勾股定理知识点总结

合集下载

勾股定理知识点总结

勾股定理知识点总结

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

勾股定理知识点总结大全

勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。

具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。

这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。

二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。

几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。

常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。

2. 代数证明另外,勾股定理也可以通过代数方法进行证明。

代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。

通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。

三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。

例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。

勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。

2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。

而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。

这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。

3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。

物理勾股定理知识点总结

物理勾股定理知识点总结

物理勾股定理知识点总结一、勾股定理的概念勾股定理是指直角三角形中,直角边的平方和等于斜边的平方。

勾股定理广泛应用于物理学中的各个领域,如力学、光学、电磁学等。

它不仅是物理学的基础知识,也是解决实际问题的重要工具。

在直角三角形ABC中,若角C为90度,则有a²+b²=c²,其中a、b分别为直角边,c为斜边。

这是勾股定理的基本表达形式。

二、勾股定理的证明1. 几何证明:勾股定理最早由古希腊数学家毕达哥拉斯提出,并给出了一种几何证明。

这种证明方法是通过构造一个正方形,利用三角形的相似性和面积相等来证明。

在直角三角形ABC中,作a和b为直角边的正方形,其边长分别为a和b。

然后再构造一个以c为边长的正方形。

根据相似三角形的性质和面积相等,可以得出a²+b²=c²。

2. 代数证明:勾股定理也可以通过代数方法进行证明。

假设直角三角形的两直角边分别为a和b,斜边为c。

则可以利用勾股定理进行代数运算。

首先,将直角三角形的两直角边分别表示为a 和b,根据毕达哥拉斯定理,得:a²+b²=c²然后,对两边取平方根,得:c=√(a²+b²)因此,可以通过代数方法证明勾股定理的成立。

三、物理学中勾股定理的应用1. 力学:在力学中,勾股定理常常用于解决叠加物体受力的问题。

例如,一个物体受到两个力的作用,可以利用勾股定理计算合成力的大小和方向。

另外,勾股定理也可用于解决斜面上物体滑动的问题。

2. 光学:在光学中,勾股定理常常用于计算光的反射和折射。

例如,当光线入射到一个介质边界上时,可以通过勾股定理计算入射角和折射角之间的关系。

另外,勾股定理也可以用于计算物体在镜子中的像的位置和大小。

3. 电磁学:在电磁学中,勾股定理常常用于计算电场和磁场的合成和分解。

例如,两个电荷之间的相互作用力可以通过勾股定理计算合成力的大小和方向。

勾股定理公式知识点总结

勾股定理公式知识点总结

勾股定理公式知识点总结一、勾股定理的证明方法勾股定理的证明有许多种方法,下面介绍其中比较常见的几种证明方法:1. 几何法证明几何法证明是最直观的证明方法之一,它利用几何图形和性质进行推理。

一种常见的几何法证明是利用平行四边形的性质,将直角三角形的两个直角边分别构造成平行四边形的边,利用平行四边形的对角线相等性质即可证明勾股定理。

2. 代数法证明代数法证明是利用代数运算推导出勾股定理成立的证明方法。

一种常见的代数法证明是利用两个直角三角形组成一个正方形,通过展开式的数字运算推导出勾股定理成立。

3. 数学归纳法证明数学归纳法是一种数学论证方法,通过证明当n=k时定理成立,再证明当n=k+1时定理也成立,从而得出在一切正整数n上定理成立的论证方法。

勾股定理的证明中也可以使用数学归纳法证明。

4. 数学分析法证明数学分析法是通过数学函数的图像分析证明定理的方法。

通过分析直角三角形和斜边的关系,利用函数的性质进行推导,可以证明勾股定理成立。

以上是勾股定理的几种常见的证明方法,它们都是通过不同的数学思维和方法来证明同一个定理的正确性。

在学习和掌握勾股定理时,可以通过比较不同的证明方法,增加对定理的理解和掌握。

二、勾股定理的应用场景勾股定理是数学中的基础定理,它被广泛地应用于各种实际问题中。

下面将介绍一些勾股定理在实际应用中的具体场景:1. 地理测量在地理测量中,经常需要利用勾股定理来计算直角三角形的边长。

例如,利用直角三角形的边长和角度来计算地球上两点的距离,或者计算某一点的具体位置等。

2. 建筑设计在建筑设计中,经常需要利用勾股定理来设计直角三角形结构的建筑物。

例如,在设计楼梯的高度和跨度,或者在设计房屋的墙角和斜面等方面,都需要用到勾股定理。

3. 机械制造在机械制造中,勾股定理也有广泛的应用。

例如,在设计机械零件的装配结构、角度、长度等方面,都需要用到勾股定理来进行计算和设计。

4. 航空航天在航空航天领域,勾股定理也有重要的应用。

勾股定理知识点精典总结

勾股定理知识点精典总结

勾股定理知识点一:勾股定理及其证明一.勾股定理:在ABC Rt ∆中,︒=∠90C1.角与角之间有怎样的关系?︒=∠+∠90B A 直角三角形两锐角互余2.边与边之间有怎样的关系?(1)斜边最长; (2)任意两边之和大于第三边,任意两边之差小于第三边(3)勾股定理: a 2+b 2=c 2对这个等式可以变形为:22b a c += 22a c b -= 22b c a -=1、填空题⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。

⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。

⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。

⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。

⑺在Rt △ABC ,∠C=90°,如果a=7,c=25,则b= 。

⑻在Rt △ABC ,∠C=90°,如果∠A=30°,a=4,则b= 。

⑼在Rt △ABC ,∠C=90°,如果∠A=45°,a=3,则c= 。

⑽在Rt △ABC ,∠C=90°,如果c=10,a-b=2,则b= 。

⑾在Rt △ABC ,∠C=90°,如果a 、b 、c 是连续整数,则a+b+c= 。

⑿在Rt △ABC ,∠C=90°,如果b=8,a :c=3:5,则c= 。

二.选择题1.在△ABC 中,AB=15,AC=13,BC 上的高AD 长为12,则△ABC 的面积为 ( ).(A )84 (B )24 (C )24或84 (D )84或242.如下图,线段AB=√2、CD=√5,那么,线段EF 的长度为( )A 、√7B 、√11C 、√13D 、√153.如图,点1为单位正方形内一点,且AE=BE=AB ,延长AE 交CD 于F ,作FG ⊥AB 于点G ,则EG 的长度为( )A 、B 、C 、D 、4.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P 的距离是 ( )A .2cm B .4√3cm C .6cm D .8cm5.如图所示,有一个长、宽各2米,高为4米且封闭的长方体纸盒,一只昆虫从顶点要爬到顶点,那么这只昆虫爬行的最短路程为( )A 、3米 B 、 5米 C 、4√2米 D 、2√10米6.如图,在△ABC 中,∠ACB =90º,AC >BC ,分别以AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是 A .S 1=S 2=S 3 B .S 1=S 2<S 3 C .S 1=S 3<S 2 D .S 2=S 3<S 1二.填空题1. 如下图,数轴上点A 表示的数为________;2.已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=√3,求线段AB 长。

勾股定理(知识点)

勾股定理(知识点)

A B C ac 弦勾勾股定理(知识点)【知识要点】1.勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角8,15,17等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4;(1⇒∠A+(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°1AB可表示如下:⇒BC=2∠C=90°(3)直角三角形斜边上的中线等于斜边的一半。

∠ACB=90°1AB=BD=AD可表示如下: CD=2D为AB的中点6.数轴上表示无理数1.2.、∠B、A.a2+b2=c2B.a2=2b2C.c2=2a2D.b2=2a23.矩形ABCD,AB=5cm,AC=13cm,则这个矩形的面积为60cm2.4.如图,在△ABC中,∠BAC=90o,AB=15,AC=20,AD⊥BC,垂足为D,则△ABC斜边上的高AD=12.5.已知等腰三角形底边长为10cm,腰长为13cm,则腰上的高....为(C)A.12cmB.60cm C.12013cm D.1013cm136.一个直角三角形的三边为三个连续偶数,则它的三边长分别为6,8,10.7.(易错题)已知直角三角形的两边x,y的长满足│x-4│+3 y=0,则第三边的长为5或.8.10.11.别用.12.,分别以13.形A,49cm第4题第11题第12题第13题14.在Rt△ABC,∠C=90°(1)已知c=17,b=8,求a。

勾股定理知识点总结

勾股定理知识点总结

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

(完整版)勾股定理知识点+对应类型

(完整版)勾股定理知识点+对应类型

第二章勾股定理、平方根专题第一节勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。

勾股定理知识点整理

勾股定理知识点整理

勾股定理知识点整理1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。

其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边;(3)利用勾股定理可以证明线段平方关系的问题。

2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。

运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC是以∠C为直角的直角三角形(若c²>a²+b²,则△ABC是以∠C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。

3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

高中勾股定理知识点总结

高中勾股定理知识点总结

高中勾股定理知识点总结一、勾股定理的定义勾股定理又称毕达哥拉斯定理,是指在直角三角形中,直角边的平方之和等于斜边的平方。

具体表达为:设直角三角形的两条直角边分别为a和b,斜边为c,则有a^2 + b^2 = c^2。

其中,a、b、c分别代表直角三角形的三条边的长度。

二、勾股定理的应用1. 检验直角三角形:当我们已知一个三角形的三条边的长度时,可以通过勾股定理来判断这个三角形是否为直角三角形。

如果已知a^2 + b^2 = c^2,那么这个三角形一定是直角三角形。

2. 求直角三角形的未知边长:当我们已知一个直角三角形的其中两条边的长度时,可以通过勾股定理来求解第三条边的长度。

根据a^2 + b^2 = c^2,可以利用这个公式求解出c的值。

3. 解决几何问题:在一些几何问题中,勾股定理也经常发挥重要作用。

例如,在求解直角三角形的面积、周长等问题时,可以先利用勾股定理求解出各边的长度,然后再进行进一步的计算。

三、勾股定理的证明勾股定理最早是由古希腊数学家毕达哥拉斯发现的,所以也被称为毕达哥拉斯定理。

在数学中,勾股定理的证明有多种方法,其中最著名的就是几何证明和代数证明。

1. 几何证明:几何证明是利用几何图形和性质来证明勾股定理。

一种常见的几何证明方法是构造一个正方形,然后证明正方形的对角线长度分别为a+b和c,从而得到a^2 + b^2 = c^2。

2. 代数证明:代数证明是利用代数运算和方程推导来证明勾股定理。

代数证明的思路更加抽象和数学化,需要运用代数知识进行推理和计算。

四、勾股定理的推广除了直角三角形外,勾股定理还可以推广到其他类型的三角形中。

其中最重要的就是斜三角形的勾股定理。

斜三角形的勾股定理表达为:a^2 + b^2 = c^2 - 2ab*cosC。

其中,a、b、c分别代表三角形的三条边的长度,C代表三角形的斜边对应的角的余弦值。

这个定理在解决一些非直角三角形的问题时也具有重要的作用。

第18章_勾股定理知识点与常见题型总结

第18章_勾股定理知识点与常见题型总结

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:假如直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存有的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这个特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可使用勾股定理解决一些实际问题5.勾股定理的逆定理假如三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在使用这个定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=仅仅一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描绘时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数能够提升解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够协助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,理解直角三角形中,斜边和直角边各是什么,以便使用勾股定理实行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便准确使用勾股定理实行求解.8..勾股定理逆定理的应用勾股定理的逆定理能协助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方实行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC ==题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC , 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB CD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD =答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形 理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CB AAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。

勾股定理知识点总结

勾股定理知识点总结

勾股定理知识点总结一、勾股定理的定义在直角三角形中,两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长分别为 a 和 b,斜边长为 c,那么 a²+ b²= c²。

这一定理是数学中非常重要的一个定理,它揭示了直角三角形三条边之间的数量关系。

二、勾股定理的证明勾股定理的证明方法有很多种,以下为大家介绍几种常见的证明方法。

1、赵爽弦图法赵爽弦图是由四个全等的直角三角形拼成一个大正方形,中间是一个小正方形。

大正方形的面积等于四个直角三角形的面积加上小正方形的面积。

设直角三角形的两条直角边分别为 a 和 b,斜边为 c。

大正方形的边长为 c,面积为 c²。

四个直角三角形的面积为 4×(1/2)ab = 2ab,小正方形的边长为(b a),面积为(b a)²= a² 2ab + b²。

所以 c²= 2ab + a² 2ab + b²,即 c²= a²+ b²,证明完毕。

2、毕达哥拉斯证明法以直角三角形的斜边为边长作一个正方形,再以两条直角边为边长分别作两个正方形。

通过计算三个正方形的面积,可以证明勾股定理。

设直角三角形的两条直角边分别为 a 和 b,斜边为 c。

斜边为边长的正方形面积为 c²,两条直角边为边长的正方形面积分别为 a²和 b²。

通过将直角边为边长的两个正方形进行分割和拼接,可以发现它们能够恰好填满斜边为边长的正方形,从而证明 a²+ b²= c²。

三、勾股定理的应用1、已知直角三角形的两条边,求第三条边例如,已知一个直角三角形的两条直角边分别为 3 和 4,求斜边的长度。

根据勾股定理,斜边的长度 c =√(3²+ 4²) = 5 。

2、实际生活中的应用(1)建筑工程中,计算建筑物的高度、跨度等。

勾股定理知识点总结归纳

勾股定理知识点总结归纳

精心整理第18章勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222a b c+=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①②定理常见方法如下:方法一:4EFGHS S S∆+=正方形正方形ABCD,14(2ab b⨯+-方法二:四个直角三角形的面积与小正方形面积的和为S=大正方形面积为22()S a b a=+=+所以222a b c+=方法三:1()()2S a b a b=+⋅+梯形,2222ab c⋅+,化简得证3.它只适用于直角三角形,对于锐角三角因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.①在ABC∆中,90C∠=︒,则c,b=,a=②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。

ba作法:如图所示(1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。

斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是 、、、。

举一反三【变式】在数轴上表示的点。

解析:可以把看作是直角三角形的斜边,, 为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理知识点总结

勾股定理知识点总结

勾股定理知识点总结(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第18章 勾股定理复习一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 证.方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边cbaHG F ED C BAbacbac cabcab a bc cbaE D CBA在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。

图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。

则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。

(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。

勾股定理还可以解决生产生活中的一些实际问题。

在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。

(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。

由此,我们可借助勾股定理,作直角边为1的等腰直角三角形,它的斜边长等于2;作直角边为2,1的直角三角形,其斜边长为3。

类似地,可以作出长为 n (n 为大于1的整数)的线段。

题型一:用勾股定理解三角形1.(2023·江苏·八年级泰州市姜堰区第四中学校考期末)在Rt ABC △中,90C ∠=︒,若2AB AC -=,3BC =,则AC 的长为( )A .3B .4C .5D .542.(2023秋·山东菏泽·八年级校考期末)如图,在Rt ABC 中,90C ∠=︒,D 为AC 上一点,且DA DB AB ==,4CB =,则ABD 的面积为( )A .6B .7C .10D .9题型二:已知两点坐标求距离3.(2022秋·河北保定·八年级校考期末)已知点()32A ,是点(),B a b 关于y 轴的对称点,则坐标原点O 与点B 之间的距离为( )A B C .3 D .24.(2023春·八年级课时练习)如图,Rt AOB △的顶点()()212A B n -,,,分别在第一,二象限内,90AOB ∠=︒,则n 的值为( )A .6B .5C .4D .3题型三:勾股数问题5.(2023秋·河北邢台·八年级校联考期末)下列各组数中是勾股数的是( )A .12B .12,16,20C .32,42,52D .0.5,1.2,1.36.(2022秋·广东茂名·八年级茂名市第一中学校考期中)下列图各组数中,是勾股数的是( )A .6,8,12B .0.6,0.8,1C .8,15,16D .9,12,15题型四:以直角三角形三边为边长的图形面积7.(2023秋·河北保定·八年级统考期末)如图,在四边形ABCD 中,90ABC CDA ∠=∠=︒,分别以四边形ABCD 的四条边为边长,向外作四个正方形,面积分别为1S ,2S ,3S 和4S .若11S =,24S =,33S =,则4S 的值是( )A .1B .2C .3D .48.(2023秋·山西长治·八年级统考期末)下列各图是以直角三角形各边为边在三角形外部画正方形得到的.每个正方形中的数及字母S 表示所在正方形的面积,其中S 的值恰好等于5的是( )A .B .C .D .题型五:勾股定理和网格问题9.(2023秋·陕西西安·八年级统考期末)如图,ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,则BC 边上的高为( )A B C D 10.(2022秋·广东广州·八年级校考期中)如图,在4×4的方格中,每个小正方形的边长为1,若点A 在数轴上表示的数是1-,以A 为圆心,AD 为半径画圆弧与数轴的正半轴交于点E ,则点E 所表示的数是( )A B 1 C 1 D .1题型六:勾股定理和折叠问题11.(2023秋·山西晋中·八年级统考期末)如图,Rt ABC △中,8AB =,6BC =,90B ,点D 在BC 上,且2BD CD =,将ABC 折叠,使A 点与点D 重合,折痕为MN ,则线段BN 的长为( )A .3B .4C .5D .612.(2022秋·八年级统考期中)如图,将等边ABC 折叠,使得点C 落在AB 边上的点D 处,EF 是折痕,若90ADE ∠=︒,1AD =,则AC 的长是( )A .2B .4C .D .2题型七:利用勾股定理求两条线段的平方和(差)13.(2023春·八年级课时练习)如图,在△ABC 中,AB =6,AC =9,AD⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .4514.(2022秋·八年级课时练习)在Rt ABC △中,90C ∠=︒,10AB =,则2222AB AC BC ++=( ). A .100 B .200 C .300 D .400题型八:勾股定理构造图形解决问题15.(2023秋·山西长治·八年级统考期末)某数学兴趣小组开展了笔记本电脑的张角大小的实践探究活动.如图,当张角为BAF∠时,顶部边缘B处离桌面的高度BC为7cm,此时底部边缘A处与C处间的距离AC为24cm,小组成员调整张角的大小继续探究,最后发现当张角为DAF∠时(D是B的对应点),顶部边缘D处到桌面的距离DE为20cm,则底部边缘A处与E之间的距离AE为()A.15cm B.18cm C.21cm D.24cm 16.(2023秋·河北沧州·八年级统考期末)如图⊥,某超市为了吸引顾客,在超市门只离地高4.5m的墙上,装有一个由传感器控制的门铃A,人只要移至该门口4m及4m以内时,门铃就会自动发出语音“欢迎光临”.如图⊥,一个身高1.5m的学生刚走到D处,门铃恰好自动响起,则该生头顶C到门铃A的距离为()A.7m B.6m C.5m D.4m题型九:以炫图为背景的计算题17.(2023秋·湖南衡阳·八年级统考期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若ab=,大正方形的面积为129.则小正方形的边长为()24A.12B.11C.10D.918.(2023秋·北京·八年级校联考期末)下图是在北京召开的国际数学家大会的会标,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形.若小正方形的面积为8,每个直角三角形比小正方形的面积均小1,则每个小直角三角形的周长是()A.5B.9C.10+D.14题型十:勾股定理的应用19.(2022春·福建福州·八年级统考期中)我国古代数学著作《九章算术》中记载这样一个问题,原文是:“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为;“现在有一根直立的木柱,用一根绳索绑住木柱的顶端,另一端自由下垂,则绳索比木柱多三尺;将绳索的另一端靠地拉直,此时距离木柱的底端八尺,问这条绳索的长度是多少?”根据题意,求得绳索的长度是()A.916尺B.9尺C.12尺D.1216尺20.(2022春·河南商丘·八年级统考期末)如图,甲轮船以16海里/时的速度离开港口O向东南方向航行,乙轮船在同时同地向西南方向航行,已知它们离开港口1.5小时后分别到达B、A,已知AB=30海里,则乙轮船每小时航行()A .12海里B .16海里C .18海里D .24海里题型十一:勾股定理的证明21.(2022秋·福建宁德·八年级统考期中)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形(如图1)与中间的一个小正方形拼成一个大正方形(如图2).(1)利用图2正方形面积的等量关系得出直角三角形勾股的定理,该定理的结论用字母表示: ;(2)用图1这样的两个直角三角形构造图3的图形,满足AE BC a ==,DE AC b ==,AD AB c ==,90AED ACB ==︒∠∠,求证(1)中的定理结论;(3)如图,由四个全等的直角三角形拼成的图形,设CE m =,HG n =,求正方形BDF A 的面积.(用m ,n 表示)22.(2022秋·山西忻州·八年级统考期末)综合与实践美丽的弦图中蕴含着四个全等的直角三角形.(1)如图1,弦图中包含了一大一小两个正方形,已知每个直角三角形较长的直角边为a ,较短的直角边为b ,斜边长为c ,结合图1,试验证勾股定理;(2)如图2,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,3OC =,求该飞镖状图案的面积;(3)如图3,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,若12342S S S ++=,求2S 的值.23.(2022秋·广东佛山·八年级校考期中)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)⊥请叙述勾股定理.⊥勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理,图1与图2都是由四个全等的直角三角形构成,图3是由两个全等的直角三角形构成(以下图形均满足证明勾股定理所需的条件)(2)如图4,以直角三角形的三边为直径向外部作半圆,请写出1S 、2S 和3S 的数量关系:___________.一、单选题24.(2022秋·江苏·八年级专题练习)课堂上,王老师要求学生设计图形来证明勾股定理,同学们经过讨论,给出两种图形,能证明勾股定理的是( )A .⊥行,⊥不行B .⊥不行,⊥行C .⊥,⊥都行D .⊥,⊥都不行 25.(2023秋·陕西西安·八年级统考期末)如图,在正方形ABCD 中,点E 是边BC 的中点,如果DE ABCD 的面积是( )A B .4 C .2 D .326.(2023秋·河南南阳·八年级统考期末)如图,长方形ABCD 中,6AD BC ==,10AB CD ==,点E 为线段DC 上的一个动点,将ADE 沿AE 折叠得到AD E ',连接D B ',当AD B '为直角三角形时,DE 的长为( )A .1B .2C .1或94D .2或927.(2023秋·江苏南通·八年级校联考期末)如图,长方形ABCD 的顶点A ,B 在数轴上,点A 表示-1,3AB =,1AD =.若以点A 为圆心,对角线AC 长为半径作弧,交数轴正半轴于点M ,则点M 所表示的数为( )A 1BC 1D 2 28.(2023秋·山东菏泽·八年级校考期末)空心玻璃圆柱的底面圆的周长是12π,高是5,内底面的点A 有一只飞虫,要吃到B 点的食物,最短路径的长是( )A .6B .7C .13D .1029.(2023秋·湖南衡阳·八年级校考期末)如图,直线l 上有三个正方形A 、B 、C ,若正方形A 、C 的面积分别是3和4,则正方形B 的面积为( )A .12B .7C .6D .530.(2023秋·陕西西安·八年级陕西师大附中校考期末)如图,90AED ∠=︒,正方形ABCD 和正方形AEFG 的面积分别是289和225,则以DE 为直径的半圆的面积是( )A .4πB .8πC .16πD .32π31.(2023秋·山西太原·八年级校考期末)如图,圆柱形容器的高17cm ,底面周长是24cm ,在外侧底面S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 点F 处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是( )A .20cmB .C D .24cm32.(2023秋·辽宁葫芦岛·八年级校考期末)若直角三角形的两直角边长分别为a ,b ,且满足()2340a b -+-=,则该直角三角形的第三边长的平方为( )A .25B .7C .25或7D .25或1633.(2023秋·广东佛山·八年级校考期末)如图,ABC 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-,B 点坐标是()3,1-,C 点坐标是()2,3-.(1)作ABC 关于y 轴对称的图形DEF ,A 、B 、C 的对应点分别为D 、E 、F ,并写出点E 的坐标;(2)在y 轴上找一点P ,使PA PC +的值最小,并求出PA PC +的最小值.34.(2023秋·广东深圳·八年级深圳外国语学校校考期末)如图,已知AB AC =,123∠=∠=∠,BF 交AC 于点E ,BE EF =.(1)证明:BE AC ⊥;(2)若1BD =,330∠=︒,连接AF ,求AF 的长.一、单选题35.(2023秋·河北石家庄·八年级石家庄市第二十二中学校考期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7m ,梯子顶端到地面的距离AC 为2.4m ,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5m ,则小巷的宽为( )A .2mB .2.5mC .2.6mD .2.7m36.(2023秋·辽宁丹东·八年级统考期末)如图,在四边形ABCD 中,90BAD BCD ∠=∠=︒,分别以四边形的四条边为斜边向外作四个等腰直角三角形,设它们的面积分别为1S ,2S ,3S ,4S .若3425S S +=,29S =,则1S 为( )A .16B .26C .34D .937.(2023春·八年级单元测试)如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成,图中正方形ABCD ,正方形EFGH ,正方形MNKJ 的面积分别记为1S ,2S ,3S ,若=4EF ,则123S S S 的值是( )A .32B .80C .38D .4838.(2023春·八年级单元测试)将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A 的边长为4,正方形C 的边长为3,则正方形B 的面积为( )A .25B .5C .16D .1239.(2022秋·陕西西安·八年级西安市铁一中学校考期末)如图,分别以Rt ACB △的直角边AB 和斜边AC 为边向外作正方形ABGF 和正方形ACDE ,连结EF .已知6CB =,10EF =,则AEF △的面积为( )A .B .C .24D .12二、填空题40.(2023秋·浙江宁波·八年级统考期末)如图,有一张直角三角形的纸片,90,5,3ACB AB AC ∠=︒==.现将三角形折叠,使得边AC 与AB 重合,折痕为AE .则CE 长为_____________.41.(2023秋·广东深圳·八年级深圳外国语学校校考期末)如图,在边长为4的等边ABC 中,点P 为BC 边上任意一点,PE AB ⊥于点B ,PF AC ⊥于点F ,则PE PF +的长度和为______.42.(2023秋·福建泉州·八年级统考期末)在如图所示的图形中,所有四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为5、6、20,则正方形B 的面积是_______.43.(2023秋·江西吉安·八年级统考期末)如图,在平面直角坐标系中,AOB 是直角三角形,90OAB ∠=︒,8OA =,6AB =,则点A 关于x 轴的对称点的坐标为________.44.(2023秋·山西晋城·八年级统考期末)如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中10AE =,24BE =,则2EF 的值是___________.45.(2023秋·福建莆田·八年级期末)如图,ABC 中,60ACB ∠=︒,点D 在AB 边上,7CD =,60BDC ∠=︒,延长CB 至点E ,使CE AC =,过点E 作EF CD ⊥于点F ,则EF =_____.三、解答题46.(2023秋·广东佛山·八年级统考期末)如图,在ABC 中,10AB BC ==,AC =AD BC ⊥,垂足为D .(1)求证:2B CAD ∠=∠.(2)求BD 的长度;(3)点P 是边BC 上一点,且点P 到边AB 和AC 的距离相等,求点P 到边AB 距离.47.(2023秋·湖南衡阳·八年级校考期末)如图1,在ABC 中,90,5,3ACB AB BC ∠=︒==,点P 从点A 出发,以每秒1个单位长度的速度沿路线A C B A →→→运动.设点P 的运动时间为t 秒.(1)AC =_________;当点P 在AC 上时,CP =_________(用含t 的代数式表示);(2)如图2,若点P 在ABC ∠的角平分线上,求t 的值;(3)在整个运动过程中,当BCP 是等腰三角形时,求t 的值.48.(2023秋·陕西西安·八年级高新一中校考期末)如图,在ABC 中,9010cm 6cm ACB AB BC ∠=︒==,,,若点P 从点A 出发,以每秒4cm 的速度沿折线A C B A ---运动,设运动时间为t 秒()06t <<备用图1 备用图2(1)若点P 在AC 上,且满足BCP 的周长为14cm ,则t 的值为 ;(2)若点P 在BAC ∠的平分线上,求此时t 的值;(3)运动过程中,直接写出当t 为何值时,BCP 为等腰三角形.49.(2023秋·陕西西安·八年级校考期末)如图1,在平面直角坐标系中,点B 为坐标原点,4AB =cm ,以AB 为边在第一象限作等边三角形,ABC BC 刚好落到x 轴上,点P 、Q 分别是边,AB BC 上的动点,点P 从点A 、点Q 从点B 分别沿,AB BC 方向同时出发,且它们的速度都为1cm/s .(1)如图1,连接,AQ CP 交于点M ,则在P 、Q 运动的过程中,CMQ ∠会变化吗?______(填“会”或“不会”);(2)如图1,当PBQ 是直角三角形时,求点P 的坐标;(3)如图2,若点P 、点Q 分别运动到点B 和点C 后继续在射线,AB BC 上运动,当12BP BC =时,连接AQ ,连接PC 并延长交AQ 于点M ,求CMQ ∠的度数和点P 的坐标.50.(2023春·全国·八年级专题练习)阅读下面材料:某学校数学兴趣活动小组在一次活动中,对一个数学问题作如下探究:在ABC 中,90BAC ∠=︒,AB AC =,45B BCA ∠=∠=︒,D 是BC 的中点,(1)问题发现:如图1,若点E 、F 分别在线段AB 、AC 上,且AE CF =,连接EF 、DE 、DF 、AD ,此时小明发现BAD ∠=___________°,AD __________DC (填“>、<、=”);接下来小明和同学们继续探究,发现一个结论:线段EF 与DE 长的比值是一个固定值,即EF =______DE .(2)变式探究:如图2,E 、F 分别在线段BA 、AC 的延长线上,且AE CF =,若4EF =,求DE 的长并写出过程.(3)拓展应用:如图3,6AB AC ==,动点M 在AD 的延长线上,点H 在直线AC 上,且满足90BMH ∠=︒,2CH =,请直接写出DM 的长为___________.。

相关文档
最新文档