大学物理实验数据处理与误差分析.pdf
大学物理实验-误差理论与数据处理综述
误差理论与数据处理
②依据测量的条件进行分类
※等精度测量:
就是在一定的条件下,由同一测量者,操作同 一测量工具,采用同一方法,测量同一对象, 这样的测量称为等精度测量.即测量的一切条 件都是不变的,变化的因素很小时也可认为是 等精度测量.
不等精度测量 :
③依据测量可重复性进行分类
单次测量: ※多次测量:
误差理论与数据处理
①误差的绝对值有界 有界性 ②小误差出现的概率大于大误差出现 单峰性 的概率 对称性 ③n很大时,绝对值相等、符号相反的 误差,概率相等 ④n很大时,由于正负误差相互抵消, 抵偿性 各误差的代数和趋于零。 通过数学推导,可以得到随机误差的概率密度 分布函数
误差理论与数据处理
或者
一般难以控制,往往不可抗拒。
如:电磁场等的微扰,测量者的心理等。
误差理论与数据处理
•服从的规律: 服从数理统计规律。 •处理方法:
多次测量取平均值,也就是用最佳 估计的办法得近似真值。
③过失误差
由于实验者粗心大意或环境突发干扰而造成的, 该测量值不属于正常测量范围,在处理数据时 应予以剔除。
误差理论与数据处理
误差理论与数据处理
误差理论与数据处理
《大学物理实验》课程安排
本学期(8次课16学时)
(1)误差理论与数据处理 (2)实验项目7个 14学时 2学时
误差理论与数据处理
本次课程内容:
一、基本概念 二、随机误差的正态分布率 三、数据处理 *(重点)
四、实验常用的数据处理 方法 *(重点) 五、物理实验课的基本程 序和要求
准确度高 精密度低
准确度高 精密度高
精 确 度 高
误差理论与数据处理
4)误差的表示方法:
实验误差与数据处理大学物理实验详解
7.测量值与不确定x) (单位)
Ur
u(x) x
100%
测量值与不确定度、相对不确定度需要修正
结果正确表示举例
测测量量值值y 不不确确定定度度u u(y()y) 修修正正u u(y()y) 正正确确表表示示
131.34.24626 131.34.24323 131.34.242 131.34.4
11.37
11.37
三、数据分析
1.测量总是伴随着误差 2.实验误差分类(实验采用不确定度反映误差)
➢绝对误差 x x x0 x 测量值, x0真值
➢ 相对误差
Er
x
x0
100 %
在实验中, x0是测量的目标, x0和这两项误差难以
获得。
3.不确定度(uncertainty)—— u
不确定度是表征被测量真值在某个量值范围的 一个评定,是评价测量结果的一个参数。
掌握
二、数据处理
(3)函数运算:
乘方、开方、三角函数、自然对数等函数的有效位数 与自变量的有效位数相同。(角度为60进制,20°6′应视 为20°06′,有四位有效数字。Sin 20°06′=0.3436)
(4)混合运算:
按各步骤对应的运算方法逐步进行。
(11.37-10.52) 275 = 0.85 275 =2 1 掌握
1
2
3
4
5
mi(g) 187.92 187.24 187.55 187.19 187.31
mi m 0.48 -0.20 0.11 -0.15 -0.13
数据处理:
算术平均值:
m
1 5
5 i 1
mi
187 .44(g)
A类不确定度:uA (m)
实验数据误差分析和数据处理
仪器、装置误差;
测量环境误差;
温度、湿度、光照,电磁场等 理论公式为近似 或实验条件达不 到理论公式所规 定的要求
测量理论或方法误差;
人员误差---生理或心理特点所造成的误差。 特点:同一被测量多次测量中,保持恒定或以可预知的方 式变化(一经查明就应设法消除其影响)
分类:
误 差 理 论 基 础
a. 定值系统误差-----其大小和符号恒定不变。
二、偶然误差和系统误差
误 差 理 论 基 础
误差分类 按其性质和原因可分为三类:
系统误差
偶然误差(随机误差)
粗大误差
误 差 理 论 基 础
1.系统误差:在重复测量条件下对同一被测量进行无限 多次测量结果的平均值减去真值 x ( n ) a
来源:
标准器误差;仪器安装调整不妥,不水平、 不垂直、偏心、零点不准等,如天平不等臂, 分光计读数装置的偏心;附件如导线
论
录计量结果; c. 任何测量都有误差,应运用误差理论估计判断测量结果是否可靠----对计量结果误差分析和计算; d. 实验目的是为了从测得的大量数据中得到实验规律,寻找各变量 间的相互关系------数据处理;
e. 最后写出测量结果-----结果表达。
误差理论基础
绪 主要内容:
基本概念——物理实验和测量误差 误差分类——偶然误差和系统误差 误差计算——测量结果的不确定度 数据格式——有效数字 数据处理——用最二乘法作直线拟合
处理: 任何实验仪器、理论模型、实验条件,都不可能理想 a. 消除产生系统误差的根源(原因) b. 选择适当的测量方法
误 差 理 论 基 础
1) 交换法----如为了消除天平不等臂而产生的系统误差 2) 替代法----如用自组电桥测量电阻时
大学物理实验报告数据处理及误差分析
大学物理实验报告数据处理及误差分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.M尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为 <单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.2.3.六、按有效数字要求,指出下列数据中,哪些有错误。
1.用M尺<最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计<最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.=?3.4.八、用最小分度为毫M的M尺测得某物体的长度为=12.10cm<单次测量),若估计M尺的极限误差为1mm,试把结果表示成的形式。
b5E2RGbCAP九、有n组测量值,的变化范围为2.13 ~ 3.25,的变化范围为0.1325 ~0.2105,采用毫M方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?p1EanqFDPw十、并排挂起一弹簧和M尺,测出弹簧下的负载和弹簧下端在M尺上的读数如下表:据处理。
长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫M为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?DXDiTa9E3d物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?RTCrpUDGiT用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量 ?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?5PCzVD7HxA精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
大学物理实验—误差及数据处理
误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。
这节课我们学习误差及数据处理的知识。
数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。
一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。
测量值:数值+单位。
分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。
直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。
间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。
例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。
等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。
非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。
2.误差真值A:我们把待测物理量的客观真实数值称为真值。
一般来说,真值仅是一个理想的概念。
实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。
误差ε:测量值与真值之间的差异。
误差可用绝对误差表示,也可用相对误差表示。
绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。
为了全面评价测量的优劣, 还需考虑被测量本身的大小。
绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。
相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。
(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。
大物实验----误差理论与数据处理
随机误差具有以下的性质: (1)单峰性 绝对值小的误差出现的机会(概率) 大,绝对值大的误差出现的机会(概率)小。 (2)对称性 大小相等、 符号相反的误差出现的概 率相等。 (3)有界性 非常大的正 负误差出现的概率趋于零。 (4)抵偿性 当测量次数 非常多时,由于正负误差 相互抵消,各误差的代数 随机误差的正态分布曲线 和趋于零。
(1)理论分析法 观测者凭借有关某项实验的物理理论、实验 方法和实验经验等对实验理论公式的近似性、所 采用的实验方法的完善性等进行研究与分析。 (2)对比法 (3)数据分析法
4.系统误差的减小或消除
(1)利用标准器具减消系统误差; (2)修正已经确定的定值系统误差; (3)采用合理、规范的测量步骤减消系统误差; (4)选择或改进测量方法减消系统误差。
根据统计理论可得:
f ( ) 1 e 2
2 2 2
式中σ是一个取决于具体测量条件的常数称为标 准误差(或称均方误差)。 σ反映的是一组测量数据的离散程度,常称 它为测量列的标准误差;它的数学表达式为:
( xi a ) 2 lim n n
可以证明
f ( )d 0.683 68.3%
称为绝对误差。 相对误差是误差与真值之比;通常用标准偏 差和平均值之比作为相对误差的估计值。相对误 差常他用符号 E 来表示,并表示成百分数。
三.过失误差(异常值)的剔除 1.拉依达准则:适用于测量次数n较大的测 量。 2.肖维涅准则: x cn S (x) (16页) 3.格拉布斯准则:x g( n, P ) S ( x)
(3)人的因素 由于观测者本人的生理或心理特 点所造成的误差。 (4)环境 由于环境条件如温度、气压、湿度的 变化等所引起的误差。
大学物理实验测量误差及数据处理
公选课: 专利与发明创造
知识经济
本课内容:
呼唤专利
建立专利意识 探寻创意来源 掌握申请方法
实验三环节
1. 预习
预习--操作--数据处理
(报告样本)
简述主要内容、过程及注意事项;推导相关公式; 画出流程图、线路图、光路图及装置示意图等
专栏专用,可附页
设计数据记录表(其中一份为草稿)
1 n 1 可求平均值 x x i ( x1 x2 ... xn ) n i 1 n
x 是 x i 的最佳估计值 因为多次测量的平均值接近真值,我们 就以平均值代替真值
3.3.2 平均值的实验标准差
S( x) S ( xi ) n
(x
i 1
3.5 合成不确定度 3.5.1 在A、B两类不确定度分别计算、且互不相关时, 合成不确定度Uc(x)
2 2 2 uc ( x ) s(2x ) uB s ( x) 仪 ( x)
3.5.2 我们的实验中采用合成不确定度uc(不采用扩展 不确定度U).
3.53 要完整地评价测量结果,除近真值和不确 定度的数值外还应给出其分布、有效自由度、 置信概率等参量。学生实验中暂不作要求。
大学物理实验绪论
汪仕元 1355 888 6954 821815208@
前
人类知识分两类:
自然科学分两类:
言
社会人文学 自然科学
物理学 数学
物理学分两类:
理论物理
应用物理
物理实验是物理学的基础
实验生发理论 奥斯特做电学实验时发现电流的磁效应 伽利略从单摆实验中找到了等时性
实验检验理论 比萨斜塔抛物实验检出重物快落理论之谬 迈克尔逊干涉实验否定了以太理论证实了相对论
大学物理实验误差分析
而 省 却 了 相 关 的计 算 测 量 结 果 及 其 不 确
定度表 示为 :
y Y±U) 量单 位 ; - -( 计 k 2
表达式中: Y为物 理 量 ; y为物 理 量 的 平 均值 ; U为 置信 概 率 近 似9 %的 扩 展不 确 定 5 度 。 些 院 校 及 某 些 研 究 部 门 只 使 用合 成 一
性 , 映 着 随 即 误 差 量 以 及 未 定 的 系 统 误 反 差 分 布 关 系 , 际 上 也 可 近 似 看 作 是 一 个 实 误 差 极 限 值 , 于 一定 的 置信 区 间 , 征 的 处 表 是 测 量 结 果 。 纯 理 论 上 而 言 , 确 定 度 可 从 不 通 过 误 差 理 论 来 求 得 , 般 用标 准 偏 差 来 一
科 技 教 育
SIC &TC 00Y CNE EH Le E N
匪圆
大 学 物 理 实验 误 差 分析
陈 铭 琦 ( 无锡 市广播 电视大 学 江苏 无锡 2 0 1 1 1) 4 摘 要 : 学物理 实验课 是对 高等学校 学生进行科 学实验 训练 的一 门独立的必修基 础课 , 差理论教 学是 实验教 学的重要 内容 , 大 误 贯穿于整 个 实验 过 程 。 章 阐述 了 大 学 物 理 实验 误 差 分 析 相 关概 念 , 析 了误 差 以 及 不 确 定 度 相 关 问题 。 文 分 关 键 词 : 学物 理 实验 误 差 分 析 不 确 定度 大 中 图分 类 号 : 6 G 4 文献 标 识 码 : A 文章 编 号 : 6 2 3 9 ( 0 )2 b一 2 1 0 I 7 — 7 12 1 1 ( ) 0 0 — 1 o 大 学 课 程 中 开 设 物 理 实 验 不 仅 是 为 了 让 大 家 定 性 地 了解 物 理 现 象 , 重 要 的 是 更 对 相 关 物 理 量 进 行 定量 地 测 量 和 分 析 , 在 测 量 过 程 中 因 为试 验 方 法 , 器 , 剂 及 自 仪 试 分析 方 法 , 在 误 差 分 析 反 方 面 起 到 了不 并 容忽视的重要作用 。 U () I=电表 量 程 ×a %/√i 式 中a为 电表 的级 别 。 当可 以 进 行 单 次 测量 时 , 其标 准不 确 定 度 的B类评 定 可 以替 代合成标 准不确定度 。
大学物理实验报告数据处理及误差分析
等精度测量的误差分析和数据处理比较容易,下面所介绍的误差和数据处理知识都是针对等精度测量的。
按照测量值获得方法的不同,测量分为直接测量和间接测量两种。
直接从仪器或量具上读出待测量的大小,称为直接测量。例如,用米尺测物体的长度,用秒表测时间间隔,用天平测物体的质量等都是直接测量,相应的被测物理量称为直接测量量。
如果待测量的量值是由若干个直接测量量经过一定的函数运算后才获得的,则称为间接测量。例如,先直接测出铁圆柱体的质量m、直径D和高度h,再根据公式??4m计算出铁的的密度2?Dh
3实验报告
实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。
完整的实验报告应包括下述几部分内容:数据表格在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签名的原始数据记录纸要附在本次报告一起交)。数据处理根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。结果表达按下面格式写出最后结果:
仪器因素由于仪器本身的固有缺陷或没有按规定条件调整到位而引起误差。例如,仪器标尺的刻度不准确,零点没有调准,等臂天平的臂长不等,砝码不准,测量显微镜精密螺杆存在回程差,或仪器没有放水平,偏心、定向不准等。
大学物理实验-误差处理
逐差法是一种处理实验数据的方法,通过计算相邻数据之间的
差值,消除一些系统误差的影响,提高数据的精度。
逐差法应用
02
在处理具有周期性变化或线性关系的实验数据时,逐差法可以
有效地减小误差,提高数据的可靠性。
注意事项
03
在使用逐差法时,要注意数据的选择和处理方式,避免引入新
的误差。
最小二乘法拟合直线
最小二乘法概念
熟练技能
提高实验操作技能,减少操作过程中的随机误差。
多次测量
对同一物理量进行多次测量,以减小偶然误差的 影响。
环境条件对实验结果影响
温度
温度变化会影响仪器稳定性和测量准确度,需保持恒温环境。
湿度
湿度过高可能导致仪器受潮、生锈等问题,影响测量精度。
电磁干扰
电磁场会对电子仪器的测量结果产生干扰,需采取屏蔽措科研项目和学术活动,了解 学科前沿动态和最新研究成果,培养 科研素养和创新意识。
THANKS.
扩展不确定度及应用
扩展不确定度定义
扩展不确定度是在合成不确定度的基础上, 考虑包含因子而得到的更广泛意义上的不确 定度。它表示了测量结果可能落入的区间范 围。
扩展不确定度的应用
扩展不确定度在科研、工程等领域中具有广 泛的应用。它可以帮助研究人员了解测量结 果的可靠性,为决策提供依据。同时,扩展 不确定度也是实验结果比较、仪器校准、标 准制定等方面的重要参考指标。
问题解决能力
面对实验中遇到的问题和困难,我能够积极思考并寻找解决方法,问题解决能力得到了提 高。
对未来学习建议
深入学习误差理论
建议进一步学习误差理论的相关知识,掌握更复杂的误差 处理方法和技术,提高实验数据的准确性和可靠性。
大学物理实验报告数据处理及误差分析_0
大学物理实验报告数据处理及误差分析篇一:大学物理实验报告数据处理及误差分析力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.米尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为x?????(单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.V?2.g?432st2?r32d?11???a??3.?2s?t2t1??六、按有效数字要求,指出下列数据中,哪些有错误。
1.用米尺(最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计(最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.?6.87?8.93???133.75?21.073?=?3.?252?943.0??479.0???1.362?8.75?480.0??62.69?4.1864.?751.2?23.25?14.781??????八、用最小分度为毫米的米尺测得某物体的长度为L=12.10cm(单次测量),若估计米尺的极限误差为1mm,试把结果表示成L???L?的形式。
九、有n组?x,y?测量值,x的变化范围为2.13~3.25,y的变化范围为0.1325~0.2105,采用毫米方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?十、并排挂起一弹簧和米尺,测出弹簧下的负载m和弹簧下端在米尺上的读数x如下表:长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫米为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
大学物理实验中的测量误差与数据分析
大学物理实验中的测量误差与数据分析在大学物理实验中,测量误差和数据分析是不可或缺的关键要素。
无论是在力学、电磁学、光学还是其他领域,准确测量和正确分析数据都对研究和实验的成功至关重要。
本文将探讨在大学物理实验中测量误差的来源,如何评估和减小误差,并介绍数据分析的基本原则。
**1. 测量误差的来源**测量误差可以分为系统误差和随机误差两类。
系统误差是由于仪器或测量方法的固有缺陷引起的,通常会在一系列测量中保持恒定。
随机误差则是由无法完全控制的因素引起的,例如温度变化、电磁干扰等。
了解误差的来源对准确实验至关重要。
**2. 评估误差**为了评估误差,我们通常使用标准差和均值。
标准差衡量了数据集的离散程度,而均值代表了中心值。
较小的标准差意味着测量值更接近平均值,从而表明较低的随机误差。
大学物理实验中,标准差的计算对于确定测量的可靠性非常重要。
**3. 减小误差**减小误差的关键是使用适当的仪器和测量方法。
确保仪器精度高,避免环境因素对测量的干扰,以及进行多次测量以减小随机误差。
此外,仪器校准也是减小系统误差的一种有效方法。
**4. 数据分析**在收集数据后,正确的数据分析是确保实验成功的另一个重要因素。
以下是一些基本的数据分析原则:- 绘制图表:将数据以图表的形式呈现可以帮助我们更清晰地理解实验结果。
通常,散点图和曲线图是常见的选择。
- 拟合曲线:根据实验数据,我们可以尝试拟合适当的数学模型来描述现象。
这可以帮助我们了解实验背后的物理原理。
- 计算误差传递:当进行多步计算时,要考虑误差的传递。
这可以帮助我们确定最终结果的不确定性。
- 讨论结果:在数据分析的最后阶段,我们需要讨论实验结果并提出可能的误差来源。
这有助于更好地理解实验的局限性。
**5. 结论**大学物理实验中,测量误差和数据分析是确保实验结果可信度的关键因素。
了解误差来源、评估误差、减小误差以及正确的数据分析方法可以帮助学生和研究者获得准确和可靠的实验结果。
大学物理中的热力学实验误差分析
大学物理中的热力学实验误差分析在大学物理中,热力学实验是一种常见的实践活动,通过实验来验证热力学理论,探究物质在不同温度、压力条件下的热性质。
然而,由于各种因素的存在,热力学实验中难免会产生误差。
本文将分析大学物理中的热力学实验误差,并提出相应的误差分析方法与对策。
一、实验误差来源1. 仪器误差:仪器的测量范围、精度等因素会对实验结果产生影响,如温度计的示数误差、秤盘的零点误差等。
2. 环境误差:实验环境的温度、湿度等因素也会对实验结果产生影响,如温度变化导致的试验物体温度变化等。
3. 人为误差:实验操作人员的技术水平、操作经验等因素会对实验结果产生影响,如读数不准确、操作不规范等。
4. 样品误差:样品的制备、保存等条件会对实验结果产生影响,如试样的纯度、杂质含量等。
二、实验误差分析方法1. 确定误差类型:根据实验过程中的各种因素及实验数据的变化情况,确定误差的来源和类型,例如系统误差、随机误差等。
2. 估计误差大小:通过实验数据的统计分析,进行误差估计,可采用方差分析、回归分析等方法。
3. 误差传递分析:在热力学实验中,经常涉及到多个物理量的测量和计算,误差会随着计算过程传递,因此需要进行误差传递分析。
4. 不确定度评定:基于误差的估计,对实验结果的不确定度进行评定,可采用置信区间估计、标准偏差等方法。
5. 误差处理与修正:根据误差分析结果,对实验数据进行修正和筛选,减小误差的影响并提高实验结果的准确性。
三、误差分析对策1. 提高仪器精度:选用精确度较高的仪器设备,如精密温度计、电子天平等,减小仪器误差对实验结果的影响。
2. 精确控制环境条件:在实验过程中严格控制温度、湿度等环境因素,排除环境误差的影响。
3. 规范实验操作:操作人员应熟悉实验步骤,准确读数,严格按照实验要求操作,尽量减小人为误差。
4. 加强样品处理:在样品制备过程中,严格控制样品的纯度、杂质含量,确保实验数据的可靠性。
5. 多次重复实验:通过多次重复实验,提高实验数据的稳定性和可靠性,减小随机误差对实验结果的影响。
大学物理实验—误差处理
但是,n>10以后,n再
增加, s(x) 减小缓
慢,因此,在物理实
0 0 5 5 10 10 15 15
nn
验教学中一般取n为 测量次数对 s(x ) 的影响 6~10次
3、随机误差的正态分布规律:
例,用秒表测单摆的周期T,将各测
量值出现的次数列表如下。 测量值xi 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10
继续检验,直到无坏值为止。
例 对某物体进行15次测量,测值为:
xi 11.42 11.44 11.40 11.43 11.42
11.43 11.40 11.39 11.30 11.43 11.42 11.41 11.39 11.39 11.40 检测是否有坏值。
计算: x1 nxi 11 5xi 1.1 405
f ()
拐点
对称性 有界性
68.3%
x 0 x
北方民族大学物理实验中心 Fundamental physics experiment 12
标准误差的物理意义
若测量的标准误差 很小,则测得值的
离散性小,重复测量 所得的结果相互接近, 测量的精密度高;
如果 很大,误差 分布的范围就较宽, 说明测得值的离散性 大,测量的精密度低。
次数n
11288522
10
n=30 次
图3 统计直方图
测量值xi 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10
次数n 0 2
4 10 14 16 7
5
1
1
n=60 次
图3 统计直方图
测量xi值 次n数
大学物理实验- 误差分析与数据处理.
E 100 % x
13
.
• 相对误差常用百分比表示。它表示绝对误差在整个物 理量中所占的比重,它是无单位的一个纯数,所以既 可以评价量值不同的同类物理量的测量,也可以评价 不同物理量的测量,从而判断它门之间优劣。如果待 测量有理论值或供认值,也可用百分差来表示测量的 好坏。即:
百分差 E0
16
2)随机误差
• 同一物理量在多次测量过程中,误差的 大小和符号 以不可预知的方式变化的测量误差称为随机误差, 随机误差不可修正。随机误差产生的原因很多,归纳 起来大致可分为以下两个方面: • (1)由于观测者在对准目标、确定平衡(如天平)、 估读数据时所引入的误差。 • (2)实验中各种微小因素的变动。例如,实验装置和 测量机构在各次调整操作上的变动性,实验中电源电 压的波动、环境的温度、湿度、照度的变化所引起的 误差。 • 随机误差的出现,单就某一次观测来说是没有规律的, 其大小和方向是不可预知的。但对某一物理量进行足 够多次测量,则会发现 随机误差服从一定的统计 规律,随机误差可用统计方法进行估算。
15
• (1)由于仪器本身存在一定的缺陷或使用不当
造成的。如仪器零点不准、仪器水平或铅直未 调整、砝码未校准等。 • ( 2 )实验方法不完善或这种方法所依据的理 论本身具有近似性。例如用单摆测量重力加速 度时,忽略空气对摆球的阻力的影响,用安培 表测量电阻时,不考虑电表内阻的影响等所引 入的误差。 • ( 3 )实验者生理或心理特点或缺乏经验所引 入的误差。例如有人读数时,头习惯性的偏向 一方向,按动秒表时,习惯性的提前或滞后等。
2
• 二、普通物理实验课的主要目的 • 1.在物理实验的基本知识、基本方法、基本技能
方面受到较系统的训练。 包括:有关仪器的选择和使用、基本的测量技能和方 法、实验数据的处理、对结果的误差做出分析和判断、 完成实验报告等。 • 2.培养和提高科学实验能力。 包括:自学能力、动手实践能力、创新思维能力、书 面表达能力、和简单设计能力等。 • 3.培养和提高从事科学实验的素质,为后续实验课程以 及社会工作打好基础。 包括理论联系实际和实事求是的科学作风、严肃认真 的工作态度,不怕困难、主动进取的探索精神、遵守 操作规程、爱护公物的优良品德等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据处理与误差分析
等精度测量——所有xi 等价 对于每个测量值xi ,其误差均为σx ,所以
μ (xi-σx , xi+σx )的概率含量是68.3%
N个xi ,故可得到N个区间 (xi-σx , xi+σx ) 根据测量结果,最后给出的应该是平均值 ——近真值
绪论
成绩评定:
1、不进行考试 2、每个实验的成绩评定因素
(1) 预习报告 (2) 纪律评定 (3)实验操作 (4)实验报告 3、总成绩为全部单个实验成绩加权平均
绪论
4 进实验室前的准备
教材
预习报告——统一印制 完成项目: ——实验目的 ——实验原理
ቤተ መጻሕፍቲ ባይዱ作业或上次的实验报告
有效证件
绪论
5 在实验室的基本要求
表征测量结果的好坏
数据处理与误差分析
C 误差的分类
——误差的第一种意义 系统误差
来源: 实验仪器、测量方法、特定环境……
特点: 不变,或按一定规律变化
——可消除 如何消除?——无统一的方法
随机误差
数据处理与误差分析
来源: 大量的、微小的、不相关的因素 物理量本质上的随机性
特点: 随机变化、不可消除
数据处理与误差分析
1 测量与误差
A 误差的定义
真值
μ
测量值 x
不可知
误差
Δx = x - μ ——名词“误差” 的第一种意义
不确定度 U :(x-U, x+U) ——名词“误差”的第二种意义 ——日常生活所用
数据处理与误差分析
B 误差的表述
——误差的第二种意义
绝对误差 U 与使用的仪器相关
相对误差 U ×100% x
如何平衡? 标准误差:0.683
——通用的标准
3σ:0.997 →极限误差
数据处理与误差分析
3 随机误差的估算
如何得到标准误差σ?——通过有限次测量
A 多次测量
x1 , x2 ," , x N
x
=
1 N
∑
xi
Δxi = xi − x
σx =
∑ (Δxi )2
N −1
→ σ的数学期望值:最佳估计
N-1的由来:Δxi由 xi - x 获得
∑
xi
Δxi = xi − x
N→∞ →μ →误差
大量的测量值,得到大量的Δxi —— 作出分布图
数据处理与误差分析
n
n
→
Δx
Δx
N → ∞,则可得到连续曲线
B 正态分布
数据处理与误差分析
f (x) =
1
− x2
e 2σ2
2πσ
S
x x+Δx
x < 误差 < x+Δx的概率 = S f:概率密度
最大误差的概念
1. 标尺:
最小分格的一半
2. 游标尺:
游标精度
3. 天平:
感量
4. 步进式仪表: 一个字
5. 电学仪表
数据处理与误差分析
单次测量的标准误差:
最大误差
σx=
3
假定误差在“最大误差为a”的区间内平均分布
f(x) 1
2a
-a
a
x
∫ σx2 =
x2
=
1
a
x2 f (x)dx
2a −a
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������