点到直线的距离说课稿
点到直线的距离说课稿
点到直线的距离说课稿一、说教材《点到直线的距离》是高中数学课程中解析几何部分的重要内容,它承接着初中阶段平面几何与坐标几何的基础,为学生进一步学习立体几何和高等数学中的空间解析几何打下基础。
本文在数学课程中的作用和地位主要体现在以下几个方面:1. 知识承启作用:本节内容是直线方程的延续和深化,通过点到直线的距离公式,将数与形结合起来,使学生对直线的理解从直观走向精确。
2. 培养空间想象能力:通过解析几何的方法,将点与直线之间的距离问题转化为数学模型,培养学生的空间想象能力和抽象思维能力。
3. 数学应用价值:点到直线的距离在实际生活中有着广泛的应用,如建筑设计、道路规划等领域,学习这一内容有助于提高学生的数学应用意识。
主要内容:本文主要介绍点到直线的距离公式及其推导过程,包括以下小节:(1)点到直线的距离公式;(2)公式的推导过程;(3)应用点到直线的距离公式解决实际问题。
二、说教学目标学习本课需要达到以下教学目标:1. 知识与技能:(1)掌握点到直线的距离公式;(2)能够运用点到直线的距离公式解决相关问题;(3)了解点到直线的距离在实际生活中的应用。
2. 过程与方法:(1)通过自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力;(2)通过实际例子的分析,提高学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)激发学生对数学学科的兴趣,增强学习数学的自信心;(2)培养学生的团队协作意识,提高合作交流能力。
三、说教学重难点1. 教学重点:(1)点到直线的距离公式;(2)公式的推导过程;(3)应用点到直线的距离公式解决实际问题。
2. 教学难点:(1)点到直线的距离公式的推导过程;(2)如何引导学生将实际问题转化为数学模型,运用点到直线的距离公式解决问题。
四、说教法在教学《点到直线的距离》这一节时,我计划采用以下几种教学方法,旨在提高教学效果,突出教学亮点。
1. 启发法:我将以问题驱动的形式开始新课,首先提出问题:“如何在平面直角坐标系中求一点到直线的距离?”引导学生回顾已学的知识,如直线的斜率、截距等概念。
《点到直线距离》说课稿
《点到直线距离》说课稿《点到直线距离》说课稿11.教材分析1-1教学内容及包含的知识点(1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容(2)包含知识点:点到直线的距离公式和两平行线的距离公式1-2教材所处地位、作用和前后联系本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。
在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。
可见,本课有承前启后的作用。
1-3教学大纲要求掌握点到直线的距离公式1-4高考大纲要求及在高考中的显示形式掌握点到直线的距离公式。
在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。
1-5教学目标及确定依据教学目标(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。
(2)培养学生探究性思维方法和由特殊到一般的研究能力。
(3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。
(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。
确定依据:中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(____年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(____年)1-6教学重点、难点、关键(1)重点:点到直线的距离公式确定依据:由本节在教材中的地位确定(2)难点:点到直线的距离公式的推导确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。
分析“尝试性题组”解题思路可突破难点(3)关键:实现两个转化。
一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。
《点到直线距离》说课稿
《点到直线距离》说课稿《点到直线距离》说课稿范文1、教材分析1.1教学内容及包含的知识点(1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容(2)包含知识点:点到直线的距离公式和两平行线的距离公式1.2教材所处地位、作用和前后联系本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。
在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。
可见,本课有承前启后的作用。
1.3教学大纲要求掌握点到直线的距离公式1.4高考大纲要求及在高考中的显示形式掌握点到直线的距离公式。
在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。
1.5教学目标及确定依据教学目标(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。
(2)培养学生探究性思维方法和由特殊到一般的研究能力。
(3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。
(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。
确定依据:中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(xxxx 年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(xxxx 年)1.6教学重点、难点、关键(1)重点:点到直线的距离公式确定依据:由本节在教材中的地位确定(2)难点:点到直线的距离公式的推导确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。
分析“尝试性题组”解题思路可突破难点(3)关键:实现两个转化。
一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。
点到直线的距离 说课稿 教案 教学设计
点到直线的距离两条平行直线间的距离●三维目标1.知识与技能(1)理解点到直线的距离公式的推导过程.(2)掌握点到直线的距离公式.(3)掌握点到直线的距离公式的应用.2.过程与方法(1)通过探索点到直线的距离公式的推导过程,渗透算法的思想.(2)通过自学教材上利用直角三角形的面积公式的推导过程,培养学生的数学阅读能力.(3)通过灵活运用公式的过程,提高学生类比化归、数形结合的能力.3.情感、态度与价值观(1)引导学生用联系与转化的观点看问题,体验在探索问题的过程中获得的成功感.(2)培养学生观察、思考、分析、归纳等数学能力.(3)在推导过程中,渗透数形结合、转化(或化归)等数学思想以及特殊与一般的方法.●重点难点重点:点到直线的距离公式的推导及应用、两平行直线之间的距离求法.难点:点到直线的距离公式的推导思路.重难点突破:利用由特殊到一般及类比归纳的思想,由浅入深的引导学生探究点到直线的距离公式的推导思路,同时,教师借助于多媒体的直观演示,帮助学生理解距离公式的导出过程,突破教学难点,最后通过课堂典例训练,师生互动,突出教学重点.【课前自主导学】课标解读1.掌握点到直线的距离公式.(重点)2.能用公式求点到直线的距离.(难点)3.会求两条平行直线间的距离.(重点、易错点)点到直线的距离【问题导思】1.如图,点P(x0,y0)到直线Ax+By+C=0(A,B不同时为0)的距离d同线段PS,PR,RS间存在什么关系?【提示】d=|PR||PS| |RS|.2.受问题1的启发,如何描述d同A,B,C及x0,y0间的具体关系?【提示】d=|Ax0+By0+C|A2+B2.3.点到直线的距离公式对于A=0或B=0或点P在直线l上的特殊情况是否仍然适用?【提示】仍然适用.①当A=0,B≠0时,直线l的方程为By+C=0,即y=-CB,d=⎪⎪⎪⎪⎪⎪y0+CB=|By0+C||B|,适合公式;②当B=0,A≠0时,直线l的方程为Ax+C=0,x=-CA,d=⎪⎪⎪⎪⎪⎪x0+CA=|Ax0+C||A|,适合公式;③当点P在直线l上时,有Ax0+By0+C=0,d=|Ax0+By0+C|A2+B2=0,适合公式.点到直线的距离(1)概念:过一点向直线作垂线,则该点与垂足之间的距离,就是该点到直线的距离.(2)公式:点P(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2.两条平行直线间的距离【问题导思】直线l1:x+y-1=0上有A(1,0)、B(0,1)、C(-1,2)三点,直线l2:x+y-2=0与直线l1平行,那么点A、B、C到直线l2的距离分别为多少?有什么规律吗?【提示】22、22、22.当两直线平行时,一条直线上任一点到另一条直线的距离都相等.两条平行直线间的距离(1)概念:夹在两条平行直线间的公垂线段的长度就是两条平行直线间的距离.(2)求法:两条平行直线间的距离转化为点到直线的距离.(3)公式:两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0之间的距离d=|C1-C2| A2+B2.【课堂互动探究】求点到直线的距离求点P0(-1,2)到下列直线的距离:(1)2x+y-10=0;(2)x=2;(3)y-1=0.【思路探究】对于(1)可用点到直线的距离公式求解,对于(2)(3)除了公式法求距离外还可以用数形结合法求解.【自主解答】(1)由点到直线的距离公式知d=|2×-1+2-10|22+12=105=2 5.(2)法一直线方程化为一般式为x-2=0.由点到直线的距离公式知d=|-1+0×2-2|12+02=3.法二∵直线x=2与y轴平行,∴由图(1)知d=|-1-2|=3.(3)法一由点到直线的距离公式得d=|-1×0+2-1|02+12=1.法二∵直线y-1=0与x轴平行,∴由图(2)知d=|2-1|=1.1.求点到直线的距离,首先要把直线化成一般式方程,然后再套用点到直线的距离公式.2.当点与直线有特殊位置关系时,也可以用公式求解,但是这样会把问题变复杂了,要注意数形结合.3.几种特殊情况的点到直线的距离:(1)点P0(x0,y0)到直线y=a的距离d=|y0-a|;(2)点P0(x0,y0)到直线x=b的距离d=|x0-b|.求过点A(-1,2)且到原点的距离等于22的直线方程.【解】显然直线x=-1到原点的距离为1,所以所求直线的斜率是存在的.设所求直线的方程为y-2=k(x+1),化成一般式为kx-y+2+k=0.由题意得|2+k|k2+1=22,解得k=-1或-7.故适合题意的直线方程为y-2=-(x+1)或y-2=-7(x+1),即x+y-1=0或7x+y+5=0.求两条平行直线间的距离求两条平行直线l1:6x+8y=20和l2:3x+4y-15=0的距离.【思路探究】解答本题可先在直线l1上任取一点A(2,1),然后再求点A到直线l2的距离即为两条平行直线间的距离;或者直接应用两条平行线间的距离公式d=|C1-C2| A2+B2.【自主解答】法一若在直线l1上任取一点A(2,1),则点A到直线l2的距离即为所求的平行线间的距离,则d=|3×2+4×1-15|32+42=1.法二直接应用两条平行直线间的距离公式.l1:3x+4y-10=0,l2:3x+4y-15=0,故d=|-10--15|32+42=1.针对这种类型的题目一般有两种思路:(1)利用“化归”思想将两平行直线的距离转化为求其中一条直线上任意一点到另一条直线的距离.(2)直接用公式d=|C1-C2|A2+B2,但要注意两直线方程中x,y的系数必须分别相同.求与直线l:5x-12y+6=0平行且与直线l距离为3的直线方程.【解】∵与l平行的直线方程为5x-12y+b=0,根据两平行直线间的距离公式得|b-6|52+-122=3,解得b=45或b=-33.所以所求直线方程为:5x-12y+45=0或5x-12y-33=0.距离公式的综合应用已知直线l过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截的线段中点M在直线x+y-3=0上,求直线l的方程.【思路探究】可设出点M的坐标,利用点M到两直线的距离相等,求出点M的坐标,再用两点式写出直线的方程,也可先求出与l1,l2平行且等距离的直线方程,再与x+y-3=0联立求出M点的坐标,再由两点式写出直线方程.【自主解答】法一∵点M在直线x+y-3=0上,∴设点M坐标为(t,3-t),则点M到l 1,l2的距离相等,即|t-3-t+1|2=|t-3-t-1|2,解得t=32,∴M⎝⎛⎭⎪⎫32,32.又l过点A(2,4),由两点式得y-324-32=x-322-32,即5x-y-6=0,故直线l的方程为5x-y-6=0.法二设与l1,l2平行且距离相等的直线l3:x-y+C=0,由两平行直线间的距离公式得|C-1|2=|C+1|2,解得C=0,即l3:x-y=0.由题意得中点M在l3上,点M在x+y-3=0上.解方程组⎩⎨⎧x-y=0,x+y-3=0,得⎩⎪⎨⎪⎧x=32,y=32.∴M⎝⎛⎭⎪⎫32,32.又l过点A(2,4),故由两点式得直线l的方程为5x-y-6=0.1.应用距离公式解答有关问题时,要注意以下几点:(1)直线的方程是一般式,在用两平行线间的距离公式时,两方程中x,y的系数分别相等;(2)要结合图形,帮助解答;(3)求直线方程时,要特别注意斜率不存在的情况.2.常见的距离公式应用问题的解题策略(1)最值问题:①利用对称转化为两点之间的距离问题.②利用所求式子的几何意义转化为点到直线的距离.③利用距离公式将问题转化为一元二次函数的最值问题,通过配方求最值.(2)求参数问题:利用距离公式建立关于参数的方程或方程组,通过解方程或方程组求值.(3)求方程的问题:立足确定直线的几何要素——点和方向,利用直线方程的各种形式,结合直线的位置关系(平行直线系、垂直直线系及过交点的直线系),巧设直线方程,在此基础上借助三种距离公式求解.设x+2y=1,则x2+y2的最小值是________.【解析】x2+y2=x-02+y-02,它的几何意义是点(x,y)到原点的距离.因而其最小值即为原点到直线x+2y=1的距离,即d=|0+2×0-1|12+22=55.所以x2+y2的最小值是⎝⎛⎭⎪⎫552=15.【答案】1 5【思想方法技巧】巧用数形结合思想求两平行线间距离的最值问题(12分)两条互相平行的直线分别过点A(6,2)和B(-3,-1),如果两条平行直线间的距离为d,求:(1)d的变化范围;(2)当d取最大值时,两条直线的方程.【思路点拨】解答本题可以利用运动变化的观点,让两直线分别绕定点转动,观察它们之间距离的变化情况,从而得d的范围.【规范解答】(1)如图,当两条平行直线与AB垂直时,两平行直线间的距离最大,为d=|AB|=6+32+2+12=310,当两条平行线各自绕点B,A逆时针旋转时,距离逐渐变小,越来越接近于0,所以0<d≤310,即所求的d的变化范围是(0,310].6分(2)当d取最大值310时,两条平行线都垂直于AB,所以k=-1k AB=-12--16--3=-3,8分故所求的直线方程分别为y-2=-3(x-6)和y+1=-3(x+3),即3x+y-20=0和3x+y+10=0.12分【思维启迪】数形结合、运动变化的思想和方法是数学中常用的思想方法.当图形中的元素运动变化时我们能直观观察到一些量的变化情况,进而可求出这些量的变化范围.类似地,当一条直线过定点A时,点B到这条直线l的距离d也是当l⊥AB时最大,l过B点时,最小为零.【课堂小结】1.应用点P(x0,y0)到直线Ax+By+C=0(A、B不同时为零)距离公式d=|Ax0+By0+C|A2+B2的前提是直线方程为一般式.特别地,当直线方程A=0或B=0时,上述公式也适用,且可以应用数形结合思想求解.2.两条平行线间的距离处理方法有两种:一是转化为点到直线的距离,其体现了数学上的化归转化思想.二是直接套用公式d=|C1-C2|A2+B2,其中l1:Ax+By+C1=0,l2:Ax+By+C2=0,需注意此时直线l1与l2的方程为一般式且x,y的系数分别相同.。
解析几何《点到直线的距离》说课稿
解析几何《点到直线的距离》说课稿解析几何《点到直线的距离》说课稿范文解析几何《点到直线的距离》说课稿1一、教材分析:1、地位与作用:解析几何第一章主要研究的是点线、线线的位置关系和度量关系,其中以点点距离、点线距离、线线位置关系为重点,点到直线的距离是其中最重要的环节之一,它是解决其它解析几何问题的基础。
本节是在研究了两条直线的位置关系的判定方法的基础上,研究两条平行线间距离的一个重要公式。
推导此公式不仅完善了两条直线的位置关系这一知识体系,而且也为将来用代数方法研究曲线的几何性质奠定了基础。
而更为重要的是:通过认真设计这一节教学,能使学生在探索过程中深刻地领悟到蕴涵于公式推导中的重要的数学思想和方法,学会利用化归思想和分类方法,由浅入深,由特殊到一般地研究数学问题,同时培养学生浓厚的数学兴趣和良好的学习品质。
2、重点、难点及关键:重点是“公式的推导和应用”,难点是“公式的推导”,关键是“怎样自然地想到利用坐标系中的x轴或y 轴构造Rt△,从而推出公式”。
对于这个问题,教材中的处理方法是:没有说明原因直接作辅助线(呈现教材)。
这样做,无法展现为什么会想到要构造Rt△这一最需要学生探索的过程,不利于学生完整地理解公式的推导和掌握与之相应的丰富的数学思想方法。
如果照本宣科,则不能摆脱在客观上对学生进行灌注式教学。
事实上,为了真正实现以学生为主体的教学,让学生真正地参与进来,起关键作用的是设计出有利于学生参与教学的内容组织形式。
因此,我没有像教材中那样直接作辅助线,而是对教学内容进行剪裁、重组和铺垫,构建出在探索结论过程中侧重于学生能力培养的一系列教学环节,采用将一般转化到特殊的方法,引导学生通过对特殊的直观图形的观察、研究,自己发现隐藏其中的Rt△,从而解出|PQ|。
在此基础上进一步将特殊问题还原到一般,学生便十分自然地想在坐标系中探寻含PQ的Rt△,找不到,自然想到构造,此时再过P点作x轴或y轴的平行线就显得“瓜熟蒂落,水到渠成”了。
《点到直线的距离》说课稿
《点到直线的距离》说课稿一、教材分析:1、教材的地位与作用:教材选自普通高中课程标准试验教科书人民教育出版社b版《数学2》第二章2.2.4节。
本节内容是“直线的方程”的最后一个内容,它是在研究了直线的方程和两直线的位置关系的基础上,探索如何用坐标和方程来定量研究距离问题,既是对前面知识体系的完善,又为后面研究直线与圆、圆与圆的位置关系奠定基础。
具有承上启下的作用。
同时,教材通过让学生经历点到直线的距离公式的探究与应用过程,进一步体会解析几何的本质:用代数方法解决几何问题。
2、重点、难点:根据教材特点和学生的知识结构,确定本节课的教学重点是:点到直线的距离公式及简单应用,难点是:公式的推导。
我设计通过学生探究到求点到直线距离的不同途径,进而突出重点,师生共同寻找简化公式推导运算过程的方法,来突破难点。
二、教学目标:依据《普遍高中数学课程标准》的要求及学生的认知特点,确定本节课的教学目标:知识与技能目标:探索并掌握点到直线的距离公式,会求两平行线间的距离。
过程与方法目标:经历点到直线的距离公式的探究与应用过程,体验用数形结合、转化、函数等数学思想来解决数学问题的方法,形成用代数方法解决几何问题的能力;通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高抽象概括,分析总结,数学表达等基本数学思维能力。
情感、态度与价值观:通过师生互动、生生互动的教学活动过程,形成学生的体验性认识,体会成功的愉悦,提高数学学习的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和合作交流的科学态度。
三、教学方法与教学手段:教学方法:本节课的课型为“新授课”。
虽然学生初中已经掌握了点到直线距离的概念和求法,但本课应用的是解析几何的思想和方法,因此采用问题探究式”的教学方法,通过不同形式的探究过程,让学生积极参与到教学活动中来,并且始终处于积极的问题探究和辨析思考的学习气氛中。
教学手段:采用多媒体辅助教学,增强直观性,增大课堂容量,提高效率。
《点到直线的距离》的说课稿[大全5篇]
《点到直线的距离》的说课稿[大全5篇]第一篇:《点到直线的距离》的说课稿一、教学方法的选择(1)指导思想:在“以生为本”理念的指导下,充分体现“教师为主导,学生为主体”。
(2)教学方法:问题解决法、讨论法等。
本节课的任务主要是公式推导思路的获得和公式的推导及应用。
我选择的是问题解决法、讨论法等。
通过一系列问题,创造思维情境,通过师生互动,让学生体验、探究、发现知识的形成和应用过程,以及思考问题的方法,促进思维发展;学生自主学习,分工合作,使学生真正成为教学的主体。
二、教学用具的选用在选用教学用具时,我考虑到,在本节课的公式推导和例题求解中思路较多,所以采用了计算机多媒体和实物投影仪作为辅助教具.它可以将数学问题形象、直观显示,便于学生思考,实物投影仪展示学生不同解题方案,提高课堂效率。
三、关于教学过程的设计“数学是思维的体操”,一题多解可以培养和提高学生思维的灵活性,及分析问题和解决问题的能力.课程标准指出,教学中应注意沟通各部分内容之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识间的有机联系,感受数学的整体性。
课标又指出,鼓励学生积极参与教学活动.为此,在具体教学过程中,把本节课分为以下:“创设情境提出问题——自主探索推导公式——变式训练学会应用——学生小结教师点评——课外练习巩固提高”五个环节来完成.下面对每个环节进行具体说明。
(一)[创设情境提出问题]1、这一环节要解决的主要问题是:创设情境,引导学生分析实际问题,由实际问题转化为数学问题,揭示本课任务.同时激发学生学习兴趣,培养学生数学建模能力.2、具体教学安排:多媒体显示实例,电信局线路问题,实际怎样解决?能否转化为解析几何问题?学生很快想到建立坐标系.如何建立坐标系?建系不同,点和直线方程不同,用点的坐标和直线方程如何解决距离问题,由此引出本课课题“点到直线的距离”。
(二)[自主探索推导公式]1、这一环节要解决的主要问题是:充分发挥学生的主体作用,引导学生发现点到直线距离公式的推导方法,并推导出公式.在公式的推导过程中,围绕两条线索:明线为知识的学习,暗线为特殊与一般的逻辑方法以及转化、数形结合等数学思想的渗透。
点到直线的距离 说课稿
《点到直线的距离》教案【课题】点到直线的距离【教材】全日制普通高级中学教科书(必修)第二册(上)人民教育出版社【授课教师】一.教学目标1.教材分析⑴教学内容《点到直线的距离》是全日制普通高级中学教科书(必修·人民教育出版社)第二册(上),“§7.3两条直线的位置关系”的第四节课,主要内容是点到直线的距离公式的推导过程和公式应用.⑵地位与作用本节对“点到直线的距离”的认识,是从初中平面几何的定性作图,过渡到了解析几何的定量计算,其学习平台是学生已掌握了直线倾斜角、斜率、直线方程和两条直线的位置关系等相关知识.对“点到直线的距离”的研究,为以后直线与圆的位置关系和圆锥曲线的进一步学习奠定了基础,具有承前启后的重要作用.2.学情分析高二年级学生已掌握了三角函数、平面向量等有关知识,具备了一定的利用代数方法研究几何问题的能力.根据我校学生基础知识较扎实、思维较活跃,但处理抽象问题的能力还有待进一步提高的学习现状和认知特点,本课采用类比发现式教学法.3.教学目标依据上面的教材分析和学情分析,制定如下教学目标.⑴知识技能①理解点到直线的距离公式的推导过程;② 掌握点到直线的距离公式;③ 掌握点到直线的距离公式的应用.⑵ 数学思考① 通过点到直线的距离公式的探索和推导过程,渗透算法的思想;② 通过自学教材上利用直角三角形的面积公式的证明过程,培养学生的数学阅读能力; ③ 通过灵活应用公式的过程,提高学生类比化归、数形结合的能力.⑶ 解决问题① 通过问题获得数学知识,经历“发现问题—提出问题—解决问题”的过程; ② 由探索点()2,0P 到直线0x y -=的距离,推广到探索点()00,P x y 到直线A xB yC ++=()22AB +≠0的距离的过程,使学生体会从特殊到一般、由具体到抽象的数学研究方法.⑷ 情感态度结合现实模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学生的学习兴趣.二. 教学重点、难点1.教学重点⑴ 点到直线的距离公式的推导思路分析; ⑵ 点到直线的距离公式的应用.2.教学难点点到直线的距离公式的推导思路和算法分析.⑵所得的两条直线互相平行且距离为2.例3学生:两条平行直线间的距离处处相等;板书设计:设计说明:1.对于这一节内容,有两种不同的处理方法:一种是仅让学生理解、记忆公式,直接应用而不讲公式的探寻过程,这样的教学不利于对学生数学思维的培养;另一种是本课所体现的方式,通过强调对公式的探索过程,提高学生利用代数方法处理几何问题的能力; 2.由于点到直线的距离公式的证明过程含字母运算,比较抽象.如果没有整体算法步骤的分析,学生的思路势必会缺乏连贯性,所以本课重点分析了三种算法思想:利用定义的算法、利用直角三角形的面积公式的算法、利用平面向量的算法.让学生在明晰算法步骤的前提下,再进行有效的公式证明和自学阅读;3.由于平面向量是一种重要的运算工具,同时根据我校学生能力较强、数学思维较活跃的学情特点,本课补充了利用向量的数量积证明点到直线的距离公式的方法.实际上,在以后立体几何的学习中,将利用这种算法思路得到点到平面的距离公式.但由于这种方法有一定思维难度,所以可以根据学生的实际情况,提出分层要求:基本要求是理解教材所给出的证明方法并能够应用公式,较高要求是能够利用向量的方法证明点到直线的距离公式; 4.现代数学认为“几何是可视逻辑”,所以应该重视在补充的例题中,突出几何直观和数形结合的思想方法;5.学生在练习中的“错误体验”将会有助于加深记忆,所以可将应用公式的前提条件等学生容易忽略的环节,设置在补充的例题练习中,以便达到强化训练的目的.课题:点到直线的距离 1. 问题1 如何求点(2,0)P 到直线0x y -=的距离? 方法① 方法② 方法③ 方法④ 2. 问题2 如何求点(4,2)P 到直线220x y -+=的距离? 3. 问题3 如何求点P 00(,)x y 到直线0Ax By C ++= 的距离(220A B +≠)?方法① 利用定义的算法框图 方法② 利用直角三角形的面积公式的算法框图 方法③ 利用平面向量的算法框图点到直线的距离公式4.典型例题 例1 例2 例3 例45.课堂练习 6.课堂小结 7.课后作业。
《点到直线的距离》说课稿
互交流实践结果,各抒己见,取长补短,能达到动脑、动口、动 手、激发思维、活跃气氛、调动积极性的作用。
4.多 给 予 “表 扬 ”与 “激 励 ”,让 学 困 生 乐 学 新的课程标准指出: 评价的主要目的是为了全面了解学 生的数学学习历程,激励学生的学习和改进教师的教学;应建 立评价目标多元、评价方法多样的评价体系。 对数学学习的评 价要关注学生学习的结果,更要关注他们学习的过程;要关注 学生数学学习的水平, 更要关注他们在数学活动中所表现出 来的情感与态度,帮助学生认识自我,建立信心。 为此,对学困 生的学习历程的评价教师更要客观、公正,体现发展性、动态 性、全面性,从课堂表现、作业情况、成长记录,以及考试成绩 几大块进行全方位的评价,不能单讲分数的高低,要从进步的 角度认识学生,让其建立信心。 在评价时,教师要能及时发现、 捕捉亮点,多给学困生以表扬、激励,让他们也能经常享受到 成功的体验,从而喜欢数学、热爱数学、积极主动投入到数学 学习活动中去。 数学学困生的存在是不可避免的,转化学困生的工作必 然是长期的、艰巨的,数学教师既需要掌握正确的教学原则, 运用恰当的教学艺术,创造性地开展工作,又需要投入足够 的爱心、信心、细心、耐心、恒心。我们有理由相信,学困生将会 逐渐减少, 他们中间的一大批人将靠自身的努力达到理想的 水平。
AB边所在直线的方程, 接着求出过点C且与直线AB垂直的直 线方程,再求出这两条直线的交点,即垂足D的坐标,最后应用 两 点 间 的 距 离 公 式 求 CD的 长 。
3.师 生 共 同 辨 析 研 讨 教师首先要肯定学生的探究, 然后给出点到直线距离的 一般定义。 这是一个由特殊到一般的过程。 然后为了得到公 式,再从一般到特殊。 在这题中,其实求的就是点C(6,7)到直 线 lAB:3x+4y-12=0的 距 离 。 在肯定了学生的分析后,我将这种方法定为思路一。 思路一:先求直线AB的 方 程 ,再 求 直 线AB和 直 线CD的 交 点 ,用 两 点 间 的 距 离 公 式 求 |CD|。
《点到直线的距离》说课稿
《点到直线的距离》(获全国一等奖)张学昭一、教材分析⒈教材的地位和作用“点到直线的距离”是高中课本《平面解析几何》第一章“直线”的最后一节.其主要内容是:点到直线的距离公式的推导及应用。
在此之前.学生已经学习了两点间的距离公式、定比分点公式、直线方程、两直线的位置关系.同时也学习了用代数方程研究曲线性质的“以数论形.数形结合”的数学思想方法。
在这个基础上.教材在第一章的最后安排了这一节。
点到直线的距离公式是解决理论和实际问题的重要工具.它使学生对点与直线的位置关系的认识从定性的认识上升到定量的认识。
点到直线的距离公式可用于研究曲线的性质如求两条平行线间的距离.求三角形的高.求圆心到直线的距离等等.借助它也可以求点的轨迹方程.如角平分线的方程.抛物线的方程等等。
⒉教材的内容安排和处理教参安排“点到直线的距离”这部分内容的授课时间为2个课时。
第一课时:侧重于公式的推导及记忆。
第二课时:侧重于公式的应用。
本节为第一课时。
⒊教材的重点和难点本课时的教学重点是公式的推导及其结论以及简单的应用.教学难点是公式的推导。
教材中提供了两种推导公式的思路.思路Ⅰ用解析法.思路Ⅱ用解析法结合平面几何、三角的知识。
高二的学生刚刚学解析几何.对解析法不够熟练.而且接触用解析法结合平面几何、三角的知识解决问题的例子不多.综合运用知识的能力不高.所以公式的推导是难点。
公式的推导使用的解析法或解析法结合其它的数学方法.在第二章圆锥曲线中经常用到;公式的推导过程渗透了多种数学思想(数形结合、等价转化等).所以.公式的推导也是重点。
二、教学目的分析根据以上分析和我校学生的具体情况.确定本节课的教学目的如下:知识目标:第一课时:掌握点到直线距离的公式的推导及其初步运用;第二课时:巩固点到直线距离的公式.由它推导两平行线的距离公式.使学生牢固地掌握它们.能较熟练地运用它们解决问题。
能力目标:使学生在学会知识的过程中.进一步熟练用代数方法(坐标、方程)讨论图形性质的能力.培养学生运用等价转化、数形结合等数学思想方法解决问题的能力.培养学生综合运用知识解决问题的能力。
点到直线的距离公式说课稿
点到直线的距离公式说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“点到直线的距离公式”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“点到直线的距离公式”是高中数学必修 2 第三章“直线与方程”中的重要内容。
它不仅是解决点与直线位置关系的重要工具,也为后续学习空间点到直线的距离、两条平行线间的距离等内容奠定了基础。
本节课在教材中的地位和作用主要体现在以下几个方面:1、从知识体系上看,点到直线的距离公式是直线方程的一个重要应用,它将点与直线的位置关系量化,使学生对直线的认识更加深入和全面。
2、从数学思想方法上看,推导点到直线的距离公式的过程中,蕴含了转化与化归、数形结合等重要的数学思想方法,有助于培养学生的数学思维能力。
3、从实际应用上看,点到直线的距离公式在几何、物理等领域有着广泛的应用,能够帮助学生解决实际问题,提高学生的应用意识和创新能力。
二、学情分析在学习本节课之前,学生已经掌握了直线的方程、两点间的距离公式等相关知识,具备了一定的数学运算和推理能力。
但是,由于点到直线的距离公式的推导过程较为复杂,需要学生具备较强的逻辑思维能力和抽象概括能力,对于学生来说可能存在一定的困难。
此外,学生在学习过程中可能会出现以下问题:1、对距离公式的理解不够深刻,容易忽略公式的适用条件。
2、在推导公式的过程中,不能灵活运用所学知识,导致推导思路不清晰。
3、在应用公式解决实际问题时,不能准确地将问题转化为数学模型,计算容易出错。
针对以上学情,在教学过程中,我将注重引导学生理解公式的本质,通过多种方式帮助学生推导公式,加强练习,提高学生的应用能力。
三、教学目标基于以上教材分析和学情分析,我制定了以下教学目标:1、知识与技能目标(1)理解点到直线的距离公式的推导过程。
(2)掌握点到直线的距离公式,并能熟练运用公式解决相关问题。
2、过程与方法目标(1)通过探究点到直线的距离公式的推导过程,培养学生的逻辑思维能力和抽象概括能力。
《点到直线的距离》说课稿
《点到直线的距离》说课稿《点到直线的距离》说课稿(一)教材分析1、教材的地位和作用点是几何中最简单的元素,直线是几何中最简单的曲线,点到直线的距离公式从距离的角度定量来刻画点和直线的位置关系,为研究两直线的位置关系及曲线和曲线之间的关系等整个解析几何奠定基础。
学生对这节课的理解和掌握,直接关系到对以后解析几何的学习,并且该公式在以后的解析几何学习和研究中有着非常广泛的应用。
所以,这节教材对学生学习解析几何具有重要意义。
2、教学对象这节课的教学对象是高中二年级的学生,他们已经基本掌握直线的方程和两直线的位置关系-------平行、垂直和相交,对三角形的面积公式及算法、两点间的距离公式等都已相当的熟悉。
从学生的生理和心理特征以及他们的认识水平来讲,他们对点到直线的距离和两平行线间的距离的空间概念较容易理解,所以这节课的概念的理解不是难点,但是公式的推导是个难点。
3、教学目标(1)知识目标掌握点到直线的距离的概念、公式及其推导过程,两平行线间的距离的求法及它们的应用。
(2)能力目标通过创设情境,从实际问题引入,培养学生的数学化能力;从简单的例子出发,让学生了解到认识事物的一般规律——从特殊到一般、从实际到抽象的认识规律;由点和直线的关系入手,从公式的推导过程中培养学生的归纳、类比能力,缜密的数学推理能力和重要的数学思想——分类讨论思想和数形结合思想,并培养学生的`辨证唯物观点——联系的观点、辨证的观点、统一的观点看问题和综合应用数学知识的能力。
(3)情感目标培养学生对新知识的探索精神,坚韧的意志力和个性品质。
通过对证明思路的讨论培养学生的发散性思维和独立思考的创新意识。
4、教学内容及教材处理本节课的主要内容是点到直线的距离的概念的理解、公式的推导及其应用,通过创设情景,让学生直观上理解点到直线的距离的实际应用性及研究的必要性,激发学生的求知欲望。
然后将实际问题归结为数学问题,从简单的特殊例子入手归纳类比出一般问题的解决方法。
点到直线距离说课稿
点到直线距离说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“点到直线距离”。
一、教材分析“点到直线距离”是高中数学解析几何中的一个重要知识点,它不仅是对直线方程、两点间距离公式等知识的综合应用,也为后续学习圆锥曲线等内容奠定了基础。
本节课在教材中的地位和作用主要体现在以下几个方面:1、承前启后:它是在学生已经掌握了直线的方程、两直线的位置关系等知识的基础上进行的,同时又为进一步研究曲线的性质提供了方法和工具。
2、培养能力:通过推导点到直线的距离公式,能够培养学生的逻辑推理能力、运算能力和空间想象能力。
3、实际应用:在解决几何问题、优化问题等实际问题中有着广泛的应用。
二、学情分析1、学生已经具备了一定的知识基础和思维能力,但对于抽象的数学概念和复杂的公式推导可能会感到困难。
2、学生在解决问题时,往往缺乏对问题的深入分析和方法的选择,需要教师进行引导和启发。
三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解点到直线距离的概念。
(2)掌握点到直线距离公式的推导过程。
(3)能够熟练运用点到直线距离公式解决相关问题。
2、过程与方法目标(1)通过探究点到直线距离公式的推导,培养学生的数学思维能力和创新意识。
(2)通过例题和练习,提高学生分析问题和解决问题的能力。
3、情感态度与价值观目标(1)让学生在学习过程中体会数学的严谨性和科学性。
(2)激发学生学习数学的兴趣,培养学生勇于探索的精神。
四、教学重难点1、教学重点点到直线距离公式的推导和应用。
2、教学难点点到直线距离公式的推导过程中,如何将几何问题转化为代数问题。
五、教法与学法1、教法为了突出重点,突破难点,我将采用启发式教学法、探究式教学法和讲练结合法。
通过引导学生思考、探究,让学生在自主学习和合作学习中掌握知识。
2、学法在教学过程中,我将注重培养学生的自主学习能力和合作学习能力。
引导学生通过观察、分析、推理、归纳等方法,掌握知识,提高能力。
点到直线距离说课稿
点到直线距离说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“点到直线的距离”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“点到直线的距离”是高中数学必修 2 中直线方程这一章节的重要内容。
它不仅是对之前所学直线方程知识的深化和应用,也为后续学习空间几何中的距离问题奠定了基础。
在教材中,这部分内容通过引入向量等工具,推导出点到直线距离的公式,注重培养学生的逻辑推理和数学运算能力。
二、学情分析学生在之前已经学习了直线的方程、两直线的位置关系等知识,具备了一定的知识储备和数学思维能力。
但对于点到直线距离公式的推导过程,可能会感到一定的困难,需要教师进行引导和启发。
三、教学目标1、知识与技能目标学生能够理解点到直线距离的概念,掌握点到直线距离公式,并能熟练运用公式解决相关问题。
2、过程与方法目标通过推导点到直线距离公式的过程,培养学生的逻辑推理和数学运算能力,提高学生分析问题和解决问题的能力。
3、情感态度与价值观目标让学生在学习过程中感受数学的严谨性和科学性,激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
四、教学重难点1、教学重点点到直线距离公式的推导和应用。
2、教学难点点到直线距离公式的推导过程中,对向量方法的理解和运用。
五、教法与学法1、教法为了突出重点,突破难点,我将采用讲授法、启发式教学法和多媒体辅助教学法相结合的教学方法。
通过教师的讲解和引导,启发学生思考,利用多媒体直观展示,帮助学生理解和掌握知识。
2、学法在教学过程中,我将引导学生采用自主探究、合作交流的学习方法。
让学生在自主探究中发现问题,在合作交流中解决问题,提高学生的学习能力和合作意识。
六、教学过程1、导入新课通过展示生活中一些与点到直线距离有关的实际例子,如点到公路的距离、点到电线的距离等,引出本节课的主题——点到直线的距离。
2、概念讲解给出点到直线距离的定义:点 P(x₀,y₀) 到直线 Ax + By + C = 0的距离,就是从点 P 到直线的垂线段的长度。
点到直线的距离——说课稿(3)
点到直线的距离——说课稿(3)各位老师:我是号考生,我来自专业。
我说课的题目是《点到直线的距离》,内容选自于新课程人教A版必修修(2)第三章第三节。
下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学方法与手段分析、学法分析和教学过程分析等五大方面来阐述我对这节课的设计方案:一、教材分析:(1)地位与作用本节“点到直线的距离”,是从初中平面几何的定性作图,过渡到解析几何的定量计算,其学习平台是学生已掌握了直线倾斜角、斜率、直线方程和两条直线的位置关系等相关知识.学习“点到直线的距离”,是为以后直线与圆的位置关系和圆锥曲线的进一步学习奠定了基础,具有承上启下的作用.(2)教学重点、难点1.教学重点:点到直线的距离公式的应用.2.教学难点:点到直线的距离公式的推导思路和算法分析.二.教学目标依据上面的教材分析和学情分析,制定如下教学目标.⑴知识目标①理解点到直线的距离公式的推导过程;②掌握点到直线的距离公式的应用.⑵能力目标通过灵活应用公式,提高学生类比以及数形结合的能力.(3)情感目标结合现实模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学生的学习兴趣.三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。
新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。
本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。
在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
四.教学过程1.创设情境,新课引入我们常说“兴趣是最好的老师”,长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。
点到直线距离说课稿
§3.3.3《点到直线的距离》说课稿通州四中李江涛我说课的内容是人教社A 版必修2第三章第三节的第三课时《点到直线的距离》.我将通过教材分析、目标分析、教学方法、教学过程和板书设计五个部分,阐述本课的教学设计.一、教材分析点到直线的距离是“直线与方程”这一章的重点内容,本节课的研究仍然是直线方程的应用,是坐标法的继续,它是线线间的距离的基础,也是研究直线与圆的位置关系的重要工具。
点到直线的距离公式的推导方法很多,除了本节课可能探究到的方法外,还有应用三角函数、应用向量等方法。
新课标对本节内容的要求是:探索并掌握点到直线距离的公式。
通过本节课的教学,让学生在公式的探索过程中深刻领悟蕴涵其中的数学思想和方法。
二、目标分析1.学情分析学生已经学习了两点之间的距离公式,具备直线的有关知识,如交点、垂直、三角形、两点间距离公式等。
学生对坐标法解决几何问题有了初步的认识,但处理抽象问题的能力还有待进一步提高。
2.教学目标根据新课程标准的理念以及前面对教材、学情的分析,我制定了如下教学目标.(1)知识与技能目标理解点到直线的距离公式的推导过程;掌握点到直线的距离公式及应用.(2)过程与方法目标通过对公式推导方法的探索与发现,体会由特殊到一般、从具体到抽象的数学研究方法,提高观察、类比、抽象、概括、数形结合等能力。
(3)情感、态度与价值观通过对问题的探究活动,获得成功的体验和克服困难的经历,增进学习数学的信心,优化数学思维品质。
3.教学重点、难点根据刚才对教材的分析和学生情况的分析,本节课教学重点设置为:【重点】⑴点到直线的距离公式的推导思路;⑵点到直线的距离公式的应用.【难点】点到直线的距离公式的推导思路体会推导过程中所包含的数学思想.【难点突破】学生容易想到用求交点坐标及两点间距离公式加以解决。
但这种方法在思维上虽然是典型的解析方法,但在计算上有较高的难度,如果把推导过程一步步讲给学生听,这样做有悖 1学生的认知规律。
点到直线的距离说课稿
A 2B 2点到直线的距离》说课稿各位老师,大家好!我说课的内容是《点到直线的距离》 .我将通过教材分析、目标分析、教学方法、过程设计和教学反思五 个部分,阐述本课的教学设计. 一、教材分析 1.教学内容《点到直线的距离》是全日制普通高级中学教科书(必修•人民教育出版社)第二册(上) ,“ § 7. 3两条直线的位置关系”的第四节课,主要内容是点到直线的距离公式的推导过程和公式应用.2 .地位与作用 本节对“点到直线的距离”的认识,是从初中平面几何的定性作图,过渡到了高中解析几何的定量计算,其学习平台是学生已掌握了直线倾斜角、斜率、直线方程和两条直线的位置关系等相关知识.对 本节的研究,为以后直线与圆的位置关系和圆锥曲线的进一步学习,奠定了基础,具有承上启下的重要 作用. 二、目标分析1 .学情分析我校高二年级学生已掌握了三角函数、平面向量等有关知识,具备了一定的利用代数方法研究几何问 题的能力.我班学生基础知识比较扎实、思维较活跃,但处理抽象问题的能力还有待进一步提高.2 .教学目标根据新课程标准的理念以及前面对教材、学情的分析,我制定了如下教学目标. 【知识技能】 ⑴ 理解点到直线的距离公式的推导过程; ⑵ 掌握点到直线的距离公式; ⑶ 掌握点到直线的距离公式的应用. 【数学思考】⑴ 通过探索点到直线的距离公式的推导过程,渗透算法的思想;⑵ 通过自学教材上利用直角三角形的面积公式的推导过程,培养学生的数学阅读能力; ⑶ 通过灵活运用公式的过程,提高学生类比化归、数形结合的能力.【解决问题】由探索点 P 2,0 到直线 x y 0的距离,推广到探索点 P x 0, y 0 到直线 Ax By C 0的距离的过程中,使学生体会由特殊到一般、从具体到抽象的数学研究方法,并使学生在 经历反馈练习的过程中,进一步提高灵活运用公式,解决问题的能力. 【情感态度】结合现实模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣.3 .教学重点、难点为更好地完成教学目标,本课教学重点设置为: 【重点】 ⑴ 点到直线的距离公式的推导思路分析;⑵点到直线的距离公式的应用.【难点】点到直线的距离公式的推导思路和算法分析.【难点突破】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略•利用类比归纳的思想,由浅入深,让学生自主探究,分析、整理出推导公式的不同算法思路•同时,借助于多媒体的直观演示,帮助学生理解,并通过逐步深入的课堂练习,师生互动、讲练结合,从而突出重点、突破教学难点.三、教学方法根据教学内容和学生的学习状况、认知特点,本课采用类比发现式教学模式.从学生熟知的实际生活背景出发,通过由特殊到一般、从具体到抽象的课堂教学方式,弓I导学生探索点到直线的距离的求法•让学生在合作交流、共同探讨的氛围中,认识公式的推导过程及知识的运用,进一步提高学生几何问题代数化的数学能力.四、过程设计结合教材知识内容和教学目标,本课分为以下四个教学环节.环节1 创设情境在教学环节1中,以学生熟知的地质勘探、铁轨宽度、人离高压电线的安全距离等生活图片的欣赏,以及一个具体实例:当火车在高速行驶时,如果旅客离铁轨中心的距离小于 2.5m的安全距离时,就可能被吸入车轮下而发生危险•创设情景,让学生直观感受几何要素一一“点到直线的距离”,从而有效调动学生的学习兴趣.(设计意图:以学生熟悉的实际生活为教学背景,引入新课,有效调动学生的学习兴趣. )那么“应该如何求点到直线的距离呢”带着这个问题,教学进入环节2.环节2 点到直线的距离公式的推导过程首先,由学生回答,初中有关“点到直线的距离”的定义:过点P作直线I的垂线,垂足为Q点,线段PQ 的长度叫做点P 到直线I的距离.(设计意图:引导学生复习旧知,为新课的学习打下基础. )接着,师生共同探讨如何求点到直线的距离•由于点和直线处在一般位置,所以公式的推导过程含有字母运算,比较抽象•为帮助学生更好地理解,可以补充两个由浅入深的具体问题,为后面推广到一般情况作好铺垫.问题1如何求点P(2,°)到直线1 : x y 0的距离补充的问题1,由于点和直线的位置非常特殊,所以学生容易回答,应该鼓励学生利用多种解法解决本问.方法①利用定义由于本课之前,学生已掌握了两条直线交点的求法等知识, 转化为点P、垂足Q两点之间距离来解决.Q 1,1 . PQ在RtOPF中, OR QP OP PR, 2^2 QP 2 2. QP血.方法③ 利用三角函数根据定义作出图象后,由于涉及到Rt OPQ和直线倾斜角容易联想利用三角函数知识解决问题.解:过点P作I的垂线PQ,垂足为Q.QI :x y 0, QOP 45o Q P 2,0 , OP 2.PQ OP sin 45方法④利用函数的思解:设直线I上的点Q(x0,y0),则d QP minQ x y 0, x o y o 0.QP 7(x0 2)2~y7 7x?~4^~4 x02当X。
《点到直线的距离》优质课比赛说课课件PPT课件
学生互动与反馈
小组合作
学生分组进行讨论和合作,共同完成任务或 解决问题。在讨论点到直线距离的应用时, 可以分组讨论,每组给出一种应用场景。
反馈机制
教师及时收集学生的反馈信息,调整教学策 略。可以通过提问、小组报告、课堂小测验 等方式收集学生的反馈,了解他们对点到直 线距离的理解程度,以便及时调整教学策略。
引导学生思考
点到直线的距离是几何学中的基 本概念,也是解决许多实际问题 的重要工具。
课程背景
01
介绍几何学的发展历程,强调点 到直线距离在几何学中的重要地 位。
02
说明本节课的学习将为后续解决 实际问题打下基础。
教学目标
让学生掌握点到直线 距离的定义和计算方 法。
激发学生对几何学的 兴趣和好奇心,培养 其探索精神。
参数方程形式的公式
总结词
参数方程形式的公式通过引入参数方程,将点到直线的距离 表示为参数的函数,便于分析和计算。
详细描述
参数方程形式的公式将点到直线的距离表示为参数的函数, 通过引入参数方程,将几何问题转化为代数问题。这种形式 的公式便于分析和计算,能够方便地求解距离的最值和轨迹 等问题。
不同维度的推广
距离公式的应用范围。
05 教学方法与策略CH来自PTER教学方法讲授法
教师通过口头语言系统连贯地向学生传授知识的方法。在“点到直线的距离”这一课中,教师需要详 细解释点到直线的距离公式以及其推导过程,适合采用讲授法。
讨论法
在教师的指导下,全班或小组围绕中心问题发表自己的看法,从而进行积极交流和探讨的方法。教师 可以组织学生讨论点到直线距离公式的实际应用或相关问题,加深理解。
教学策略
直观性教学策略
利用实物、模型、图表等直观教具或现 代化教学手段引导学生观察、思考、分 析,帮助他们获得丰富的感性认识,促 进对知识的理解。教师可以利用图形计 算器或几何画板展示点到直线的距离, 使学生更直观地理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点到直线的距离说课稿
“点到直线的距离”说课教案
教参安排“点到直线的距离"这部分内谷的授课 时间为2个课时。
本节为第一课时。
第一课时:侧重于公式的推导及记忆。
第二课时:侧重于公式的应用。
二、教学目标
1、知识目标:点到直线的距离公式,平行线的距离 公式。
2、能力目标:
(1) 掌握点到直线的距离公式及结构特点,能运用 公式解
题。
(2) 渗透数形结合、等价转化等数学思想。
培养探 究能力 3、德育情感目标
第之
点
了 <^关
^ ; 中^分
习
鳥
论s#直
线等 一
3!^分一 ^
决^
点平^的 乱
一二!
、嬰第。
条舉
青薈疋直M
肆
公形
菲与求莘 轸书占的如富 3数^距关^
方量质^如 她<的^
上距生程心, J
』间位础圆^ 线求万
搭两线个{
壬曲迹
离勢戛在点具
.nu 识究高轨的£经
程
>1要a
用角求I
线
3祈万一重奇二搭 雷3^
生线程想^式求可方
至$晝万思公醤 『蚩早,、、数学^
离离禺 、、科数距助^
1
工
的于誓
等
(1)培养学生团队合作精神。
(2)培养学生个性品质,鼓励学生勇于探索新知。
三、教学重难点
1、重点:点到直线的距离公式d」A宀时严及应用JA2+ B2
2、难点:点到直线的距离公式的推导。
推导过程较繁杂,等价观点的应用学生理解较难。
四、教法及学法
(一)、学情分析
1、学生在此之前已经能够充分认识到用代数方法解决几何问题的优越性,学生在学习此节内容时可能会存在疑问:学习了点到直线的距离能够解决什么样的几何问题?因此在讲课以前要充分激发学生的学习积极性。
再者有可能有的学生已经预习了本节内容,可能会认为本节内容不外乎就是套公式,故学习前还应充分调学生的探知欲。
2、学生在公式的推导过程中可能对直角三角形等积法求斜
边上的高是怎么来的不太清楚,因此在讲课时要重点强
调这是数学上的一种等价转化数学思想。
(二)、教学方法
学导法:引导学生分析点到直线的距离的求解
思路,一起分析探讨解决问题的各种途径。
然
后选择一种较好的方法来具体实施。
(三八学法指导
1、培养学生动手、动脑的能力,从而更易理解公 式的推
导过程。
2、培养学生以旧引新、以新带旧探索新知的能力
例题分析 练习反馈
2、新课内容: 在面内设P(x 0
, y 0
)是直线丨:Ax + By +C = 0
外一点,怎样用点的坐标及直线方程求 P 到直线L 的距离。
方案1:设PQ 为P 到直线L 的垂线段,Q 为垂足由 PQ 1、教师让学生自己动手
用求交点Q 坐标的方法求 解点线距离。
2、教师点明本方法难在 求Q 点坐标。
1、学生动手求解并
]发现此时非常困难。
1、让学生体会由特殊 到
一般的解题差异。
2、让学生在思路 自然
的方法上遇到 困难并思考其它方法 解决问题。
=■ B A = 0 A 再用点斜线式写出PQ 所在直线方程,并、I PQ 的直线方程求出Q 点的坐标。
最后利用两 距离公式求岀 |PQ |
方案2:如图过P 点作y 轴平行线并交L 于 S ( x o y 2),则 B tan = , Ax o By 2 C = 0 A k pQ 八、、
3、教师设问:能否将 PQ 2、学生积极的讨论
转化为与坐标轴平行的直 线来求解?(抽问)并让 学生积极的去思考讨论。
思考可能得岀方案2, 方案
3或更多方案。
得y2 = Ax o - C B 二 PS| = |y ° -
y 2 Ax 2 攀
1C
S P
tan 2
二
=\ A 2 B 2
「•|pQ|=|PS|sin8 唇+旳严 、A 2 B 2
4、教师让学生分组实施 各
种方案。
5、教师让最先得岀结论 的
小组把过程整理在纸 上,然后用幻灯机播放给 全体学生。
6、教师对用各种方法得 出结论
的学生给予表扬和 肯定。
并详细解说方案 3<
3、学生分组实施各 种
方案。
并将结果整 理出来。
3、让学生在活跃 的氛
围中探求更多 知识。
培养了学生的 团队合作精神。
4、张扬学生个性培养 学
生的个性品质。
方案3:设A z 0 , B z 0, L与x轴、y轴都相交
过P作x轴的平行线交L点Rx1,y0)过P作y轴的PS »PR2 PS2
•- d * R^ PR * PS
_ |Ax。
+By° +C| --d —
J A2 +B2
当A=o 时
d = B y° +C B 当B= 0 时d = Axo +C
A
7、为突岀点线距离公式的严
密性教师应提醒学生检验A=0
或B=0的情况。
8教师归纳点到直线的距离公
式并请学生观察其结构特征。
方案3所用方法有一定技
巧着重体现在等面积上,教
师应重点强调等价转化数学
思想。
5、培养学生用等价
转化的数学思想解决
问题,并让学生树立
等价转化数学思想。
PR =x。
-x i
Ax0By0C
p S| = y o
Ax。
By。
C
A2B2
AB
Ax o By o C
满足d = Ax o By o C
A2 B2
4、学生动手检验
A=0或B=0的情
况,并发现这两种情
况的满足公式。
5、学生观察公式的
结构特征并记忆公
式。
(二)小结
(1)、点到直线的距离公式的推导过程和应用
(2)、平行线的距离公式的推导过程和应用。
Ax。
+ By。
+C JA2+ B2」|G - C2I
J A2+B2
(3)、等价转化的数学思想的应用
教师提问:这节课我们学习了那些知识,那些数学思想方法?(抽问)这样做有利培养学生归纳总结的能力。
(三)、1、课时作业:P54 14、16
2、课后思考:已知三角形ABC,A(1, 2)B (4, 0)C
(3, 3)D 为ABC 内角平分线交点,求三角形ABC的
内切圆半径。
让学生巩固点线距离公式和平行线距离公式并能在课后能继续
探究点线距离公式有那些方面的作用。
(四)、板书设计:附后
2
六、教学评价
本节课的重点放在点线距离公式的应用上,难点放在点线距离公式的推导上,并让学生认识转化思想和等价思想,从而突出重点突破难点。
本节教学围绕“设疑一一解疑一一应用”逐一展开,对教材内容进行优化组合。
体现知识的来龙去脉,思路清晰流畅。
在教学过程中通过设问、解问、应用逐步递进充分调动学生学习的主动性、积极性,让学生学会学习,学会探索,学会创新。
体现了学生的主体作用,教师“授之予渔”的主导作用。
教学双方的主体、主导作用得到充分发挥。
培养了学生探知、转化等多种能力,较好地实施了素质教育。