2020版高中数学阶段质量检测(三)新人教A版必修5

合集下载

2020-2021学年高中数学 第三章 不等式 3.1.2 不等式的性质同步作业新人教A版必修5

2020-2021学年高中数学 第三章 不等式 3.1.2 不等式的性质同步作业新人教A版必修5

2020-2021学年高中数学第三章不等式3.1.2 不等式的性质同步作业新人教A版必修5年级:姓名:不等式的性质(30分钟60分)一、选择题(每小题5分,共30分)1.给出下列命题:①a>b⇒ac2>bc2;②a>|b|⇒a2>b2;③|a|>b⇒a2>b2;④a>b⇒a3>b3.其中正确的命题是( )A.①②B.②③C.③④D.②④【解析】选D.①a>b⇒ac2>bc2,当c=0时不成立,故①错误;②a>|b|⇒|a|>|b|⇒a2>b2,故②正确;③a=1,b=-2时,|a|>b成立,但a2>b2不成立,故③错误;④y=x3在R上为增函数,故a>b⇒a3>b3,故④正确.2.已知a,b,c,d均为实数,下列不等关系推导成立的是( )A.若a>b,c<d⇒a+c>b+dB.若a>b,c>d⇒ac>bdC.若bc-ad>0,->0⇒ab<0D.若a>b>0,c>d>0⇒>【解析】选D.对于A,当a=-2,b=-3,c=1,d=2时,a+c=b+d,故A错误,对于B,当a=-2,b=-3,c=2,d=1时,ac<bd,故B错误,对于C,当a=-2,b=-3,c=1,d=2时,ab>0,故C错误,对于D,若a>b>0,c>d>0,则>,故D正确.3.如果a>b,那么下列不等式中正确的是( )A.ac>bcB.-a>-bC.c-a<c-bD.>【解析】选C.对于A,c≤0时,不成立,对于B,-a<-b,对于C,根据不等式的性质,成立,对于D,a,b是负数时,不成立.4.若<<0,有下面四个不等式:①|a|>|b|;②a<b;③a+b<ab,④a3>b3,不正确的不等式的个数是( )A.0B.1C.2D.3【解析】选C.由<<0,可得0>a>b,所以|a|<|b|,故①②不成立;所以a+b<0<ab,a3>b3都成立,故③④一定正确.5.已知实数a,b满足1≤a+b≤3,-1≤a-b≤1,则4a+2b的取值范围是( )A.[0,10]B.[2,10]C.[0,12]D.[2,12]【解析】选B.因为4a+2b=3(a+b)+(a-b),所以3×1-1≤4a+2b≤3×3+1,即2≤4a+2b≤10.6.设a>1>b>-1,则下列不等式中恒成立的是( )A.<B.>C.a>b2D.a2>2b【解析】选C.对于A,例如a=2,b=-,此时满足a>1>b>-1,但>,故A错;对于B,例如a=2,b=,此时满足a>1>b>-1,但<,故B错;对于C,因为-1<b<1,所以0≤b2<1,因为a>1,所以a>b2,故C正确;对于D,例如a=,b=,此时满足a>1>b>-1,a2<2b,故D错.二、填空题(每小题5分,共10分)7.若x,y满足则的取值范围是________. 【解析】由2<y<8,可得<<,又1<x<6.所以<<3.所以的取值范围是.答案:8.已知x,y,z满足z<y<x,且xz<0.给出下列各式:①xy>xz;②z(y-x)>0;③zy2<xy2;④xz(x-z)<0.其中正确式子的序号是________.【解析】①因为⇒⇒xy>xz,所以①正确.②因为⇒⇒z(y-x)>0,所以②正确.③因为z<y<x且xz<0,所以x>0且z<0.当y=0时,zy2=xy2;当y≠0时,zy2<xy2.所以③不正确.④因为x>z,所以x-z>0.因为xz<0,所以(x-z)xz<0.所以④正确.综上,①②④正确.答案:①②④三、解答题(每小题10分,共20分)9.设24<a≤25,5<b≤12.求a+b,a-b,ab,的取值范围.【解析】因为24<a≤25,5<b≤12,所以-12≤-b<-5,≤<,29<a+b≤37,12<a-b<20,120<ab≤300,2<<5.10.设f(x)=ax2+bx,1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.【解析】方法一:设f(-2)=mf(-1)+nf(1)(m,n为待定系数),则4a-2b=m(a-b)+n(a+b)=(m+n)a+(n-m)b,于是得解得所以f(-2)=3f(-1)+f(1).又因为1≤f(-1)≤2,2≤f(1)≤4,所以5≤3f(-1)+f(1)≤10.即f(-2)的取值范围是[5,10].方法二:由得所以f(-2)=4a-2b=3f(-1)+f(1).又因为1≤f(-1)≤2,2≤f(1)≤4,所以5≤3f(-1)+f(1)≤10.即f(-2)的取值范围是[5,10].。

高中新课程数学(新课标人教A版)必修五《三不等式》归纳整合

高中新课程数学(新课标人教A版)必修五《三不等式》归纳整合

网络构建
专题归纳
解读高考
高考真题
3.二元一次不等式(组)表示的平面区域 (1)二元一次不等式(组)的几何意义 二元一次不等式(组)的几何意义是二元一次不等式(组)表示 的平面区域.一般地,二元一次不等式Ax+By+C>0在平面 直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的 平面区域.区域不包括边界时,边界直线(Ax+By+C=0)应 画成虚线. (2)二元一次不等式表示的平面区域的判定 对于在直线Ax+By+C=0同一侧的所有点(x,y),实数Ax+ By+C的符号相同,所以只需在此直线的某一侧取一个特殊 点(x0,y0),根据实数Ax0+By0+C的正负即可判断不等式表 示直线哪一侧的平面区域,可简记为“直线定界,特殊点定 域”.特别地,当C≠0时,常取原点作为特殊点.
网络构建
专题归纳
解读高考
高考真题
【例3】 f(x)=ax2+ax-1在R上满足f(x)<0,则a的取值范围是 ________. 解析 (1)当a=0时,f(x)<0恒成立,故a=0符合题意;
(2)当 a≠0 时,由题意得:aΔ<=0a2+4a<0 ⇔a-<40<a<0 ⇔
-4<a<0,综上所述:-4<a≤0. 答案 (-4,0]
(1)当Δ<0时,-1<a<2,M=∅⊆[1,4];
(2)当Δ=0时,a=-1或2;
当a=-1时,M={-1}⃘[1,4];
当a=2时,M={2}⊆[1,4].
(3)当Δ>0时,a<-1或a>2.
设方程f(x)=0的两根x1,x2,且x1<x2, 那么M=[x1,x2],M⊆[1,4]⇔1≤x1≤x2≤4

2020年高中数学 人教A版 必修5 课后作业本《等比数列的概念和通项公式》(含答案解析)

2020年高中数学 人教A版 必修5 课后作业本《等比数列的概念和通项公式》(含答案解析)

2020年高中数学 人教A 版 必修5 课后作业本《等比数列的概念和通项公式》一、选择题1.已知等比数列{a n }中,a 1=32,公比q=-12,则a 6等于( )A .1B .-1C .2 D.122.已知数列a ,a(1-a),a(1-a)2,…是等比数列,则实数a 的取值范围是( )A .a≠1B .a≠0且a≠1C .a≠0D .a≠0或a≠13.在等比数列{a n }中,a 2 016=8a 2 013,则公比q 的值为( )A .2B .3C .4D .84.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .2435.等比数列{a n }各项均为正数,且a 1,12a 3,a 2成等差数列,则a 3+a 4a 4+a 5=( )A .-5+12 B.1-52 C.5-12 D .-5+12或5-126.设{a n }是由正数组成的等比数列,公比q=2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .2157.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84二、填空题8.首项为3的等比数列的第n 项是48,第2n-3项是192,则n=________.9.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.10.若k,2k +2,3k +3是等比数列的前3项,则第四项为________.11.设{a n }为公比q>1的等比数列,若a 2 014和a 2 015是方程4x 2-8x +3=0的两根, 则a 2 016+a 2 017=________.12.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n-1a n a n +1=324,则n=________.三、解答题13.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式.14.在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827.(1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项?15.有四个实数,前三个数依次成等比数列,它们的积为-8;后三个数依次成等差数列,它们的积为-80,求这四个数.16.已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,….(1)证明数列{lg(1+a n)}是等比数列;(2)求{a n}的通项公式.答案解析1.答案为:B ;解析:由题知a 6=a 1q 5=32×⎝ ⎛⎭⎪⎫-125=-1,故选B.2.答案为:B ;解析:由a 1≠0,q≠0,得a≠0,1-a≠0,所以a≠0且a≠1.3.答案为:A ;解析:q 3=a 2 016a 2 013=8,∴q=2.4.答案为:A ;解析:∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q=2.又a 1+a 2=3,∴a 1=1.故a 7=1×26=64.5.答案为:C ;解析:a 1,12a 3,a 2成等差数列,所以a 3=a 1+a 2,从而q 2=1+q ,∵q>0,∴q=5+12,∴a 3+a 4a 4+a 5=1q =5-12.6.答案为:B ;解析:由等比数列的定义,a 1·a 2·a 3=⎝ ⎛⎭⎪⎫a 3q 3,故a 1·a 2·a 3·…·a 30=⎝ ⎛⎭⎪⎫a 3·a 6·a 9·…·a 30q 103.又q=2,故a 3·a 6·a 9·…·a 30=220.7.答案为:B ;解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42.8.答案为:5;解析:设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4,得q=±2.由(±2)n-1=16,得n=5.9.答案为:2n-1解析:由a 1·a 5=16,a 4=8,得a 21q 4=16,a 1q 3=8,所以q 2=4,又a n >0,故q=2,a 1=1,a n =2n-1.10.答案为:- 272;解析:由题意,(2k +2)2=k(3k +3),解得k=-4或k=-1, 又k=-1时,2k +2=3k +3=0,不符合等比数列的定义,所以k=-4,前3项为-4,-6,-9,第四项为-272.11.答案为:18;解析:4x 2-8x +3=0的两根分别为12和32,q>1,从而a 2 014=12,a 2 015=32,∴q=a 2 015a 2 014=3.a 2 016+a 2 017=(a 2 014+a 2 015)·q 2=2×32=18.12.答案为:14;解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12可得q 9=3,又a n-1a n a n +1=a 31q 3n-3=324,因此q 3n-6=81=34=q 36,所以n=14.13.证明:∵S n =2a n +1,∴S n +1=2a n +1+1.∴S n +1-S n =a n +1=(2a n +1+1)-(2a n +1)=2a n +1-2a n . ∴a n +1=2a n .①又∵S 1=a 1=2a 1+1, ∴a 1=-1≠0.由①式可知,a n ≠0,∴由a n +1a n=2知{a n }是等比数列,a n =-2n-1.14.解:(1)∵2a n =3a n +1,∴a n +1a n =23,数列{a n }是公比为23的等比数列,又a 2·a 5=827,所以a 21⎝ ⎛⎭⎪⎫235=⎝ ⎛⎭⎪⎫233,由于各项均为负,故a 1=-32,a n =-⎝ ⎛⎭⎪⎫23n-2.(2)设a n =-1681,则-1681=-⎝ ⎛⎭⎪⎫23n-2,⎝ ⎛⎭⎪⎫23n-2=⎝ ⎛⎭⎪⎫234,n=6,所以-1681是该数列的项,为第6项.15.解:由题意,设这四个数为bq,b ,bq ,a ,则⎩⎪⎨⎪⎧b 3=-8.2bq =a +b ,b 2aq =-80解得⎩⎪⎨⎪⎧a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧a =-8,b =-2,q =52.∴这四个数依次为1,-2,4,10或-45,-2,-5,-8.16.解:(1)证明:由已知得a n +1=a 2n +2a n ,∴a n +1+1=a 2n +2a n +1=(a n +1)2.∵a 1=2,∴a n +1+1=(a n +1)2>0.∴lg(1+a n +1)=2lg(1+a n ),即lg 1+a n +1lg 1+a n=2,且lg(1+a 1)=lg 3.∴{lg(1+a n )}是首项为lg 3,公比为2的等比数列. (2)由(1)知,lg(1+a n )=2n-1·lg 3=lg 312n -,∴1+a n =312n -,∴a n =312n --1.。

2020高中数学 第三章 不等式 阶段复习课 第3课 不等式学案 新人教A版必修5

2020高中数学 第三章 不等式 阶段复习课 第3课 不等式学案 新人教A版必修5

第三课 不等式[核心速填]1.比较两实数a ,b 大小的依据a -b >0⇔a >b .a -b =0⇔a =b .a -b <0⇔a <b .2.不等式的性质3.Ax +By +C (B >0)⎩⎪⎨⎪⎧>0<0表示对应直线⎩⎪⎨⎪⎧上下方区域.4.二元一次不等式组表示的平面区域每个二元一次不等式所表示的平面区域的公共部分就是不等式组所表示的区域. 5.两个不等式[题型探究]一元二次不等式的解法[探究问题]1.当a >0时,若方程ax 2+bx +c =0有两个不等实根α,β且α<β,则 不等式ax 2+bx +c >0的解集是什么?提示:借助函数f (x )=ax 2+bx +c 的图象可知,不等式的解集为{x |x <α或x >β}.2.若[探究1]中的a <0,则不等式ax 2+bx +c >0的解集是什么? 提示:解集为{x |α<x <β}.3.若一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac <0,则ax 2+bx +c >0的解集是什么?提示:当a >0时,不等式的解集为R ;当a <0时,不等式的解集为∅.若不等式组⎩⎪⎨⎪⎧x 2-x -2>02x 2+2k +5x +5k <0的整数解只有-2,求k 的取值范围.【导学号:91432361】思路探究:不等式组的解集是各个不等式解集的交集,分别求解两个不 等式,取交集判断.[解] 由x 2-x -2>0,得x <-1或x >2.对于方程2x 2+(2k +5)x +5k =0有两个实数解x 1=-52,x 2=-k .(1)当-52>-k ,即k >52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-k <x <-52,显然-2∉ ⎝ ⎛⎭⎪⎫-k ,-52.(2)当-k =-52时,不等式2x 2+(2k +5)x +5k <0的解集为∅.(3)当-52<-k ,即k <52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52<x <-k. ∴不等式组的解集由⎩⎪⎨⎪⎧x <-1,-52<x <-k ,或⎩⎪⎨⎪⎧x >2,-52<x <-k 确定.∵原不等式组整数解只有-2, ∴-2<-k ≤3,故所求k 的范围是-3≤k <2.母题探究:.(变条件,变结论)若将例题改为“已知a ∈R ,解关于x 的不 等式ax 2-2x +a <0”.[解] (1)若a =0,则原不等式为-2x <0,故解集为{x |x >0}. (2)若a >0,Δ=4-4a 2.①当Δ>0,即0<a <1时,方程ax 2-2x +a =0的两根为x 1=1-1-a 2a ,x 2=1+1-a 2a,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a . ②当Δ=0,即a =1时,原不等式的解集为∅. ③当Δ<0,即a >1时,原不等式的解集为∅. (3)若a <0,Δ=4-4a 2.①当Δ>0,即-1<a <0时,原不等式的解集为错误!. ②当Δ=0,即a =-1时,原不等式可化为(x +1)2>0, ∴原不等式的解集为{x |x ∈R 且x ≠-1}. ③当Δ<0,即a <-1时,原不等式的解集为R . 综上所述,当a ≥1时,原不等式的解集为∅;当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a ; 当a =0时,原不等式的解集为{x |x >0};当-1<a <0时,原不等式的解集为错误!;当a =-1时,原不等式的解集 为{x |x ∈R 且x ≠-1};当a <-1时,原不等式的解集为R . [规律方法] 不等式的解法 (1)一元二次不等式的解法.①将不等式化为ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)的形式; ②求出相应的一元二次方程的根或利用二次函数的图象与根的判别式确 定一元二次不等式的解集.,(2)含参数的一元二次不等式.,解题时应先看二次项系数的正负,其次考 虑判别式,最后分析两根的大小,此种情况讨论是必不可少的.不等式恒成立问题已知不等式mx 2-mx -1<0.(1)若x ∈R 时不等式恒成立,求实数m 的取值范围; (2)若x ∈[1,3]时不等式恒成立,求实数m 的取值范围;(3)若满足|m |≤2的一切m 的值能使不等式恒成立,求实数x 的取值范围.【导学号:91432362】思路探究:先讨论二次项系数,再灵活的选择方法解决恒成立问题. [解] (1)①若m =0,原不等式可化为-1<0,显然恒成立;②若m ≠0,则不等式mx 2-mx -1<0 恒成立⇔⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0.综上可知,实数m 的取值范围是(-4,0]. (2)令f (x )=mx 2-mx -1,①当m =0时,f (x )=-1<0显然恒成立; ②当m >0时,若对于x ∈[1,3]不等式恒成立,只需⎩⎪⎨⎪⎧f 1<0,f3<0即可,∴⎩⎪⎨⎪⎧f 1=-1<0,f3=9m -3m -1<0,解得m <16,∴0<m <16.③当m <0时,函数f (x )的图象开口向下,对称轴为x =12,若x ∈[1,3]时不等式恒成立,结合函数图象(图略)知只需f (1)<0即可,解得m ∈R ,∴m <0符合题意.综上所述,实数m 的取值范围是⎝ ⎛⎭⎪⎫-∞,16. (3)令g (m )=mx 2-mx -1=(x 2-x )m -1,若对满足|m |≤2的一切m 的值不等式恒成立,则只需⎩⎪⎨⎪⎧g-2<0,g 2<0,即⎩⎪⎨⎪⎧-2x 2-x -1<0,2x 2-x -1<0,解得1-32<x <1+32.∴实数x 的取值范围是⎝⎛⎭⎪⎫1-32,1+32.[规律方法] 对于恒成立不等式求参数范围的问题常见的类型及解法有以下几种: 1.变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看做主元. 2.分离参数法若f (a )<g (x )恒成立,则f (a )<g (x )min . 若f (a )>g (x )恒成立,则f (a )>g (x )max . 3.数形结合法利用不等式与函数的关系将恒成立问题通过函数图象直观化. 1.设f (x )=mx 2-mx -6+m ,(1)若对于m ∈[-2,2],f (x )<0恒成立,求实数x 的取值范围; (2)若对于x ∈[1,3],f (x )<0恒成立,求实数m 的取值范围. [解] (1)依题意,设g (m )=(x 2-x +1)m -6,则g (m )为关于m 的一次函数,且一次项系数x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,所以g (m )在[-2,2]上递增, 所以欲使f (x )<0恒成立,需g (m )max =g (2)=2(x 2-x +1)-6<0, 解得-1<x <2.(2)法一:要使f (x )=m (x 2-x +1)-6<0在[1,3]上恒成立, 则有m <6x 2-x +1在[1,3]上恒成立,而当x ∈[1,3]时, 6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34≥69-3+1=67, 所以m <⎝⎛⎭⎪⎫6x 2-x +1min =67,因此m 的取值范围是⎝⎛⎭⎪⎫-∞,67. 法二:①当m =0时,f (x )=-6<0对x ∈[1,3]恒成立,所以m =0. ②当m ≠0时f (x )的图象的对称轴为x =12,若m >0,则f (x )在[1,3]上单调递增, 要使f (x )<0对x ∈[1,3]恒成立, 只需f (3)<0即7m -6<0, 所以0<m <67.若m <0,则f (x )在[1,3]上单调递减, 要使f (x )<0对x ∈[1,3]恒成立, 只需f (1)<0即m <6, 所以m <0.综上可知m 的取值范围是⎝⎛⎭⎪⎫-∞,67.线性规划问题已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤0,2y -x +1≥0,x +y -4≥0,且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【导学号:91432363】思路探究:先画出可行域,再研究目标函数,由于目标函数中含有参数m ,故需讨论m 的值,再结合可行域,数形结合确定满足题意的m 的值.1 [作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,目标函数z =x +my 可看作动直线y =-1m x +zm,若m <0,则-1m>0,数形结合知使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1.] [规律方法]1.线性规划在实际中的类型主要有:(1)给定一定数量的人力、物力资源,如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少.2.解答线性规划应用题的步骤:(1)列:设出未知数,列出约束条件,确定目标函数.(2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解.(5)答:作出答案.[跟踪训练]2.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?[解]设投资人分别用x万元、y万元投资甲、乙两个项目.由题意,知⎩⎪⎨⎪⎧x+y≤10,0.3x+0.1y≤1.8,x≥0,y≥0,目标函数z=x+0.5y.画出可行域如图中阴影部分.作直线l0:x+0.5y=0,并作平行于l0的一组直线x+0.5y=z,z∈R,与可行域相交,其中有一条直线经过可行域上的点M时,z取得最大值.由⎩⎪⎨⎪⎧x+y=10,0.3x+0.1y=1.8,得⎩⎪⎨⎪⎧x=4,y=6,即M(4,6).此时z=4+0.5×6=7(万元).∴当x=4,y=6时,z取得最大值,即投资人用4万元投资甲项目,6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.利用基本不等式求最值设函数f(x)=x+ax+1,x∈[0,+∞).(1)当a=2时,求函数f(x)的最小值;(2)当0<a<1时,求函数f(x)的最小值.【导学号:91432364】思路探究:(1)将原函数变形,利用基本不等式求解. (2)利用函数的单调性求解. [解] (1)把a =2代入f (x )=x +ax +1,得f (x )=x +2x +1=(x +1)+2x +1-1, ∵x ∈[0,+∞), ∴x +1>0,2x +1>0, ∴x +1+2x +1≥22,当且仅当x +1=2x +1, 即x =2-1时,f (x )取等号,此时f (x )min =22-1. (2)当0<a <1时,f (x )=x +1+ax +1-1若x +1+ax +1≥2a ,则当且仅当x +1=ax +1时取等号,此时x =a -1<0(不合题意), 因此,上式等号取不到.f (x )在[0,+∞)上单调递增.∴f (x )min =f (0)=a .3.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元,公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.[解] (1)设每件定价为t 元,依题意,有[8-(t -25)×0.2]t ≥25×8, 整理得t 2-65t +1 000≤0, 解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2150x ·16x =10(当且仅当x =30时,等号成立), ∴a ≥10.2.因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的定价为每件30元.。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

人教版A版高中数学必修5:错位相减法_复习参考题(3)

人教版A版高中数学必修5:错位相减法_复习参考题(3)
合并,力求结果形式上简洁。(有字母的需要注 意讨论公比q是否等于1)这就是错位相减法求和 Nhomakorabea的基本步骤。
例题展示:
等 差
公比 为2
(1)
(2)
等 比 求 和
所以
合并同 类项
我们一起来总结一下:
1.把数列{an bn}的各项乘以等比数列的公比 2.向后错一项与 {an bn}的同项对应相减 3.转化为等比数列的求和并化简
谢谢您!
高中数学(人教A版)
数列求和是高考热点
针对等比数列求和,错 位相减法是考察最多的。
通常一个公差为d的等差数列{an}与一个公比 为q的等比数列{bn}的对应项的乘积构成的新 数列 cn={an·bn},则求新数列的前n项和Sn, 用错位相减法。
一般将{an·bn}的各项乘以其公比,并向后错一 项与{an·bn}的同项对应相减,相减时通常是用 系数大的项减去系数小的项,避免出现太多的负 号,相减后的式子,有n+1项相加,然后再把n-1 项构成的等比数列相加,再跟剩余两项能合并的

阶段质量检测(三) 不等式【2020人教A版高中数学必修5培优新方案浙江专用 习题】

阶段质量检测(三)  不等式【2020人教A版高中数学必修5培优新方案浙江专用 习题】

阶段质量检测(三) 不等式一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.二次不等式ax 2+bx +c <0的解集是全体实数的条件是( )A.⎩⎪⎨⎪⎧ a >0,Δ>0B.⎩⎪⎨⎪⎧ a >0,Δ<0 C.⎩⎪⎨⎪⎧a <0,Δ>0 D.⎩⎪⎨⎪⎧a <0,Δ<0 解析:选D 结合二次函数的图象,可知若ax 2+bx +c <0,则⎩⎨⎧a <0,Δ<0.2.不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y +1>0所表示的平面区域是( )解析:选D 不等式x -y +5≥0表示的区域为直线x -y +5=0及其右下方的区域,不等式x +y +1>0表示的区域为直线x +y +1=0右上方的区域,故不等式组表示的平面区域为选项D.3.已知a <b <|a |,则( ) A.1a >1b B .ab <1 C.a b >1D .a 2>b 2解析:选D 由a <b <|a |,可知0≤|b |<|a |,由不等式的性质可知|b |2<|a |2,所以a 2>b 2,故选D.4.已知实数x ,y 满足⎩⎪⎨⎪⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8解析:选B 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2×a -53=-4,解得a =2,故选B.5.若-4<x <1,则f (x )=x 2-2x +22x -2( )A .有最小值1B .有最大值1C .有最小值-1D .有最大值-1解析:选D f (x )=x 2-2x +22x -2=12⎣⎢⎡⎦⎥⎤(x -1)+1x -1, 又∵-4<x <1,∴x -1<0.∴-(x -1)>0. ∴f (x )=-12⎣⎢⎡⎦⎥⎤-(x -1)+1-(x -1)≤-1.当且仅当x -1=1x -1,即x =0时等号成立. 6.已知关于x 的不等式:|2x -m |≤1的整数解有且仅有一个值为2(其中m ∈N *),则关于x 的不等式:|x -1|+|x -3|≥m 的解集为( )A .(-∞,0]B .[4,+∞)C .(0,4]D .(-∞,0]∪[4,+∞)解析:选D 由不等式|2x -m |≤1,可得m -12≤x ≤m +12,∵不等式的整数解为2,∴m -12≤2≤m +12,解得 3≤m ≤5.再由不等式仅有一个整数解2,∴m =4.问题转化为解不等式|x -1|+|x -3|≥4,当x ≤1时,不等式为 1-x +3-x ≥4,解得 x ≤0; 当1<x ≤3时,不等式为 x -1+3-x ≥4,解得x ∈∅. 当x >3时,不等式为x -1+x -3≥4,解得x ≥4.综上,不等式解为(-∞,0]∪[4,+∞).故选D.7.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞)D .(-∞,-6)解析:选A 令g (x )=x 2-4x -2,x ∈(1,4),则不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <g (x )max ,又g (x )max =g (4)=-2,所以a <-2.8.关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +3>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=3,则实数m 的取值范围是( )A .(-∞,-3)B .(-1,1)C .(-∞,-1)D .(-1,+∞)解析:选C 作出不等式组对应的平面区域如图中阴影部分所示.若平面区域内存在点P (x 0,y 0),满足x 0-2y 0=3,则说明直线x -2y =3与区域有交点,即点A (-m ,m )位于直线x -2y =3的下方即可,则点A 在区域x -2y -3>0内,即-m -2m -3>0,得m <-1,即实数m 的取值范围是(-∞,-1),故选C.9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A. 60件 B .80件 C .100件D .120件解析:选B 若每批生产x 件产品,则每件产品的生产准备费用是800x ,存储费用是x 8,总的费用是800x +x8≥2800x ·x 8=20,当且仅当800x =x 8时取等号,得x =80. 所以每批应生产产品80件,才能使平均每件产品的生产准备费用与仓储费用之和最小。

2020学年高中数学第3章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法练习新人教A版必修5

2020学年高中数学第3章不等式3.2一元二次不等式及其解法第1课时一元二次不等式的解法练习新人教A版必修5

第1课时 一元二次不等式的解法1.不等式6x 2+x -2≤0的解集为A.⎩⎨⎧⎭⎬⎫x |-23≤x ≤12)B.⎩⎨⎧⎭⎬⎫x |x ≤-23或x ≥12)C.⎩⎨⎧⎭⎬⎫x |x ≥12)D.⎩⎨⎧⎭⎬⎫x |x ≤-23)解析 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-23≤x ≤12).答案 A2.设a <-1,则关于x 的不等式a (x -a )⎝⎛⎭⎪⎫x -1a <0的解集为A.⎩⎨⎧⎭⎬⎫x |x <a 或x >1a B.{x |x >a }C.⎩⎨⎧⎭⎬⎫x |x >a 或x <1aD.⎩⎨⎧⎭⎬⎫x |x <1a 解析 ∵a <-1,∴a (x -a )·⎝ ⎛⎭⎪⎫x -1a <0⇔(x -a )·⎝ ⎛⎭⎪⎫x -1a >0.又a <-1,∴1a>a ,∴x >1a或x <a .答案 A3.不等式2x 2-x -1>0的解集是________.解析 由2x 2-x -1>0,得(x -1)(2x +1)>0,解得x >1或x <-12,从而得原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 ⎝ ⎛⎭⎪⎫-∞,-12∪(1,+∞)4.二次函数y =ax 2+bx +c (x ∈R)的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46则不等式ax 2+bx +c >0的解集是________.解析 由表格可知,函数的图象开口向上,且零点为x =-2,x =3,因此图象关于x=12对称,从而不等式ax 2+bx +c>0的解集为(-∞,-2)∪(3,+∞). 答案 (-∞,-2)∪(3,+∞)5.已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎨⎧⎭⎬⎫x |x <-2或x >-12),则ax 2-bx +c>0的解集为________.解析 由题意,-2,-12是方程ax 2+bx +c =0的两个根且a <0,故⎩⎪⎨⎪⎧-2+⎝ ⎛⎭⎪⎫-12=-b a(-2)×⎝ ⎛⎭⎪⎫-12=c a, 解得a =c ,b =52c .所以不等式ax 2-bx +c >0即为2x 2-5x +2<0, 解得12<x <2,即不等式ax 2-bx +c >0的解集为⎩⎨⎧⎭⎬⎫x |12<x <2.答案 ⎩⎨⎧⎭⎬⎫x |12<x <2[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.(2016·全国Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B = A.⎝⎛⎭⎪⎫-3,-32B.⎝⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 解析 由题意得,A ={x |1<x <3},B =⎩⎨⎧⎭⎬⎫x |x >32),则A ∩B =⎝ ⎛⎭⎪⎫32,3.答案 D2.设-1<a <0,则关于x 的不等式(x -a )(ax -1)>0的解集为A.⎩⎨⎧⎭⎬⎫x |x <a 或x >1a B.{x |x >a }C.⎩⎨⎧⎭⎬⎫x |1a<x <aD.⎩⎨⎧⎭⎬⎫x |x <1a 解析 ∵-1<a <0,∴(x -a )(ax -1)>0可化为(x -a )·a ⎝⎛⎭⎪⎫x -1a >0,∴(x -a )⎝ ⎛⎭⎪⎫x -1a <0.又-1<a <0,∴a >1a,∴原不等式解集为1a<x <a .答案 C3.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为 A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)解析 由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0, 所以-2<x <1. 答案 B4.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是A.(-∞,-1)∪(3,+∞)B.(-1,3)C.(1,3)D.(-∞,1)∪(3,+∞)解析 ∵关于x 的不等式ax -b >0的解集是(1,+∞),∴⎩⎪⎨⎪⎧a >0,a -b =0, 即⎩⎪⎨⎪⎧a >0,a =b . ∴不等式(ax +b )(x -3)>0⇔a (x +1)(x -3)>0⇔(x +1)(x -3)>0⇔x <-1或x >3. 答案 A5.已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >12,则f (10x)>0的解集为A.{x |x <-1或x >lg 2}B.{x |-1<x <lg 2}C.{x |x >-lg 2}D.{x |x <-lg 2}解析 由题意可知f (x )=-(x +1)(2x -1),则f (10x)=-(10x+1)(2·10x-1)>0, 即(10x+1)(2·10x-1)<0,∵10x+1>0,∴2·10x-1<0,解得x <-lg 2. 答案 D6.(能力提升)已知f (x )=(x -a )(x -b )+2(a <b ),且α,β(α<β)是方程f (x )=0的两根,则α,β,a ,b 的大小关系是A.a <α<β<bB.a <α<b <βC.α<a <b <βD.α<a <β<b解析 ∵α,β(α<β)是方程f (x )=0的两根,∴α,β为f (x )=(x -a )(x -b )+2的图象与x 轴交点的横坐标. ∵a ,b 为(x -a )(x -b )=0的根, 令g (x )=(x -a )(x -b ),∴a ,b 为g (x )的图象与x 轴交点的横坐标.由于f (x )的图象可由g (x )的图象向上平移2个单位得到,故选A. 答案 A二、填空题(每小题5分,共15分)7.若0<t <1,则不等式(x -t )⎝⎛⎭⎪⎫x -1t <0的解集为________.解析 ∵0<t <1,∴1t>1,所以(x -t )⎝ ⎛⎭⎪⎫x -1t <0的解集为⎩⎨⎧⎭⎬⎫x |t <x <1t ).答案 ⎩⎨⎧⎭⎬⎫x |t <x <1t )8.已知f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0,则不等式f (x )>x 的解集为________.解析 f (x )>x ⇔⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧0>x ,x =0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0⇔x >5或-5<x <0.∴不等式f (x )>x 的解集为(-5,0)∪(5,+∞). 答案 (-5,0)∪(5,+∞)9.(能力提升)关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为________.解析 ∵ax 2+bx +2>0的解集为{x |-1<x <2}, ∴⎩⎪⎨⎪⎧2a =-2,-b a =1,解得⎩⎪⎨⎪⎧a =-1,b =1,∴bx 2-ax -2>0,即x 2+x -2>0, 解得x >1或x <-2. 答案 {x |x >1或x <-2}三、解答题(本大题共3小题,共35分)10.(11分)解下列关于x 的不等式: (1)(7-x )(x +2)≥0;(2)-9x 2+3x -14≥0;(3)-12x 2+2x -5>0;(4)-2x 2+3x -2<0.解析 (1)原不等式化为(x -7)(x +2)≤0, 所以-2≤x ≤7.故所求不等式的解集为{x |-2≤x ≤7}.(2)原不等式化为9x 2-3x +14≤0,即⎝⎛⎭⎪⎫3x -122≤0,所以x =16. 故所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =16. (3)原不等式化为x 2-4x +10<0,即(x -2)2+6<0,故所求不等式的解集为∅.(4)原不等式化为2x 2-3x +2>0,即2⎝ ⎛⎭⎪⎫x -342+78>0.所以x ∈R.故所求不等式的解集为R.11.(12分)解关于x 的不等式:ax 2+(1-a )x -1>0(a ∈R). 解析 原不等式可化为(x -1)(ax +1)>0. (1)当a =0时,原不等式为x -1>0, 所以解集为{x |x >1}. (2)当a >0时,-1a<1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >1或x <-1a .(3)当a <0时,①当-1<a <0时,-1a>1.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <-1a .②当a =-1时,原不等式变为-(x -1)2>0, 所以解集为∅.③当a <-1时,-1a<1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-1a<x <1.12.(12分)已知不等式ax 2+bx +c >0的解集为{x |α<x <β},其中β>α>0,求不等式cx 2+bx +a <0的解集.解析 ∵ax 2+bx +c >0的解集为{x |α<x <β}, ∴α,β是方程ax 2+bx +c =0的两根,且a <0.∴αβ=c a ,α+β=-b a,∴c =aαβ,b =-a (α+β). ∵cx 2+bx +a <0,∴a αβx 2-a (α+β)x +a <0. 整理,得αβx 2-(α+β)x +1>0. ∵β>α>0,∴αβ>0,1α>1β,∴x 2-⎝⎛⎭⎪⎫1α+1βx +1αβ>0.∵方程x 2-⎝ ⎛⎭⎪⎫1α+1βx +1αβ=0的两根为1α,1β.∴x 2-⎝⎛⎭⎪⎫1α+1βx +1αβ>0的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1α或x <1β,即不等式cx2+bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1α,或x <1β.。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

2019-2020学年高中数学 阶段质量检测(三)直线与方程(含解析)新人教A版必修2

2019-2020学年高中数学 阶段质量检测(三)直线与方程(含解析)新人教A版必修2

阶段质量检测(三) 直线与方程(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60°D .135°解析:选D 由题意可知,直线l 的斜率为-1,故由tan 135°=-1,可知直线l 的倾斜角为135°.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |=( )A .10B .180C .6 3D .6 5解析:选D 由k MN =a -4-2-a =-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=(-2-10)2+(10-4)2=65,故选D.3.已知直线nx -y =n -1和直线ny -x =2n 的交点在第二象限,则实数n 的取值范围是( )A .(0,1)B.⎝⎛⎭⎪⎫-∞,12∪(1,+∞)C.⎝ ⎛⎭⎪⎫0,12D.⎝ ⎛⎭⎪⎫12,+∞ 解析:选C 由题意,知当n =1时,两直线平行,当n =-1时,两直线重合,故n ≠±1.解方程组⎩⎪⎨⎪⎧nx -y =n -1,ny -x =2n ,得x =nn -1,y =2n -1n -1.∴n n -1<0且2n -1n -1>0,解得0<n <12. 4.已知直线l 1:(2m 2-5m +2)x -(m 2-4)y +5=0的斜率与直线l 2:x -y +1=0的斜率相同,则实数m 等于( )A .2或3B .2C .3D .-3解析:选C 直线l 1的斜率为2m 2-5m +2m 2-4,直线l 2的斜率为1,则2m 2-5m +2m 2-4=1,即2m 2-5m +2=m 2-4,整理得m 2-5m +6=0,解得m =2或3.当m =2时,2m 2-5m +2=0,-(m 2-4)=0,不符合题意,故m =3.5.若直线(m 2-1)x -y -2m +1=0不经过第一象限,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,1B.⎝⎛⎦⎥⎤-1,12C.⎣⎢⎡⎭⎪⎫-12,1 D.⎣⎢⎡⎦⎥⎤12,1 解析:选D 若直线(m 2-1)x -y -2m +1=0不经过第一象限,则直线经过第二、四象限或第三、四象限或第二、三、四象限,所以直线的斜率和截距均小于等于0.直线方程变形为y =(m 2-1)x -2m +1,则⎩⎪⎨⎪⎧m 2-1≤0,-2m +1≤0,解得12≤m ≤1.6.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n的值分别为( )A .4和3B .-4和3C .-4和-3D .4和-3解析:选C 由题意知:-m n =-43,即3m =4n ,且有-1n =13,∴n =-3,m =-4.7.两点A (a +2,b +2)和B (b -a ,-b )关于直线4x +3y =11对称,则a ,b 的值为( ) A .a =-1,b =2 B .a =4,b =-2 C .a =2,b =4D .a =4,b =2解析:选D A 、B 关于直线4x +3y =11对称,则k AB =34,即b +2-(-b )a +2-(b -a )=34,①且AB 中点⎝⎛⎭⎪⎫b +22,1在已知直线上,代入得2(b +2)+3=11,②解①②组成的方程组得⎩⎪⎨⎪⎧a =4,b =2.8.直线l 1与直线l 2:3x +2y -12=0的交点在x 轴上,且l 1⊥l 2,则直线l 1在y 轴上的截距是( )A .-4B .4C .-83D.83解析:选C 设直线l 1的斜率为k 1,直线l 2的斜率为k 2,则k 2=-32.∵l 1⊥l 2,∴k 1k 2=-1,∴k 1=-1k 2=-1-32=23.设直线l 1的方程为y =23x +b ,直线l 2与x 轴的交点为(4,0).将点(4,0)代入l 1方程,得b =-83.9.光线从点A (-3,5)射到x 轴上,经反射以后经过点B (2,10),则光线从A 到B 的路程为( )A .5 2B .2 5C .510D .10 5解析:选C 点A (-3,5)关于x 轴的对称点为A ′(-3,-5),则光线从A 到B 的路程即A ′B 的长,|A ′B |=(-5-10)2+(-3-2)2=510.10.数学家欧拉在1765年提出定理,三角形的外心、重心、垂心(外心是三角形三条边的垂直平分线的交点,重心是三角形三条中线的交点,垂心是三角形三条高线的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC 的顶点B (-1,0),C (0,2),AB =AC ,则△ABC 的欧拉线方程为( )A .2x -4y -3=0B .2x +4y +3=0C .4x -2y -3=0D .2x +4y -3=0解析:选D 本题考查欧拉线方程,∵B (-1,0),C (0,2),∴线段BC 中点的坐标为⎝ ⎛⎭⎪⎫-12,1,线段BC 所在直线的斜率k BC =2,则线段BC 的垂直平分线的方程为y -1=-12×⎝ ⎛⎭⎪⎫x +12,即2x+4y -3=0.∵AB =AC ,∴△ABC 的外心、重心、垂心都在线段BC 的垂直平分线上,∴△ABC 的欧拉线方程为2x +4y -3=0.故选D.11.已知点M (1,0)和N (-1,0),直线2x +y =b 与线段MN 相交,则b 的取值范围为( ) A .[-2,2]B .[-1,1] C.⎣⎢⎡⎦⎥⎤-12, 12 D .[0,2]解析:选A 直线可化成y =-2x +b ,当直线过点M 时,可得b =2;当直线过点N 时,可得b =-2,所以要使直线与线段MN 相交,b 的取值范围为[-2,2].12.若直线l 1:y -2=(k -1)x 和直线l 2关于直线y =x +1对称,那么直线l 2恒过定点( )A .(2,0)B .(1,-1)C .(1,1)D .(-2,0)解析:选C ∵l 1:kx =x +y -2,由⎩⎪⎨⎪⎧x =0,x +y -2=0,得l 1恒过定点(0,2),记为点P ,∴与l 1关于直线y =x +1对称的直线l 2也必恒过一定点,记为点Q ,且点P 和Q 也关于直线y=x +1对称.令Q (m ,n ),则⎩⎪⎨⎪⎧n +22=m 2+1,n -2m ×1=-1,⇒⎩⎪⎨⎪⎧m =1,n =1,即Q (1,1),∴直线l 2恒过定点(1,1).二、填空题(本大题共4小题,每小题5分,共20分)13.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 解析:BC 中点为(-1,2),所以BC 边上中线长为(2+1)2+(1-2)2=10. 答案:1014.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为________.解析:设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =-3-14-(-2)=-23.答案:-2315.已知点M (a ,b )在直线3x +4y =15上,则 a 2+b 2的最小值为________. 解析:a 2+b 2的最小值为原点到直线3x +4y =15的距离:d =|0+0-15|32+42=3. 答案:316.在△ABC 中,已知C (2,5),角A 的平分线所在的直线方程是y =x ,BC 边上的高所在的直线方程是y =2x -1,则顶点B 的坐标为________.解析:依题意,由⎩⎪⎨⎪⎧y =2x -1,y =x ,解得⎩⎪⎨⎪⎧x =1,y =1,则A (1,1).因为角A 的平分线所在的直线方程是y =x ,所以点C (2,5)关于直线y =x 的对称点C ′(5,2)在边AB 所在的直线上, 所以边AB 所在的直线方程为y -1=2-15-1(x -1),整理得x -4y +3=0.又边BC 上的高所在的直线方程是y =2x -1, 所以边BC 所在的直线的斜率为-12,所以边BC 所在的直线方程是y -5=-12(x -2),整理得x +2y -12=0.由⎩⎪⎨⎪⎧x -4y +3=0,x +2y -12=0,解得⎩⎪⎨⎪⎧x =7,y =52,则B ⎝ ⎛⎭⎪⎫7,52.答案:⎝ ⎛⎭⎪⎫7,52 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知直线l 经过点P (-2,1),且与直线x +y =0垂直. (1)求直线l 的方程;(2)若直线m 与直线l 平行且点P 到直线m 的距离为2,求直线m 的方程. 解:(1)由题意得直线l 的斜率为1,故直线l 的方程为y -1=x +2,即x -y +3=0. (2)由直线m 与直线l 平行, 可设直线m 的方程为x -y +c =0,由点到直线的距离公式得|-2-1+c |2=2,即|c -3|=2,解得c =1或c =5.故直线m 的方程为x -y +1=0或x -y +5=0.18.(本小题满分12分)已知两条直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0,当m 为何值时,l 1与l 2:(1)相交;(2)平行;(3)重合.解:当m =0时,l 1:x +6=0,l 2:x =0,∴l 1∥l 2. 当m =2时,l 1:x +4y +6=0,l 2:3y +2=0, ∴l 1与l 2相交.当m ≠0且m ≠2时,由1m -2=m23m 得m =-1或m =3,由1m -2=62m,得m =3. 故(1)当m ≠-1且m ≠3且m ≠0时,l 1与l 2相交. (2)当m =-1或m =0时,l 1∥l 2. (3)当m =3时,l 1与l 2重合.19.(本小题满分12分)等腰直角三角形斜边所在直线的方程是3x -y =0,一条直角边所在的直线l 的斜率为12,且经过点(4,-2),若此三角形的面积为10,求此直角三角形的直角顶点的坐标.解:设直角顶点为C ,点C 到直线y =3x 的距离为d , 则12d ·2d =10,∴d =10. ∵直线l 的斜率为12,且经过点(4,-2),∴直线l 的方程为y +2=12(x -4).即x -2y -8=0.设直线l ′是与直线y =3x 平行且距离为10的直线, 则直线l ′与l 的交点就是C 点, 设直线l ′的方程是3x -y +m =0, ∴|m |32+(-1)2=10,∴m =±10,∴直线l ′的方程是3x -y ±10=0.由方程组⎩⎪⎨⎪⎧x -2y -8=0,3x -y -10=0或⎩⎪⎨⎪⎧x -2y -8=0,3x -y +10=0,得点C 的坐标是⎝⎛⎭⎪⎫125,-145或⎝⎛⎭⎪⎫-285,-345.20.(本小题满分12分)如图,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.解:(1)由题意可知,E 为AB 的中点, ∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为:y -2=x -3,即x -y -1=0. (2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC ,∴S △ABC =12|AC |·|BC |=2.21.(本小题满分12分)已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值.(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5. 若能,求点P 的坐标;若不能,说明理由. 解:(1)直线l 2的方程等价于2x -y -12=0,所以两条平行线l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510,即⎪⎪⎪⎪⎪⎪a +12=72.又因为a >0,解得a =3. (2)假设存在点P ,设点P (x 0,y 0),若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·⎪⎪⎪⎪⎪⎪c +125,解得c =132或116, 所以2x 0-y 0+132=0或2x 0-y 0+116=0.若P 点满足条件③,由点到直线的距离公式, 得|2x 0-y 0+3|5=25·|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0.若点P 满足条件①,则3x 0+2=0不合适. 解方程组⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=-3,y 0=12.不符合点P 在第一象限,舍去.解方程组⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=19,y 0=3718.符合条件①.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.22.(本小题满分12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程; (2)当-2+3≤k ≤0时,求折痕长的最大值.解:(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称, 有k OG ·k =-1⇒1a·k =-1⇒a =-k .故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M ⎝ ⎛⎭⎪⎫-k 2,12. 故折痕所在的直线方程为y -12=k ⎝ ⎛⎭⎪⎫x +k 2,即y =kx +k 22+12. 由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E ⎝ ⎛⎭⎪⎫2,2k +k 22+12,交y 轴于点N ⎝⎛⎭⎪⎫0,k 2+12.则|NE |2=22+⎣⎢⎡⎦⎥⎤k 2+12-⎝ ⎛⎭⎪⎫2k +k 22+122=4+4k 2≤4+4(7-43)=32-16 3. 此时,折痕长度的最大值为32-163=2(6-2). 而2(6-2)>2,故折痕长度的最大值为2(6-2).。

新教材高中数学课时跟踪检测五组合与组合数公式新人教A版选择性必修第三册

新教材高中数学课时跟踪检测五组合与组合数公式新人教A版选择性必修第三册

课时跟踪检测(五) 组合与组合数公式1.[多选]下列问题是组合问题的是( )A.10个朋友聚会,每两人握手一次,一共握手多少次?B.平面上有2 020个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C.集合{a 1,a 2,a 3,…,a n }的含有四个元素的子集有多少个?D.从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?解析:选ABC 组合问题与次序无关,排列问题与次序有关,D 项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此不是组合问题,A 、B 、C 均是组合问题. 2.若C 2n =28,则n =( ) A.9 B .8 C.7D .6解析:选B 由C 2n =n ×n -12=28,解得n =8.3.把三张游园票分给10个人中的3人,分法有( ) A.A 310种 B .C 310种 C.C 310A 310种D .30种解析:选B 三张票没区别,从10人中选3人即可,即C 310,故选B. 4.下列计算结果为21的是( ) A.A 24+C 26 B .C 37 C.A 27D .C 27解析:选D C 27=7×62×1=21.5.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B .48种 C.96种D .192种解析:选C 甲选修2门有C 24=6种选法,乙、丙各有C 34=4种选法.由分步乘法计数原理可知,共有6×4×4=96种选法.6.6个朋友聚会,每两人握手1次,一共握手________次.解析:每两人握手1次,无顺序之分,是组合问题,故一共握手C 26=15次.答案:157.若C 4n >C 6n ,则n 的集合是________.解析:∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6,即⎩⎪⎨⎪⎧n !4!n -4!>n !6!n -6!,n ≥6⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.答案:{6,7,8,9}8.按ABO 血型系统学说,每个人的血型为A 、B 、O 、AB 四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女一定不是O 型,若某人的血型为O 型,则父母血型的所有可能情况有________种.解析:父母应为A 或B 或O,共有C 13·C 13=9种情况. 答案:99.(1)解不等式:2C x -2x +1<3C x -1x +1; (2)计算C 3n13+n +C 3n -112+n +C 3n -211+n +…+C 17-n 2n ; (3)求证:C m n =nn -mC mn -1.解:(1)∵2C x -2x +1<3C x -1x +1, ∴2C 3x +1<3C 2x +1, ∴2×x +1x x -13×2×1<3×x +1x2×1.∴x -13<32,∴x <112,∵⎩⎪⎨⎪⎧x +1≥3,x +1≥2,∴x ≥2,∴2≤x <112,又x ∈N *,∴x =2,3,4,5.∴不等式的解集为{2,3,4,5}.(2)由题意,⎩⎪⎨⎪⎧3n ≤13+n ,17-n ≤2n ,得173≤n ≤132, 又n ∈N *,故n =6.∴原式=C 1819+C 1718+C 1617+…+C 1112 =C 119+C 118+C 117+…+C 112 =19+18+17+…+12=124. (3)证明:∵nn -mC mn -1=nn -m ·n -1!m !n -1-m !=n !m !n -m !=C mn ,∴原式成立.10.在6名内科医生和4名外科医生中,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生; (2)既有内科医生,又有外科医生.解:(1)先选内科医生有C 36种选法,再选外科医生有C 24种选法,故有C 36C 24=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,有C 16C 44+C 26C 34+C 36C 24+C 46C 14=246种选派方法.若从反面考虑,则有C 510-C 56=246种选派方法.1.从6名男生和3名女生中选出4名代表,其中必须有女生,则不同的选法种数为( ) A.168 B .45 C.60D .111解析:选D 选出的代表中女生有1,2,3名时,男生相应有3,2,1名,则不同的选法种数为C 13C 36+C 23C 26+C 33C 16=111.2.若A3m=6C4m,则m的值为( )A.6 B.7 C.8 D.9解析:选B 由A3m=6C4m得m!m-3!=6·m!4!m-4!,即1m-3=14,解得m=7.3.某城市纵向有6条道路,横向有5条道路,构成如图所示的矩形道路网(图中黑线表示道路),则从西南角A地到东北角B地的最短路线共有________条.解析:要使路线最短,只能向右或向上走,途中不能向左或向下走.因此,从A地到B地归结为走完5条横线段和4条纵线段.设每走一段横线段或纵线段为一个行走时段,从9个行走时段中任取4个时段走纵线段,其余5个时段走横线段,共有C49C55=126种走法,故从A地到B地的最短路线共有126条.答案:1264.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小三位数?解:从6个不同数字中任选3个组成最小三位数,相当于从6个不同元素中任选3个元素的一个组合,故所有不同的数的个数为C36=6×5×43×2×1=20.5.某市工商局对35种商品进行抽样检查,鉴定结果有15种假货,现从35种商品中选取3种.(1)恰有2种假货在内的不同取法有多少种?(2)至少有2种假货在内的不同取法有多少种?(3)至多有2种假货在内的不同取法有多少种?解:(1)从20种真货中选取1件,从15种假货中选取2件,有C120C215=2 100(种),所以恰有2种假货在内的不同取法有2 100种.(2)选取2件假货有C120C215种,选取3件假货有C315种,共有选取方法C120C215+C315=2 555(种).(3)选取3件的种数有C335,因此有选取方法C335-C315=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.。

2020秋新版高中数学人教A版必修5课件:第一章解三角形 1.2.4 .pptx

2020秋新版高中数学人教A版必修5课件:第一章解三角形 1.2.4 .pptx

在三角形中,当涉及两边的和、两边的积或两边的平方和或三角
形的面积时,常用余弦定理解答.
-11-
第4课时 几何计算问题
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四
【变式训练1】 设△ABC的内角A,B,C所对的边长分别为a,b,c,且
(1)若△ABC 的面积等于 3, 求������, ������的值;
(2)若sin C+sin(B-A)=2sin 2A,求△ABC的面积. 分析(1)利用余弦定理和面积公式列关于a,b的方程组求解; (2)先利用正弦定理得a与b的关系,再利用余弦定理得a与b的另一 个关系,列方程组求解a,b,进而求面积.
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
反思1.有关长度问题,要有方程意识.设未知数,列方程求解是经常 用到的方法.列方程时,要注意一些隐含关系的应用.
2.要灵活运用正、余弦定理及三角形面积公式.
-18-
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
解(1)由余弦定理及已知条件得a2+b2-ab=4.
又因为△ABC 的面积等于 3,
所以
1 2
������������sin

高中数学人教A版必修5精练(含答案)

高中数学人教A版必修5精练(含答案)

人教A 版必修5精练一、填空题(每小题4分,共40分)1.不等式2x 2﹣x ﹣1>0的解集是( ) A.B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.∪(1,+∞)2.在△ABC 中,BC =2,B =3π,当△ABC 的面积等于2时,AB = ( )A .2.12 C .1 D 3.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且,则△ABC是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 等边三角形 4.在△ABC 中, sin :sin :sin 3:2:4A B C =,则cos C =( ) A.23-B.14-C.14D.32 5.数列中,,则等于( )A. B. C.1 D.6.已知数列{}n a 中,21=a ,*11()2n n a a n N +=+∈,则101a 的值为 A .50 B .51 C .52 D .53 7.在等比数列{}n a 中,5341,8a a a a ==,则7a = ( ) A.161 B. 81 C. 41 D.218.已知数列满足130n n a a ++=,243a =-,则{}n a 的前10项和等于( ) A.106(13)--- B.()101139- C.103(13)-- D.()10313-+ 9.已知1a >,10b -<<,那么( )A.ab b >B. ab a <-C.2ab ab < D.22ab b >10.已知等差数列{}n a 的首项为a ,公差为d ,且方程2320ax x -+=的解为1和d ,则数列{}123n a -的前n 项和n T 为( )A. 3nB. 1(1)3n n +-C. 3nn ⋅ D. 1(1)3n n ++⋅ 二、填空题(每小题5分,共20分)11.不等式219x -<的解集为____________.12.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,- 1五个实数成等比数列,则=-212b a a . 13.已知数列{}n a 的前n 项和为31nn S =-,那么该数列的通项公式为n a =_______. 14.数列{a n }的前n 项和S n =n 2-4n ,则|a 1|+|a 2|+…+|a 10|=________. 三、解答题(每小题10分,共40分)15.等差数列{}n a 的前n 项和记为n S .已知50,302010==a a , (1)求通项n a ;(2)若242=n S ,求n ;16.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,030,3,1===A b a , 解此三角形.17.用作差法比较2253x x ++与242x x ++的大小18.设数列{}n a 是等差数列,且12a =且234,,1a a a +成等比数列。

人教a版高中数学必修5全册同步测控知能训练题集含答案

人教a版高中数学必修5全册同步测控知能训练题集含答案

人教A高中数学必修5 知能优化训练1.在△ABC 中,A =60°,a =43,b =42,则( ) A .B =45°或135° B .B =135° C .B =45° D .以上答案都不对解析:选C.sin B =22,∵a >b ,∴B =45°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2解析:选D.由正弦定理6sin 120°=2sin C ⇒sin C =12,于是C =30°⇒A =30°⇒a =c = 2.3.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =__________.解析:在△ABC 中,若tan A =13,C =150°,∴A 为锐角,sin A =110,BC =1,则根据正弦定理知AB =BC ·sin C sin A =102.答案:1024.已知△ABC 中,AD 是∠BAC 的平分线,交对边BC 于D ,求证:BD DC =ABAC.证明:如图所示,设∠ADB =θ, 则∠ADC =π-θ.在△ABD 中,由正弦定理得:BD sin A 2=AB sin θ,即BDAB =sin A 2sin θ;① 在△ACD 中,CD sin A 2=ACsin (π-θ),∴CDAC =sin A 2sin θ.② 由①②得BD AB =CDAC,∴BD DC =AB AC.一、选择题1.在△ABC 中,a =5,b =3,C =120°,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.57解析:选A.根据正弦定理得sin A sin B =a b =53.2.在△ABC 中,若sin A a =cos Cc,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B.∵sin A a =cos C c ,∴sin A cos C =ac ,又由正弦定理a c =sin Asin C.∴cos C =sin C ,即C =45°,故选B.3.(2010年高考湖北卷)在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223C .-63 D.63解析:选D.由正弦定理得15sin 60°=10sin B ,∴sin B =10·sin 60°15=10×3215=33.∵a >b ,A =60°,∴B 为锐角. ∴cos B =1-sin 2B =1-(33)2=63. 4.在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:选B.由题意有a sin A =b =bsin B ,则sin B =1,即角B 为直角,故△ABC 是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c=( )A .1B .2 C.3-1 D. 3解析:选B.由正弦定理a sin A =b sin B ,可得3sin π3=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°.故C =90°,由勾股定理得c =2.6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( ) A .两解 B .一解C .无解D .无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解. 二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________.解析:AB =sin Csin ABC =2BC =2 5.答案:2 58.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________. 解析:A =180°-30°-120°=30°, 由正弦定理得:a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3. 答案:1∶1∶ 39.(2010年高考北京卷)在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.解析:由正弦定理,有3sin 2π3=1sin B ,∴sin B =12.∵∠C 为钝角,∴∠B 必为锐角,∴∠B =π6,∴∠A =π6.∴a =b =1. 答案:1 三、解答题10.在△ABC 中,已知sin A ∶sin B ∶sin C =4∶5∶6,且a +b +c =30,求a .解:∵sin A ∶sin B ∶sin C =a 2R ∶b 2R ∶c2R =a ∶b ∶c ,∴a ∶b ∶c =4∶5∶6.∴a =30×415=8.11.在△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c .已知a =5,b =2,B =120°,解此三角形.解:法一:根据正弦定理a sin A =b sin B ,得sin A =a sin Bb =5×322=534>1.所以A 不存在,即此三角形无解.法二:因为a =5,b =2,B =120°,所以A >B =120°.所以A +B >240°,这与A +B +C =180°矛盾.所以此三角形无解.法三:因为a =5,b =2,B =120°,所以a sin B =5sin 120°=532,所以b <a sin B .又因为若三角形存在,则b sin A =a sin B ,得b >a sin B ,所以此三角形无解.12.在△ABC 中,a cos(π2-A )=b cos(π2-B ),判断△ABC 的形状.解:法一:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形.法二:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得: 2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.1.在△ABC 中,已知a =4,b =6,C =120°,则边c 的值是( ) A .8 B .217 C .6 2 D .219解析:选D.根据余弦定理,c 2=a 2+b 2-2ab cos C =16+36-2×4×6cos 120°=76,c =219.2.在△ABC 中,已知a =2,b =3,C =120°,则sin A 的值为( )A.5719B.217C.338 D .-5719解析:选A.c 2=a 2+b 2-2ab cos C =22+32-2×2×3×cos 120°=19. ∴c =19.由a sin A =c sin C 得sin A =5719. 3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________. 解析:设底边边长为a ,则由题意知等腰三角形的腰长为2a ,故顶角的余弦值为4a 2+4a 2-a 22·2a ·2a =78.答案:784.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解:法一:根据余弦定理得 b 2=a 2+c 2-2ac cos B . ∵B =60°,2b =a +c ,∴(a +c 2)2=a 2+c 2-2ac cos 60°,整理得(a -c )2=0,∴a =c . ∴△ABC 是正三角形. 法二:根据正弦定理,2b =a +c 可转化为2sin B =sin A +sin C . 又∵B =60°,∴A +C =120°, ∴C =120°-A ,∴2sin 60°=sin A +sin(120°-A ), 整理得sin(A +30°)=1, ∴A =60°,C =60°. ∴△ABC 是正三角形.课时训练一、选择题1.在△ABC 中,符合余弦定理的是( ) A .c 2=a 2+b 2-2ab cos C B .c 2=a 2-b 2-2bc cos A C .b 2=a 2-c 2-2bc cos AD .cos C =a 2+b 2+c 22ab解析:选A.注意余弦定理形式,特别是正负号问题. 2.(2011年合肥检测)在△ABC 中,若a =10,b =24,c =26,则最大角的余弦值是( ) A.1213 B.513C .0 D.23解析:选C.∵c >b >a ,∴c 所对的角C 为最大角,由余弦定理得cos C =a 2+b 2-c 22ab=0.3.已知△ABC 的三边分别为2,3,4,则此三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定 解析:选B.∵42=16>22+32=13,∴边长为4的边所对的角是钝角,∴△ABC 是钝角三角形.4.在△ABC 中,已知a 2=b 2+bc +c 2,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3解析:选C.由已知得b 2+c 2-a 2=-bc , ∴cos A =b 2+c 2-a 22bc =-12,又∵0<A <π,∴A =2π3,故选C.5.在△ABC 中,下列关系式 ①a sin B =b sin A ②a =b cos C +c cos B ③a 2+b 2-c 2=2ab cos C ④b =c sin A +a sin C 一定成立的有( ) A .1个 B .2个 C .3个D .4个解析:选C.由正、余弦定理知①③一定成立.对于②由正弦定理知sin A =sin B cos C +sin C cos B =sin(B +C ),显然成立.对于④由正弦定理sin B =sin C sin A +sin A sin C =2sin A sin C ,则不一定成立.6.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( )A.14B.34C.24D.23解析:选B.∵b 2=ac ,c =2a , ∴b 2=2a 2,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a=34. 二、填空题7.在△ABC 中,若A =120°,AB =5,BC =7,则AC =________. 解析:由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即49=25+AC 2-2×5×AC ×(-12),AC 2+5AC -24=0.∴AC =3或AC =-8(舍去). 答案:38.已知三角形的两边分别为4和5,它们的夹角的余弦值是方程2x 2+3x -2=0的根,则第三边长是________.解析:解方程可得该夹角的余弦值为12,由余弦定理得:42+52-2×4×5×12=21,∴第三边长是21.答案:219.在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则B 的大小是________. 解析:由正弦定理,得a ∶b ∶c =sin A ∶sin B ∶sin C =5∶7∶8. 不妨设a =5k ,b =7k ,c =8k ,则cos B =(5k )2+(8k )2-(7k )22×5k ×8k=12,∴B =π3.答案:π3三、解答题10.已知在△ABC 中,cos A =35,a =4,b =3,求角C .解:A 为b ,c 的夹角,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴16=9+c 2-6×35c ,整理得5c 2-18c -35=0.解得c =5或c =-75(舍).由余弦定理得cos C =a 2+b 2-c 22ab =16+9-252×4×3=0,∵0°<C <180°,∴C =90°.11.在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边长,若(a +b +c )(sin A +sin B -sin C )=3a sin B ,求C 的大小.解:由题意可知, (a +b +c )(a +b -c )=3ab , 于是有a 2+2ab +b 2-c 2=3ab , 即a 2+b 2-c 22ab =12,所以cos C =12,所以C =60°.12.在△ABC 中,b =a sin C ,c =a cos B ,试判断△ABC 的形状. 解:由余弦定理知cos B =a 2+c 2-b 22ac ,代入c =a cos B ,得c =a ·a 2+c 2-b 22ac ,∴c 2+b 2=a 2,∴△ABC 是以A 为直角的直角三角形.又∵b =a sin C ,∴b =a ·ca ,∴b =c ,∴△ABC 也是等腰三角形. 综上所述,△ABC 是等腰直角三角形.1.某次测量中,若A 在B 的南偏东40°,则B 在A 的( ) A .北偏西40° B .北偏东50° C .北偏西50° D .南偏西50° 答案:A2.已知A 、B 两地间的距离为10 km ,B 、C 两地间的距离为20 km ,现测得∠ABC =120°,则A 、C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D.由余弦定理可知: AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC . 又∵AB =10,BC =20,∠ABC =120°, ∴AC 2=102+202-2×10×20×cos 120°=700.∴AC =107.3.在一座20 m 高的观测台测得对面一水塔塔顶的仰角为60°,塔底的俯角为45°,观测台底部与塔底在同一地平面,那么这座水塔的高度是________m.解析:h =20+20tan 60°=20(1+3) m. 答案:20(1+3)4.如图,一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°.求此时船与灯塔间的距离.解:BC sin ∠BAC =ACsin ∠ABC,且∠BAC =30°,AC =60, ∠ABC =180°-30°-105°=45°. ∴BC =30 2.即船与灯塔间的距离为30 2 km.一、选择题1.在某次测量中,在A 处测得同一方向的B 点的仰角为60°,C 点的俯角为70°,则∠BAC 等于( )A .10°B .50°C .120°D .130°解析:选D.如图,∠BAC 等于A 观察B 点的仰角与观察C 点的俯角和,即60°+70°=130°.2.一艘船以4 km/h 的速度沿着与水流方向成120°夹角的方向航行,已知河水流速为2 km/h ,则经过 3 h ,该船的实际航程为( )A .215 kmB .6 kmC .221 kmD .8 km解析:选B.v 实=22+42-2×4×2×cos 60°=2 3. ∴实际航程=23×3=6(km).故选B. 3.如图所示,D ,C ,B 在同一地平面的同一直线上,DC =10 m ,从D ,C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高度AB 等于( )A .10 mB .5 3 mC .5(3-1) mD .5(3+1) m解析:选D.在△ADC 中,AD =10·sin 135°sin 15°=10(3+1)(m).在Rt △ABD 中,AB =AD ·sin 30°=5(3+1)(m). 4.(2011年无锡调研)我舰在敌岛A 处南偏西50°的B 处,且AB 距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,则速度大小为( )A .28海里/小时B .14海里/小时C .14 2 海里/小时D .20海里/小时解析:选B.如图,设我舰在C 处追上敌舰,速度为v ,则在△ABC 中,AC =10×2=20(海里),AB =12海里,∠BAC =120°,∴BC 2=AB 2+AC 2-2AB ·AC cos 120°=784, ∴BC =28海里,∴v =14海里/小时.5.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,则B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时解析:选B.设t小时后,B市处于危险区内,则由余弦定理得:(20t)2+402-2×20t×40cos 45°≤302.化简得:4t2-82t+7≤0,∴t1+t2=22,t1·t2=7 4.从而|t1-t2|=(t1+t2)2-4t1t2=1.6.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点测得塔顶的仰角分别为45°、30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是() A.1002米B.400米C.2003米D.500米解析:选D.由题意画出示意图,设高AB=h,在Rt△ABC中,由已知BC=h,在Rt△ABD中,由已知BD=3h,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD·cos∠BCD,得3h2=h2+5002+h·500,解之得h=500(米),故选D.二、填空题7.一树干被台风吹断,折断部分与残存树干成30°角,树干底部与树尖着地处相距5米,则树干原来的高度为________米.答案:10+5 38.如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的__________.解析:由题意可知∠ACB=180°-40°-60°=80°.∵AC=BC,∴∠CAB=∠CBA=50°,从而所求为北偏西10°.答案:北偏西10°9.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107 海里,20分钟后测得海盗船距观测站20海里,再过________分钟,海盗船即可到达商船.解析:如图,设开始时观测站、商船、海盗船分别位于A、B、C处,20分钟后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD=400+900-7002×20×30=12.∴∠ACD =60°,在△ABD 中由已知得∠ABD =30°. ∠BAD =60°-30°=30°, ∴BD =AD =20,2090×60=403(分钟).答案:403三、解答题10.如图,A 、B 两点都在河的对岸(不可到达),在河岸边选定两点C 、D ,测得CD =1000米,∠ACB =30°,∠BCD =30°,∠BDA =30°,∠ADC =60°,求AB 的长.解:由题意知△ACD 为正三角形, 所以AC =CD =1000米. 在△BCD 中,∠BDC =90°,所以BC =CD cos ∠BCD =1000cos 30°=200033米.在△ACB 中,AB 2=AC 2+BC 2-2AC ·BC ·cos 30° =10002+200023-2×1000×200033×32 =10002×13,所以AB =100033米.11.如图,地面上有一旗杆OP ,为了测得它的高度,在地面上选一基线AB ,测得AB =20 m ,在A 处测得点P 的仰角为30°,在B 处测得点P 的仰角为45°,同时可测得∠AOB =60°,求旗杆的高度(结果保留1位小数).解:设旗杆的高度为h ,由题意,知∠OAP =30°,∠OBP =45°.在Rt △AOP 中,OA =OPtan 30°=3h .在Rt △BOP 中,OB =OPtan 45°=h .在△AOB 中,由余弦定理,得AB 2=OA 2+OB 2-2OA ·OB cos 60°,即202=(3h )2+h 2-23h ×h ×12.解得h 2=4004-3≈176.4.∴h ≈13(m).∴旗杆的高度约为13 m.12.一商船行至索马里海域时,遭到海盗的追击,随即发出求救信号.正在该海域执行护航任务的海军“黄山”舰在A 处获悉后,即测出该商船在方位角为45°距离10海里的C 处,并沿方位角为105°的方向,以9海里/时的速度航行.“黄山”舰立即以21海里/时的速度前去营救.求“黄山”舰靠近商船所需要的最少时间及所经过的路程.解:如图所示,若“黄山”舰以最少时间在B 处追上商船,则A ,B ,C 构成一个三角形.设所需时间为t 小时, 则AB =21t ,BC =9t .又已知AC =10,依题意知,∠ACB =120°, 根据余弦定理,AB 2=AC 2+BC 2-2·AC ·BC cos ∠ACB . ∴(21t )2=102+(9t )2-2×10×9t cos 120°, ∴(21t )2=100+81t 2+90t ,即360t 2-90t -100=0.∴t =23或t =-512(舍).∴AB =21×23=14(海里).即“黄山”舰需要用23小时靠近商船,共航行14海里.1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32 C. 3 D .2 3解析:选B.S △ABC =12AB ·AC ·sin A =sin 60°=32.2.已知△ABC 的面积为32,且b =2,c =3,则( )A .A =30°B .A =60°C .A =30°或150°D .A =60°或120°解析:选D.∵S =12bc sin A =32,∴12×2×3sin A =32.∴sin A =32.∴A =60°或120°.3.在△ABC 中,AC =5,AB =2,cos A =255,则S △ABC =________.解析:在△ABC 中,cos A =255,∴sin A =55,∴S △ABC =12AB ·AC ·sin A =12×5×2×55=22.答案:224.在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB . 解:在△ADC 中,cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=1114.又0°<C <180°,∴sin C =5314.在△ABC 中,AC sin B =ABsin C ,∴AB =sin C sin B AC =5314×2×7=562.一、选择题1.在△ABC 中,a 2=b 2+c 2-bc ,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3解析:选A.∵a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =12,即A =π3.2.在△ABC ,下列关系一定成立的是( ) A .a <b sin A B .a =b sin A C .a >b sin A D .a ≥b sin A解析:选D.由正弦定理知a sin A =b sin B ,∴sin B =ba sin A .又∵在△ABC 中,0<sin B ≤1,∴0<ba sin A ≤1,∴a ≥b sin A .故选D.3.已知△ABC 的三个内角之比为A ∶B ∶C =3∶2∶1,那么对应三边之比a ∶b ∶c 等于( )A .3∶2∶1 B.3∶2∶1 C.3∶2∶1 D .2∶3∶1解析:选D.由已知得A =90°,B =60°,C =30°.又由正弦定理得a ∶b ∶c =sin A ∶sin B ∶sin C =1∶32∶12=2∶3∶1.故选D. 4.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152B.15C .2D .3 解析:选A.b 2-bc -2c 2=0, ∴(b -2c )(b +c )=0. ∴b =2c .由a 2=b 2+c 2-2bc cos A , 解得c =2,b =4,∵cos A =78,∴sin A =158,∴S △ABC =12bc sin A =12×2×4×158=152.5.三角形两边长之差为2,其夹角的余弦值为35,面积为14,那么这个三角形的两边长分别是( )A .3和5B .4和6C .6和8D .5和7解析:选D.设a -b =2,∵cos C =35,∴sin C =45.又S △ABC =12ab sin C ,∴ab =35.由a -b =2和ab =35,解得a =7,b =5.6.在△ABC 中,a =1,B =45°,S △ABC =2,则此三角形的外接圆的半径R =( ) A.12B .1C .2 2D.522解析:选D.S △ABC =12ac sin B =24c =2,∴c =4 2.b 2=a 2+c 2-2ac cos B =1+32-82×22=25,∴b =5.∴R =b 2sin B =52×22=522.二、填空题7.在△ABC 中,已知a =7,b =5,c =3,则△ABC 是________三角形.解析:法一:∵72>52+32,即a 2>b 2+c 2, ∴△ABC 是钝角三角形. 法二:∵cos A =52+32-722×5×3<0,∴△ABC 是钝角三角形. 答案:钝角8.(2011年江南十校联考)在△ABC 中,A =30°,AB =2,BC =1,则△ABC 的面积等于________.解析:由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos 30°, ∴AC 2-23AC +3=0.∴AC = 3.∴S △ABC =12AB ·AC sin 30°=12×2×3×12=32.答案:329.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的长为________. 解析:由S △ABC =32,得12AB ·AC sin A =32, 即12×2AC ×32=32,∴AC =1,由余弦定理得 BC 2=AB 2+AC 2-2AB ·AC ·cos A=22+12-2×2×1×12=3.∴BC = 3.答案: 3 三、解答题10.在△ABC 中,已知a =2b cos C ,求证:△ABC 为等腰三角形. 证明:由余弦定理,得cos C =a 2+b 2-c 22ab .又cos C =a2b ,∴a 2+b 2-c 22ab =a 2b .整理得b 2=c 2.∴b =c .∴△ABC 是等腰三角形.11.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,又c =21,b =4,且BC边上的高h =2 3.(1)求角C ;(2)求a 边的长.解:(1)由于△ABC 为锐角三角形,过A 作AD ⊥BC 于D 点, sin C =234=32,则C =60°.(2)由余弦定理可知c 2=a 2+b 2-2ab cos C ,则(21)2=a 2+42-2×a ×4×12,即a 2-4a -5=0.所以a =5或a =-1(舍). 因此a 边的长为5.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A =35,A B →·A C →=3.(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解:(1)因为cos A =35,所以sin A =45.又由A B →·A C →=3,得bc cos A =3, 所以bc =5.因此S △ABC =12bc sin A =2.(2)由(1)知,bc =5, 又b +c =6,所以b =5,c =1或b =1,c =5. 由余弦定理,得a 2=b 2+c 2-2bc cos A =20, 所以a =2 5.1.数列1,12,14,…,12n,…是( )A .递增数列B .递减数列C .常数列D .摆动数列 答案:B2.已知数列{a n }的通项公式a n =12[1+(-1)n +1],则该数列的前4项依次是( )A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0 答案:A3.数列{a n }的通项公式a n =cn +d n ,又知a 2=32,a 4=154,则a 10=__________.答案:99104.已知数列{a n }的通项公式a n =2n 2+n.(1)求a 8、a 10.(2)问:110是不是它的项?若是,为第几项?解:(1)a 8=282+8=136,a 10=2102+10=155.(2)令a n =2n 2+n =110,∴n 2+n =20.解得n =4.∴110是数列的第4项.一、选择题1.已知数列{a n }中,a n =n 2+n ,则a 3等于( ) A .3 B .9 C .12 D .20 答案:C2.下列数列中,既是递增数列又是无穷数列的是( )A .1,12,13,14,…B .-1,-2,-3,-4,…C .-1,-12,-14,-18,…D .1,2,3,…,n解析:选C.对于A ,a n =1n,n ∈N *,它是无穷递减数列;对于B ,a n =-n ,n ∈N *,它也是无穷递减数列;D 是有穷数列;对于C ,a n =-(12)n -1,它是无穷递增数列.3.下列说法不正确的是( )A .根据通项公式可以求出数列的任何一项B .任何数列都有通项公式C .一个数列可能有几个不同形式的通项公式D .有些数列可能不存在最大项解析:选B.不是所有的数列都有通项公式,如0,1,2,1,0,….4.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.2223解析:选C.由题意知数列的通项公式是a n =2n2n +1,∴a 10=2×102×10+1=2021.故选C.5.已知非零数列{a n }的递推公式为a n =nn -1·a n -1(n >1),则a 4=( )A .3a 1B .2a 1C .4a 1D .1解析:选C.依次对递推公式中的n 赋值,当n =2时,a 2=2a 1;当n =3时,a 3=32a 2=3a 1;当n =4时,a 4=43a 3=4a 1.6.(2011年浙江乐嘉调研)已知数列{a n }满足a 1>0,且a n +1=12a n ,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列解析:选B.由a 1>0,且a n +1=12a n ,则a n >0.又a n +1a n =12<1,∴a n +1<a n . 因此数列{a n }为递减数列. 二、填空题7.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为__________.解析:由a n =19-2n >0,得n <192,∵n ∈N *,∴n ≤9.答案:9 8.已知数列{a n }满足a 1=2,a 2=5,a 3=23,且a n +1=αa n +β,则α、β的值分别为________、________.解析:由题意a n +1=αa n +β,得⎩⎪⎨⎪⎧ a 2=αa 1+βa 3=αa 2+β⇒⎩⎪⎨⎪⎧ 5=2α+β23=5α+β⇒⎩⎪⎨⎪⎧α=6,β=-7.答案:6 -79.已知{a n }满足a n =(-1)n a n -1+1(n ≥2),a 7=47,则a 5=________.解析:a 7=-1a 6+1,a 6=1a 5+1,∴a 5=34.答案:34三、解答题10.写出数列1,23,35,47,…的一个通项公式,并判断它的增减性.解:数列的一个通项公式a n =n2n -1.又∵a n +1-a n =n +12n +1-n2n -1=-1(2n +1)(2n -1)<0,∴a n +1<a n .∴{a n }是递减数列.11.在数列{a n }中,a 1=3,a 17=67,通项公式是关于n 的一次函数. (1)求数列{a n }的通项公式; (2)求a 2011;(3)2011是否为数列{a n }中的项?若是,为第几项?解:(1)设a n =kn +b (k ≠0),则有⎩⎪⎨⎪⎧k +b =3,17k +b =67,解得k =4,b =-1.∴a n =4n -1. (2)a 2011=4×2011-1=8043.(3)令2011=4n -1,解得n =503∈N *, ∴2011是数列{a n }的第503项.12.数列{a n }的通项公式为a n =30+n -n 2. (1)问-60是否是{a n }中的一项?(2)当n 分别取何值时,a n =0,a n >0,a n <0?解:(1)假设-60是{a n }中的一项,则-60=30+n -n 2. 解得n =10或n =-9(舍去). ∴-60是{a n }的第10项.(2)分别令30+n -n 2=0;>0;<0, 解得n =6;0<n <6;n >6, 即n =6时,a n =0; 0<n <6时,a n >0; n >6时,a n <0.1.已知等差数列{a n }的首项a 1=1,公差d =2,则a 4等于( ) A .5 B .6 C .7 D .9 答案:C2.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项公式a n =( ) A .2n +1 B .2n -1 C .2n D .2(n -1) 答案:B3.△ABC 三个内角A 、B 、C 成等差数列,则B =__________. 解析:∵A 、B 、C 成等差数列,∴2B =A +C . 又A +B +C =180°,∴3B =180°,∴B =60°. 答案:60°4.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9.解:(1)由题意,知⎩⎪⎨⎪⎧a 1+(5-1)d =-1,a 1+(8-1)d =2.解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)由题意,知⎩⎪⎨⎪⎧a 1+a 1+(6-1)d =12,a 1+(4-1)d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a 9=a 1+(9-1)d =1+8×2=17.一、选择题1.在等差数列{a n }中,a 1=21,a 7=18,则公差d =( ) A.12 B.13C .-12D .-13解析:选C.∵a 7=a 1+(7-1)d =21+6d =18,∴d =-12.2.在等差数列{a n }中,a 2=5,a 6=17,则a 14=( ) A .45 B .41 C .39 D .37解析:选B.a 6=a 2+(6-2)d =5+4d =17,解得d =3.所以a 14=a 2+(14-2)d =5+12×3=41.3.已知数列{a n }对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列 D .非等差数列解析:选A.a n =2n +1,∴a n +1-a n =2,应选A. 4.已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( ) A .2 B .3 C .6 D .9解析:选B.由题意得⎩⎪⎨⎪⎧m +2n =82m +n =10,∴m +n =6,∴m 、n 的等差中项为3.5.下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,… ④110,210,310,410,… A .1个 B .2个 C .3个 D .4个解析:选C.利用等差数列的定义验证可知①、③、④是等差数列.6.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为( )A .4B .5C .6D .7解析:选B.a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6,令a n =b n 得3n -1=4n -6,∴n =5. 二、填空题7.已知等差数列{a n },a n =4n -3,则首项a 1为__________,公差d 为__________. 解析:由a n =4n -3,知a 1=4×1-3=1,d =a 2-a 1=(4×2-3)-1=4,所以等差数列{a n }的首项a 1=1,公差d =4.答案:1 48.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=__________.解析:设等差数列的公差为d ,首项为a 1,则a 3=a 1+2d =7;a 5-a 2=3d =6.∴d =2,a 1=3.∴a 6=a 1+5d =13.答案:139.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________.解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4,∴数列{a 2n }是公差为4的等差数列,∴a 2n =a 21+(n -1)·4=4n -3. ∵a n >0,∴a n =4n -3.答案:4n -3 三、解答题10.在等差数列{a n }中,已知a 5=10,a 12=31,求它的通项公式. 解:由a n =a 1+(n -1)d 得⎩⎪⎨⎪⎧ 10=a 1+4d 31=a 1+11d ,解得⎩⎪⎨⎪⎧a 1=-2d =3. ∴等差数列的通项公式为a n =3n -5.11.已知等差数列{a n }中,a 1<a 2<a 3<…<a n 且a 3,a 6为方程x 2-10x +16=0的两个实根.(1)求此数列{a n }的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a 3=2,a 6=8.又∵{a n }为等差数列,设首项为a 1,公差为d ,∴⎩⎪⎨⎪⎧ a 1+2d =2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-2d =2. ∴a n =-2+(n -1)×2 =2n -4(n ∈N *).∴数列{a n }的通项公式为a n =2n -4. (2)令268=2n -4(n ∈N *),解得n =136.∴268是此数列的第136项.12.已知(1,1),(3,5)是等差数列{a n }图象上的两点. (1)求这个数列的通项公式; (2)画出这个数列的图象; (3)判断这个数列的单调性.解:(1)由于(1,1),(3,5)是等差数列{a n }图象上的两点,所以a 1=1,a 3=5,由于a 3=a 1+2d =1+2d =5,解得d =2,于是a n =2n -1.(2)图象是直线y =2x -1上一些等间隔的点(如图).(3)因为一次函数y =2x -1是增函数, 所以数列{a n }是递增数列.1.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A .4 B .5 C .6 D .7解析:选C.由等差数列性质得a 2+a 8=2a 5=12,所以a 5=6.2.等差数列{a n }的公差为d ,则数列{ca n }(c 为常数且c ≠0)( ) A .是公差为d 的等差数列 B .是公差为cd 的等差数列 C .不是等差数列 D .以上都不对 答案:B3.在等差数列{a n }中,a 10=10,a 20=20,则a 30=________. 解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30.法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:304.已知三个数成等差数列,其和为15,首、末两项的积为9,求这三个数. 解:由题意,可设这三个数分别为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧(a -d )+a +(a +d )=15,(a -d )(a +d )=9, 解得⎩⎪⎨⎪⎧ a =5d =4或⎩⎪⎨⎪⎧a =5,d =-4.所以,当d =4时,这三个数为1,5,9; 当d =-4时,这三个数为9,5,1.一、选择题1.下列命题中,为真命题的是( )A .若{a n }是等差数列,则{|a n |}也是等差数列B .若{|a n |}是等差数列,则{a n }也是等差数列C .若存在自然数n 使2a n +1=a n +a n +2,则{a n }是等差数列D .若{a n }是等差数列,则对任意n ∈N *都有2a n +1=a n +a n +2 答案:D2.等差数列{a n }中,前三项依次为1x +1,56x ,1x,则a 101=( )A .5013B .1323C .24D .823解析:选D.∵53x =1x +1x +1,∴x =2.∴首项a 1=1x +1=13,d =12(12-13)=112.∴a 101=823,故选D.3.若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( ) A .24 B .27 C .30 D .33解析:选D.经观察发现(a 2+a 5)-(a 1+a 4)=(a 3+a 6)-(a 2+a 5)=2d =39-45=-6,所以a 3+a 6=a 2+a 5-6=39-6=33.4.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 解析:选C.设等差数列{a n }的公差为d , 则由等差数列的性质得5a 8=120,∴a 8=24,a 9-13a 11=3a 9-a 113=2a 9+(a 9-a 11)3=2(a 9-d )3=2a 83=2×243=16.5.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100 D .-37 解析:选C.设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2.∴{a n +b n }为等差数列.又∵a 1+b 1=a 2+b 2=100,∴a 37+b 37=100.6.首项为-24的等差数列从第10项起开始为正数,则公差d 的取值范围是( )A .d >83 B .d <3C.83≤d <3D.83<d ≤3 解析:选D.设等差数列为{a n },首项a 1=-24,则a 9≤0⇒a 1+8d ≤0⇒-24+8d ≤0⇒d ≤3,a 10>0⇒a 1+9d >0⇒-24+9d >0⇒d >83.∴83<d ≤3. 二、填空题7.已知{a n }为等差数列,a 3+a 8=22,a 6=7,则a 5=________.解析:由于{a n }为等差数列,故a 3+a 8=a 5+a 6,故a 5=a 3+a 8-a 6=22-7=15. 答案:158.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=________.解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m . 答案:2n -m9.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________. 解析:法一:因为{a n }为等差数列, 所以a 15,a 30,a 45,a 60,a 75也成等差数列, 设其公差为d ,a 15为首项,则a 60为其第四项, 所以a 60=a 15+3d ,得d =4. 所以a 75=a 60+d ⇒a 75=24.法二:因为a 15=a 1+14d ,a 60=a 1+59d ,所以⎩⎪⎨⎪⎧a 1+14d =8a 1+59d =20,解得⎩⎨⎧a 1=6415d =415.故a 75=a 1+74d =6415+74×415=24.答案:24 三、解答题10.已知正数a ,b ,c 组成等差数列,且公差不为零,那么由它们的倒数所组成的数列1a ,1b ,1c能否成为等差数列? 解:由已知,得a ≠b 且b ≠c 且c ≠a ,且2b =a +c ,a >0,b >0,c >0.因为2b -(1a +1c )=2b-a +c ac =2ac -2b 2abc =2ac -(a +c )22abc =-(a -c )22abc <0,所以2b ≠1a +1c. 所以1a ,1b ,1c不能成为等差数列.11.已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16. (1)求数列{a n }的通项公式;(2)若从数列{a n }中,依次取出第2项,第4项,第6项,…,第2n 项,按原来顺序组成一个新数列{b n },试求出{b n }的通项公式.解:(1)∵a 1+a 2+a 3=12,∴a 2=4, ∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2, ∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n . 当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4. ∴{b n }是以4为首项,4为公差的等差数列.∴b n =b 1+(n -1)d =4+4(n -1)=4n .12.某单位用分期付款方式为职工购买40套住房,共需1150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%.若交付150万元后的第一个月算分期付款的第一个月,求分期付款的第10个月应付多少钱?最后一次应付多少钱?解:购买时先付150万元,还欠款1000万元.依题意知20次可付清.设每次交付的欠款依次为a 1,a 2,a 3,…,a 20,构成数列{a n },则a 1=50+1000×0.01=60; a 2=50+(1000-50)×0.01=59.5; a 3=50+(1000-50×2)×0.01=59; …a n =50+[1000-50(n -1)]×0.01=60-12(n -1)(1≤n ≤20).所以{a n }是以60为首项,-12为公差的等差数列.则a 10=60-9×12=55.5,a 20=60-19×12=50.5,故第10个月应付55.5万元,最后一次应付50.5万元.1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( ) A .360 B .370 C .380 D .390 答案:C2.已知a 1=1,a 8=6,则S 8等于( ) A .25 B .26 C .27 D .28 答案:D3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.解析:由已知⎩⎪⎨⎪⎧ a 1+5d =123a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n .答案:2n4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5. 解:d =a 7-a 57-5=20-142=3,a 1=a 5-4d =14-12=2, 所以S 5=5(a 1+a 5)2=5(2+14)2=40.一、选择题1.(2011年杭州质检)等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( ) A .12 B .10 C .8 D .6 解析:选C.d =a 3-a 2=2,a 1=-1,S 4=4a 1+4×32×2=8.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .24 B .27 C .29 D .48解析:选C.由已知⎩⎪⎨⎪⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎪⎨⎪⎧a 1=2,d =3.∴a 10=2+9×3=29.3.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48解析:选B.S 10=10(a 1+a 10)2=5(a 2+a 9)=120.∴a 2+a 9=24.4.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( )A .99B .66C .33D .0解析:选B.由a 1+a 2+…+a 98+a 99=99,得99a 1+99×982=99.∴a 1=-48,∴a 3=a 1+2d =-46.又∵{a 3n }是以a 3为首项,以3为公差的等差数列.∴a 3+a 6+a 9+…+a 99=33a 3+33×322×3=33(48-46)=66.5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项解析:选A.∵a 1+a 2+a 3=34,① a n +a n -1+a n -2=146,② 又∵a 1+a n =a 2+a n -1=a 3+a n -2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③ S n =(a 1+a n )·n 2=390.④将③代入④中得n =13.6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B.由等差数列前n 项和的性质知S 偶S 奇=n n +1,即150165=n n +1,∴n =10.二、填空题7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________.解析:由题意得a n +1-a n =2,∴{a n }是一个首项a 1=-7,公差d =2的等差数列.∴a 1+a 2+…+a 17=S 17=17×(-7)+17×162×2=153.答案:1538.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________. 解析:a 4+a 6=a 1+3d +a 1+5d =6.①S 5=5a 1+12×5×(5-1)d =10.②由①②得a 1=1,d =12.答案:129.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:由等差数列的性质知S 9=9a 5=-9,∴a 5=-1. 又∵a 5+a 12=a 1+a 16=-9,∴S 16=16(a 1+a 16)2=8(a 1+a 16)=-72.答案:-72 三、解答题10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *). (1)写出该数列的第3项; (2)判断74是否在该数列中. 解:(1)a 3=S 3-S 2=-18. (2)n =1时,a 1=S 1=-24, n ≥2时,a n =S n -S n -1=2n -24,即a n =⎩⎪⎨⎪⎧-24,n =1,2n -24,n ≥2,由题设得2n -24=74(n ≥2),解得n =49.∴74在该数列中.11.(2010年高考课标全国卷)设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n . (2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2.因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12.已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数; (2)S n =20,S 2n =38,求S 3n .解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67, 所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.所以a 1+a n =884=22.因为S n =n (a 1+a n )2=286,所以n =26.(2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列, 所以S 3n =3(S 2n -S n )=54.1.下列数列是等比数列的是( ) A .1,1,1,1,1B .0,0,0,…C .0,12,14,18,…D .-1,-1,1,-1,…答案:A2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12答案:D3.若等比数列的前三项分别为5,-15,45,则第5项是________. 答案:4054.在等比数列{a n }中,(1)已知a 3=9,a 6=243,求a 5;(2)已知a 1=98,a n =13,q =23,求n .解:(1)∵a 6=a 3q 3,∴q 3=27,∴q =3. ∴a 5=a 6·13=81.(2)∵a n =a 1q n -1,∴13=98·(23)n -1.∴(23)n -1=(23)3,∴n =4.一、选择题1.等比数列{a n }中,a 1=2,q =3,则a n 等于( )A .6B .3×2n -1C .2×3n -1 D .6n 答案:C2.在等比数列{a n }中,若a 2=3,a 5=24,则数列{a n }的通项公式为( ) A.32·2n B.32·2n -2 C .3·2n -2 D .3·2n -1解析:选C.∵q 3=a 5a 2=243=8,∴q =2,而a 1=a 2q =32,∴a n =32×2n -1=3·2n -2.3.等比数列{a n }中,a 1+a 2=8,a 3-a 1=16,则a 3等于( ) A .20 B .18 C .10 D .8 解析:选B.设公比为q (q ≠1),则 a 1+a 2=a 1(1+q )=8,a 3-a 1=a 1(q 2-1)=16,两式相除得:1q -1=12,解得q =3.。

2021_2022版高中数学第三章不等式3.1.2不等式的性质素养评价检测含解析新人教A版必修5

2021_2022版高中数学第三章不等式3.1.2不等式的性质素养评价检测含解析新人教A版必修5

不等式的性质(20分钟35分)1.如果-1<a<b<0,则有( )A.<<b2<a2B.<<a2<b2C.<<b2<a2D.<<a2<b2【解析】选A.取a=-,b=-,分别计算出=-3,=-2,b2=,a2=,由此能够判断出,,b2,a2的大小.2.若<<0,则下列结论正确的是( )A.a2>b2B.1>>C.+<2D.ae b>be a(e≈2.718 28…)【解析】选D.因为<<0,所以b<a<0,所以-b>-a>0,所以(-b)2>(-a)2,所以a2<b2,故A错误;又y=在R上是减函数,所以>>1,故B错误;又+-2==>0,所以+>2,故C错误;又0<<1,0<<1,所以·<1,又b·e a<0,所以ae b>be a,故D正确.3.已知-<α<β<,则不属于的区间是( )A.(-π,π)B.C.(-π,0)D.(0,π)【解析】选D.因为-<α<β<,所以<0且-π<α-β<π,所以-<<0,所以不属于区间(0,π).4.若a>b>c,则下列不等式成立的是( )A.>B.<C.ac>bcD.ac<bc【解析】选B.因为a>b>c,所以a-c>b-c>0.所以<.【补偿训练】若a>b,x>y,下列不等式不正确的是( ) A.a+x>b+y B.y-a<x-bC.|a|x>|a|yD.(a-b)x>(a-b)y【解析】选C.当a≠0时,|a|>0,|a|x>|a|y,当a=0时,|a|x=|a|y,故|a|x≥|a|y.5.若8<x<10,2<y<4,则的取值范围是.【解析】因为2<y<4,所以<<.因为8<x<10,所以2<<5.答案:(2,5)【补偿训练】设α∈,β∈,则2α-的范围是( ) A. B.C.(0,π)D.【解析】选D.0<2α<π,0≤≤,所以-≤-≤0,得到-<2α-<π.6.已知a>b>c,求证:++>0.【证明】原不等式变形为:+>.又因为a>b>c,所以a-c>a-b>0,所以>,又>0,所以+>,即++>0.(30分钟60分)一、选择题(每小题5分,共25分)1.设x<a<0,则下列不等式一定成立的是( )A.x2<ax<a2B.x2>ax>a2C.x2<a2<axD.x2>a2>ax【解析】选B.因为x<a<0,所以ax>a2,x2>ax,所以x2>ax>a2.2.已知x>y>z,且x+y+z=1,则下列不等式中成立的是( )A.xy>yzB.xy>xzC.xz>yxD.x|y|>z|y|【解析】选B.因为x>y>z,且x+y+z=1,所以x>0,所以xy>xz.3.已知a>b>0,c>0且c≠1,则下列不等式一定成立的是( )A.log c a>log c bB.c a>c bC.ac>bcD.>【解析】选C.因为a>b>0,所以当0<c<1时,log c a<log c b,c a<c b,当c>1时log c a>log c b,c a>c b,所以ac>bc,<.4.已知a,b,c为实数,则下列结论正确的是( )A.若ac>bc>0,则a>bB.若a>b>0,则ac>bcC.若a>b,c>0,则ac>bcD.若a>b,则ac2>bc2【解析】选C.对于A,当c<0时,不等式不成立,故A不正确;对于B,当c<0时,不等式不成立,故B不正确;对于C,因为a>b,c>0,所以ac>bc,故C正确;对于D,当c=0时,不等式不成立,故D不正确.5.若x∈(e-1,1),a=ln x,b=2ln x,c=ln3x,则( )A.a<b<cB.c<a<bC.b<a<cD.b<c<a【解析】选C.因为<x<1,所以-1<ln x<0.令t=ln x,则-1<t<0.所以a-b=t-2t=-t>0,所以a>b.c-a=t3-t=t(t2-1)=t(t+1)(t-1),又因为-1<t<0,所以0<t+1<1,-2<t-1<-1,所以c-a>0,所以c>a,所以c>a>b.【补偿训练】设0<a<b,c∈R,则下列不等式中不成立的是( ) A.< B.-c>-cC.>D.ac2<bc2【解析】选D.因为y=在(0,+∞)上是增函数,所以<,因为y=-c在(0,+∞)上是减函数,所以-c>-c,因为-=>0,所以>,当c=0时,ac2=bc2,所以D不成立.二、填空题(每小题5分,共15分)6.若-1<x<y<0,则,,x2,y2的大小关系为.【解析】因为-1<x<y<0,所以1>-x>-y>0,xy>0,所以x2>y2,>.因为y2>0,<0,所以x2>y2>>.答案:x2>y2>>【补偿训练】若a>b>c>0,则,,,c从小到大的顺序是. 【解析】=,=,=,因为a>b>c>0,所以>>,因为<<<,所以c<<<.答案:c<<<7.已知-1<2x-1<1,则-1的取值范围是.【解析】-1<2x-1<1⇒0<x<1⇒>1⇒>2⇒-1>1.答案:(1,+∞)【补偿训练】已知2b<a<-b,则的取值范围为.【解析】因为2b<a<-b,所以2b<-b,所以b<0.所以<<,即-1<<2.答案:-1<<28.已知-1<a+b<3且2<a-b<4,则2a+3b的取值范围是. 【解析】设2a+3b=m(a+b)+n(a-b)=(m+n)a+(m-n)b,所以所以m=,n=-.所以2a+3b=(a+b)-(a-b).因为-1<a+b<3,2<a-b<4,所以-<(a+b)<,-2<-(a-b)<-1,所以-<(a+b)-(a-b)<,即-<2a+3b<.答案:-<2a+3b<三、解答题(每小题10分,共20分)9.已知a>b,<,求证:ab>0.【证明】因为<,所以-<0,即<0,而a>b,所以b-a<0,所以ab>0.10.已知函数f(x)=ax2-c,-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围. 【解析】因为f(x)=ax2-c,所以即解得所以f(3)=9a-c=f(2)-f(1).又因为-4≤f(1)≤-1,-1≤f(2)≤5,所以≤-f(1)≤,-≤f(2)≤,所以-1≤f(2)-f(1)≤20,即-1≤f(3)≤20.【补偿训练】已知x,y为正实数,且1≤lg(xy)≤2,3≤lg ≤4,求lg(x4y2)的取值范围. 【解析】由题意,设a=lg x,b=lg y,所以lg(xy)=a+b,lg=a-b,lg(x4y2)=4a+2b.设4a+2b=m(a+b)+n(a-b)=(m+n)a+(m-n)b,所以解得又因为3≤3(a+b)≤6,3≤a-b≤4,所以6≤4a+2b≤10,所以lg(x4y2)的取值范围为[6,10].1.已知三个不等式①ab>0;②>;③bc>ad.若以其中的两个作为条件,余下的一个作为结论,则可以组成个正确命题.【解析】①②⇒③,③①⇒②.(证明略).②③⇒①:由②得>0,又由③得bc-ad>0.所以ab>0⇒①.所以可以组成3个正确命题.答案:32.设a≥b≥c,且1是一元二次方程ax2+bx+c=0的一个实根,求的取值范围.【解析】因为1是一元二次方程ax2+bx+c=0的一个实根,所以a+b+c=0,因为a≥b≥c,所以a>0得b=-a-c,因为a≥b≥c,即a≥-a-c≥c,即得,因为a>0,则不等式等价为, 即,得-2≤≤-,综上,的取值范围为-2≤≤-.。

2020年高中数学 人教A版 必修5 课后作业本《等差数列的前n项和公式的性质及应用》(含答案解析)

2020年高中数学 人教A版 必修5 课后作业本《等差数列的前n项和公式的性质及应用》(含答案解析)

2020年高中数学 人教A 版 必修5 课后作业本《等差数列的前n 项和公式的性质及应用》一、选择题1.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .112.数列{a n }为等差数列,若a 1=1,d=2,S k +2-S k =24,则k=( )A .8B .7C .6D .53.记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6=( ) A .16 B .24 C .36 D . 484.设{a n }是等差数列,若a 2=3,a 7=13,则数列{a n }的前8项和为( )A .128B .80C .64D .565.数列{a n }是等差数列,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( )A .160B .180C .200D .2206.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项7.等差数列{a n }的前n 项和为S n ,已知a m-1+a m +1-a 2m =0,S 2m-1=38,则m=( )A .38B .20C .10D .9二、填空题8.有两个等差数列{a n },{b n },它们的前n 项和分别为S n 和T n .若S n T n =2n +1n +2,则a 8b 7等于________.9.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是________.10.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________.11.已知等差数列{a n },{b n }的前n 项和分别为A n ,B n ,且满足A n B n =2n n +3,则a 1+a 2+a 12b 2+b 4+b 9=________.12.数列{a n }的通项公式a n =ncos nπ2,其前n 项和为S n ,则S 2 016等于________.三、解答题13.设正项数列{a n }的前n 项和为S n ,并且对于任意n ∈N *,a n 与1的等差中项等于S n ,求数列{a n }的通项公式.14.已知等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.15.某电站沿一条公路竖立电线杆,相邻两根电线杆的距离都是50 m ,最远一根电线杆距离电站1 550 m ,一汽车每次从电站运出3根电线杆供应施工.若该汽车往返运输总行程为17 500 m ,共竖立多少根电线杆?第一根电线杆距离电站多少米?16.已知数列{a n },a n ∈N *,S n 是其前n 项和,S n =18(a n +2)2. (1)求证{a n }是等差数列;(2)设b n =12a n -30,求数列{b n }的前n 项和的最小值.答案解析1.答案为:A ;解析:a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5a 1+a 52=5a 3=5.2.答案为:D ;解析:∵S k +2-S k =a k +1+a k +2=a 1+kd +a 1+(k +1)d =2a 1+(2k +1)d=2×1+(2k +1)×2=4k+4=24,∴k=5.3.答案为:D ;解析:设数列{a n }的公差为d ,则S n =n 2+n n -12d , ∴S 4=2+6d=20,∴d=3,∴S 6=3+15d=48.4.答案为:C ;解析:设数列{a n }的前n 项和为S n ,则S 8=8a 1+a 82=8a 2+a 72=8×3+132=64.5.答案为:B ;解析:∵{a n }是等差数列,∴a 1+a 20=a 2+a 19=a 3+a 18.又a 1+a 2+a 3=-24,a 18+a 19+a 20=78,∴a 1+a 20+a 2+a 19+a 3+a 18=54.∴3(a 1+a 20)=54.∴a 1+a 20=18.∴S 20=20a 1+a 202=180.6.答案为:A ;解析:∵a 1+a 2+a 3=34,① a n +a n-1+a n-2=146,②又∵a 1+a n =a 2+a n-1=a 3+a n-2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③ S n =a 1+a n ·n 2=390.④ 将③代入④中得n=13.7.答案为:C ;解析:由等差数列的性质,得a m-1+a m +1=2a m ,∴2a m =a 2m .由题意得a m ≠0,∴a m =2.又S 2m-1=2m -1a 1+a 2m -12=2a m 2m -12=2(2m-1)=38,∴m=10.8.答案为:3115; 解析:由{a n },{b n }是等差数列,S n T n =2n +1n +2,不妨设S n =kn(2n +1),T n =kn(n +2)(k≠0), 则a n =3k +4k(n-1)=4kn-k ,b n =3k +2k(n-1)=2kn +k.所以a 8b 7=32k -k 14k +k =3115.9.答案为:20;解析:由已知得3a 3=105,3a 4=99,∴a 3=35,a 4=33,∴d=-2,a n =a 4+(n-4)(-2)=41-2n ,由⎩⎪⎨⎪⎧a n ≥0a n +1<0,得n=20.10.答案为:3;解析:S 奇=a 1+a 3+a 5+a 7+a 9=15,S 偶=a 2+a 4+a 6+a 8+a 10=30,∴S 偶-S 奇=5d=15,∴d=3.11.答案为:32; 解析:a 1+a 2+a 12b 2+b 4+b 9=3a 1+12d 13b 1+12d 2=a 5b 5=a 1+a 92b 1+b 92=9×a 1+a 929×b 1+b 92=A 9B 9=2×99+3=32.12.答案为:1 008;解析:由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 016=504×2=1 008.13.解:由题意知,S n =a n +12,得:S n =a n +124, ∴a 1=S 1=1,又∵a n +1=S n +1-S n =14[(a n +1+1)2-(a n +1)2], ∴(a n +1-1)2-(a n +1)2=0.即(a n +1+a n )(a n +1-a n -2)=0,∵a n >0,∴a n +1-a n =2,∴{a n }是以1为首项,2为公差的等差数列.∴a n =2n-1.14.解:(1)设等差数列{}a n 的公差为d ,则a n =a 1+(n-1)d.由a 1=1,a 3=-3可得1+2d=-3,解得d=-2.从而a n =1+(n-1)×(-2)=3-2n.(2)由(1)可知a n =3-2n.所以S n =n[1+3-2n ]2=2n-n 2. 进而由S k =-35可得2k-k 2=-35,即k 2-2k-35=0.解得k=7或k=-5.又k ∈N *,故k=7为所求结果.15.解:由题意知汽车逐趟(由近及远)往返运输行程组成一个等差数列,记为{a n },则a n =1 550×2=3 100,d=50×3×2=300,S n =17 500.由等差数列的通项公式及前n 项和公式,得⎩⎪⎨⎪⎧ a 1+n -1×300=3 100, ①na 1+n n -12×300=17 500. ②由①得a 1=3 400-300n.代入②得n(3 400-300n)+150n(n-1)-17 500=0,整理得3n 2-65n +350=0,解得n=10或n=353(舍去), 所以a 1=3 400-300×10=400.故汽车拉了10趟,共拉电线杆3×10=30(根),最近的一趟往返行程400 m ,第一根电线杆距离电站12×400-100=100(m). 所以共竖立了30根电线杆,第一根电线杆距离电站100 m.16.解:(1)证明:当n=1时,a 1=S 1=18(a 1+2)2,解得a 1=2. 当n≥2时,a n =S n -S n-1=18(a n +2)2-18(a n-1+2)2, 即8a n =(a n +2)2-(a n-1+2)2,整理得,(a n -2)2-(a n-1+2)2=0,即(a n +a n-1)(a n -a n-1-4)=0.∵a n ∈N *,∴a n +a n-1>0,∴a n -a n-1-4=0,即a n -a n-1=4(n≥2).故{a n }是以2为首项,4为公差的等差数列.(2)设{b n }的前n 项和为T n ,∵b n =12a n -30,且由(1)知a n =2+(n-1)×4=4n -2, ∴b n =12(4n-2)-30=2n-31, 故数列{b n }是单调递增的等差数列.令2n-31=0,得n=1512, ∵n ∈N *,∴当n≤15时,b n <0;当n≥16时,b n >0,即b 1<b 2<…<b 15<0<b 16<b 17<…,当n=15时,T n 取得最小值,最小值为T 15=-29-12×15=-225.。

2019-2020学年高中数学人教A版必修5练习:第三章 3.2 一元二次不等式及其解法 第二课时 一元二次不等式的应

2019-2020学年高中数学人教A版必修5练习:第三章 3.2 一元二次不等式及其解法 第二课时 一元二次不等式的应

一、选择题1.不等式ax 2+5x +c >0的解集为{x |13<x <12},则a 、c 的值.( ) A .a =6,c =1B .a =-6,c =-1C .a =1,c =1D .a =-1,c =-6解析:由题意知,方程ax 2+5x +c =2的两根为x 1=13,x 2=12由根与系数的关系得x 1+x 2=13+12=-5a, x 1·x 2=13×12=c a. 解得a =-6,c =-1答案:C2.(2012·湖南师大附中月考)若关于x 的不等式ax -b >0的解集为(1,+∞),则关于x 的不等式ax +b x -2>0的解集为( ) A .(-1,2)B .(-∞,-1)∪(2,+∞)C .(1,2)D .(-∞,-2)∪(1,+∞)解析:因为关于x 的不等式ax -b >0的解集为(1,+∞),所以a >0,且b a=1,即a =b ,所以关于x 的不等式ax +b x -2>0可化为x +1x -2>0,其解集是(-∞,-1)∪(2,+∞). 答案:B3.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为()解析:由题意得⎩⎪⎨⎪⎧ a<0,-2+1=1a ,-2×1=-c a,解得a =-1,c =-2,则函数y =f (-x )=-x 2+x +2.答案:C4.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-2,2)D .(-2,2]解析:当a -2≠0时,错误!⇔错误!⇔-2<a <2.当a -2=0时,-4<0恒成立.综上所述,-2<a ≤2.答案:D二、填空题5.若方程x 2+(m -3)x +m =0有实数解,则m 的取值范围为________.解析:方程x 2+(m -3)x +m =0有实数解,则Δ=(m -3)2-4m ≥0,解得:m ≤1或m ≥9,答案:{m |m ≤1或m ≥9}6.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合为________.解析:(1)当a =0时,满足题意;(2)当a ≠0时,应满足⎩⎪⎨⎪⎧a>0,Δ≤0,解得0<a ≤4. 综上可知,a 值的集合为{a |0≤a ≤4}.答案:[0,4]7.用一根长为100 m 的绳子能围成一个面积大于600 m 2的矩形吗?________(用“能”或“不能”填空);若“能”,当长、宽分别为________m ,________m(若不能,此处不填)时,所围成的矩形的面积最大.解析:设矩形一边的长为x m ,则另一边的长为(50-x ) m,0<x <50.由题意,得x (50-x )>600,即x 2-50x +600<0,解得20<x <30.所以,当矩形一边的长在(20,30)的范围内取值时,能围成一个面积大于600 m 2的矩形.用S 表示矩形的面积,则S =x (50-x )=-(x -25)2+625(0<x <50).当x =25时,S 取得最大值,此时50-x =25.即当矩形的长、宽都为25 m 时,所围成的矩形的面积最大.答案:能 25 258.函数f (x )=1ax2+3ax +1的定义域是R ,则实数a 的取值范围为________. 解析:由已知f (x )的定义域是R.所以不等式ax 2+3ax +1>0恒成立.(1)当a =0时,不等式等价于1>0,显然恒成立;(2)当a ≠0时,则有⎩⎪⎨⎪⎧a>0,Δ<0⇔错误!⇔错误!⇔0<a <错误!.由(1),(2)知,0≤a <49. 答案:{a |0≤a <49} 三、解答题9.(2012·亳州高二检测)若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}.(1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R?解:(1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎨⎧ 1-a<0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0,解得x <-1或x >32. ∴所求不等式的解集为{x |x <-1或x >32}. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0,若此不等式解集为R ,则b 2-4×3×3≤0,∴-6≤b ≤6.10.某地区上年度电价为0.8元/kW ·h ,年用电量为a 千瓦时.本年度计划将电价降价到0.55元/ kW ·h 至0.75元/ kW ·h 之间,而用户期望电价为0.4元/ kW ·h .经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/千瓦时.(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价-成本价).解:(1)设下调后的电价为x 元/ kW ·h ,依题意知,用电量增至k x -0.4+a ,电力部门的收益为 y =⎝⎛⎭⎫k x -0.4+a (x -0.3)(0.55≤x ≤0.75). (2)依题意,有错误!整理,得⎩⎪⎨⎪⎧x2-1.1x +0.3≥0,0.55≤x≤0.75. 解此不等式,得0.60≤x ≤0.75.∴当电价最低定为0.60元/ kW·h时,仍可保证电力部门的收益比上年度至少增长20%.。

2020_2021学年新教材高中数学模块质量检测含解析新人教A版选择性必修第三册

2020_2021学年新教材高中数学模块质量检测含解析新人教A版选择性必修第三册

模块质量检测一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知变量x 与y 满足关系y =0.8x +9.6,变量y 与z 负相关.下列结论正确的是()A .变量x 与y 正相关,变量x 与z 正相关B .变量x 与y 正相关,变量x 与z 负相关C .变量x 与y 负相关,变量x 与z 正相关D .变量x 与y 负相关,变量x 与z 负相关2.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P(A|B)等于()A .49B .29C .12D .133.某校高二期末考试学生的数学成绩ξ(满分150分)服从正态分布N(75,σ2),且P(60<ξ<90)=0.8,则P(ξ≥90)=()A .0.4B .0.3C .0.2bD .0.14.二项式⎝⎛⎭⎪⎫x -13x 8展开式中的常数项为()A .28B .-28C .56D .-565.已知离散型随机变量X 的分布列为:则随机变量X 的期望为() A .134B .114C .136D .1166.参加完某项活动的6名成员合影留念,前排和后排各3人,不同排法的种数为()A .360B .720C .2160D .43207.为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表:患病 未患病 合计 服用药 10 45 55 没服用药 20 30 50 合计3075105附表及公式:α 0.10 0.05 0.025 0.010 0.005 0.001 x α2.7063.8415.0246.6357.87910.828参考公式:χ2=2(a +b )(c +d )(a +c )(b +d )A .0.025B .0.010C .0.005D .0.0018.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,小球从上方的通道口落下后,将与层层小木块碰撞,最后掉入下方的某一个球槽内.若小球下落过程中向左、向右落下的机会均等,则小球最终落入④号球槽的概率为()A .332B .1564C .532D .516二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合效果越好B .经验回归直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个C.若D(X)=1,Y=2X-1,则D(Y)=4D.设随机变量X~N(μ,7),若P(X<2)=P(X>4),则μ=310.研究变量x,y得到一组样本数据,进行回归分析,以下说法正确的是()A.残差平方和越小的模型,拟合的效果越好B.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好C.在经验回归方程y^=0.2x+0.8中,当解释变量x每增加1个单位时,响应变量y^平均增加0.2个单位D.若变量y和x之间的相关系数为r=-0.9462,则变量y和x之间的负相关很强11.一组数据2x1+1,2x2+1,2x3+1,…,2x n+1的平均值为7,方差为4,记3x1+2,3x2+2,3x3+2,…,3x n+2的平均值为a,方差为b,则()A.a=7B.a=11C.b=12D.b=912.2020年3月,为促进疫情后复工复产期间安全生产,某医院派出甲、乙、丙、丁4名医生到A,B,C三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是()A.若C企业最多派1名医生,则所有不同分派方案共48种B.若每家企业至少分派1名医生,则所有不同分派方案共36种C.若每家企业至少分派1名医生,且医生甲必须到A企业,则所有不同分派方案共12种D.所有不同分派方案共43种三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知随机变量X~N(1,σ2),若P(X>2)=0.2,则P(X>0)=________.14.若随机变量X的分布列如下表,且E(X)=2,则D(2X-3)的值为________.15.某种品牌汽车的销量y()之间具有线性相关关系,样本数据如表所示:经计算得经验回归方程y=b x+a的斜率为0.7,若投入宣传费用为8万元,则该品牌汽车销量的预报值为________万辆.16.已知(ax-1)2020=a0+a1x+a2x2+…+a2020x2020(a>0),得a0=________.若(a0+a2+…+a2020)2-(a1+a3+…+a2019)2=1,则a=________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知⎝⎛⎭⎪⎫x 2+1x n 的展开式中的所有二项式系数之和为32. (1)求n 的值;(2)求展开式中x 4的系数.18.(本小题满分12分)生男生女都一样,女儿也是传后人,由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.(1)完成下列2×2列联表:(2)附:χ2=n2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d).19.(本小题满分12分)据某县水资源管理部门估计,该县10%的乡村饮用水井中含有杂质A.为了弄清该估计值是否正确,需要进一步验证.由于对所有的水井进行检测花费太大,所以决定从全部饮用水井中随机抽取5口水井检测.(1)假设估计值是正确的,求抽取5口水井中至少有1口水井含有杂质A的概率;(2)在概率中,我们把发生概率非常小(一般以小于0.05为标准)的事件称为小概率事件,意思是说,在随机试验中,如果某事件发生的概率非常小,那么它在一次试验中几乎是不可能发生的.假设在随机抽取的5口水井中有3口水井含有杂质A,试判断“该县10%的乡村饮用水井中含有杂质A”的估计是否正确,并说明理由.参考数据:93=729,94=6561,95=59049.20.(本小题满分12分)在全国科技创新大会上,主席指出为建设世界科技强国而奋斗.某科技公司响应号召基于领先技术的支持,不断创新完善,业内预测月纯利润在短期内逐月攀升.该公司在第1个月至第9个月的月纯利润y(单位:万元)关于月份x 的数据如表:(2)请预测第12个月的纯利润. 附:经验回归的方程是:y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x -y -i =1n(x i -x -)2,a ^=y --b ^x -.参考数据:∑i =19x i y i =1002,i =19(x i -x -)2=60.21.(本小题满分12分)1933年7月11日,中华苏维埃某某国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日,中华人民某某国成立后,将此纪念日改称为中国人民解放军建军节,为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中间产生,该班委设计了一个测试方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答,已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的.(1)求A 恰好答对两个问题的概率; (2)求B 恰好答对两个问题的概率;(3)设A 答对题数为X ,B 答对题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.22.(本小题满分12分)某汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x(亿元)与科技改造直接收益y(亿元)的数据统计如下:模型①:y ^=4.1x +11.8;模型②:y ^=21.3x -14.4;当x>16时,确定y 与x 满足的经验回归方程为:y ^=-0.7x +a.(1)根据下列表格中的数据,比较当0<x ≤16时模型①、②的相关指数R 2,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为16亿元时的直接收益.(附:刻画回归效果的相关指数R 2=1-i =1n(y i -y ^i )2i =1n(y i -y -)2.)(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入16亿元与20亿元时公司实际收益的大小.(附:用最小二乘法求经验回归方程y ^=b ^x +a ^的系数公式b ^=∑i =1nx i y i -n x -·y -∑i =1n x 2i -n x -2=i =1n(x i -x -)(y i -y -)i =1n(x i -x -)2;a ^=y --b ^x -)(3)科技改造后,“东方红”款汽车发动机的热效率X 大幅提高,X 服从正态分布N(0.52,0.012),公司对科技改造团队的奖励方案如下:若发动机的热效率不超过50%,不予鼓励;若发动机的热效率超过50%但不超过53%,每台发动机奖励2万元;若发动机的热效率超过53%,每台发动机奖励4万元.求每台发动机获得奖励的分布列和数学期望.(附:随机变量ξ服从正态分布N(μ,σ2),则 P(μ-σ<ξ<μ+σ)=0.6827, P(μ-2σ<ξ<μ+2σ)=0.9545.)模块质量检测1.解析:根据变量x 与y 满足关系y =0.8x +9.6可知,变量x 与y 正相关;再由变量y 与z 负相关知,变量x 与z 负相关.故选B .答案:B2.解析:甲独自去一个景点有3种,乙、丙有2×2=4种,则B “甲独自去一个景点”,共有3×4=12种,A “三个人去的景点不相同”,共有3×2×1=6种,概率P(A|B)=612 =12 .故选C .答案:C3.解析:∵数学成绩ξ服从正态分布N(75,σ2),则正态分布曲线的对称轴方程为x =75,又P(60<ξ<90)=0.8,∴P(ξ≥90)=12 [1-P(60<ξ<90)]=12(1-0.8)=0.1.故选D .答案:D4.解析:二项式⎝⎛⎭⎪⎫x -13x 8展开式的通项公式为T r +1=C r 8 x8-r ⎝ ⎛⎭⎪⎫-13x r=(-1)r C r 8 x 8-4r3,令8-4r 3=0,解得r =6,∴二项式⎝ ⎛⎭⎪⎫x -13x 8展开式中的常数项为(-1)6C 68=28.故选A .答案:A5.解析:由分布列的概率的和为1,可得:缺失数据:1-13 -16 =12.所以随机变量X 的期望为:1×13 +2×16 +3×12 =136 .故选C .答案:C6.解析:根据题意,分2步进行分析:①在6人中任选3人,安排在第一排,有C 36 A 33 =120种排法;②将剩下的3人全排列,安排在第二排,有A 33 =6种排法; 则有120×6=720种不同的排法;故选B . 答案:B7.解析:χ2=105(10×30-20×45)255×50×30×75 ≈6.109∈(5.024,6.635)所以这种推断犯错误的概率不超过0.025,故选A . 答案:A8.解析:设这个球落入④号球槽为时间A ,落入④号球槽要经过两次向左,三次向右,所以P(A)=C 35⎝ ⎛⎭⎪⎫12 3 ⎝ ⎛⎭⎪⎫12 2 =516 .故选D .答案:D9.解析:对于A ,在残差图中,残差点比较均匀的分布在水平带状区域中,带状区域越窄,说明模型的拟合效果越好,选项正确;对于B ,经验回归直线不一定经过样本数据中的一个点,它是最能体现这组数据的变化趋势的直线,选项错误;对于C ,D(Y)=D(2X -1)=22D(X)=4×1=4,选项正确;对于D ,随机变量X ~N(μ,7),若P(X<2)=P(X>4),则μ=2+42=3,选项正确;综上可得,正确的选项为A ,C ,D ,故选ACD . 答案:ACD10.解析:A 可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故A 正确;B 用相关指数R 2来刻画回归效果,R 2越大说明拟合效果越好,故B 错误;C 在经验回归方程y ^ =0.2x +0.8中,当解释变量x 每增加1个单位时,响应变量y ^平均增加0.2个单位,故C 正确;D 若变量y 和x 之间的相关系数为r =-0.946 2,r 的绝对值趋向于1,则变量y 和x 之间的负相关很强,故D 正确.故选ACD .答案:ACD11.解析:设X =(x 1,x 2,x 3,…,x n ),数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的平均值为7,方差为4, 即E(2X +1)=7,D(2X +1)=4, 由离散型随机变量均值公式可得E(2X +1)=2E(X)+1=7,所以E(X)=3,因而3x 1+2,3x 2+2,3x 3+2,…,3x n +2的平均值为a =E(3X +2)=3E(X)+2=3×3+2=11;由离散型随机变量的方差公式可得 D(2X +1)=4D(X)=4,所以D(X)=1,因而3x 1+2,3x 2+2,3x 3+2,…,3x n +2的方差为b =D(3X +2)=9D(X)=9,故选BD .答案:BD12.解析:对于选项A :若C 企业没有派医生去,每名医生有2种选择,则共有24=16种,若C 企业派1名医生则有C 14 ·23=32种,所以共有16+32=48种.对于选项B :若每家企业至少分派1名医生,则有C 24 C 12 C 11A 22·A 33 =36种.对于选项C :若每家企业至少分派1名医生,且医生甲必须到A 企业,若甲企业分2人,则有A 33 =6种;若甲企业分1人,则有C 23 C 11 A 22 =6种,所以共有6+6=12种.对于选项D :所有不同分派方案共有34种.故选ABC .答案:ABC13.解析:因为随机变量X ~N(1,σ2),P(X>2)=0.2,所以P(X<0)=P(X>2)=0.2,因此P(X>0)=1-P(X ≤0)=1-0.2=0.8.答案:0.814.解析:由题意可得:16 +p +13 =1,解得p =12 ,因为E(X)=2,所以:0×16 +2×12 +a ×13=2,解得a =3. D(X)=(0-2)2×16+(2-2)2×12+(3-2)2×13=1. D(2X -3)=4D(X)=4. 答案:415.解析:由题意可得x - =3+4+5+64 =4.5;y - =2.5+3+4+4.54=3.5;经验回归方程y ^ =b ^ x +a ^ 的斜率为0.7,可得y ^ =0.7x +a ^,所以3.5=0.7×4.5+a ^ ,可得a ^ =0.35,经验回归方程为:y ^=0.7x +0.35,投入宣传费用为8万元,则该品牌汽车销量的预报值为:0.7×8+0.35=5.95(万辆). 答案:5.9516.解析:已知(ax -1)2 020=a 0+a 1x +a 2x 2+…+a 2 020x 2 020(a>0), 令x =0,可得a 0=1.令x =1得,(a -1)2 020=a 0+a 1+a 2+…+a 2 020,令x =-1得,(-a -1)2 020=a 0-a 1+a 2-a 3+…+a 2 020,而(a 0+a 2+…+a 2 020)2-(a 1+a 3+…+a 2 019)2=(a 0+a 1+a 2+…+a 2 020)(a 0-a 1+a 2-a 3+…+a 2 020)=(a -1)2 020(-a -1)2 020=[(a -1)(-a -1)]2 020=(a 2-1)2 020=1,解得a =2 (负值和0舍).答案:1217.解析:(1)由题意可得,2n =32,解得n =5;(2)⎝ ⎛⎭⎪⎫x 2+1x n =⎝⎛⎭⎪⎫x 2+1x 5 , 二项展开式的通项为T r +1=C r5(x 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5 x10-3r . 由10-3r =4,得r =2. ∴展开式中x 4的系数为C 25 =10.18.解析:(1)因为头胎为女孩的频率为0.5,所以头胎为女孩的总户数为200×0.5=100.因为生二孩的概率为0.525,所以生二孩的总户数为200×0.525=105. 2×2列联表如下:(2)由2×2列联表得:χ2=200(60×55-45×40)2105×95×100×100 =600133≈4.511>3.841=x 0.05故在犯错误的概率不超过0.05的前提下能认为是否生二孩与头胎的男女情况有关. 19.解析:(1)假设估计值是正确的,即随机抽一口水井,含有杂质A 的概率p =0.1.抽取5口水井中至少有1口水井含有杂质A 的概率P =1-(1-0.1)5=0.409 51;(2)在随机抽取的5口水井中有3口水井含有杂质A 的概率为C 35 ·(0.1)3·(0.9)2=0.0081<0.05.说明在随机抽取的5口水井中有3口水井含有杂质A 是小概率事件,它在一次试验中几乎是不可能发生的,说明“该县10%的乡村饮用水井中含有杂质A ”的估计是错误的.20.解析:(1)x -=19 (1+2+3+4+5+6+7+8+9)=5,y - =19(13+14+17+18+19+23+24+25+27)=20.b ^ =∑i =19x i y i -9x - y-∑i =19(x i -x -)2=1 002-9×5×2060=1.7.a ^=y --b ^x -=20-1.7×5=11.5.∴y 关于x 的经验回归方程为y =1.7x +11.5; (2)由y =1.7x +11.5,取x =12, 得y =1.7×12+11.5=31.9(万元). 故预测第12个月的纯利润为31.9万元.21.解析:(1)A ,B 两名学生各自从6个问题中随机抽取3个问题作答.这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的. A 恰好答对两个问题的概率为:P 1=C 24 C 12C 36=35.(2)B 恰好答对两个问题的概率为C 23⎝ ⎛⎭⎪⎫232·13=49. (3)X 所有可能的取值为1,2,3.P (X =1)=C 14 C 22 C 36 =15;P (X =2)=C 24 C 12 C 36 =35;P (X =3)=C 34 C 02 C 36=15.所以E (X )=1×15+2×35+3×15=2.由题意,随机变量Y ~B ⎝ ⎛⎭⎪⎫3,23,所以E (Y )=3×23=2.D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25.D (Y )=3×23×13=23.因为E (X )=E (Y ),D (X )<D (Y ),可见,A 与B 的平均水平相当,但A 比B 的成绩更稳定, 所以选择投票给学生A .22.解析:(1)由表格中的数据,有182.4>79.2,即182.4∑i =17(y i -y -)2>79.2∑i =17(y i -y -)2,所以模型①的R 2小于模型②,说明回归模型②刻画的拟合效果更好. 所以当x =16亿元时,科技改造直接收益的预测值为: y ^=21.3×16 -14.4=70.8(亿元).(2)由已知可得:x --20=1+2+3+4+55=3,∴x - =23,y --60=8.5+8+7.5+6+65 =7.2,∴y -=67.2,∴a =y - +0.7x -=67.2+0.7×23=83.3, ∴当x>16亿元时,y 与x 满足的经验回归方程为: y ^=-0.7x +83.3,∴当x =20亿元时,科技改造直接收益的预测值 y ^=-0.7×20+83.3=69.3,∴当x =20亿元时,实际收益的预测值为 69.3+10=79.3亿元>70.8亿元,∴科技改造投入20亿元时,公司的实际收益更大. (3)∵P(0.52-0.02<X<0.52+0.02)=0.954 5, P(X>0.50)=1+0.954 52 =0.977 25,P(X ≤0.5)=1-0.954 52 =0.022 75,∵P(0.52-0.1<X<0.52+0.1)=0.682 7, ∴P(X>0.53)=1-0.682 72=0.158 65,∴P(0.50<X ≤0.53)=0.977 25-0.158 65=0.818 6, 设每台发动机获得的奖励为Y(万元),则Y 的分布列为:∴每台发动机获得奖励的数学期望E(Y)=0×0.022 75+2×0.818 6+4×0.158 65=2.271 8(万元).。

高中数学 阶段质量检测(二)数列(含解析)新人教A版必修5-新人教A版高二必修5数学试题

高中数学 阶段质量检测(二)数列(含解析)新人教A版必修5-新人教A版高二必修5数学试题

阶段质量检测(二) 数 列(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.等差数列-2,0,2,…的第15项为( ) A .11 2 B .122C .13 2 D .14 2 解析:选C ∵a 1=-2,d =2, ∴a n =-2+(n -1)×2=2n -2 2. ∴a 15=152-22=13 2.2.等差数列{}a n 中,a 1+a 5=10,a 4=7,则数列{}a n 的公差为( ) A .1 B .2 C .3 D .4解析:选B ∵a 1+a 5=2a 3=10, ∴a 3=5,∴d =a 4-a 3=7-5=2.3.已知在递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6=( )A .93B .189 C.18916D .378解析:选B 设数列的公比为q ,由题意可知q >1,且2(a 2+2)=a 1+1+a 3,即2×(6+2)=6q+1+6q ,整理可得2q 2-5q +2=0,则q =2或q =12(舍去).∴a 1=62=3,该数列的前6项和S 6=3×1-261-2=189.故选B.4.记等差数列{}a n 的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d =( ) A .2 B .3 C .6 D .7 解析:选B S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d =16-4=12, ∴d =3.5.已知数列{}a n 的前n 项和S n =n 2-2n +2,则数列{}a n 的通项公式为( )A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -3.又当n =1时,a 1的值不适合n ≥2时的通项公式,故选C.6.已知等比数列的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,则数列lg a 1,2lg a 2,22lga 3,23lg a 4,…,2n -1lg a n ,…的前n 项和S n 等于( )A .n ·2nB .(n -1)·2n -1-1C .(n -1)·2n+1 D .2n+1解析:选C ∵等比数列{a n }的各项都为正数,且当n ≥3时,a 4a 2n -4=102n,∴a 2n =102n,即a n =10n,∴2n -1lg a n =2n -1lg 10n =n ·2n -1,∴S n =1+2×2+3×22+…+n ·2n -1,①2S n =1×2+2×22+3×23+…+n ·2n,② ∴①-②得-S n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )·2n-1,∴S n =(n -1)·2n+1.7.数列{a n }满足a 1=1,且a n +1=a 1+a n +n (n ∈N *),则1a 1+1a 2+…+1a 2 019=( )A.4 0382 020B.4 0362 019C.4 0322 017D.4 0342 018解析:选A ∵a n +1-a n =n +1,a n -a n -1=n -1+1,…,a 2-a 1=1+1, ∴a n +1-a 1=1+n n 2+n ,即a n +1=nn +12+n +1,∴a n =n n -12+n =n n +12,1a n =2⎝ ⎛⎭⎪⎫1n -1n +1,1a 1+1a 2+…+1a 2 019=2⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫12 019-12 020=2×⎝ ⎛⎭⎪⎫1-12 020=4 0382 020.故选A.8.设{}a n 是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值解析:选C 由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0. 由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9 =2(a 7+a 8)<0,即S 9<S 5.9.已知数列{}a n 中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n等于( )A.n (n +1)2B.2n (n +1)C.n 2(n +1)D.2nn +1解析:选D 由已知得a n -a n +1+1=0, 即a n +1-a n =1.∴数列{}a n 是首项为1,公差为1的等差数列. ∴S n =n +n (n -1)2×1=12n 2+12n ,∴1S n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1∴1S 1+1S 2+1S 3+…+1S n=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 10.等比数列{}a n 的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{}b n ,那么162是新数列{}b n 的( )A .第5项B .第12项C .第13项D .第6项解析:选C 162是数列{}a n 的第5项,则它是新数列{}b n 的第5+(5-1)×2=13项. 11.设数列{}a n 是以2为首项,1为公差的等差数列,{}b n 是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10等于( )A .1 033B .1 034C .2 057D .2 058解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1,因此ab 1+ab 2+…+ab 10=(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10=1-2101-2+10=1 033.12.已知数列{a n }的通项公式为a n =1n +1n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 018中,有理数项的项数为( )A .42B .43C .44D .45 解析:选 B 1a n=(n +1)n +n n +1=n +1n ·(n +1+n )=n +1n⎝ ⎛⎭⎪⎫1n +1-n , a n =n +1-n n +1n =1n -1n +1,S n =a 1+a 2+a 3+…+a n =1-12+12-13+…+1n -1n +1=1-1n +1, 问题等价于在2,3,4,…,2 019中有多少个数可以开方,设2≤x 2≤2 019且x ∈N ,因为442=1 936,452=2 025,所以2≤x ≤44且x ∈N ,共有43个.故选B.二、填空题13.数列{}a n 满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14.∴a 5=14+a 1=14+1=15. 答案:1514.一件家用电器,现价2 000元,实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为0.8%,并按复利计息,那么每期应付款________________元(参考数据:1.00811≈1.092,1.00812≈1.100,1.0811≈2.332,1.0812≈2.518).解析:设每期应付款x 元,第n 期付款后欠款A n 元, 则A 1=2 000(1+0.008)-x =2 000×1.008-x ,A 2=(2 000×1.008-x )×1.008-x =2 000×1.0082-1.008x -x ,…, A 12=2 000×1.00812-(1.00811+1.00810+…+1)x ,因为A 12=0,所以2 000×1.00812-(1.00811+1.00810+…+1)x =0, 解得x = 2 000×1.008121+1.008+…+1.00811=2 000×1.008121.00812-11.008-1≈176, 即每期应付款176元. 答案:17615.数列{}a n 满足递推公式a n =3a n -1+3n-1(n ≥2),又a 1=5,则使得⎩⎨⎧⎭⎬⎫a n +λ3n为等差数列的实数λ=______.解析:a 1=5,a 2=23,a 3=95,令b n =a n +λ3n,则b 1=5+λ3,b 2=23+λ9,b 3=95+λ27,∵b 1+b 3=2b 2,∴λ=-12.答案:-1216.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x 、y ∈R,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值X 围为________.解析:依题意得f (n +1)=f (n )·f (1),即a n +1=a n ·a 1=12a n ,所以数列{a n }是以12为首项,12为公比的等比数列,所以S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n ,所以S n ∈⎣⎢⎡⎭⎪⎫12,1.答案:⎣⎢⎡⎭⎪⎫12,1 三、解答题17.(本小题10分)等比数列{}a n 中,已知a 1=2,a 4=16, (1)求数列{}a n 的通项公式;(2)若a 3,a 5分别为等差数列{}b n 的第3项和第5项,试求数列{}b n 的通项公式及前n 项和S n .解:(1)设{}a n 的公比为q ,由已知得16=2q 3,解得q =2,∴a n =2n. (2)由(1)得a 3=8,a 5=32, 则b 3=8,b 5=32. 设{}b n 的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28, 所以数列{}b n 的前n 项和S n =n (-16+12n -28)2=6n 2-22n .18.(本小题12分)数列{}a n 的前n 项和为S n ,数列{}b n 中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,=a n -1.(1)求证:数列{}是等比数列; (2)求数列{}b n 的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n , ① ∴a 1+S 1=1,得a 1=12.又a n +1+S n +1=n +1, ②①②两式相减得2(a n +1-1)=a n -1, 即a n +1-1a n -1=12,也即+1=12, 故数列{}是等比数列. (2)∵c 1=a 1-1=-12,∴=-12n ,a n =+1=1-12n ,a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12,符合上式,∴b n =12n .19.(本小题12分)X 先生2018年年底购买了一辆1.6 L 排量的小轿车,为积极响应政府发展森林碳汇(指森林植物吸收大气中的二氧化碳并将其固定在植被或土壤中)的号召,买车的同时出资1万元向中国绿色碳汇基金会购买了2亩荒山用于植树造林.科学研究表明:轿车每行驶3 000公里就要排放1吨二氧化碳,林木每生长1立方米,平均可吸收1.8吨二氧化碳.(1)X 先生估计第一年(即2019年)会用车1.2万公里,以后逐年会增加1 000公里,则该轿车使用10年共要排放二氧化碳多少吨?(2)若种植的林木第一年(即2019年)生长了1立方米,以后每年以10%的生长速度递增,问林木至少生长多少年,吸收的二氧化碳的量超过轿车10年排出的二氧化碳的量(参考数据:1.114≈3.797 5,1.115≈4.177 2,1.116≈4.595 0)?解:(1)设第n 年小轿车排出的二氧化碳的吨数为a n (n ∈N *), 则a 1=12 0003 000=4,a 2=13 0003 000=133,a 3=14 0003 000=143,…,显然其构成首项为a 1=4,公差为d =a 2-a 1=13的等差数列,所以S 10=10×4+10×92×13=55,即该轿车使用10年共排放二氧化碳55吨. (2)记第n 年林木吸收二氧化碳的吨数为b n (n ∈N *),则b 1=1×1.8,b 2=1×(1+10%)×1.8,b 3=1×(1+10%)2×1.8,…, 其构成首项为b 1=1.8,公比为q =1.1的等比数列, 记其前n 项和为T n , 由题意,有T n =1.8×1-1.1n1-1.1=18×(1.1n-1)≥55,解得n ≥15.所以林木至少生长15年,其吸收的二氧化碳的量超过轿车10年排出的二氧化碳的量. 20.(本小题12分)在数列{}a n 中,a 1=1,a n +1=2a n +2n.(1)设b n =a n2n -1.证明:数列{}b n 是等差数列;(2)求数列{}a n 的前n 项和S n .解:(1)证明:由已知a n +1=2a n +2n,得b n +1=a n +12n=2a n +2n2n=a n2n -1+1=b n +1,∴b n +1-b n =1,又b 1=a 1=1.∴{}b n 是首项为1,公差为1的等差数列. (2)由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2·21+3·22+…+n ·2n -1,两边乘以2得: 2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n,两式相减得:-S n =1+21+22+…+2n -1-n ·2n=2n-1-n ·2n=(1-n )2n-1,∴S n =(n -1)·2n+1.21.(本小题12分)已知等差数列{}a n 的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列.(1)求数列{}a n 的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.解:(1)因为数列{}a n 是等差数列, 所以a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d .依题意,有⎩⎪⎨⎪⎧S 5=70,a 27=a 2a 22.即⎩⎪⎨⎪⎧5a 1+10d =70,(a 1+6d )2=(a 1+d )(a 1+21d ). 解得a 1=6,d =4.所以数列{}a n 的通项公式为a n =4n +2(n ∈N *).(2)证明:由(1)可得S n =2n 2+4n . 所以1S n=12n 2+4n =12n (n +2)=14⎝ ⎛⎭⎪⎫1n -1n +2.所以T n =1S 1+1S 2+1S 3+…+1S n -1+1S n=14⎝ ⎛⎭⎪⎫1-13+14⎝ ⎛⎭⎪⎫12-14+14⎝ ⎛⎭⎪⎫13-15+…+14×⎝ ⎛⎭⎪⎫1n -1-1n +1+14⎝ ⎛⎭⎪⎫1n -1n +2=14⎝⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2.因为T n -38=-14⎝ ⎛⎭⎪⎫1n +1+1n +2<0所以T n <38.因为T n +1-T n =14⎝ ⎛⎭⎪⎫1n +1-1n +3>0, 所以数列{}T n 是递增数列, 所以T n ≥T 1=16.所以16≤T n <38.22.(本小题12分)(2018·某某高考)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.解:(1)由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28, 解得a 4=8.由a 3+a 5=20,得8⎝⎛⎭⎪⎫q +1q =20,解得q =2或q =12.因为q >1,所以q =2.(2)设=(b n +1-b n )a n ,数列{}的前n 项和为S n .由=⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,解得=4n -1.由(1)可得a n =2n -1,所以b n +1-b n =(4n -1)×⎝ ⎛⎭⎪⎫12n -1,故b n -b n -1=(4n -5)×⎝ ⎛⎭⎪⎫12n -2,n ≥2, b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)×⎝ ⎛⎭⎪⎫12n -2+(4n -9)×⎝ ⎛⎭⎪⎫12n -3+…+7×12+3.设T n =3+7×12+11×⎝ ⎛⎭⎪⎫122+…+(4n -5)×⎝ ⎛⎭⎪⎫12n -2,n ≥2.则12T n =3×12+7×⎝ ⎛⎭⎪⎫122+…+(4n -9)×⎝ ⎛⎭⎪⎫12n -2+(4n -5)×⎝ ⎛⎭⎪⎫12n -1,所以12T n =3+4×12+4×⎝ ⎛⎭⎪⎫122+…+4×⎝ ⎛⎭⎪⎫12n -2-(4n -5)×⎝ ⎛⎭⎪⎫12n -1, 所以T n =14-(4n +3)×⎝ ⎛⎭⎪⎫12n -2,n ≥2.又b 1=1,所以b n =15-(4n +3)×⎝ ⎛⎭⎪⎫12n -2.。

【新教材】高中数学新教材人教A版选择性必修培优练习:专题05 直线的倾斜角与斜率(学生版+解析版)

【新教材】高中数学新教材人教A版选择性必修培优练习:专题05 直线的倾斜角与斜率(学生版+解析版)

专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30B .45C .60D .902.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0B .3πC .2π D .π3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( )A .4πB .34π C .54π D .2π 4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6B .-7C .-8D .-95.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3)B .(0,1)C .(3,3)D .(3,2)7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( ) A .-1B .-2C .2D .18.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( )A .0B .2π C .56π D .π10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.⎡⎢⎣⎦D.,⎛-∞ ⎝⎦⎫+∞⎪⎪⎣⎭二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角; D .坐标平面上所有的直线都有斜率.13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________.17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒. 19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围.20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α. (1)求tan α;(2)求sin α,cos2α的值.21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α. (1)写出α关于m 的函数解析式; (2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围.22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围; (2)直线l 倾斜角α的范围;23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30 B .45C .60D .90【答案】D 【解析】直线x ∴其倾斜角为90. 故选:D .2.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0 B .3πC .2π D .π【答案】C 【解析】直线1x =与x 轴垂直,故倾斜角为2π. 故选:C.3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( ) A .4π B .34π C .54π D .2π 【答案】B 【解析】由题意,直线10x y ++=的斜率为1k =- 故3tan 14k παα==-∴= 故选:B4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6 B .-7C .-8D .-9【答案】D 【解析】(3,1)A 、(2,)B k -、(8,11)C 三点在同一条直线上,∴直线AB 和直线AC 的斜率相等, ∴11112383k --=---,解得9k =-.故选:D .5.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒ B .60︒C .120︒D .150︒【答案】C 【解析】由题意知,直线的斜率k =即直线的倾斜角α满足tan α=, 又0180α︒︒≤<,120α︒∴=,故选:C6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3) B .(0,1)C .(3,3)D .(3,2)【答案】B 【解析】由直线的倾斜角为45°,则直线的斜率为tan 451k ==,则过点()2,3-与点(1,2)的直线的斜率为321213-=---,显然点()2,3-不满足题意;过点()0,1与点(1,2)的直线的斜率为12101-=-,显然点()0,1满足题意; 过点()3,3与点(1,2)的直线的斜率为321312-=-,显然点()3,3不满足题意; 过点()3,2与点(1,2)的直线的斜率为22031-=-,显然点()2,3-不满足题意; 即点()0,1在倾斜角为45°且过点(1,2)的直线上, 故选:B.7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( )A .-1B .-2C .2D .1【答案】D 【解析】由直线斜率的定义知,tan1351AB k ==-, 由直线的斜率公式可得,542AB k a -=-, 所以5412a -=--,解得1a =. 故选:D8.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃ 【答案】B 【解析】直线xsinα+y +2=0的斜率为k =﹣sinα, ∵﹣1≤sinα≤1,∴﹣1≤k ≤1 ∴倾斜角的取值范围是[0,4π]∪[34π,π) 故选:B .9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( ) A .0 B .2π C .56π D .π【答案】A 【解析】tan 3πα⎛⎫+== ⎪⎝⎭tan 0α=,0απ≤<,0α∴=.故选:A10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.,33⎡-⎢⎣⎦D.,3⎛-∞-⎝⎦3⎫+∞⎪⎢⎪⎣⎭【答案】B 【解析】因为直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤ ⎥⎝⎦,又直线的斜率tan k α=,,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦.故tan tan3πα≥=2tan tan3πα≤=故(,k ∈-∞)+∞. 故选:B 二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角 【答案】ABC 【解析】A. 若α是直线l 的倾斜角,则0180α≤<,是正确的;B. 若k 是直线l 的斜率,则tan k α=∈R ,是正确的;C. 任意一条直线都有倾斜角,但不一定有斜率,倾斜角为90°的直线没有斜率,是正确的;D. 任意一条直线都有斜率,但不一定有倾斜角,是错误的,倾斜角为90°的直线没有斜率. 故选:ABC12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角;D .坐标平面上所有的直线都有斜率. 【答案】BD 【解析】任何一条直线都有倾斜角,但不是任何一条直线都有斜率 当倾斜角为90︒时,斜率不存在 故选:BD13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...【答案】AC 【解析】逐一考查所给的选项:A .存在0k =,使得2l 的方程为0x =,其倾斜角为90°,故选项不正确.B 直线1:10l x y --=过定点()0,1-,直线()()()2:1010l k x ky k k R k x y x +++=∈⇒+++=过定点()0,1-,故B 是正确的.C .当12x =-时,直线2l 的方程为1110222x y --=,即10x y --=,1l 与2l 都重合,选项C 错误;D .两直线重合,则:()()1110k k ⨯++-⨯=,方程无解,故对任意的k ,1l 与2l 都不垂直,选项D 正确. 故选:AC. 三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____. 【答案】(0,-2) 【解析】因为Q 在y 轴上,所以可设Q 点坐标为()0,y ,又因为tan120︒==2y =-,因此()0,2Q -,故答案为()0,2-.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限. 【答案】0, 0,2,3【解析】平面直角坐标系中,直线倾斜角的范围为[)0,π,一条直线可能经过2个象限,如过原点,或平行于坐标轴; 也可能经过3个象限,如与坐标轴不平行且不过原点时; 也可能不经过任何象限,如坐标轴; 所以一条直线可能经过0或2或3个象限. 故答案为:[)0,π,0或2或3.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________. 【答案】[0°,45°)∪(135°,180°) 【解析】直线的斜率为负时,斜率也随着倾斜角的增大而增大由于斜率有正也有负,且直线的斜率为正时,斜率随着倾斜角的增大而增大,故α∈(0°,45°);又直线的斜率为负时,斜率也随着倾斜角的增大而增大,故α∈(135°,180°);斜率为0时,α=0°.所以α∈[0°,45°)∪(135°,180°) 故答案为[0°,45°)∪(135°,180°) 17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 【答案】3[0,][,)44πππ 【解析】当直线l 过B 时,设直线l 的倾斜角为α,则3tan 14παα=-⇒=当直线l 过A 时,设直线l 的倾斜角为β,则tan 14πββ=⇒=综合:直线l 经过点()P 1,0且与以()A 2,1,()B 3,2-为端点的线段AB 有公共点时,直线l 的倾斜角的取值范围为][30,,44πππ⎡⎫⋃⎪⎢⎣⎭四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒.【答案】(0,2P 【解析】设(0,)P y ,201PA y k -=-,tan120︒∴=201y --,2y ∴=P ∴点坐标为(0,2.19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围. 【答案】15,63⎡⎤-⎢⎥⎣⎦【解析】1(1)1(1)y y x x +--=+--的几何意义是过(,),(1,1)M x y N --两点的直线的斜率,点M 在线段28,[2,5]y x x =-+∈上运动,易知当2x =时,4y =,此时(2,4)M 与(1,1)N --两项连线的斜率最大,为53; 当5x =时,2y =-,此时(5,2)M -与(1,1)N --两点连线的斜率最小,为16-.115613y x +∴-+,即HF 的取值范围为15,63⎡⎤-⎢⎥⎣⎦20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α.(1)求tan α;(2)求sin α,cos2α的值.【答案】(1)13-;(2)10;45 【解析】(1)因为直线320x y +-=的斜率为13-,且直线的倾斜角为角α, 所以1tan 3α=- (2)由(1)知1tan 3α=-, 22sin 1tan cos 3sin cos 1ααααα⎧==-⎪∴⎨⎪+=⎩解得sin 10cos αα⎧=⎪⎪⎨⎪=⎪⎩sin 10cos αα⎧=-⎪⎪⎨⎪=⎪⎩, 因为,2παπ⎛⎫∈ ⎪⎝⎭,所以sin cos αα⎧=⎪⎪⎨⎪=⎪⎩224cos 22cos 1215αα⎛∴=-=⨯-= ⎝⎭21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α.(1)写出α关于m 的函数解析式;(2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围. 【答案】(1)3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩;(2)3,3m .【解析】(1)直线l 的方程为320x my -+=,其倾斜角为α,当0m =时,2πα=当0m >时,则斜率3tan k m α==,3arctan m α=, 当0m <时,则斜率3tan k m α==,3arctan mαπ=+, 所以3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩; (2)当,32ππα时,33,,0,3k m m ,当2πα=时,0m =, 当3,24ππα时,3,1,3,0k m m , 综上所述:3,3m .22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围;(2)直线l 倾斜角α的范围;【答案】(1)11k -≤≤(2)3044ππααπ≤≤≤<或 【解析】(1)2(1)110pA k --==-- 1(1)120pB k --==- l 与线段AB 相交pA pB k k k ∴≤≤11k ∴-≤≤(2)由(1)知0tan 11tan 0αα≤≤-≤<或由于tan 0,2y x π⎡⎫=⎪⎢⎣⎭在及(,0)2π-均为减函数3044ππααπ∴≤≤≤<或 23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.【答案】(1) 15t =;(2) k ∈(-∞.,-1]⋃[2,+∞],3[arctan 2,]4πθ∈ 【解析】(1)由题意可得()42,30(6,3)AB =+-=,(6,3)AM t AB t t ==, ()12,30(3,3)AC =+--=-,所以(63,33)CM AM AC t t =-=-+, ∵CM AB ⊥,则CM AB ⊥,∴()()6633334590CM AB t t t ⋅=-++=-=, ∴解得15t =; (2)由01t ≤≤,AM t AB =,可得点M 在线段AB 上,由题中A 、B 、C 点坐标,可得经过A 、C 两点的直线的斜率11k =-,对应的倾斜角为34π,经过C 、B 两点的直线的斜率22k =,对应的倾斜角为2arctan ,则由图像可知(如图所示),直线CM 的斜率k 的取值范围为:1k ≤-或2k ≥,倾斜角的范围为:3[arctan 2,]4πθ∈.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段质量检测(三) 不等式一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设M =2a (a -2)+7,N =(a -2)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N解析:M -N =(2a 2-4a +7)-(a 2-5a +6)=a 2+a +1=⎝ ⎛⎭⎪⎫a +122+34>0,∴M >N .答案:A2.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)解析:A ={x |x ≥3或x ≤-1},∴A ∩B ={x |-2≤x ≤-1}. 答案:A3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)解析:当x =y =0时,3x +2y +5=5>0,则原点一侧对应的不等式是3x +2y +5>0,可以验证仅有(-3,4)满足3x +2y +5>0,故选A.答案:A4.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则目标函数z =x +2y 取最大值时的最优解是( )A.⎝ ⎛⎭⎪⎫53,0B.⎝ ⎛⎭⎪⎫-12,-1C.⎝ ⎛⎭⎪⎫13,23 D.()2,-1解析:作出满足约束条件的可行域(如图中阴影部分所示),平移直线x +2y =0,当其经过点C ⎝ ⎛⎭⎪⎫13,23时,目标函数z =x +2y 取得最大值,故最优解是⎝ ⎛⎭⎪⎫13,23,故选C. 答案:C5.不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a +b 的值是( )A .10B .-10C .-14D .14解析:∵不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,∴方程ax 2+bx +2=0的两根为-12和13.∴⎩⎪⎨⎪⎧-12+13=-ba ,-12×13=2a⇒⎩⎪⎨⎪⎧a =-12,b =-2.∴a +b =-14,故选C. 答案:C6.已知a >0,b >0,则1a +1b+2ab 的最小值是( )A .2B .2 2C .4D .5解析:1a +1b +2ab ≥21a ·1b+2ab =2ab +2ab ≥22ab·2ab =4,当且仅当⎩⎪⎨⎪⎧1a =1b ,2ab =2ab ,即a =b =1时取等号,故选C.答案:C7.在R 上定义运算☆:a ☆b =ab +2a +b ,则满足x ☆(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞) D.(-1,2)解析:根据定义得,x ☆(x -2)=x (x -2)+2x +(x -2)=x 2+x -2<0,解得-2<x <1,所以实数x 的取值范围为(-2,1).答案:B8.若一元二次方程x 2+(a -1)x +1-a 2=0有两个正实数根,则a 的取值范围是( ) A .(-1,1) B.⎝ ⎛⎭⎪⎫-∞,-35∪[1,+∞) C.⎝ ⎛⎦⎥⎤-1,-35 D.⎣⎢⎡⎭⎪⎫-35,1解析:∵方程有两个正实数根,不妨设为x 1,x 2,∴有⎩⎪⎨⎪⎧Δ=(a -1)2-4(1-a 2)≥0,x 1x 2=1-a 2>0,x 1+x 2=-(a -1)>0,即⎩⎪⎨⎪⎧(a -1)(5a +3)≥0,a 2<1,a <1,∴-1<a ≤-35.答案:C9.已知a ,b 为正实数,若函数f (x )=ax 3+bx +ab -1是奇函数,则f (2)的最小值是( ) A .2 B .4 C .8 D .16解析:因为函数f (x )是奇函数,所以f (0)=0,所以ab =1.又因为a ,b 为正实数,所以f (2)=8a +2b +ab -1=2(4a +b )≥2×24ab =8,当且仅当4a =b 时取等号,故选C.答案:C10.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( )A .1B .1.5C .0.75D .1.75解析:作出不等式表示的区域,如图,从而可知,扫过的面积为S =12×2×2-12×12×1=74.故选D.答案:D11.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为( )A .16B .9C .6D .1解析:∵1a +1b=1,∴a +b =ab ,∴ab -a -b =0,∴ab -a -b +1=1, ∴a (b -1)-(b -1)=1, ∴(a -1)(b -1)=1. ∵a >0,b >0,1a +1b=1,∴a >1,b >1,∴a -1>0,b -1>0, ∴1a -1+9b -1≥21a -1·9b -1=6, 当且仅当1a -1=9b -1时,等号成立, 由⎩⎪⎨⎪⎧1a +1b =1,1a -1=9b -1,解得⎩⎪⎨⎪⎧a =43,b =4.∴当a =43,b =4时,1a -1+9b -1取最小值6.答案:C12.设x ,y 满足约束条件⎩⎪⎨⎪⎧8x -y -4≤0,x +y +1≥0,y -4x ≤0,目标函数z =ax +by (a >0,b >0)的最大值为2,则1a +1b的最小值为( )A .5 B.52C.92D .9 解析:画出不等式组表示的区域如图,结合图可知当动直线z =ax +by 经过点A (1,4)时,在y 轴上的截距最大,即z max =a +4b =2,即12(a +4b )=1,所以1a +1b =12(a +4b )⎝ ⎛⎭⎪⎫1a +1b =52+12·⎝ ⎛⎭⎪⎫4b a +a b ≥52+12·24b a ·a b =52+12×4=92,故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.不等式x +1x≤3的解集是________. 解析:原不等式等价于x +1x -3≤0⇔1-2x x ≤0⇔2x -1x≥0⇔x (2x -1)≥0,且x ≠0,解得x ≥12或x <0.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <0或x ≥12 14.若不等式x 2-4x +m <0的解集为空集,则不等式x 2-(m +3)x +3m <0的解集是________.解析:由题意,知方程x 2-4x +m =0的判别式Δ=(-4)2-4m ≤0,解得m ≥4,又x 2-(m +3)x +3m <0等价于(x -3)(x -m )<0,所以3<x <m .答案:(3,m )15.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为________.解析:作出可行域,如图中阴影部分所示.直线kx -y +2=0与x 轴的交点为A ⎝ ⎛⎭⎪⎫-2k,0.∵z =y -x 的最小值为-4, ∴2k =-4,解得k =-12. 答案:-1216.已知a ,b ∈R +且a +b =1,那么下列不等式:①ab ≤14;②ab +1ab ≥174;③a +b ≤2;④1a +12b ≥22中,正确的序号是________.解析:∵a ,b ∈R +,a +b =1, ∴ab ≤⎝⎛⎭⎪⎫a +b 22=14,当且仅当a =b =12时取等号,故①正确.∵1=a +b ≥2ab ,当且仅当a =b =12时取等号,∴1ab ≥2,-ab ≥-12,则1ab-ab ≥32,⎝ ⎛⎭⎪⎫1ab -ab 2≥94,即ab +1ab ≥174.故②正确. ∵(a +b )2=a +b +2ab ≤a +b +a +b =2,当且仅当a =b =12时取等号,∴a +b ≤2.故③正确.∵1a +12b =a +b a +a +b 2b =32+b a +a 2b ≥32+2b a ·a 2b =32+2(当且仅当a 2=2b 2时等号成立),∵32+2>22,∴④正确. 答案:①②③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知x 、y 都是正数. (1)若3x +2y =12,求xy 的最大值; (2)若x +2y =3,求1x +1y的最小值.解析:(1)xy =16·3x ·2y ≤16⎝ ⎛⎭⎪⎫3x +2y 22=6,当且仅当⎩⎪⎨⎪⎧3x =2y ,3x +2y =12,即⎩⎪⎨⎪⎧x =2,y =3时取等号.所以xy 的最大值为6. (2)1x +1y =13(x +2y )⎝ ⎛⎭⎪⎫1x +1y=13⎝ ⎛⎭⎪⎫3+x y +2y x≥13⎝⎛⎭⎪⎫3+2x y ·2y x =1+223, 当且仅当⎩⎪⎨⎪⎧x y =2y x,x +2y =3,即⎩⎪⎨⎪⎧x =-3+32,y =3-322时,取等号.所以1x +1y 的最小值为1+223.18.(12分)已知a >0,b >0,a +b =1,求证:12a +1+42b +1≥94.解析:因为a >0,b >0,a +b =1, 所以⎝⎛⎭⎪⎫12a +1+42b +1[(2a +1)+(2b +1)]=1+4+2b +12a +1+4(2a +1)2b +1≥5+22b +12a +1·4(2a +1)2b +1=9, 又(2a +1)+(2b +1)=4, 所以12a +1+42b +1≥94.19.(12分)现有一批货物用轮船从甲地运往乙地,甲地与乙地的距离为500海里.已知该船最大速度为45海里/小时,每小时运输成本由燃料费用和其他费用组成.轮船每小时的燃料费用与轮船速度的平方成正比,其余费用为每小时960元.已知轮船速度为20海里/小时,全程运输成本为30 000元.(1)把全程运输成本y (元)表示为速度x (海里/小时)的函数.(2)为了使全程运输成本最小,轮船应以多大速度行驶?解析:(1)由已知,每小时燃料费用为kx 2(0<x ≤45),全程所用时间为500x小时,则全程运输成本y =kx 2·500x +960·500x,x ∈(0,45],当x =20时,y =30 000,得k =0.6,所以所求函数为y =300⎝⎛⎭⎪⎫x +1 600x ,x ∈(0,45].(2)y =300⎝⎛⎭⎪⎫x +1 600x ≥300×2x ·1 600x =24 000,当且仅当x =1 600x,即x =40时取等号,所以当轮船速度为40海里/小时时,所需成本最小.20.(12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b )(b >1). (1)求实数a ,b 的值.(2)解不等式ax 2-(ac +b )x +bc <0.解析:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. 所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1. 由根与系数的关系, 可得2a =b ,3a=1+b .解得:a =1,b =2. (2)由(1)可知a =1,b =2,所以原不等式ax 2-(ac +b )x +bc <0,可化为x 2-(2+c )x +2c <0, 即(x -2)(x -c )<0.①当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; ②当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; ③当c =2时,不等式(x -2)(x -c )<0的解集为∅.21.(12分)一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民两种作物各种多少亩,才能得到最大利润?解析:设水稻种x 亩,花生种y 亩,利润为P 元,则由题意得⎩⎪⎨⎪⎧x +y ≤2,240x +80y ≤400,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤2,3x +y ≤5,x ≥0,y ≥0.P =(3×400-240)x +(5×100-80)y =960x +420y ,画出可行域如图所示.移动直线16x +7y =P60得,当直线过点B 时,P 取得最大值.由⎩⎪⎨⎪⎧x +y =2,3x +y =5,得B (1.5,0.5).故当x =1.5,y =0.5时,P 最大值=960×1.5+420×0.5=1 650,即水稻种1.5亩,花生种0.5亩时所得到的利润最大.22.(12分)已知函数f (x )=x 2ax +b(a 、b 为常数),且方程f (x )-x +12=0有两个实根,且x 1=3,x 2=4.(1)求函数f (x )的解析式;(2)设k >1,解关于x 的不等式f (x )<(k +1)x -k2-x.解析:(1)将x =3,x =4分别代入方程x 2ax +b-x +12=0中,得⎩⎪⎨⎪⎧93a +b =-9,164a +b =-8,解得⎩⎪⎨⎪⎧a =-1,b =2,∴f (x )=x 22-x(x ≠2).(2)原不等式即为x 22-x <(k +1)x -k2-x,可化为x 2-(k +1)x +k2-x<0.即(x -2)(x -1)(x -k )>0(*).①当1<k<2时,解(*)式得,1<x<k或x>2;②当k=2时,解(*)式得,x>1且x≠2;③当k>2时,解(*)式得,1<x<2或x>k.综上所述,当1<k<2时,原不等式的解集为{x|1<x<k或x>2};当k=2时,原不等式的解集为{x|x>1且x≠2};当k>2时,原不等式的解集为{x|1<x<2或x>k}.。

相关文档
最新文档