机械振动的概念
机械振动知识点
机械振动知识点引言:机械振动是工程学中一个重要的研究领域,涉及到许多基础概念和技术。
在现代工程中,机械振动的理论和应用广泛存在于各个行业,为我们理解和应对振动问题提供了重要的参考。
本文将探讨机械振动的一些基本概念和相关知识点。
一、振动的定义和分类机械振动是指物体在受到外力作用后,发生周期性的来回运动。
振动可以分为自由振动和受迫振动两种形式。
自由振动是指系统在无外力作用下的振动,主要受到初始条件的影响。
受迫振动则是在外力作用下发生的振动,外力可能是周期性的或非周期性的,对物体的振动状态有影响。
二、振动的参数和描述方法了解机械振动的参数和描述方法对于研究和分析振动问题至关重要。
常见的振动参数包括振幅、周期、频率和相位等。
振幅是指物体在振动过程中达到的最大位移距离;周期是指物体完成一个完整振动周期所用的时间;频率是指单位时间内振动完成的周期数;相位表示物体当前位置相对于某一特定位置的相对位置关系。
通过这些参数的描述,我们能够更加准确地刻画振动的特征和性质。
三、单自由度系统的振动在机械振动研究中,单自由度系统是最基本的模型。
它是指一个物体在沿一个特定方向上的振动,如弹簧和质点的振动。
对于单自由度系统,可以通过求解微分方程来获得振动的解析解,进一步揭示振动的特性和规律。
其中,阻尼和劲度是单自由度振动最关键的参数,影响着振动的衰减和频率等特性。
四、多自由度系统的振动除了单自由度系统,还存在着多自由度系统的振动。
这类系统包含有多个振动部件,相互之间有耦合关系,振动会以不同的模态和频率发生。
因此,研究多自由度系统的振动需要考虑更多的因素和参数。
通过模态分析和矩阵计算等方法,我们可以得到多自由度系统的共振频率、模态形式和振动特性等信息。
五、振动控制和减振对于某些工程应用来说,振动可能是不可避免的,但我们可以采取一些措施来控制和减小振动的影响。
振动控制技术包括主动控制、被动控制和半主动控制等,通过对系统施加合适的力或刚度,可以改变振动的状态和特性。
机械振动基础
机械振动基础1. 引言机械振动是工程中一个重要的概念,在各种机械设备中都会出现振动现象。
了解机械振动的基础知识对于设计、分析和维护机械系统都至关重要。
本文将介绍机械振动的基本概念、分类以及振动分析的方法。
2. 机械振动的概念机械振动是指机械系统中物体在某一参考点附近以往复运动的方式进行振荡。
振动可由外力引起,也可由机械系统本身的结构、弹性特性或制动装置等因素引起。
机械振动可分为自由振动和受迫振动两种形式。
自由振动是指机械系统在无外力作用下,自身的动力系统引起的振动。
受迫振动是指机械系统在外力作用下,强制性地以某种频率进行振动。
3. 机械振动的分类根据振动的特性和产生机制,机械振动可分为以下几类:3.1 自由振动自由振动是机械系统在无外力作用下,由于初位置、初速度或初形状等因素引起的振动。
在自由振动中,机械系统会按照一定的频率(固有频率)和振幅进行振动,直至最终停止。
3.2 受迫振动受迫振动是机械系统在外力作用下进行的振动。
外力的作用可能是周期性的,也可能是随机的。
受迫振动的频率与外力的频率相同或有一定的关系。
3.3 维持振动维持振动是指机械系统中某个部件受到外力作用后,振动会持续存在,没有衰减的现象。
维持振动往往是由于机械系统的频率与外力频率非常接近或相同。
3.4 阻尼振动阻尼振动是指机械系统在振动过程中,由于能量的损耗而逐渐减小振幅的过程。
阻尼可以分为线性阻尼和非线性阻尼两种形式。
4. 振动分析方法为了对机械系统中的振动进行分析和评估,需要采用相应的振动分析方法。
以下是几种常用的振动分析方法:4.1 振动传感器振动传感器是用来检测机械系统中的振动信号的装置。
常用的振动传感器包括加速度传感器、速度传感器和位移传感器等。
这些传感器能够测量机械系统中的振动信号,并将其转化为电信号供后续分析。
4.2 频域分析频域分析是一种将时域信号转换为频域信号的方法。
通过对振动信号进行傅里叶变换等数学处理,可以将振动信号转化为频谱图并分析其中的频率成分和幅值。
机械振动的基本概念与特性分析
机械振动的基本概念与特性分析引言机械振动是指物体在受到外力作用或自身固有特性的驱使下,发生周期性或非周期性的运动。
它在现代工程领域中具有广泛的应用,涉及到机械系统的设计、优化和故障诊断等方面。
本文将从机械振动的基本概念入手,探讨其特性分析方法和应用。
一、机械振动的基本概念1.1 振动的定义振动是指物体在固定点附近往复运动的现象。
它可以分为自由振动和强迫振动两种类型。
自由振动是物体在无外力作用下,受到初始位移或速度的影响而产生的振动;而强迫振动是物体受到外力作用而产生的振动。
1.2 振动的描述振动可以通过位移、速度和加速度等物理量进行描述。
位移是指物体从平衡位置偏离的距离,速度是指单位时间内物体运动的位移量,加速度是指单位时间内速度发生变化的量。
这些物理量的变化规律可以用函数关系式表示,如位移随时间的变化可以用正弦函数描述。
二、机械振动的特性分析方法2.1 频率和周期振动的频率是指单位时间内振动完成的周期数,用赫兹(Hz)表示;周期是指振动完成一次所需的时间。
频率和周期是振动的基本特性,可以通过实验或计算得到。
2.2 振幅和幅值振幅是指振动过程中物体位移的最大值,是衡量振动强度的重要指标。
幅值是指振动过程中物理量的最大值,如速度、加速度等。
振幅和幅值的大小可以反映振动的强弱程度。
2.3 阻尼和共振阻尼是指振动系统受到的阻碍力,会使振动逐渐减弱并停止。
共振是指振动系统在一定频率下受到外力的共同作用,使振动幅度增大。
阻尼和共振是振动系统中常见的现象,对于系统的稳定性和性能有重要影响。
2.4 谐振和非谐振谐振是指振动系统在受到与其固有频率相同的外力作用下,振幅达到最大值的现象。
非谐振是指振动系统在受到与其固有频率不同的外力作用下,振幅不断变化的现象。
谐振和非谐振是振动系统的两种典型情况,对于系统的稳定性和响应特性具有重要意义。
三、机械振动的应用3.1 振动传感器振动传感器是一种能够将物体振动转化为电信号的装置,广泛应用于机械故障诊断、结构健康监测等领域。
大学物理-机械振动
机械振动也会影响交通工具的舒适 度,如火车、汽车等在行驶过程中 产生的振动,会让乘客感到不适。
机械振动在工程中的应用
振动输送
利用振动原理实现物料的输送,如振动筛、振动输送机等。
振动破碎
利用振动产生的冲击力破碎硬物,如破碎机、振动磨等。
振动减震
在建筑、桥梁等工程中,采用减震措施来减小机械振动对结构的影 响,提高结构的稳定性和安全性。
感谢您的观看
THANKS
机械振动理论的发展可以追溯到 古代,如中国的编钟和古代乐器 的制作。
近代发展
随着物理学和工程学的发展,人 们对机械振动的认识不断深入, 应用范围也不断扩大。
未来展望
随着科技的不断进步,机械振动 在新能源、新材料、航空航天等 领域的应用前景将更加广阔。
02
机械振动的类型与模型
简谐振动
总结词
简谐振动是最基本的振动类型,其运动规律可以用正弦函数或余弦函数描述。
机械振动在科研中的应用
振动谱分析
01
通过对物质在不同频率下的振动响应进行分析,可以研究物质
的分子结构和性质。
振动控制
02
通过控制机械振动的参数,实现对机械系统性能的优化和控制,
如振动减震、振动隔离等。
振动实验
03
利用振动实验来研究机械系统的动态特性和响应,如振动台实
验、共振实验等。
05
机械振动的实验与测量
根据实验需求设定振动频率、幅度和波形等 参数。
启动实验
启动振动台和数据采集器,开始记录数据。
数据处理
将采集到的数据导入计算机,进行滤波、去 噪和整理,以便后续分析。
绘制图表
将处理后的数据绘制成图表,如时域波形图、 频谱图等,以便观察和分析。
机械振动的概念
机械振动的概念机械振动是指物体在受到外力作用下发生的周期性运动。
它是一种复杂的物理现象,在工程学、物理学、数学等领域都有广泛的应用。
机械振动的研究对于解决工程问题、提高设备性能以及深入理解物体的运动规律具有重要意义。
首先,我们可以通过观察一个简单的机械振动现象来了解它的概念。
假设有一个质量为m的物体,它通过一个弹簧与固定点相连接。
当这个物体受到外力作用时,它会相对于平衡位置发生振动。
这种振动可以是正弦函数的形式,也可以是其他复杂的波形。
物体在振动过程中,会在振幅达到最大值时向一个方向运动,然后在振幅达到最小值时向另一个方向运动。
这种周期性的运动就是机械振动。
机械振动的重要性在于它的广泛应用。
在机械工程中,振动是一个常见的问题。
例如,汽车发动机的不平衡力会导致汽车振动,影响乘坐舒适性和发动机寿命;建筑物受到地震或风力的作用时,也会发生振动,这需要对建筑物结构做出相应的设计和补强;在电子设备中,电动机的振动会影响设备的稳定性和寿命等等。
因此,了解和掌握机械振动的特性和原理,对于解决这些问题具有至关重要的意义。
对于机械振动的研究,主要包括振动的频率、振幅、相位和周期等几个基本概念。
振动的频率是指单位时间内振动的次数。
频率用赫兹(Hz)来表示,1 Hz代表1秒内振动一次。
振动的频率取决于物体的质量和弹性特性。
例如,弹簧的刚度越大,物体的频率越高;物体的质量越大,频率越低。
频率是描述振动特征的重要参数,它能够帮助我们了解物体的振动情况和特性。
振动的振幅是指物体运动的最大偏离量。
它表示了振动的强度,振幅越大,振动的能量也就越大。
振动的振幅可以通过测量物体相对于平衡位置的位置来确定。
例如,对于一个简单的弹簧振子,可以通过测量振子达到的最大位移来确定振幅。
振幅的大小对于振动的影响很大,它不仅决定了物体的振动幅度,还会影响到物体的能耗、寿命等。
因此,在设计和使用振动设备时,需要注意控制振动的振幅。
振动的相位是指物体在振动中的位置关系。
机械振动概念、知识点总结
机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。
例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。
因为:乒乓球没有在平衡位置附近做往复运动。
(1)平衡位置:①物体所受回复力为零的位置。
②振动方向上,合力为零的位置。
③物体原来静止时的位置。
(2)机械振动的平衡位置不一定是振动范围的中心。
(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。
(4)回复力:沿振动方向,指向平衡位置的合力。
①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。
②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。
曲线振动(如单摆):回复力不一定等于振子的合外力。
③平衡位置,回复力为零。
例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。
答:错误。
正例:弹簧振子的平衡位置是合外力为零的位置。
反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。
(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。
(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。
振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。
正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。
机械振动和简谐振动
机械振动和简谐振动机械振动是自然界和工程实践中常见的现象,而简谐振动则是机械振动中最为基本和重要的模型。
本文将介绍机械振动和简谐振动的概念、特点以及一些应用。
一、机械振动的概念和特点机械振动是物体围绕平衡位置做周期性的往复运动。
它可以是机械系统中的部件振动,也可以是整个机械系统的振动。
机械振动往往由质点或弹簧等弹性元件的弹力引起。
其特点如下:1. 周期性:机械振动的运动是周期性的,当物体围绕平衡位置做一次完整的往复运动后又回到同样的位置和状态。
这一周期性使得机械振动具有可预测性和可重复性。
2. 频率:机械振动的频率是其运动的重要特征,代表了单位时间内振动的次数。
频率与振动周期的倒数成正比,可以通过实验或计算得到。
3. 幅度:机械振动的幅度代表了振动的最大位移或最大速度。
幅度与振动的能量大小相关,可以通过实验或计算得到。
4. 阻尼和驱动力:机械振动中常常存在阻尼和外加驱动力。
阻尼消耗了振动的能量,而驱动力则为物体提供了能量,影响了振动的稳定性和特性。
5. 谐振现象:在机械振动中,当外加力的频率接近物体的固有频率时,会出现谐振现象。
谐振时,振动幅度最大,能量传递效率高。
二、简谐振动的概念和特点简谐振动是机械振动中最简单的一种形式,其模型假设了无阻尼和驱动力的作用。
简谐振动具有以下特点:1. 一维振动:简谐振动在物理模型中往往被假设为一维振动,即物体围绕一个平衡位置在一条直线上往复振动。
2. 束缚性:简谐振动在一个有限范围内进行,物体保持在某个平衡位置附近做往复运动,不会无限制地扩散或发散。
3. 固有频率:简谐振动的频率与物体的固有特性有关,而与外界的驱动力无关。
物体的固有频率可以通过实验或计算得到。
4. 振幅和相位:简谐振动的振幅和相位是其两个重要的参数。
振幅代表振动的最大位移或速度,而相位则代表振动的位置关系。
5. 能量守恒:在简谐振动中,能量在势能和动能之间周期性转换,总能量保持不变,体现了能量守恒定律。
机械振动基本概念与特性
机械振动基本概念与特性一、引言机械振动是指物体在作用力下发生周期性的来回运动。
它是机械工程中的重要研究领域,对于设计和优化机械系统具有重要意义。
本文将介绍机械振动的基本概念与特性,以帮助读者更好地理解和应用振动学知识。
二、振动的基本概念1. 振动的定义振动是指物体相对于平衡位置以一定频率和幅度进行的周期性来回运动。
振动的频率表示单位时间内振动的次数,通常用赫兹(Hz)来表示。
振动的幅度则表示物体离开平衡位置的最大偏移量。
2. 振动的周期与频率振动的周期是指物体完成一次完整振动所需的时间,通常用秒(s)来表示。
频率则是指单位时间内振动的次数,其倒数即为周期的倒数。
频率和周期之间的关系可以用公式f=1/T表示,其中f表示频率,T表示周期。
3. 振动的幅度与振幅振动的幅度是指物体相对于平衡位置的最大偏移量。
振幅则是指振动的幅度的绝对值,即振动的最大偏移量的正值。
三、振动的特性1. 振动的阻尼振动的阻尼是指振动系统受到的阻力或摩擦力的影响,导致振动能量逐渐减小。
阻尼可以分为无阻尼、欠阻尼和过阻尼三种情况。
无阻尼指振动系统没有受到任何阻力或摩擦力的影响,振动能量保持不变。
欠阻尼指振动系统受到一定阻力或摩擦力的影响,但振动能量仍然保持在一定范围内。
过阻尼指振动系统受到较大的阻力或摩擦力的影响,振动能量迅速减小,振动过程较为缓慢。
2. 振动的共振共振是指振动系统在受到外力作用下,振幅不断增大的现象。
当外力的频率与系统的固有频率相等或接近时,共振现象最为明显。
共振可以使振动系统的能量传递更加高效,但也可能导致系统的破坏。
3. 振动的谐振谐振是指振动系统在受到外力作用下,振幅达到最大的状态。
当外力的频率与系统的固有频率完全相等时,谐振现象最为明显。
谐振可以使振动系统的能量传递更加高效,但也可能导致系统的破坏。
四、应用与展望机械振动的研究在许多领域都有重要的应用,如机械工程、航空航天、汽车工程等。
通过对振动特性的研究,可以优化机械系统的设计,提高系统的稳定性和工作效率。
高中物理-机械振动
的整数倍。
C若△t=T,则在t时刻和(t+△t)时刻振
子运动的加速度一定相等
D若△t=T/2,则在t时刻和(t+△t)时刻
弹簧的长度一定相等
练习6、如图所示,一弹簧振子在振 动过程中,经a、b两点的速度相同, 若它从a到b历时0.2s,从b再回到a 的最短时间为0.4s,则该振子的振 动频率B为( )
全振动:振动物体往复运动一周 后,一切运动量(速度、位移、加 速度、动量等)及回复力的大小和 方向、动能、势能等都跟开始时的 完全一样,这就算是振动物体做了 一次全振动。
例1.如图弹簧振子在BC间作简谐运动, O为平衡位置,BC间距离是10 cm ,从 B到C运动时间是1s,则( D ) A.从O→C→O振子完成一个全振动
点评:一般说来,弹簧振子在振动过程中的振幅的求 法均是先找出其平衡位置,然后找出当振子速度为零 时的位置,这两个位置间的距离就是振幅.本题侧重 在弹簧振子运动的对称性.解答本题还可以通过求D 物运动过程中的最大加速度,它在最高点具有向下的 最大加速度,说明了这个系统有部分失重,从而确定 木箱对地面的压力
化,变化周期为振动周期T。
例2.一弹簧振子周期为2s, 当它从平衡位置向右运动了1.8 s时,其运动情况是( B )
A.向右减速 B.向右加速 C.向左减速 D.向左加速
练习1.一质点做简谐运动,在
t1和t2两个时刻加速度相同,则
在这两个时刻,下列物理量一
定相同的是;
()
A、AD 位移 B、 速度
答: f (M m)
k
Mm
kM
练习4.一个质点在平衡位置附近做 简谐振动,在图的4个函数图像中,正 确表达加速度a与对平衡位置的位移
大学物理学 机械振动
大学物理学中的机械振动是指物体在受到外力作用后,产生周期性的来回振动运动的现象。
以下是关于机械振动的一些基本概念和内容:
1. 振动的基本特征
-周期性:振动是一个周期性的过程,即物体在围绕平衡位置来回振动。
-频率:振动的频率指的是单位时间内振动的周期数,通常用赫兹(Hz)表示。
-振幅:振动的振幅是物体从平衡位置最大偏离的距离。
2. 单自由度振动系统
-弹簧振子:是一种经典的单自由度振动系统,由弹簧和质点组成,受到弹簧的恢复力驱使质点振动。
-简谐振动:在没有阻尼和外力干扰的情况下,弹簧振子的振动是简谐的,即振动周期固定,频率与系统的固有频率相关。
3. 振动的参数和描述
-角频率:振动描述中常用的参数之一,表示振动的快慢程度,与频率之间有一定的关系。
-相位:描述振动状态的参数,表示振动的相对位置或状态。
-能量:振动系统具有动能和势能,能量在振动过程中不断转换,影响着振动的特性。
4. 阻尼振动和受迫振动
-阻尼振动:在振动系统中存在阻尼,会导致振动逐渐减弱,最终趋于稳定。
-受迫振动:当振动系统受到外力周期性作用时,会产生受迫振动,其频率与外力频率相同或有关。
5. 振动的应用
-工程领域:振动理论在工程领域有着广泛的应用,如建筑结构的抗震设计、机械系统的振动分析等。
-科学研究:振动理论也在物理学、工程学、生物学等领域中发挥重要作用,帮助解释和研究各种现象和问题。
以上是关于大学物理学中机械振动的一些基本内容和相关概念,希望能帮助您更好地理解这一领域的知识。
机械振动分析与控制技术
机械振动分析与控制技术一、机械振动的概念机械振动是指机械运动中的震动,是工程中常见的现象,也是制约机器性能,降低机器寿命的重要因素之一。
机械振动可以分为自由振动和强迫振动两类。
其中自由振动指系统在没有外界作用下的振动动态行为,而强迫振动指系统受到外界力作用下的振动动态行为。
二、机械振动分析技术为了有效地控制机械振动,需要先对机械振动进行分析。
目前机械振动分析技术主要包括模态分析和频率响应分析两种方法。
1. 模态分析模态分析适用于求解机械系统在自由振动情况下的振动特性。
其基本思想是将机械系统振动问题转化为比较简单的数学问题,把机械系统振动的自由度分离开来,分别研究各自的振动特性。
通过分离出每个自由度对应的频率,可以对机械系统进行振动特性的分析和计算。
2. 频率响应分析频率响应分析适用于求解机械系统在强迫振动情况下的振动特性。
其基本思想是通过将机械系统与激励力作为一个整体进行分析,来求解机械系统在不同频率下的响应特性。
通过分析激励力与机械系统的响应,得到机械系统在不同频率下的振动特性,进而对机械系统的振动进行控制和调节。
三、机械振动控制技术为了有效地控制机械振动,可以采用机械振动控制技术。
目前机械振动控制技术主要包括被动控制和主动控制两种方法。
1. 被动控制被动控制是指通过机械结构的变化,改变机械系统的振动特性,从而达到控制振动的目的。
被动控制可以采用材料的选择,结构参数的调整等方式进行控制。
在实际应用中,被动控制主要应用于需要长期控制的机械系统。
2. 主动控制主动控制是指根据系统反馈信息,通过激励系统的某个部分,改变机械系统的振动特性,从而达到控制振动的目的。
主动控制可以采用精密传感器,控制算法,控制器等设备进行。
四、机械振动的应用机械振动分析和控制技术的应用广泛,可用于飞机发动机、高速列车、钢铁、火电、核电等行业。
这些领域的机械系统都对振动控制有着极高的需求,因此机械振动分析和控制技术在这些领域中得到了广泛的应用。
机械震动的原理
机械震动的原理
机械震动是指物体在外力作用下产生的周期性振动现象。
其原理可以从力学的角度来解释。
首先,机械震动的起因是外力的作用。
当一个物体受到外力作用时,外力会改变物体的状态,使得物体发生位移。
这个位移可以是线性的,也可以是转动的,甚至可以是复杂的。
外力可以是一次性的脉冲力,也可以是周期性的力。
其次,物体的位移会导致物体内部产生惯性力。
根据牛顿第二定律,物体的加速度与作用在物体上的合力成正比,与物体的质量成反比。
由于位移使物体的质量发生变化,物体内部会产生一个与位移方向相反的恢复力,这个力称为惯性力。
接下来,物体的惯性力会使物体发生反向位移,而再次产生惯性力,导致周期性的振动。
这种振动是由于惯性力和恢复力之间的平衡关系而产生的。
当扰动消失时,物体将恢复到平衡位置。
最后,物体的振动会随着时间的推移逐渐减弱,直到最终停止。
这是因为物体的振动会损耗能量,主要通过摩擦、空气阻力和其他因素导致的能量损失来散失。
总结来说,机械震动的原理可以归结为外力的作用下,物体内部产生惯性力与恢复力之间的平衡关系所导致的周期性振动现象。
机械震动在许多领域有着广泛的
应用,如钟表、发动机、振动筛、机械故障检测等。
机械振动的原理及应用实例
机械振动的原理及应用实例1. 机械振动的定义机械振动是指物体在某一点偏离其平衡位置并产生周期性的往复运动的现象。
它是由物体的势能和动能相互转换引起的,具有频率、振幅和相位等重要特征。
2. 机械振动的原理机械振动的原理主要涉及以下几个方面:•弹簧振子的原理–当物体受到外力作用偏离其平衡位置时,弹簧会产生恢复力,使物体向平衡位置做往复运动。
•谐振的原理–当外力的频率与物体固有频率相等时,物体会受到共振作用,振幅会不断增大,达到最大值。
•阻尼的原理–阻尼是指外力对物体振动产生的衰减作用,它可以分为无阻尼、临界阻尼和过阻尼三种。
•受迫振动的原理–当外力的频率与物体固有频率不同时,物体会发生受迫振动,产生共振现象。
3. 机械振动的应用实例机械振动在工程领域有着广泛的应用,以下是一些实际应用的例子:•汽车悬挂系统–汽车悬挂系统中的弹簧和减震器能够吸收道路不平坦所产生的振动,提高行驶的舒适性和稳定性。
•桥梁和建筑物的抗震设计–在桥梁和建筑物的抗震设计中,利用减震器和振动吸收器来减小地震产生的影响,保护结构的安全性。
•电动机–电动机中的转子受到的电力驱动会产生机械振动,通过控制振动的频率和振幅,可以实现电动机的正常运转。
•机械加工–在机械加工中,通过振动刀具和工件之间的相对运动,可以提高加工效率和表面质量。
•医疗领域–机械振动在医疗领域也有一定的应用,例如超声波治疗和体外震波碎石等。
•音乐产生–乐器中的声音是通过乐器的振动产生的,振动的频率和振幅决定了乐器发出的声音。
4. 结论机械振动作为一种物理现象,具有很多重要的应用。
从汽车悬挂系统到医疗领域,机械振动都发挥着重要的作用。
了解机械振动的原理和应用实例,可以帮助我们更好地应对相关问题,提高工作效率和生活质量。
机械振动的概念
机械振动是指物体或系统在固有频率下以周期性方式进行的来回运动。
它是由于物体或系统受到外力或初始扰动而引起的。
机械振动是物体或系统围绕平衡位置或平衡状态进行周期性摆动或振荡的过程。
以下是机械振动的一些关键概念:
振动:振动是物体或系统在固有频率下进行的周期性来回运动。
它可以是单一频率的简谐振动,也可以是多个频率的复杂振动。
幅度:振动的幅度是指振动过程中物体或系统从平衡位置偏离的最大距离或最大值。
它表示振动的强度或振幅大小。
周期:周期是指振动一次所需的时间。
它是振动的重复性特征,通常用单位时间(如秒)表示。
频率:频率是指振动每秒钟发生的次数,是周期的倒数。
单位通常是赫兹(Hz)。
自由振动:自由振动是指物体或系统在无外力干扰的情况下以固有频率进行的振动。
在自由振动中,物体或系统在初态扰动后会自行振动,直到能量逐渐耗散而停止。
强迫振动:强迫振动是指物体或系统在外界施加的周期性外力作用下进行的振动。
外界力驱动物体或系统以某个特定的频率振动,这个频率可能与物体或系统的固有频率不同。
谐振:谐振是指物体或系统受到周期性外力作用,且外力频率与物体或系统的固有频率非常接近时发生的现象。
在谐振条件下,振动幅度会被放大,产生共振现象。
机械振动在许多领域中具有重要的应用,如结构工程、机械设计、声学、电子等。
理解机械振动的基本概念有助于分析和控制振动现象,并优化系统设计和性能。
机械工程中的机械振动分析
机械工程中的机械振动分析机械振动是机械工程领域中的一个重要研究方向,它涉及到机械系统中的动力学问题。
机械振动的研究对于解决机械系统中的振动和噪声问题、提高机械系统的可靠性和性能具有重要意义。
本文将介绍机械工程中的机械振动分析方法。
一、机械振动的基本概念机械振动是指机械系统中物体在其平衡位置附近做周期性的来回运动。
机械振动可以分为自由振动和强迫振动两种。
自由振动是指物体在没有外力作用下,在初始位移和初始速度条件下做振动。
强迫振动是指物体在外力的作用下做振动。
二、机械振动的分析方法1. 动力学分析机械振动的动力学分析是研究机械系统中物体受力和作用力之间的关系。
通过建立机械系统的动力学方程可以推导出物体的振动特性,如振动频率、振动幅度等。
在动力学分析中,常用的方法有受力分析、动量平衡和能量平衡等。
2. 模态分析模态分析是研究机械系统中物体的固有振动特性。
固有振动特性是指机械系统在没有外力作用下的振动特性。
模态分析可以通过数值计算和实验方法进行。
数值计算方法主要有有限元法和模态超振共振法等。
实验方法主要有模态试验和激励响应试验等。
3. 频谱分析频谱分析是研究机械系统中振动信号的频域特性。
通过对振动信号进行频谱分析,可以了解机械系统中存在的振动模态、频率和幅值等信息。
频谱分析常用的方法有傅里叶变换和小波变换等。
4. 振动响应分析振动响应分析是研究机械系统在外力作用下的振动响应情况。
通过对机械系统的振动响应进行分析,可以评估机械系统的可靠性和性能。
振动响应分析可以通过数值计算和实验方法进行。
数值计算方法主要有有限元法和时域分析法等。
实验方法主要有模态试验和激励响应试验等。
5. 振动控制分析振动控制分析是研究如何减小机械系统中的振动和噪声。
通过对机械系统的振动进行控制和调整,可以提高机械系统的可靠性和性能。
振动控制分析常用的方法有主动控制和被动控制两种。
主动控制是指通过主动干预机械系统的振动来实现振动控制。
被动控制是指通过改变机械系统的结构和材料等来实现振动控制。
机械振动的基本概念和特征分析
机械振动的基本概念和特征分析机械振动是指物体在受到外力作用下,发生周期性的运动。
它在工程领域中有着广泛的应用,包括机械设备、建筑结构、航空航天等领域。
本文将从机械振动的基本概念、特征分析以及振动控制等方面进行探讨。
一、机械振动的基本概念机械振动的基本概念包括振动的定义、振动的分类和振动的参数。
振动是指物体在固定点附近以某种规律进行来回运动的现象。
它可以分为自由振动和强迫振动两种形式。
自由振动是指物体在没有外力作用下的振动,而强迫振动是指物体在受到外力的周期性作用下的振动。
振动的分类可以根据振动的形式、振动的方向和振动的性质来进行划分。
常见的振动形式有简谐振动、复谐振动和非谐振动等。
振动的方向可以分为一维振动、二维振动和三维振动。
振动的性质可以分为自由振动、强迫振动和受迫振动等。
振动的参数是用来描述振动特征的量。
常见的振动参数有振幅、周期、频率、相位和阻尼等。
振幅是指振动物体在最大偏离平衡位置时的位移大小。
周期是指振动物体完成一次完整振动所需要的时间。
频率是指单位时间内振动物体完成的振动次数。
相位是指振动物体在某一时刻相对于某一参考点的位置。
阻尼是指振动物体由于外界因素的作用而逐渐减弱振动幅度的现象。
二、机械振动的特征分析机械振动的特征分析主要包括振动模态、共振和振动传递等方面。
振动模态是指振动系统在不同频率下的振动形态。
振动模态的分析可以帮助我们了解振动系统的特性和运动规律。
常见的振动模态有基频模态、谐振模态和高阶模态等。
基频模态是指振动系统在最低频率下的振动模态,谐振模态是指振动系统在共振频率下的振动模态,高阶模态是指振动系统在较高频率下的振动模态。
共振是指振动系统受到外界激励时,振动幅度达到最大的现象。
共振的发生会对机械系统产生不良影响,甚至导致系统的破坏。
因此,共振的控制和避免是机械振动分析中的重要问题。
振动传递是指振动能量在机械系统中的传递和衰减过程。
振动传递的特性决定了机械系统的振动响应和振动能量的损耗情况。
1 机械振动的基本概念
(与分析其他动力学问题不同的是:一般情形下,都 与分析其他动力学问题不同的是:一般情形下, 选择平衡位置作为广义坐标的原点) 选择平衡位置作为广义坐标的原点)
自由度:系统独立广义坐标的数目。
单摆有一个自由度; 弹簧摆有两个自由度; 若弹簧摆悬挂的是一个刚性杆,则有 三个自由度; 跳(Free Vibration):If a system, after an initial disturbance, is left to vibrate on its own, the ensuing vibration is known as ~. No external force acts on the system. 受迫振动(Forced Vibration):If a system is subject to an external force, the resulting vibration is known as ~ 自激振动; 参数振动
振动分析的一般方法
理论分析方法:包括各种近似分析方法。 理论分析方法 数值分析方法:利用编程或商业软件。 数值分析方法 实验分析方法:借助实验设备和分析仪器完成。 实验分析方法
机翼颤振的两自由度模型
机翼颤振的离散化模型
输电线舞动的两自由度模型
The space needle(structure)
电铃的工作原理示意图
干摩擦引起的自激振动
参数激励的情况(See Reference 12:§8.2.1)
按振动系统的响应(信号) 按振动系统的响应(信号)
简谐振动 周期振动 确定性振动 复合周期振动 非周期振动拟周期振动 瞬态振动 非确定性振动 − 随机振动
研究振动问题的一般步骤
机械振动的原理及应用
机械振动的原理及应用一、什么是机械振动机械振动是指机械系统在受到外力作用或者自身固有特性发生变化时,产生周期性的运动或者摆动。
这种周期性的运动或摆动称为振动。
机械振动是机械工程中一个重要的研究领域,并在多个应用领域中发挥着重要作用。
二、机械振动的原理1.质点的简谐振动原理: 机械振动的基础理论是简谐振动。
简谐振动是指系统在外力作用下相对平衡位置做周期性的、大小和方向都相同的振动。
质点的简谐振动受到三个基本要素的影响:质点的质量、弹性恢复力和外力。
2.刚体的振动原理:刚体的振动与质点不同,无论是平动还是转动,都涉及到刚体上不同点之间的相对位置关系。
刚体的振动可以分为平动和转动两种类型。
刚体的振动受到质心的平动和转动之间的耦合效应所影响。
三、机械振动的应用1.振动工具和设备:机械振动被广泛应用于各种振动工具和设备中,例如振动筛、振动给料机、振动输送机等。
这些设备通过振动来实现物料的分离、输送和排放等功能。
2.振动检测与诊断:机械振动可用于检测和诊断装置或系统的故障。
通过监测和分析机械系统的振动特征,可以判断设备是否存在故障、预测故障发生的可能性以及确定故障的类型和位置。
3.振动控制与消除:机械振动在诸多领域中可能会引起一些负面影响,如噪音、损坏和疲劳等。
因此,控制和消除机械振动成为许多工程项目的重点。
采用合适的设计和控制方法,可以有效地减少机械振动,提高设备的性能和使用寿命。
4.振动能量回收:机械振动能量的回收利用成为一种新型的能源开发方式。
通过将机械系统中产生的振动能量转化为电能或其他可用能源,可以提高能源利用效率,减少对传统能源的依赖。
四、机械振动的未来发展与趋势1.智能化发展:随着科技的进步,机械振动领域也逐渐向着智能化、自动化的方向发展。
智能化振动控制系统的出现,将会更加准确地进行振动监测、诊断和控制,提高设备的效率和性能。
2.节能与环保:在全球节能与环保的背景下,减少机械振动对环境和人体健康的影响成为一个重要的课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1-1机械振动的概念振动是一种特殊形式的运动,它是指物体在其平衡位置附近所做的往复运动。
如果振动物体是机械零件、部件、整个机器或机械结构,这种运动称为机械振动。
振动在大多数情况下是有害的。
由于振动,影响了仪器设备的工作性能:降低了机械加工的精度和粗糙度;机器在使用中承受交变载荷而导致构件的疲劳和磨损,以至破坏。
此外, 由于振动而产生的环境噪声形成令人厌恶的公害,交通运载工具的振动恶化了乘载条件,这些都直接影响了人体的健康等等。
但机械振动也有可利用的一面,在很多工艺过程中,随着不同的工艺要求,出现了各种类型利用振动原理工作的机械设备,被用来完成各种工艺过程, 如振动输送、振动筛选、振动研磨、振动抛光、振动沉桩等等。
这些都在生产实践中为改善劳动条件、提髙劳动生产率等方而发挥了积极作用。
研究机械振动的目的就是要研究产生振动的原因和它的运动规律,振动对机器及人体的影响,进而防I匕与限制英危害,同时发挥其有益作用。
任何机器或结构物,由于具有弹性与质疑,都可能发生振动。
研究振动问题时,通常把振动的机械或结构称为振动系统(简称振系)。
实际的振系往往是复杂的,影响振动的因素较多。
为了便于分析研究,根据问题的实际情况抓住主要因素,略去次要因素,将复杂的振系简化为一个力学模型,针对力学模型来处理问题。
振系的模型可分为两大类:离散系统(或称集中参数系统)与连续系统(或称分布参数系统),离散系统是由集中参数元件组成的,基本的集中参数元件有三种:质量、弹簧与阻尼器。
苴中质量(包括转动惯虽:)只具有惯性: 弹簧只具有弹性,其本身质量略去不计,弹性力只与变形的一次方成正比的弹簧称为线性弹簧:在振动问题中,各种阻力统称阻尼,阻尼器既不具有惯性,也不具有弹性,它是耗能元件,在有相对运动时产生阻力,其阻力与相对速度的一次方成正比的阻尼器称为线性阻尼器。
连续系统是由弹性元件组成的,典型的弹性元件有杆、梁、轴、板、壳等,弹性体的惯性、弹性与阻尼是连续分布的。
严格的说,实际系统都是连续系统,所谓离散系统仅是实际连续系统经简化而得的力学模型。
例如将质量较大、弹性较小的构件简化为不计弹性的集中质量; 将振动过程中产生较大禅性变形而质量较小的构件,简化为不il•质量的弹性元件;将构件中阻尼较大而惯性、弹性小的弹性体也可看成刚体。
这样就把分布参数的连续系统简化为集中参数的离散系统。
例如图1-1 (a)所示的安装在混凝上基础上的机器,为了隔振的目的,在基础下而一般还有禅性衬垫,如果仅研究这一系统在铅垂方向的振动,在振动过程中弹性衬垫起着禅簧作用,机器与基础可看作一个刚体,起着质量的作用,衬垫本身的内摩擦以及基础与周用约束之间的摩擦起着阻尼的作用(阻尼用阻尼器表示,阻尼器由一个油缸和活塞、油液组成。
活塞上下运动时,油液从间隙中挤过,从而造成一左的阻尼)。
这样图1-1 (a)所示的系统可简化为1-1 (b)所示的力学模型。
又如图1-2中假想线表示的是一辆汽车,若研究的问题是汽车沿道路行驶时车体的上下运动与俯仰运动,则可简化为图中实线所示的刚性杆的平而运动这样一个力学模型。
其中弹簧代表轮胎及其悬挂系统的弹性,车体的惯性简化为平移质量及绕质心的转动惯量,轮胎及其悬挂系统的内摩擦以及地而的摩擦等起着阻尼作用,用阻尼器表示。
下而以最简单的力学模型(图1-止,其中略去阻尼)为例来阐明物体如何在平衡位置附近作往复运动的过程。
当物体静止时,物体处于图1-3 (a) 所示的静平衡位置0-0.此时物体的重力与弹簧的弹性恢复力(此时弹簧有静变形)互相平衡,故合力为零,速度及加速度皆为零;当物体受到向下的冲击作用后,即向下运动,弹簧被进一步压缩,弹簧恢复力逐渐加大,合力的方向向上,使物体作减速运动。
当物体的速度减小到零,物体则运动到如图1-3 (b)所示的最低位宜,此时速度为零,由于合力的方向向上,使物体产生向上的加速度.物体即开始向上运动:当物体返回到如图1-3 (c)所示的平衡位置时,其所受的合力又为零,但其速度不为零,由于惯性作用,物体继续向上运动:随着物体向上运动,弹簧逐渐伸长,弹簧恢复力逐渐变小.物体重力大于牌簧恢复力,合力的方向向下,故物体又作减速度运动。
当物体向上的速度减小到零时,物体即运动到如图1-3 (d)所示的最髙位置」此后,物体即开始向下运动返回平衡位宜:当物体返回到如图1-3 (e)所示的平衡位置时,英所受合力又为零,由于惯性作用,物体继续向下运动。
这样,物体便在平衡位置附近来回往复运动。
从图1-3 (a)到图1-3(e)这一往复运动过程称为完成一次振动。
(a) (b) (c) (d) (e)0H3昭L —4从运动学的观点来看,机械振动是指机械系统的某些物理量(位移、速度、加速度), 在某一数值附近随时间t的变化关系。
当振动物体经过某一确左的时间间隔之后继续重复前一时间间隔的运动过程,这种振动称为周期振动,如图1-4 (a)所示。
往复一次所需的时间间隔T称为周期。
最简单的周期振动是简谐振动,可以用正弦或余弦函数加以描述,如图1-4(b)所示,如果没有一左的周期的振动,则称为非周期振动,如图1-4 (c)所示。
1-2振动的分类一个实际的振动系统,在外界激扰(亦称激励,可以是随时间变化的力、速度、加速度及位移)作用下,会呈现一定的振动响应(亦称反应,如位移、速度及加速度等)。
这种激扰就是系统的输入,响应就是系统的输出。
二者由系统的振动特性联系着,振动分析就是研究这三者间的相互关系。
为了便于分析研究问题,有必要对振动作如下的分类。
一.按系统的输入(振动原因)可分为:1.自由振动一系统受初始激扰或原有的外界激扰取消后,只依靠系统本身的弹性恢复力维持的振动。
2.强迫振动一系统受外界持续激扰作用下所产生的振动。
3.自激振动一激扰是由系统振动本身控制的,在适当的反馈作用下,系统会自动地激起的定幅振动。
二.按系统的输出(振动规律)可分为:1.简谐振动一能用一项正弦和余弦函数表达其运动规律的周期性振动。
2.非简谐振动一不能用一项正弦或余弦函数表达英运动规律的周期性振动。
3.瞬态振动一振动量为时间的非周期函数,通常只在一泄的时间内存在。
4.随机振动一振动量不是时间的确定性函数,而只能用概率统讣的方法来研究的非周期性振动。
三.按系统的自由度数可分为:1•单自由度系统振动一系统在振动过程中任何瞬时的几何位置只需要一个独立坐标就能确定的振动。
2.多自由度系统振动一系统在振动过程中任何瞬时的几何位置需要多个独立坐标才能确定的振动。
3.弹性连续体的振动一系统在振动过程中任何瞬时的几何位置需要无限多个独立坐标(位移函数)才能确定的振动,也称为无限自由度系统振动。
四.按振动系统的结构参数的特性可分为:1.线性振动一系统的惯性力、阻尼力及弹性恢复力分别与加速度、速度及位移成线性关系,能用常系数线性微分方程描述的振动。
2.非线性振动一系数的阻尼力或弹性恢复力具有非线性性质,只能用非线性微分方程来描述。
五.按振动位移的特征可分为:1•纵向振动一振动物体上的质点只作沿轴线方向的振动。
2.扭转振动一振动物体上的质点只作绕轴线转动的振动。
3.横向振动一振动物体上的质点只作垂直轴线方向的振动。
纵向振动与横向振动又可称为直线振动。
1-3简谐振动的矢量表示法和复数表示法1 •矢量表示法:简谐振动可以用旋转矢虽在坐标轴上的投影来表示。
设有一模为A的旋转矢量0A以匀角速度由初始角为0位宜开始,逆时钟向旋转(见图l-5a)o则任一瞬时,这一旋转矢量在纵坐标轴上的投影表示一简谐振动(见图l-5b)o同样它在横坐标轴上的投影为一余弦函数,也表示一简谐振动匚旋转矢量的模就是简谐振动的振幅,而旋转角速度就是简谐振动的频率。
因卜52•复数表示法:如图1-6所示,设P为复平面上的一个点,连接P与坐标原点,得一矢屋0P,称为复矢量。
设复矢量0P的模为A,它在实轴和虚轴上的投影分别为AcosO和Asin。
, 则复矢量0P可表示为如下复数形式Z = Acos& +L4sin& = Acosco t +iAsin(a其中,复数Z的模A就是复矢量OP的模,复数Z的复角0, (& =必)就是复矢虽0P与实数轴的夹角。
上式表明,简谐函数可以用复数表示,复数的实部代表正弦函数,虚部代表余弦函数。
在具体应用复数对简谐振动进行计算时,可取复数的实部(或虚部)进行计算,英结果亦取复数的实部(或虚部),本书如无特殊说明时均取复数虚部进行计算。
根据欧拉公式=cos6> + /sm6>,复数Z可改写为Z = Ae iM,而其虚部对应的简谐振动为:因卜7x = Ae i(^ = Ae^e IM =瓦肿式中T = Ae\称为复振幅,初相位角。
简谐振动的速度和加速度也可用复数表示为:X = icaAe tM =曲"严日X = i1 co2 3Ae lM =co2Ae i{^}将上述结果画在复平而上,这些矢量关系如图1-7所示。
可以看出,对复数Af 每求导一次,则相当于在它前而乘上一个i(・),而每乘上一个i, 就相当于把这个复数矢量逆时针旋转90%这就给运算带来一圧的方便•1-4振动问题及其解决方法,本课程的任务前而已经提到,振动分析就是研究激扰(输入)、响应(输出)和系统振动特性三者的关系,如图1-8所示。
不论是哪一类型振动问题,一般说来,无非是在激扰、响应及系统特性三者之中,已知二者求第三者。
从这个意义上说,工程振动分析所要解决的问题可归纳为下列几类:2 环境预测一这是在已知系统特性与响应的情况下来确定系统的输入,以判别系统的环境特性。
3 系统识別一这是在已知激扰与响应的情况下来确泄系统的特性。
图卜8后一种情况下,问题的另一种提法是:在一立激扰条件下,如何来设计系统的特性使得系统的响应满足指左的条件。
这就是系统设计。
实际的振动问题往往是错综复杂的,解决振动问题的方法.不外乎是理论分析和试验研究,二者是相辅相成的。
计算机的日益发展和普及,以及振动测试仪器的迅速发展和完善,为解决复杂的振动问题的理论分析和试验研究提岀了强有力的工具与手段。
“机械振动”是范用相当宽广的一门学科,涉及到多方而的知识。
由于振动的基本理论在解决振动问题中的重要性。
本课程的任务力求突出基础内容,按振动力学的体系着重阐明机械振动的基础理论与分析方法,内容限于线性振动而不涉及更为深入的内容。
掌握本课程的内容将为进一步深入研究机械振动问题奠左必要的基础。
1.响应分析一这是在已知激扰与系统特性的情况下求系统的响应的问题,包括位移、速度、加速度和力的响应。
这为计算机器或结构的强度、刚度、允许的振动能量水平提供了依。