD是⊙O相切于点C,20081.(·陕西)如图,直线AB与半径为2的⊙)30°,弦EF∥AB,则EF的长度为(EDC∠=33222 D. C.A. 2B.的扇形围成一个圆锥的侧面(接缝忽略,圆心角为120°·陕西)若用半径为92.(2009 . )不计),则这个圆锥的底面半径是(D. 6C. 3 A. 1.5 B. 2上的动OM是⊙APB=50°.若点如图,点·陕西)A、B、P在⊙O上,且∠3.(2010)有(点,要使△ABM为等腰三角形,则所有符合条件的点M 个D. 4 C. 3个个 A. 1个 B. 2,是互相垂直的两条弦,垂足为ABCD5的圆O中,·陕西)4.(2012如图,在半径为),则=CD=8OP的长为(ABP,且4223...A3B4 C. D精品文档.精品文档⌒为,Px轴、y轴交于点A、B( 5.2012·陕西副)如图,经过原点O的⊙C 分别与OBA)的坐标为(上一点。

若∠OPA=60°,OA=,则点B34 0(),0,4) D. A. (0,2) B. (0,) C. (3342,OCOB、4如图,⊙O的半径为,△ABC是⊙O的内接三角形,连接6.(2016·陕西))BC和∠BOC互补,则弦的长度为(若∠ABC35363343 C.D. A. B.OP是⊙D.若点,在⊙O中,弦AB垂直平分半径OC垂足为如图,7.(2016·陕西副)、)B的任意一点,则∠APB=(上异于点A 120° D.60°或150°C.30 150°B.60 °°或A.3060 °或°或二、填空题精品文档.精品文档8.(2017·陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为.9.(2010·陕西)如图是一条水平铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水最深为____________米.10.(2013·陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.11.(2014·陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上两个动点,且在直线的异侧,若∠AMB=45°,则四边形MANB面积的最大l值是________.精品文档.精品文档12.(2015·陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.13.(2015·陕西副)如图,A、B是半圆O上的两点,MN是直径,OB⊥MN,AB=4,OB=5,P是MN上一个动点,则PA+PB的最小值为.B A OMN三、解答题14.(2008·陕西)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE。

历年陕西省中考真题

历年陕西省中考真题

历年陕西中考中的圆真题2010年1.如图,点A 、B 、P 在⊙O 上,且∠APB=50°. 若点M 是⊙O 上的动点,要使△ABM 为等腰三角形,则所有符合条件的点M 有( )A. 1个B. 2个C. 3个D. 4个2、如图是一条水平铺设的直径为2米的通水管道横截面,其水面宽为1.6米,则这条管道中此时水最深为 米2010年副题3、如图,在平面直角坐标系中,⊙P 与y 轴相交于点C,与x 轴相交于点A 、B.若点P 的坐标为(5,3),点M 是⊙O 上的一个动点,则△ABM 面积的最大值为( )A.64B.48C.32D.242011年4.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是 ( )A 、外离B 、相交C 、内切或外切D 、内含 2011陕西副题5、在△ABC 中,BC=6,角A=60°.若圆O 是△ABC 的外接圆,则圆O 的半径长为( ) A.3 B.32 C.33 D.342012年6.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()4A.3 B.4 C.32D.27.在平面内,将长度为4的线段AB绕它的中点M,按逆时针方向旋转30°,则线段AB 扫过的面积为1.如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于D点,交AC于E点,连接BE.(1)若BE是△DEC外接圆的切线,求∠C的大小;(2)当AB=1,BC=2时,求△DEC外接圆的半径.2.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=6,∠ACB的平分线CO交AB于点O,以OB为半径作半⊙O.(1)请判断AC与⊙O的位置关系(2)求⊙O的半径.2.如图,在△ABC 中,060B =∠,⊙O 是△ABC 外接圆,过点A 作的切线,交CO 的延长线于P 点,CP 交⊙O 于D(1) 求证:AP=AC(2) 若AC=3,求PC 的长2.如图,在Rt △ABC 中,∠BAC=90°,∠BAC 的平分线交BC 于O ,以点O 为圆心作圆,⊙O 与AC 相切于点D .(1)试判断AB 与⊙O 的位置关系,并加以证明.(2)在Rt △ABC 中,若AC=6,AB=3,求切线AD 的长.3.如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N .(1)求证:=OM AN ;(2)若O 的半径=3R ,=9PA ,求OM 的长。

(完整)2008年陕西省中考数学试题及答案,推荐文档

(完整)2008年陕西省中考数学试题及答案,推荐文档

2008年陕西省中考数学试题第I 卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1、零上13℃记作+13℃,零下2℃可记作 ( ) A .2 B .-2 C . 2℃ D .-2℃2、如图,这个几何体的主视图是 ( )3、一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形4、把不等式组x 315x 6-⎧⎨⎩<--<的解集表示在数轴上,正确的是 ( )5、在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款。

其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万。

这组数据的众数和中位数分别是 ( ) A .20万、15万 B .10万、20万 C .10万、15万 D .20万、10万6、如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AD=BC C .AB=BC D .AC=BD7、方程2x 29-=()的解是 ( ) A .12x 5 x 1==-,B .12x 5 x 1=-=,C .12x 11x 7==-, D .12x 11 x 7=-=, A . B . C . D .(第6题图) AOyA 3A.3y x32=-+B.3y x32=+C.2y x33=-+D.2y x33=+9、如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2 B.23C.3D.2210、已知二次函数2y ax bx c=++(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧。

以上说法正确的个数为()A.0 B.1 C.2 D.3第II卷(非选择题共90分)二、填空题(共6小题,每小题3分,计18分)11、若∠α=43°,则∠α的余角的大小是。

2017年各地中考试卷2017年陕西省中考数学试卷

2017年各地中考试卷2017年陕西省中考数学试卷

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m 的值为()A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1 B.C. D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.510.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.(3分)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.16.(5分)解方程:﹣=1.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D 作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•陕西)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.0【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)(2017•陕西)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)(2017•陕西)化简:﹣,结果正确的是()A.1 B.C. D.x2+y2【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)(2017•陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD 的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【分析】根据S=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.△ABE【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,=S矩形ABCD=3=•AE•BF,∵S△ABE∴BF=.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是π.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 64° .B.tan38°15′≈ 2.03 .(结果精确到0.01)【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC +∠ACB=(∠ABC +∠ACB );B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=∠ABC 、∠2=∠ACB ,则∠1+∠2=∠ABC +∠ACB=(∠ABC +∠ACB )=64°,故答案为:64°;B 、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)(2017•陕西)已知A ,B 两点分别在反比例函数y=(m ≠0)和y=(m ≠)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 1 .【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得=0,即5m﹣5=0是解题的难点.14.(3分)(2017•陕西)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)(2017•陕西)解方程:﹣=1.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在C区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017•陕西)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)(2017•陕西)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=∴AC=2AD=5(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B 的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)(2017•陕西)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为4;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D。

2008年陕西中考数学试题

2008年陕西中考数学试题

中考数学(四)第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.零上13℃记作+13℃,零下2℃可记作( ) A .2B .2-C .2℃D .-2℃2.如图,这个几何体的主视图是( )3.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形4.把不等式组3156x x -<-⎧⎨-<⎩,的解集表示在数轴上正确的是( )5.在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万.这组数据的众数和中位数分别是( ) A .20万,15万 B .10万,20万 C .10万,15万 D .20万,10万6.如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB CD = B .AD BC = C .AB BC =D .AC BD =7.方程2(2)9x -=的解是( ) A .1251x x ==-, B .125x x =-,C .12117x x ==-,D .111x x =-,8.如图,直线AB 对应的函数表达式是( A .332y x =-+B .332y x =+ C .233y x =-+ D .233y x =+ 9.如图,直线AB 与半径为2的O 相切于点C D ,是O 上一点,且30EDC ∠=,弦EF AB ∥,则EF 的长度为( ) A .2B .CD .10.已知二次函数2y ax bx c =++(其中000a b c >><,,), 关于这个二次函数的图象有如下说法: ①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 以上说法正确的个数为( )A .0B .1C .2D .3第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.若43α∠=,则α∠的余角的大小是 . 12.计算:234(2)a a = .13.一个反比例函数的图象经过点(15)P -,个函数的表达式是 .14.如图,菱形ABCD 的边长为2,ABC ∠=则点D 的坐标为 .15.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②, 图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.16.如图,梯形ABCD 中,AB DC ∥,90ADC BCD ∠+∠= ,且2DC AB =,分别以DA AB BC ,,为边向梯形外作正方形,其面积分别为123S S S ,,,则123S S S ,,之间的关系是 .三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分6分)先化简,再求值:22222a b b a b a b+++-,其中2a =-,13b =.18.(本题满分6分)已知:如图,B C E ,,三点在同一条直线上,AC DE ∥,AC CE =,ACD B ∠=∠.求证:ABC CDE △≌△.19.(本题满分7分)下面图①,图②是某校调查部分学生是否知道母亲生日情况的扇形和条形统计图:根据上图信息,解答下列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日?(3)通过对以上数据的分析,你有何感想?(用一句话回答)20.(本题满分7分)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种..测量方案.(1)所需的测量工具是: ;A .B .C .D .(第2题图) A . B . C . D .图1 图2 图3(第15题图)ADBCE(第18题图)(第16题(第8题图)x(第9题图)A CB(第6题图)OADCB图① 道不清知道图(第19题图)(2)请在下图中画出测量示意图;(3)设树高AB 的长度为x ,请用所测数据(用小写字母表示)求出x .21.(本题满分8分)如图,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯口朝上.我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏. (1)随机翻一个杯子,求翻到黄色杯子的概率;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.22.(本题满分8分)生态公园计划在园内的坡地上造一片有A B ,两种树的混合体,需要购买这两种树苗2000棵.种植A B ,两种树苗的相关信息如下表:(1)写出y (元)与x (棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?23.(本题满分8分)如图,在Rt ABC △中,90ACB ∠=,5AC =,12CB =,AD 是ABC △的角平分线.过A C D ,,三点的圆与斜边AB 交于点E ,连接DE . (1)求证:AC AE =; (2)求ACD △外接圆的半径.24.(本题满分10分)如图,矩形ABCD 的长、宽分别为32和1,且1OB =,点322E ⎛⎫⎪⎝⎭,,连接AE ED ,.(1)求经过A E D ,,三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB 放大,使放大后的五边形的边长是原五边形对应边长的3倍.请在下图网格中画出放大后的五边形A E D CB ''''';(3)经过A E D ''',,三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.25.(本题满分12分)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学.点B 在点M 的北偏西30的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60的处. 为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案: 方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD 某处),甲村要求管道建设到A 处,请你在图①中,画出铺设到点A 和点M 处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB 某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值. 综上,你认为把供水站建在何处,所需铺设的管道最短? 红黄蓝(第21题图) B(第23题图)第20题图(第25题图)。

陕西中考数学圆的综合题

陕西中考数学圆的综合题
证∠ADC=∠CFD=90° 证△DCF∽△ACD 写相似比 证得CD2=CF·AC
圆的综合题
返回目录
课后小练
练习1 (2022西安模拟卷)如图,AB是⊙O的直径,AE是⊙O的切线,点C为直线AE上
一点,连接OC交⊙O于点D,连接BD并延长交线段AC于点E.
(1)求证:∠CDE=∠CAD;
(1)证明:∵OA=OD,∴∠OAD=∠ODA.
三角形全等角相等 三角形相似角相等 两直线平行,同位角相等 ......
两角互余的性质证明角相等

例题图
圆的综合题
(1)证明:如图,连接OC, ∵CE是⊙O的切线, ∴∠OCG=90°, ∴∠OCA+∠ACG=90°. ∵FG⊥AB, ∴∠AFD=90°, ∴∠DAF+∠ADF=90°. ∵OA=OC, ∴∠OCA=∠DAF, ∴∠ACG=∠ADF.
即 DC +8= 6 ,解得DC=4,
DC +4 4
∴AC=AD+DC=12,
∴在Rt△ABC中,BC= AC 2 AB2 = 122 62 =6 3 .

练习2题图

练习2题图
圆的综合题
返回目录
练习2 如图,在Rt△ABC中,∠ABC=90°,点D是AC上一点,以AD为直径的⊙O 与BC相切于点E,与AB交于点F,连接OF,EF,DE. (2)若AB=6,⊙O的半径为4,求BC的长.
(2)解:由(1)可得OE∥AB,
∴△ABC∽△OEC,

AC OC

AB , OE
例OCA+∠ACG=90° 证∠DAF+∠ADF=90°
证∠OCA=∠DAF
则∠ACG=∠ADF
圆的综合题
返回目录

2017中考数学全国试题汇编------圆(含详细解析)

2017中考数学全国试题汇编------圆(含详细解析)

FhseFhee2017中考数学全国试题汇编-■■■■■圆24 (2017.北京)如图,AB是LI O的一条弦,LI O的切线交CE的延长线于点D .(1)求证:DB 二DE ;(2)若AB =12, BD =5,求LI O 的半径.【解析】E是AB的中点,过点E作EC_OA于点C ,过点B作试题分析:(1)由切线性质及等量代换推出/ 4=7 5,再利用等角对等边可得出结论;(2)由已知条件得出sin7 DEF和sin7 AOE的值,禾用对应角的三角函数值相等推出结论.试题解析:(1)证明:T DC 丄OA, A / 1 + 7 3=90°, v BD 为切线,二OB 丄BD, /-Z 2+7 5=90°, v OA=OB, •••7 1=7 2,v/ 3=7 4,A/ 4=7 5,在厶DEB中, 7 4=7 5,A DE=DB.⑵作DF丄AB 于F,连接OE, ・,.EF^-EE=3/在RTADEF中,EA3, DE=BD=5J EQ3 , J.f~nj jQ-F* 4Y彗一3 =斗——=-3「.在irrAAOE 中rDE5TAEh,二曲二二■ ■考点:圆的性质,切线定理,三角形相似,三角函数27 (2017甘肃白银)•如图,AN是L M的直径,NB//X轴, ~A OAB交L M于点C .(1)若点A 0,6 , N 0,2厂ABN =30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是L M的切线.解:(1)v A 的坐标为(0, 6), N (0, 2)••• AN=4, .............................................................................................................. 1 分vZ ABN=30°, / ANB=90°,••• AB=2AN=8, ...................................................................................................... 2分•••由勾股定理可知:NB=4..3 ,••• B ( 4 3 , 2) ....................................................... 3 分(2)连接MC , NC ........................................................................................... 4 分v AN是O M的直径,•••Z ACN=90°°•••Z NCB=90° ° ................................................................................................... 5 分在Rt A NCB中,D为NB的中点,1•CD= = N B=ND ,2•Z CND=Z NCD, .............................. 6 分v MC=MN ,•Z MCN=Z MNC.vZ MNC+Z CND=90°°• Z MCN+Z NCD=90° ° ...................... 7 分即MC I CD.•直线CD是。

2008-2017年陕西省中考数学压轴副题

2008-2017年陕西省中考数学压轴副题

2008-2017年陕西省中考数学压轴副题2008年24.(本题满分10分)如图,在Rt △ABC 中,∠A=90°,∠ABC=60°,OB=1,OC=5. (1)求经过B 、A 、C 三点的抛物线的表达式; (2)作出△ABC 关于y 轴对称的△C B A ''';(3)经过B '、A '、C '三点的抛物线能否由(1)中的抛物线平移得到?若能,怎样得到?若不能,请说明理由.25.(本题满分12分)如图①,我们利用作位似图形的方法,在Rt △C B A '''中,作出了两边分别落在两直角边上的最大正方形M P N C ''''.现有一块三角形的边角料,工人师傅想在边角料上裁出面积最大的正方形部件.下面图②、图③是这块边角料的示意图,其中AB=AC=60,∠A=120°,请你参照图①的作法,在示意图上帮助工人师傅画出裁剪线,画线时,有两种方案:方案一:所画的正方形一边落在BC 边上,请你在图②中画出面积最大的正方形,并求此正方形的边长;方案二:所画的正方形一边落在AB 边上,请你在图③中画出面积最大的正方形,并求此正方形的边长.综上,试比较方案一、方案二中画出的正方形,哪个面积大?并说明理由.A 'C 'B 'M 'MP 'PN 'N(图①)ABC(图②)ABC(图③)2009年24.(本题满分10分)如图,一条抛物线经过原点,且顶点B的坐标(1,-1).(1)求这个抛物线的解析式;(2)设该抛物线与x轴正半轴的交点为A,求证:△OBA为等腰直角三角形;(3)设该抛物线的对称轴与x轴的交点为C,请你在抛物线位于x轴上方的图象上求两点E、F,使△ECF为等腰直角三角形,且∠EOF=90°25.(本题满分12分)问题探究(1)在图①的半径为R的半圆O内(含弧),画出一边落在直径MN上的面积最大的正三角形,并求出这个正三角形的面积.(2)在图②的半径为R的半圆O内(含弧),画出一边落在直径MN上的面积最大的正方形,并求出这个正方形的面积.问题解决(3)如图③,现有一块半径R=6的半圆形钢板,是否可以裁出一边落在MN上的面积最大的矩形?若存在,请说明理由,并求出这个矩形的面积:若不存在,说明理由.2010年24.(本题满分10分)如图,在平面直角坐标系中,△ABC是直角三角形,且∠BAC=90°,∠ACB=30°,点A的坐标为(0,3).(1)求点B和点C的坐标;(2)求经过A、B、C三点的抛物线的表达式;(3)设点M 是(2)中抛物线的顶点,P 、Q 是抛物线上的两点,要使△MPQ 为等边三角 形,求点P 、Q 的坐标. 25.(本题满分12分)问题探究(1) 请你在图①中,过点A 作一条直线, 使它平分△ABC 的面积;(2) 如图②,点D 是△ABC 边AC 上的一 定点,取BC 的中点M ,连接DM ,过 点A 作AE ∥DM 交BC 于点E ,作直线 DE.求证:直线DE 平分△ABC 的面积.问题解决(3) 如图③,四边形ABCD 是某商业用地示意图. 现准备过点A 修一条笔直的道路(其占地面积不计),使其平分四边形ABCD 的面积. 请你在图③中作出这条路所在的直线,写出作法,并说明理由.2011年24.(本题满分10分)已知:抛物线1bx ax y 2++=经过点 A (1,0)、B (-1,3)两点.(1)求a 、b 的值; (2)以线段AB 为边作正方形AB B 'A ',能否将已知抛物线平移,使其经过A '、B '两点?若能,求出平移后经过A '、B '两点的抛物线的解析式;若不能,请说明理由.25.(本题满分12分)如图,在直角梯形AOBC 中,AC ∥OB ,且OB=6,AC=5,OA=4.(1) 求B 、C 两点的坐标;(2) 以O 、A 、B 、C 中的三点为顶点可组成哪几个不同的三角形?(3) 是否在边AC 和BC (含端点)上分别存在点M 和点N ,使得△MON 的面积最大时...,它的周长还最短?若存在,说明理由,并求出这时点M 、N 的坐标;若不存在,为什么?(第24题图)(第25题图)A yx B(第24题图) O (第25题图)ACBxy O2012年24.(本题满分10分)如图,一条抛物线2(0)y ax bx a=+≠的顶点坐标为(2,83),正方形ABCD的边AB落在x轴的正半轴上,顶点C、D在这条抛物线上。

(完整版)2008-2018陕西省历年中考数学——圆试题汇编,推荐文档.docx

(完整版)2008-2018陕西省历年中考数学——圆试题汇编,推荐文档.docx

2008— 2018 年陕西中考数学试题汇编——圆2008—2018 年陕西中考数学试题汇编——圆一、选择题1. ( 2008·陕西)如图,直线与半径为 2 的⊙O 相切于点,是⊙上一点,且∠=30°,弦∥,则AB C D O EDC EF ABEF的长度为()A. 2B.23C.3D.222.( 2009·陕西)若用半径为 9,圆心角为 120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是() .A. 1.5B. 2C. 3D. 63.( 2010·陕西)如图,点A、B、P在⊙ O上,且∠ APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A. 1 个B. 2个C. 3 个D. 4个4. ( 2012·陕西)如图,在半径为 5 的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且 AB=CD=8,则 OP的长为()A. 3 B . 4C.32D.425. ( 2012·陕西副)如图,经过原点的⊙C 分别与x轴、y轴交于点、,P为⌒上一点。

若∠=60°,O A B OBA OPA OA= 4 3 ,则点B的坐标为()A. ( 0,2 )B.(0, 2 3 )C.( 0, 4)D.(0,4 3 )6. ( 2016·陕西)如图,⊙O的半径为4,△ ABC是⊙ O的内接三角形,连接OB、 OC,若∠ ABC和∠ BOC互补,则弦BC的长度为()A. 33B. 4 3C. 5 3D. 6 37. (2016·陕西副)如图,在⊙O中,弦 AB垂直平分半径OC,垂足为 D.若点 P 是⊙ O上异于点 A、B 的任意一点,则∠ APB=()A.30 °或 60°B.60 °或 150°C.30°或150°D.60°或120°8.( 2017·陕西).(3 分)如图,△ ABC是⊙ O的内接三角形,∠ C=30°,⊙ O的半径为 5,若点 P 是⊙ O上的一点,在△ ABP中, PB=AB,则 PA 的长为()A. 5B.C. 5 D . 5︵9.( 2017·陕西副)如图,矩形ABCD内接于⊙O,点P是AD上一点,连接PB、PC. 若AD= 2AB,则 sin ∠BPC的值为525335A. 5B.5C. 2D. 1010.(2018·陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠ DBC的大小为A.15°B.35°C.25°D.45°AODB C11.( 2018·陕西副)如图,四边形ABCD是⊙O的内接四边形,AD=BC. 若∠BAC=45°,∠B=75°,则下列等式成立的是 ( )3A.AB=2CD B .AB= 3CD C.AB=2CD D .AB= 2CD二、填空题1.( 2017·陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为 5,若点P是⊙O上的一点,在△ABP中, PB=AB,则 PA的长为.2. ( 2010·陕西)如图是一条水平铺设的直径为 2 米的通水管道横截面,其水面宽 1.6 米,则这条管道中此时水最深为 ____________ 米.2008— 2018 年陕西中考数学试题汇编——圆3.( 2013·陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线 EF与⊙ O交于 G、 H两点.若⊙ O的半径为7,则 GE+FH的最大值为.4. ( 2014·陕西)如图,⊙O的半径是2,直线 l 与⊙ O相交于 A、B 两点, M、N是⊙ O上两个动点,且在直线l 的异侧,若∠ AMB=45°,则四边形MANB面积的最大值是________.5.( 2015·陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.6.( 2015·陕西副)如图,A、B是半圆O上的两点,MN是直径,OB⊥MN,AB=4,OB=5,P是MN上一个动点,则PA+PB的最小值为.BAM O N三、解答题1. ( 2008·陕西)如图,在Rt△ ABC中,∠ ACB=90°, AC=5, CB=12, AD是△ ABC的角平分线,过A、 C、 D三点的圆与斜边AB交于点 E,连接 DE。

(完整)2017年陕西省中考数学试卷(含答案解析版),推荐文档

(完整)2017年陕西省中考数学试卷(含答案解析版),推荐文档

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=( )12A .﹣B .﹣C .﹣D .05414342.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A.B.C.D.3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣84.(3分)如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线a 上,若∠1=25°,则∠2的大小为( )A .55°B .75°C .65°D .85°5.(3分)化简:﹣,结果正确的是( )x x ‒y yx +y A .1B .x 2+y 2x 2‒y 2C .D .x 2+y 2x ‒yx +y 6.(3分)如图,将两个大小、形状完全相同的△ABC 和△A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C .若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为( )A .3B .6C .3D .32217.(3分)如图,已知直线l 1:y=﹣2x +4与直线l 2:y=kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A .﹣2<k <2B .﹣2<k <0C .0<k <4D .0<k <28.(3分)如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .B .C .D .310231051053559.(3分)如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为( )A .5B .C .5D .55322310.(3分)已知抛物线y=x 2﹣2mx ﹣4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是 .3612.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .B.tan38°15′≈ .(结果精确到0.01)31713.(3分)已知A ,B 两点分别在反比例函数y=(m ≠0)和y=(m ≠3m x 2m ‒5x )的图象上,若点A 与点B 关于x 轴对称,则m 的值为 .5214.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.2631216.(5分)解方程:﹣=1.x +3x ‒32x +317.(5分)如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成A 、B 、C 、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在 区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A 处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种产量(斤/每棚)销售价(元/每斤)成本(元/每棚)项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA 的长为 ;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点ABD作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•陕西)计算:(﹣)2﹣1=( )12A .﹣B .﹣C .﹣D .0541434【考点】1G :有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,1434故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 3.(3分)(2017•陕西)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A.2B.8C.﹣2D.﹣8【考点】F8:一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a 上,若∠1=25°,则∠2的大小为( )A.55°B.75°C.65°D.85°【考点】JA:平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a ∥b ,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)(2017•陕西)化简:﹣,结果正确的是( )x x ‒y yx +y A .1B .x 2+y 2x 2‒y 2C .D .x 2+y 2x ‒yx +y 【考点】6B :分式的加减法.【专题】11 :计算题;513:分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.x 2+xy ‒xy +y 2x 2‒y 2x 2+y 2x 2‒y 2故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC 和△A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C .若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为( )3221A.3B.6C.3D.【考点】KQ:勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,AC2+BC22∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,2∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,CA2+B'A23∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<2【考点】FF:两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】17 :推理填空题.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴{y=‒2x+4 y=kx+2k解得{x=4‒2k k+2y=8kk+2∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴{4‒2k k+2>08k k+2>0解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)(2017•陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD 的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )A .B .C .D .31023105105355【考点】S9:相似三角形的判定与性质;LB :矩形的性质.【分析】根据S △ABE =S 矩形ABCD =3=•AE•BF ,先求出AE ,再求出BF 即可.1212【解答】解:如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,AE===,AD 2+DE 232+1210∵S △ABE =S 矩形ABCD =3=•AE•BF ,1212∴BF=.3105故选B .【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)(2017•陕西)如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为( )A .5B .C .5D .553223【考点】MA :三角形的外接圆与外心;KH :等腰三角形的性质.【分析】连接OA 、OB 、OP ,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB ⊥AP ,AD=PD ,∠OBP=∠OBA=60°,即可求得△AOB 是等边三角形,从而求得PB=OA=5,解直角三角形求得PD ,即可求得PA .【解答】解:连接OA 、OB 、OP ,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB ,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB ,∴OB ⊥AP ,AD=PD ,∴∠OBP=∠OBA=60°,∵OB=OA ,∴△AOB 是等边三角形,∴AB=OA=5,则Rt △PBD 中,PD=cos30°•PB=×5=,325323∴AP=2PD=5,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( )A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【考点】H3:二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是 π 36.【考点】2A :实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,6‒3故实数﹣5,,0,π,其中最大的数是π.‒36故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 64° .B.tan38°15′≈ 2.03 .(结果精确到0.01)317【考点】T6:计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC +∠ACB=(∠ABC +∠ACB );121212B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=∠ABC 、∠2=∠ACB ,1212则∠1+∠2=∠ABC +∠ACB=(∠ABC +∠ACB )=64°,121212故答案为:64°;B 、tan38°15′≈2.5713×0.7883≈2.03,317故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)(2017•陕西)已知A ,B 两点分别在反比例函数y=(m ≠0)和3mx y=(m ≠)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 1 2m ‒5x 52.【考点】G6:反比例函数图象上点的坐标特征;P5:关于x 轴、y 轴对称的点的坐标.【分析】设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】解:设A (a ,b ),则B (a ,﹣b ),依题意得:,{b =3ma ‒b =2m ‒5a所以=0,即5m ﹣5=0,3m +2m ‒5a 解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得=0,即5m ﹣5=0是解题的难点.3m +2m ‒5a 14.(3分)(2017•陕西)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 18 .【考点】KD :全等三角形的判定与性质.【分析】作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】解:如图,作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ;∵∠BAD=∠BCD=90°∴四边形AMCN 为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN ;在△ABM 与△ADN 中,,{∠BAM =∠DAN ∠AMB =∠AND AB =AD ∴△ABM ≌△ADN (AAS ),∴AM=AN (设为λ);△ABM 与△ADN 的面积相等;∴四边形ABCD 的面积=正方形AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1.26312【考点】79:二次根式的混合运算;6F :负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2123=﹣2﹣33=﹣33【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)(2017•陕西)解方程:﹣=1.x +3x ‒32x +3【考点】B3:解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】N2:作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在 C 区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】V8:频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017•陕西)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF ,∴DE=DF ,在△ADF 和△CDE 中,{AD =CD ∠ADF =∠CDE DF =DE ∴△ADF ≌△CDE (SAS ),∴∠DAF=∠DCE ,在△AGE 和△CGF 中,,{∠GAE =∠GCF ∠AGE =∠CGF AE =CF ∴△AGE ≌△CGF (AAS ),∴AG=CG .【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)(2017•陕西)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A 处,用侧倾器测得“乡思柳”顶端M 点的仰角为23°,此时测得小军的眼睛距地面的高度AB 为1.7米,然后,小军在A 处蹲下,用侧倾器测得“乡思柳”顶端M 点的仰角为24°,这时测得小军的眼睛距地面的高度AC 为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN 的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】作BD ⊥MN ,CE ⊥MN ,垂足分别为点D 、E ,设AN=x 米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD ⊥MN ,CE ⊥MN ,垂足分别为点D 、E ,设AN=x 米,则BD=CE=x 米,在Rt △MBD 中,MD=x•tan23°,在Rt △MCE 中,ME=x•tan24°,∵ME ﹣MD=DE=BC ,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x ≈34(米).0.7tan24°‒tan23°答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种项目产量(斤/每棚)销售价(元/每斤)成本(元/每棚)香瓜2000 12 8000甜瓜 4500 3 5000现假设李师傅今年下半年香瓜种植的大棚数为x 个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】FH :一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x +(4500×3﹣5000)(8﹣x )=7500x +68000,(2)由题意得,7500x +6800≥100000,∴x ≥4,415∵x 为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,2412即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;12(2)由题意可得,出现的所有可能性是:(A ,A )、(A ,B )、(A ,C )、(A ,C )、(A ,A )、(A ,B )、(A ,C )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(B ,C )、(C ,A )、(C ,B )、(C ,C )、(C ,C ),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.316【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】MC:切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=53 2∴AC=2AD=53(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.。

2008年陕西省中考数学试题和答案

2008年陕西省中考数学试题和答案

2008年陕西省中考数学试题第I卷(选择题共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1、零上13℃记作+13℃,零下2℃可记作()A.2 B.-2 C.2℃D.-2℃2、如图,这个几何体的主视图是()3、一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形4、把不等式组x315x6-⎧⎨⎩<--<的解集表示在数轴上,正确的是()5、在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款。

其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万。

这组数据的众数和中位数分别是()A.20万、15万B.10万、20万C.10万、15万D.20万、10万6、如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7、方程2x29-=()的解是()A.12x5 x1==-,B.12x5 x1=-=,C.12x11 x7==-,D.12x11 x7=-=,8、如图,直线AB对应的函数表达式是()A.3y x32=-+B.3y x32=+C.2y x33=-+D.2y x33=+9、如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为(A.2 B.C D.10、已知二次函数2y ax bx c=++(其中a>0,b>0,c<0关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧。

以上说法正确的个数为()A.0 B.1 C.2 D.3第II卷(非选择题共90分)二、填空题(共6小题,每小题3分,计18分)11、若∠α=43°,则∠α的余角的大小是。

(完整word版)2008-2017陕西省历年中考数学——圆试题汇编

(完整word版)2008-2017陕西省历年中考数学——圆试题汇编

2008—2017年陕西中考数学试题汇编——圆一、选择题1.(2008·陕西)如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A. 2B.C.D.2.(2009·陕西)若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是().A. 1.5B. 2C. 3D. 63.(2010·陕西)如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A. 1个B. 2个C. 3个D. 4个4.(2012·陕西)如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()4A.3 B.4 C.D.25.(2012·陕西副)如图,经过原点O 的⊙C 分别与x 轴、y 轴交于点A 、B ,P 为OBA⌒ 上一点。

若∠OP A =60°,OA =则点B 的坐标为( )A. (0,2)B. (0,C. (0,4)D. (0,6.(2016·陕西)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠ABC 和∠BOC 互补,则弦BC 的长度为( ) A.33 B. 34 C. 35 D. 367.(2016·陕西副)如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A 、B 的任意一点,则∠APB =( )A.30°或60°B.60°或150°C.30°或150°D.60°或120°二、填空题8.(2017·陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则P A的长为.9.(2010·陕西)如图是一条水平铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水最深为____________米.10.(2013·陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.11.(2014·陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是________.12.(2015·陕西)如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是 .13.(2015·陕西副)如图,A 、B 是半圆O 上的两点,MN 是直径,OB ⊥MN ,AB =4,OB =5,P 是MN 上一个动点,则P A +PB 的最小值为 .N三、解答题14.(2008·陕西)如图,在Rt △ABC 中,∠ACB =90°,AC =5,CB =12,AD 是△ABC的角平分线,过A 、C 、D 三点的圆与斜边AB 交于点E ,连接DE 。

历年陕西省中考数学试卷(含答案)

历年陕西省中考数学试卷(含答案)

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m 的值为()A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1 B.C. D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.510.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.(3分)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.16.(5分)解方程:﹣=1.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种产量(斤/每棚)销售价(元/每斤)成本(元/每棚)项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D 作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•陕西)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.0【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)(2017•陕西)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)(2017•陕西)化简:﹣,结果正确的是()A.1 B.C. D.x2+y2【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)(2017•陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD 的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是π.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为64°.B.tan38°15′≈ 2.03.(结果精确到0.01)【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)(2017•陕西)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为1.【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得=0,即5m﹣5=0是解题的难点.14.(3分)(2017•陕西)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)(2017•陕西)解方程:﹣=1.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在C区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017•陕西)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)(2017•陕西)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:产量(斤/每棚)销售价(元/每斤)成本(元/每棚)品种项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=∴AC=2AD=5(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B 的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)(2017•陕西)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为4;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D。

陕西省中历年中考数学试卷(08)

陕西省中历年中考数学试卷(08)

陕西省初中毕业学业考试(全卷共120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列四个数中最小的数是()A.-2B.0C.-31D.52.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是()A B C D3.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()A.65°B.55°C.45°D.35°第3题图4.不等式组⎪⎩⎪⎨⎧<->-32121xx的解集为()A.x>21B.x<-1C.-1<x<21D.x>-215.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是()A.71.8B.77C.82D.95.76.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<07.如图,在四边形ABCD中,AB=AD,CB=CD.若连接AC,BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对第7题图8.根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )A.1B.-1C.3D.-39.如图,在矩形ABCD 中,AD =2AB ,点M ,N 分别在边AD ,BC 上,连接BM ,DN .若四边形MBND 是菱形,则MDAM等于 ( )第9题图A.83 B.32 C.53 D.54 10.已知两点A (-5,y 1),B (3,y 2)均在抛物线y=ax 2+bx+c (a ≠0)上,点C (x 0,y 0)是该抛物线的顶点.若y 1>y 2≥y 0,则x 0的取值范围是( )A.x 0>-5B.x 0>-1C.-5<x 0<1D.-2<x 0<3第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算:(-2)3+(31-)0=__________. 12.一元二次方程x x 32-=0的根是__________.13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1),B (1,3),将线段AB 经过平移后得到线段A'B'.若点A 的对应点为A'(3,2),则点B 的对应点B'的坐标是__________.B.比较8cos31°________35(填“>”“=”或“<”).14.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且BD 平分AC .若BD =8,AC =6,∠BOC =120°,则四边形ABCD 的面积为__________(结果保留根号).第14题图15.如果一个正比例函数的图象与反比例函数y=x6的图象交于A (x 1,y 1),B (x 2,y 2)两点,那么(x 2-x 1)(y 2-y 1)的值为__________.16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点.若⊙O 的半径为7,则GE +FH 的最大值为__________.第16题图三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分)解分式方程:12422=-+-x xx .18.(本题满分6分)如图,∠AOB =90°,OA =OB ,直线l 经过点O ,分别过A ,B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D .求证:AC =OD .第18题图19.(本题满分7分)我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A—了解很多”,B—“了解较多”,“C—了解较少”,“D—不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:被调查学生对“节约教育”内容了解程度的统计图第19题图(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1 800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?20.(本题满分8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时BN的影子恰好是线段AB,并测得AB=1.25 m.已知李明直立时的身高为1.75 m,求路灯的高CD(精确到0.1 m).第20题图21.(本题满分8分)“五一节”期间,申老师一家自驾游去了离家170千米的某地.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?第21题图22.(本题满分8分)甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指;ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.23.(本题满分8分)如图,直线l与⊙O相切于点D.过圆心O作EF∥l交⊙O于E,F两点,点A 是⊙O上一点,连接AE,AF.并分别延长交直线l于B,C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.第23题图24.(本题满分10分)在平面直角坐标系中,一个二次函数的图象经过A(1,0),B(3,0)两点. (1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC,DE 和DB.当△AOC与△DEB相似时,求这个二次函数的表达式.第24题图25.(本题满分12分)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.问题解决(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点.如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.第25题图参考答案1.A2.D3.B【解析】∵AB ∥CD,∴∠D =∠BED .∵∠CED =90°,∠AEC =35°,∴∠BED =180°-90°-35°=55°,∴∠D =55°.故选B. 4.A 【解析】第1个不等式解得x >21;第2个不等式解得x >-1.因此不等式组的解集为x >21.故选A.5.C 【解析】=71×(111+96+47+68+70+77+105)=82.故选C. 6.D 【解析】因为A ,B 是不同象限的点,而正比例函数的图象在一、三象限或在二、四象限,由点A 与点B 的横纵坐标可以知:点A 与点B 在一、三象限时:横纵坐标的符号应一致,显然此题不可能,点A 与点B 在二、四象限时:点A 在第四象限得m <0,点B 在第二象限得n <0.故选D.7.C 【解析】∵AB =AD ,CB =CD ,AC 公共,∴△ABC ≌△ADC (SSS ),∴∠BAO =∠DAO ,∠BCO =∠DCO ,∴△BAO ≌△DAO (SAS ),△BCO ≌△DCO (SAS ).故选C.8.A 【解析】设y=kx+b (k ≠0),则⎩⎨⎧=+=+-032b k b k ,解得⎩⎨⎧=-=11b k ,所以y=-x+1,当x =0时,得p =y =1.故选A.9.C 【解析】设AB =1,则AD =2,∵四边形MBND 是菱形,∴MB =MD ,由矩形ABCD ,得∠A =90°.设AM =x ,则MB =2-x ,由勾股定理得:AM 2+AB 2=MB 2,即x 2+12=(2-x )2,解得x =43,则MD =2-43=45,∴534543==MD AM .故选C. 10.B 【解析】∵点C (x 0,y 0)是该抛物线的顶点,且y 1>y 2≥y0,∴y 0为函数的最小值,即得出抛物线的开口向上,∴a >0,∴25a -5b +c >9a +3b +c ,∴a b 2<1,∴-ab2>-1,∴x 0>-1.故选B.11.-7 【解析】原式=-8+1=-7.12.x 1=0,x 2=3 【解析】由x 2-3x =0得x (x -3)=0,解得x 1=0,x 2=3. 13.A.(6,4)B.>14.123 【解析】∵BD 平分AC ,∴OA =OC =3,∵∠BOC =120°,∴∠DOC =∠AOB =60°.如答图,过C 作CF ⊥BD 于点F ,过A 作AE ⊥BD 于点E ,在△CFO 中,∠COF =60°,OC =3,所以CF =323,同理AE =323,∴四边形ABCD 的面积为S △ABD +S △CBD =8×323=123.第14题答图15.24 【解析】∵点A ,B 在反比例函数xy 6的图象上,∴x 1y 1=6,已知正比例函数与反比例函数的图象交点关于原点成中心对称,因此A (x 1,y 1),B (x 2,y 2)中有x 2=-x 1,y 2=-y 1,∴(x 2-x 1)(y 2-y 1)=(-x 1-x 1)(-y 1-y 1)=4x 1y 1=4×6=24.16.10.5 【解析】如答图,连接OA ,OB .∵∠ACB =30°,∴∠AOB=60°,∴△AOB 为等边三角形,∴AB =OA =OB =7.∵E ,F 分别为AC ,BC 的中点,∴EF =21AB =3.5.∵GE +FH =GH -EF ,要使GE +FH 最大,EF 为定值,∴GH 取最大值时GE +FH 有最大值,∴当GH 为直径时,GE +FH 最大,最大值为14-3.5=10.5.第16题答图17.解:去分母得:2+x (x +2)=x 2-4, 整理得:2+x 2+2x =x 2-4,解得x =-3. 经检验,x =-3是原分式方程的根.18.证明:∵∠AOB =90°,∴∠AOC +∠BOD =90°. ∵AC ⊥l ,BD ⊥l ,∴∠ACO =∠BDO =90°, ∴∠A +∠AOC =90°,∴∠A =∠BOD . 又∵OA =OB ,∴△AOC ≌△OBD (AAS ), ∴AC =OD .19.解:(1)抽样调查的学生人数为36÷30%=120(名). (2)B 的人数为120×45%=54(名), C 的百分比为12024×100%=20%, D 的百分比为12061×100%=5%, 补全两幅统计图如答图:第19题答图(3)对“节约教育”内容“了解较多”的学生人数为1800×45%=810(名). 20.解:设CD 长为x m ,∵MA ⊥EC ,DC ⊥EC ,NB ⊥EC ,EA =MA , ∴MA ∥DC ∥NB ,∴EC =CD =x m ,∴△ABN ∽△ACD , ∴CD BN =AC AB , 即x 1.75=75.1-1.25x , 解得:x =6.125≈6.1.经检验,x =6.125是所列方程的根. ∴路灯高CD 约6.1 m.21.解:(1)设OA 段图象的函数表达式为y =kx (k ≠0). ∵当x =1.5时,y =90, ∴1.5k =90,∴k =60.∴y =60x (0≤x ≤1.5), ∴当x =0.5时,y =60×0.5=30.答:他们出发半小时时,离家30千米.(2)设AB 段图象的函数表达式为y =k′x+b (k ≠0). ∵点A (1.5,90),B (2.5,170)在AB 上, ∴⎩⎨⎧170=b +′2.5k 90=b +′1.5k ,解得⎩⎨⎧30=b 80=′1.5k ,∴y =80x -30(1.5≤x ≤2.5).(3)∵当x =2时,y =80× 2-30=130,∴170-130=40(千米). ∴他们出发2小时时,离目的地还有40千米.22.解:(1)设A ,B ,C ,D ,E 分别表示大拇指、食指、中指、无名指、小拇指,列表如下:甲伸出小拇指的可能一共有5种,伸出小拇指取胜只有一种可能,故概率为251; (2)由上表可知,共有25种等可能的结果,乙取胜有5种可能,故P (乙取胜)=255=51. 23.(1)证明:∵EF 是⊙O 的直径,∴∠EAF =90°,∴∠ABC +∠ACB =90°.(2)解:如答图,连接OD ,则OD ⊥BD .过E 作EH ⊥BC 于H ,∴EH ∥OD ,∵EF ∥BC ,OE =OD ,∴四边形EODH 是正方形,∴EH =HD =OD =5.又∵BD =12,∴BH =7.在Rt △BEH 中,tan ∠BEH =EH BH =57, ∵∠ABC +∠BEH =90°,∠ABC +∠ACB =90°,∴∠BEH =∠ACB ,∴tan ∠ACB =57.第23题答图24.解:(1)∵二次函数的图象经过A (1,0),B (3,0)两点,∴二次函数图象的对称轴为直线x =2.(2)设二次函数的表达式为y =a (x -1)(x -3)(a ≠0),当x =0时,y =3a ;当x =2时,y=-a.∴点C 的坐标为(0,3a),顶点D 的坐标为(2,-a).∴OC =|3a |.又∵A (1,0),E (2,0),∴AO =1,EB =1,DE =|-a |=|a |.当△AOC 与△DEB 相似时,①假设∠OCA =∠EBD ,可得EB OC DE AO =,即131a a =,∴a =33或a =-33; ②假设∠OCA =∠EDB ,可得ED OC BE AO =,∴aa 311=,此方程无解. 综上所述,所求二次函数的表达式为y =33x 2-334x +3或y =-33x 2+334x -3. 25.解:(1)如答图①.图① 图②第25题答图 (2)如答图②,连接AC ,BD 相交于点O ,作直线OM 分别交AD ,BC 于P ,Q 两点,过点O 作OM 的垂线分别交AB ,CD 于E ,F 两点,则直线PQ ,EF 将正方形ABCD 的面积四等分.理由如下:∵点O 是正方形ABCD 对角线的交点,∴点O 是正方形ABCD 的对称中心.∴AP =CQ ,EB =DF .在△AOP 和△BOE 中,∵∠AOP =90°-∠AOE ,∠BOE =90°-∠AOE ,∴∠AOP =∠BOE.∵OA =OB ,∠OAP =∠OBE =45°,∴△AOP ≌△EBO (ASA ),∴AP =BE =DF =CQ .∴AE =BQ =CF =DP .设点O 到正方形ABCD 一边的距离为d.∴21(AP +AE )d =21(BE +BQ )d =21(CQ +CF )d =21(DF +PD )d . ∴S 四边形AEOP =S 四边形BEOQ =S 四边形CQOF =S 四边形DPOF .∴直线EF 、PQ 将正方形ABCD 面积四等分.(3)存在.当BQ =CD =b 时,PQ 将四边形ABCD 的面积二等分.理由如下: 如答图③,延长BA 至点E ,使AE =b ,延长CD 至点F ,使DF =a ,连接EF. ∴BE CF ,∴四边形EBCF 是平行四边形.∵BE =BC =a +b ,∴平行四边形EBCF 是菱形.连接BF 交AD 于点M ,则△MAB ≌△MDF (AAS ).∴AM =DM ,即点P ,M 重合.∴点P 是菱形EBCF 对角线的交点.在BC 上截取BQ =CD =b ,则CQ =AB =a .设点P 到菱形EBCF 一边的距离为d , ∴21(AB +BQ )d =21(CQ +CD )d =21(a +b )d ,即S 四边形ABQP =S 四边形PQCD . ∴当BQ =b 时,直线PQ 将四边形ABCD 的面积分成相等的两部分.第25题答图③。

完整word版20082017陕西省历年中考数学圆试题汇编.doc

完整word版20082017陕西省历年中考数学圆试题汇编.doc

年陕西中考数学试题汇编——圆—20172008年陕西中考数学试题汇编——圆—20172008 一、选择题上一点,且 OD 是⊙ O 相切于点 C,(1.2008 ·陕西)如图,直线AB 与半径为 2 的⊙)30°,弦 EF∥ AB ,则 EF 的长度为(∠ EDC=33222 D. C.A.2B.的扇形围成一个圆锥的侧面(接缝忽略,圆心角为 120°·陕西)若用半径为 92.( 2009 . )不计),则这个圆锥的底面半径是( D.6C.3 A.1.5 B.2上的动 OM 是⊙ APB= 50°.若点如图,点 A 、B、P 在⊙ O 上,且∠·陕西)3(.2010)有(点,要使△ ABM为等腰三角形,则所有符合条件的点M 个D.4 C.3个 B.2 A.1个个,是互相垂直的两条弦,垂足为ABCD5 的圆 O 中,2012 4.(·陕西)如图,在半径为)=8=CD ,则 OP 的长为(,且PAB4223.C 4 B 3A... D- 1 -年陕西中考数学试题汇编——圆—20172008⌒为, PB 分别与 x 轴、 y 轴交于点 A 、 5.( 2012 ·陕西副)如图,经过原点O 的⊙ C OBA)的坐标为(则点上一点。

若∠ OPA=60°,OA=,B34,(0)D. (0,4)0 A. (0,2) B. (,) C. 3234,的内接三角形,连接OB、OCO·陕西)如图,⊙的半径为4,△ ABC 是⊙ O6. ( 2016 )BOCABC 和∠互补,则弦BC 的长度为(若∠ 63353334 D.C. A. B.7.( 2016 ·陕西副)如图,在⊙ O 中,弦 AB 垂直平分半径 OC,垂足为 D.若点P 是⊙ O、B 的任意一点,则∠ APB =(或 150° C.30°或 150°A)上异于点D.60°或 120°A.30°或60°B.60°二、填空题 - 2 -2008—2017 年陕西中考数学试题汇编——圆8.( 2017 ·陕西)如图,△ ABC 是⊙ O 的内接三角形,∠ C=30°,⊙ O 的半径为 5,若点 P 是⊙ O 上的一点,在△ ABP 中, PB=AB ,则 PA 的长为.9.(2010 ·陕西)如图是一条水平铺设的直径为 2 米的通水管道横截面,其水面宽 1.6 米,则这条管道中此时水最深为____________米.10(. 2013 ·陕西)如图,AB 是⊙ O 的一条弦,点 C 是⊙ O 上一动点,且∠ ACB=30°,点 E、F 分别是 AC 、BC 的中点,直线 EF 与⊙ O 交于 G、 H 两点 .若⊙ O 的半径为 7,则 GE+FH 的最大值为.11.(2014 ·陕西)如图,⊙ O 的半径是 2,直线 l 与⊙ O 相交于 A 、B 两点, M 、N 是⊙ O 上两个动点,且在直线的异侧,若∠ AMB=45 °,则四边形 MANB 面积的最大 l 值是 ________.- 3 -2008—2017 年陕西中考数学试题汇编——圆12.(2015 ·陕西)如图, AB 是⊙ O 的弦, AB=6 ,点 C 是⊙ O 上的一个动点,且∠ ACB=45 °.若点 M , N 分别是 AB ,BC 的中点,则 MN 长的最大值是.13.(2015 ·陕西副)如图, A 、B 是半圆 O 上的两点, MN 是直径, OB⊥MN ,AB=4,OB=5,P 是 MN 上一个动点,则 PA+PB 的最小值为.B A OMN三、解答题14.(2008 ·陕西)如图,在Rt△ ABC 中,∠ ACB =90°, AC = 5,CB= 12,AD 是△ ABC 的角平分线,过 A 、C、D 三点的圆与斜边AB 交于点 E,连接 DE。

历年陕西省中考数学试卷(含答案)

历年陕西省中考数学试卷(含答案)

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m 的值为()A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1 B.C. D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.510.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.(3分)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.16.(5分)解方程:﹣=1.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x 个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O 的半径为5,PA 是⊙O 的一条切线,切点为A ,连接PO 并延长,交⊙O 于点B ,过点A 作AC ⊥PB 交⊙O 于点C 、交PB 于点D ,连接BC ,当∠P=30°时,(1)求弦AC 的长;(2)求证:BC ∥PA .24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D 作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•陕西)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.0【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)(2017•陕西)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)(2017•陕西)化简:﹣,结果正确的是()A.1 B.C. D.x2+y2【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)(2017•陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD 的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【分析】根据S=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.△ABE【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,=S矩形ABCD=3=•AE•BF,∵S△ABE∴BF=.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是π.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 64° .B.tan38°15′≈ 2.03 .(结果精确到0.01)【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC +∠ACB=(∠ABC +∠ACB );B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=∠ABC 、∠2=∠ACB ,则∠1+∠2=∠ABC +∠ACB=(∠ABC +∠ACB )=64°,故答案为:64°;B 、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)(2017•陕西)已知A ,B 两点分别在反比例函数y=(m ≠0)和y=(m ≠)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 1 .【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得=0,即5m﹣5=0是解题的难点.14.(3分)(2017•陕西)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)(2017•陕西)解方程:﹣=1.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在C区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017•陕西)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)(2017•陕西)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=∴AC=2AD=5(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B 的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)(2017•陕西)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为4;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D。

圆及概率陕西省历年中考真题

圆及概率陕西省历年中考真题

圆及概率历年中考真题第一部分 圆历年真题 一、 圆陕西省历年真题1. (2010陕西,第9题,3分)如图,点A 、B 、P 在⊙O 上的动点,要是△ABM 为等腰三角形,则所有符合条件的点M 有 ( )A 1个B 2个C 3个D 4个2. (2010陕西,第14题,3分)如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时最深为 _____ 米3.(2010陕西,第23题,3分)如图,在RT △ABC 中∠ABC=90°,斜边AC 的垂直平分线交BC 与D 点,交AC 与E 点,连接BE(1)若BE 是△DEC 的外接圆的切线,求∠C 的大小? (2)当AB=1,BC=2是求△DEC 外界圆的半径4.(2011陕西,第7题,3分)同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是( ) A 、外离 B 、相交 C 、内切或外切 D 、内含5.(2011陕西,第7题,8分)如图,在△ABC 中,060B =∠,⊙O 是△ABC 外接圆,过点A 作的切线,交CO 的延长线于P 点,CP 交⊙O 于D(1) 求证:AP=AC (2) 若AC=3,求PC 的长(第16题图)6.(2012•陕西,第9题,3分)如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8,则OP 的长为( )A.3B.4C.3 2D. .4 27.(2012•陕西23.8分)如图,PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM∥AP,MN⊥AP,垂足为N . (1)求证:OM=AN ;(2)若⊙O 的半径R=3,PA=9,求OM 的长.8.(2013•陕西,16题,3分)如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=030 ,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为9.(2013陕西,23题,8分)如图,直线l 与⊙O 相切于点D ,过圆心O 作EF ∥l 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF,并分别延长交直线l 于B 、C 两点, (1)求证:∠ABC+∠ACB=090(2)当⊙O 得半径R=5,BD=12时,求tan ACB 的值.10.(2014陕西,16题,3分)已知⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是 ⊙O 上的两个动点,且在直线l 的异侧若∠AMB=O45,则四边 形MANB 面积的最大值是__________。

陕西省中考数学试题分类汇编--圆

陕西省中考数学试题分类汇编--圆

陕西省中考数学试题分类汇编2006年4.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径23=r ,2=AC ,则B cos 的值是 ( ) A .23 B .35 C .25 D .32第4题图6.若圆锥的侧面展开图市一个弧长为π36的扇形,则这个圆锥的底面半径是 ( )A .36B .18C .9 D.6 23.(本题满分8分) 如图,⊙O 的直径34,30,4=︒=∠=BC ABC AB ,D 时线段BC 的中点,(1)试判断点D 与⊙O 的位置关系,并说明理由; (2)过点D 作AC DE ⊥,垂足为点E ,求证直线DE 是⊙O 的切线。

2007年6.如图,圆与圆之间不同的位置关系有( ) A .2种 B .3种 C .4种 D .5种第23题图(第6题图)CO BE D(第23题图)23.(本题满分8分)如图,A B 是半圆O 的直径,过点O 作弦A D 的垂线交切线A C 于点C O C ,与半圆O 交于点E ,连结B E D E ,. (1)求证:B E D C ∠=∠;(2)若58O A AD ==,,求A C 的长. 25.(本题满分12分) 如图,⊙O 的半径均为R .(1)请在图①中画出弦A B C D ,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦A B C D ,,使图②仍为中心对称图形;(2)如图③,在O 中,(02)AB CD m m R ==<<,且A B 与C D 交于点E ,夹角为锐角α.求四边形A C B D 面积(用含m α,的式子表示);(3)若线段A B C D ,是O 的两条弦,且AB CD ==,你认为在以点A B C D,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.2008年9、如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点, 且∠EDC =30°,弦EF ∥AB ,则EF 的长度为 ( ) A .2 B ..(第25题图①)(第25题图②)(第25题图③) (第25题图④)(第9题图)A B C (第23题图)23、(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,AC =5,CB =12,AD 是△ABC 的角平分线,过A 、C 、D 三点的圆与斜边AB 交于点E ,连接DE 。

中考数学圆综合题汇总

中考数学圆综合题汇总

陕西圆历年真题(2006年陕西真题) 23.(本题满分8分)23 如图,O O 的直径 AB = 4, . ABC = 30 ,BC = 4、.. 3 , D 时 线段BC 的中点,(1 )试判断点D 与O O 的位置关系,并说明理由;(2)过点D 作DE _ AC ,垂足为点E ,求证直线DE 是O O 的切线。

(2007年陕西真题)23.(本题满分8 分) 连结BE , DE .(1 )求证:.BED =/C ;(2)若 OA=5, AD =8,求 AC 的长. (2008年陕西真题)23、(本题满分8分)如图,在 Rt △ ABC 中,/ ACB = 90,AC = 5, CB = 12, AD 是厶ABC 的(1) 求证:AC = AE ;(2)求厶ACD 外接圆的半径 (2009年陕西真题)23.(本题满分8分)如图,O O 是△ ABC 的外接圆,AB 二AC ,过点A 作AP // BC ,交BO 的延长线于点P . (1) 求证:AP 是O O 的切线;角平分线,过A 、C 、D 三点的圆与斜边AB 交于点E ,连接DE 如图, AB 是半圆O 的直径,过点 O 作弦AD 的垂线交切线 AC 于点C ,第石越閹OC 与半圆O 交于点E ,(第23题(第 23题图)(2)若O O的半径R =5, BC =8,求线段AP的长.AC (第23题图)(2010年陕西真题)23. (8分)(2010?陕西)如图,在Rt△ ABC中/ABC=90 °斜边AC 的垂直平分线交BC与D点,交AC于E点,连接BE.(1 )若BE是厶DEC的外接圆O O的切线,求/ C的大小;(2)当AB=1 , BC=2时,求△ DEC外接圆的半径.(2012年陕西真题)23.(本题满分8分)如图,PA、PB分别与口O相切于点A、B,点M在PB上,且OM//AP , MN _ AP , 垂足为N . (1)求证:OM =AN ;(2)若L O的半径R=3 , PA=9,求OM的长.23.(本题满分8分)如图,直线I与O O相切于点D,过圆心O作EF// I交O O于E、F两点,点A是O O如图,在△ ABC中,.B=60°,O O是厶ABC外接圆,过点A作的切线,交CO的延长线于P点,CP交O O 于D(1)求证:AP=AC⑵若AC=3,求PC的长C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008—2017年陕西中考数学试题汇编——圆
一、选择题
1.(2008·陕西)如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且
∠EDC=30°,弦EF∥AB,则EF的长度为()
A. 2
B. 23
C. 3
D. 22
2.(2009·陕西)若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略
不计),则这个圆锥的底面半径是().
A. 1.5
B. 2
C. 3
D. 6
3.(2010·陕西)如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动
点,要使△ABM为等腰三角形,则所有符合条件的点M有()
A. 1个
B. 2个
C. 3个
D. 4个
4.(2012·陕西)如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足
为P,且AB=CD=8,则OP的长为()
4
A.3 B.4 C.32D.2
5.(2012·陕西副)如图,经过原点O 的⊙C 分别与x 轴、y 轴交于点A 、B ,P 为OBA
⌒ 上一点。

若∠OP A =60°,OA =43,则点B 的坐标为( )
A. (0,2)
B. (0,23)
C. (0,4)
D. (0,43)
6.(2016·陕西)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠ABC 和∠BOC 互补,则弦BC 的长度为( )
A.33
B. 34
C. 35
D. 36
7.(2016·陕西副)如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A 、B 的任意一点,则∠APB =( )
A.30°或60°
B.60°或150°
C.30°或150°
D.60°或120°
二、填空题
8.(2017·陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则P A的长为.
9.(2010·陕西)如图是一条水平铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水最深为____________米.
10.(2013·陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,
点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.
11.(2014·陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是
⊙O上两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是________.
12.(2015·陕西)如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且
∠ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是 .
13.(2015·陕西副)如图,A 、B 是半圆O 上的两点,MN 是直径,OB ⊥MN ,AB =4,
OB =5,P 是MN 上一个动点,则P A +PB 的最小值为 .
B
N O A
M
三、解答题
14.(2008·陕西)如图,在Rt △ABC 中,∠ACB =90°,AC =5,CB =12,AD 是△ABC
的角平分线,过A 、C 、D 三点的圆与斜边AB 交于点E ,连接DE 。

(1)求证:AC =AE ;
(2)求△ACD 外接圆的半径.
15.(2009·陕西)如图,O ⊙是ABC △的外接圆,AB AC =,过点A 作AP BC ∥,交
BO 的延长线于点P .
(1)求证:AP 是O ⊙的切线;
(2)若O ⊙的半径58R BC ==,,求线段AP 的长.
16.(2010·陕西)如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC
于D点,交AC于E点,连接BE
(1)若BE是△DEC外接圆的切线,求∠C的大小?
(2)当AB=1,BC=2时,求△DEC外接圆的半径.
17.(2011·陕西)如图,在△ABC中,︒
∠60
B,⊙O是△ABC的外接圆,过点A作
=
⊙O的切线,交CO的延长线于点P,CP交⊙O于点D.
(1)求证:AP=AC;
(2)若AC=3,求PC的长.
18.(2012·陕西)如图,P A、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,
MN⊥AP,垂足为N.
(1)求证:OM=AN;
(2)若⊙O的半径R=3,P A=9,求OM的长.
19.(2012·陕西副)如图,AB是⊙O的直径,延长AB至点C,过点C作⊙O的切线
CD,切点为D,连接AD、BD,过圆心O作AD的垂线交CD于点P.
(1)求证:直线P A是⊙O的切线;
的值。

(2)若AB=4BC,求BD
OP
20.(2013·陕西)如图,直线l与⊙O相切于点D,过圆心O作EF∥l 交⊙O于E、
F两点,点A是⊙O上一点,连接AE、AF,并分别延长交直线l于B、C两点.
(1)求证:∠ABC+∠ACB=90°
(2)当⊙O得半径R=5,BD=12时,求tan∠ACB的值.
21.(2014·陕西)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点
B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.
(1)求证:AD平分∠BAC;
(2)求AC的长.
22.(2015·陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,
与AC的延长线交于点D,作AE⊥AC交DE于点E.
(1)求证:∠BAD=∠E;
(2)若⊙O 的半径为5,AC =8,求BE 的长.
23.(2015·陕西副)如图,在Rt △ABC 中,∠BAC =90°,∠BAD =∠C ,点D 在BC 边
上,以AD 为直径的⊙O 交AB 于点E ,交AC 于点F .
(1)求证:BC 是⊙O 的切线;
(2)已知:AB =6,AC =8,求AF 的长.
F
E
O
D A
C
B
24.(2016·陕西)如图,AB 是⊙O 的弦,过B 作BC ⊥AB 交⊙O 于点C ,过C 作⊙O
的切线交AB 的延长线于点D ,取AD 的中点E ,过E 作EF ∥BC 交DC 的延长线与点F ,连接AF 并延长交BC 的延长线于点G .
(1)求证:FC =FG ;
(2)求证:AB 2=BC ·CG
25.(2016·陕西副)如图,已知⊙O 的半径为5,△ABC 是⊙O 的内接三角形,AB =。

相关文档
最新文档