河南省郑州市金水区第七初级中学2020-2021学年八年级上学期第一次月考数学试题(wd无答案)

合集下载

2020-2021学年河南省郑州市金水区实验中学八年级(上)学期期中数学试卷

2020-2021学年河南省郑州市金水区实验中学八年级(上)学期期中数学试卷

河南省郑州市金水区实验中学2020-2021学年八年级上学期期中数学试题注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考 生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、 姓名是否一致.2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用 0.5 毫米黑色墨水签字 笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用 2B 铅笔画出,确定后必须用 0.5 毫米黑色墨水签字笔描黑.一、选择题(共10小题). 1.下列各数中是无理数的是( )A .0B .193-C D2,它的边长大约在( ) A .4cm-5cm 之间 B .5cm-6cm 之间 C .6cm-7cm 之间D .7cm-8cm 之间3.已知点(3,2)P a a -+在x 轴上,则a =( ) A .2-B .3C .5-D .54.下列化简正确的是( )A =B 2020C D =5.如图是一圆柱玻璃杯,从内部测得底面半径为6cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是( )A.6cm B.5cm C.9cm D.25﹣6.若直线y=2x﹣1经过点A(﹣2,m),B(1,n),则m,n的大小关系正确的是()A.m<n B.m>n C.m=n D.无法确定7.下列说法中,错误的是()A.在△ABC中,若∠C=12∠B=13∠A,则△ABC是直角三角形B.在△ABC中,若∠A:∠B:∠C=3:4:5.则△ABC是直角三角形C.在△ABC中,若∠A=∠B﹣∠C,则△ABC是直角三角形D.在△ABC中,若三边长a,b,c满足a:b:c=1:2△ABC是直角三角形8.已知一次函数y=kx+b的图象经过一、二、四象限,则直线y=bx﹣k的图象可能是()A.B.C.D.9.如图是放在地面上的一个长方体盒子,其中AB=8cm,BC=4cm,BF=6cm,点M在棱AB上,且AM=2cm,点N是FG的中点,一只蚂蚁要沿着长方形盒子的外表面从点M爬行到点N,它需要爬行的最短路程为()A.10cm B.C.D.10.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/千克C.乙园超过5千克后,超过的部分价格优惠是打五折D.若顾客采摘15千克草莓,那么到甲园比到乙园采摘更实惠二、填空题11 ______.12.如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行_______米.13.如图,在Rt△ABC中,AB=BC=1,∠ABC=90°,点A,B在数轴上对应的数分别为1,2.以点A为圈心,AC长为半径画弧,交数轴的负半轴于点D,则与点D对应的数是_____.14.如图,在平面直角坐标系中,A(2,0),B(0,1),AC=AB且AC⊥AB于点A,则OC所在直线的关系式是_____.15.如图,在平面直角坐标系中,直线y=﹣125x+12与y、x轴分别相交于A、B两点,将△AOB沿过点B的直线折叠,使点A落在x轴负半轴上的点A′处,折痕所在直线交y轴正半轴于点C.把直线AB向左平移,使之经过点C,则平移后直线的函数关系式是_____.16.小颖根据学习函数的经验,对函数y=|x﹣1|+1进行探讨.(1)若点A(a,6)和点B(b,6)是该函数图象上的两点,则a+b=.(2)在平面直角型标系中画出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)由图象可知,函数y=|x﹣1|+1的最小值是;(4)由图象可知,当y≤4时,x的取值范围是.三、解答题17.计算:(1(2)2-.18.如表是某摩托车厂预计2021年2﹣4月摩托车各月产量:(1)根据表格中的数据,直接写出y(辆)与x(月)之间的函数表达式;(2)按照此趋势,你能预测该摩托车厂2021年5月摩托车月产量吗?(3)按照此趋势,在2021年,是否存在某月月产量是725辆?说明理由.19.老李家有一块草坪如图所示,家里想整理它,需要知道其面积.老李测量了草坪各边得知:AB=3米,BC=4米,AD=12米,CD=13米,且AB⊥CB.请同学们帮老李家计算一下这块草坪的面积.20.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC和△A1B1C1关于y轴轴对称,画出△A1B1C1的图形;(2)求△ABC的面积;(3)若P点是x轴上一动点,当△BCP周长的最小时,直接写出△BCP周长的最小值为.21.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年6月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算:===77,===,不难发现,结果都是7.()1请你再在图中框出一个类似的部分并加以验证;()2请你利用整式的运算对以上规律加以证明.22.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=12.点P从B点出发沿射线BC以每秒2个单位的速度向右运动,设点P的运动时间为t,连接AP.(1)如图1,当t=3秒时,求AP的长度;(2)如图1,点P在线段BC上,当△ABP为等腰三角形时,求t的值;(3)如图2,点D是边AC上的一点,CD=3.请直接写出在点P的运动过程中,当t的值是多少时,PD平分∠APC?参考答案1.C【解析】根据有理数和无理数的定义可以得到解答.解:194203=-,,都是有理数,∴A、B、D都不符合题意,∵没有哪个有理数的平方等于3,故选C .【点评】本题考查实数的分类,熟练掌握实数的分类以及各类数的定义和特征是解题关键.2.D【解析】利用算术平方根的性质进行估算即可.解:∵49<55<64,∴78,故选:D.【点评】本题主要考查了估算无理数的大小,利用算术平方根的性质估算是解答此题的关键.3.A【解析】根据点P 在x 轴上,即y =0,可得出a 的值. 解:点(3,2)P a a -+在x 轴上,20a ∴+=, 2a ∴=-.故选:A .【点评】本题考查了平面直角坐标系中点的坐标,明确点在x 轴上时,纵坐标为0是解题的关键. 4.C【解析】直接利用二次根式的性质分别化简、再利用二次根式的加减运算法则计算得出答案.解:A =B 2020,故此选项错误;CD 故选:C .【点评】此题主要考查了二次根式的性质与化简和二次根式的加减运算,正确掌握相关运算法则是解题关键. 5.B【解析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答. 解:∵底面半径为半径为6cm ,高为16cm ,∴吸管露在杯口外的长度最少为:2525205=-=(厘米), 故选B .【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答. 6.A【解析】由一次函数k 值的符号,确定y 随x 变化情况,即可判断. 解:对于一次函数2-1y x =, ∵k=2>0,∴y随x的增大而增大,∵-2<1,∴m<n,故选择:A.【点评】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键.7.B【解析】A、B、C选项先根据三角形内角和定理计算出△ABC中最大角的度数,再依据直角三角形定义进行判断,D选项根据勾股逆定理进行判断即可.解:A、在△ABC中,若∠C=12∠B=13∠A,可得∠A=180°×(1+12+13)=90°,则△ABC是直角三角形,故此选项不符合题意;B、在△ABC中,若∠A:∠B:∠C=3:4:5,可得∠C=180°×5345++=75°,则△ABC 不是直角三角形,故此选项符合题意;C、在△ABC中,若∠A=∠B﹣∠C,则∠B=90°,则△ABC是直角三角形,故此选项不符合题意;D、12+2=22,所以△ABC是直角三角形,故此选项不符合题意.故选:B.【点评】此题考查了直角三角形的判定,掌握直角三角形的判定方法是解题的关键.8.B【解析】根据是一次函数y=kx+b的图象经过一、二、四象限得出k,b的取值范围,再分析直线y=bx﹣k的图象即可.解:因为一次函数y=kx+b的图象经过一、二、四象限,可得:k<0,b>0,所以直线y=bx﹣k的图象经过一、二、三象限,故选:B.【点评】本题考查了一次函数解析式的,k b的意义与图象经过的象限的关系,熟练掌握一次函数的图象与性质是解答关键.9.A【解析】利用平面展开图有三种情况需要比较,画出图形利用勾股定理求出MN的长,然后作比较即可.解:如图1中,MN10==(cm),如图2中,MN10==(cm),∵10<∴一只蚂蚁要沿着长方形盒子的外表面从点M爬行到点N,它需要爬行的最短路程为10cm,故选:A.【点评】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.10.D【解析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而得到正确答案.解:由图象可得,甲园的门票费用是60元,故选项A正确;草莓优惠前的销售价格是200÷5=40(元/千克),故选项B正确;乙园超过5千克后,超过的部分价格优惠是打4002004010155-÷⨯-=5折,故选项C正确;若顾客采摘15千克草莓,那么到乙园比到甲园采摘更实惠,故选项D错误;故选:D.【点评】本题主要考查一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答. 11.5【解析】根据算术平方根的定义求解即可,如果一个正数x的平方等于a,即x2=a,那么x 叫做a的算术平方根.5==,故答案为:5.【点评】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键,正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.12.10【解析】根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果.解:如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6米,在Rt△AEC中,10AC===米.故答案为10.【点评】本题考查了勾股定理的应用,根据题意抽象出数学图形,构造直角三角形是解题关键.13.【解析】根据勾股定理求出AC长,再结合数轴即可得出结论.解:∵在Rt△ABC中,BC=1,AB=1,∴=∵以A为圆心,以AC为半径画弧,交数轴的负半轴于点D,∴∴点D+1,【点评】本题考查的是实数与数轴以及复杂作图,熟知实数与数轴上各点是一一对应关系是解答此题的关键.14.y=23 x.【解析】作CE⊥x轴于E.证明△AOB≌△CEA(AAS),求出OB=1,OA=2,从而求得点C坐标,设直线OC的解析式为y=kx,将点C坐标代入求得k的值,从而得解.解:作CE⊥x轴于E.∵∠AOB=∠BAC=∠AEC=90°,∴∠OAB+∠CAE=90°,∠OAB+∠ABO=90°,∴∠ABO=∠CAE,又∵AB=AC,∴△AOB≌△CEA(AAS),∴OA=EC,OB=AE,∵A(2,0),B(0,1),∴OB=1,OA=2,∴AE=OB=1,EC=OA=2,OE=OA+AE=2+1=3,∴C(3,2).设直线OC的解析式为y=kx,将点C坐标代入得,3k=2,解得k=23.∴y=23 x.故答案为:y=23 x.【点评】本题考查了待定系数法,坐标与图形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.15.y=﹣125x+103.【解析】先求得A、B的坐标,然后由勾股定理求出AB,再由折叠的性质得出A′B=AB=13,∠OA′C=∠BAO,进而证明△OA′C∽△OAB,得出比例式求出OC,得出点C坐标,即可求得平移后的解析式.解:∵直线y=512-x+12与y、x轴分别相交于A、B两点,∴点A(0,12),B(5,0),∴OA=12,OB=5,∵∠AOB=∠A′OC=90°,∴AB=13,由折叠的性质得:A′B=AB=13,∠OA′C=∠BAO,∴OA′=A′B﹣OB=8,△OA′C∽△OAB,∴A′(﹣8,0),OC OA OB OA'=,即8 512 OC=,∴OC=103,∴C(0,103),∴平移后的直线的解析式为y=125-x+103,故答案为y=125-x+103.【点评】本题考查了一次函数图象与几何变换、勾股定理、相似三角形的判定与性质;熟练掌握翻折变换的性质,进而求得C的坐标是解决问题的关键.16.(1)2;(2)该函数的图象如图,见解析;(3)1;(4)﹣2≤x≤4.【解析】(1)由于A、B两个点的纵坐标相同且为6,把6代入函数解析式中即可求得x,从而可得a、b的值,进而求得结果;(2)根据表中的数据描点、连线即得函数图象;(3)观察图象即可得最小值;(4)先求出函数值为4时的自变量的值,观察图象可求得y≤4时的x的取值范围.解:(1)把y=6代入=|x﹣1|+1,得6=|x﹣1|+1,解得x=﹣4或6,∵A(﹣4,6),B(6,6)为该函数图象上不同的两点,∴a=﹣4,b=6,∴a+b=2.故答案为2;(2)该函数的图象如图:(3)该函数的最小值为1;故答案为1;(4)∵y=4时,则4=|x﹣1|+1,解得,x=﹣2或x=4,由图象可知,当y≤4时,x的取值范围是﹣2≤x≤4.故答案为﹣2≤x≤4.【点评】本题考查了函数解析式的定义、画函数图象、根据函数图象求函数的最值及函数满足条件的自变量的取值范围.涉及函数的三种表示,注意数形结合.17.(1);(2).【解析】(1)直接化简二次根式,再利用二次根式的混合运算法则计算得出答案;(2)直接利用乘法公式计算得出答案.解:(1=+2;(2)原式=(﹣)2=()2﹣(2﹣(3﹣+2),=18﹣12﹣,=.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(1)y =50x +450;(2)该摩托车厂2021年5月摩托车月产量700辆;(3)不存在某月月产量是725辆.【解析】(1)根据表格中的数据,可以求得y (辆)与x (月)之间的函数表达式; (2)将x =5代入(1)中的函数关系式,求出相应的y 的值即可;(3)先判断,然后根据(1)中的函数关系式,令y =725求出x 的值,即可说明,注意x 为整数.解:(1)设y 与x 的函数关系式为y =kx +b ,25503600k b k b +=⎧⎨+=⎩, 解得50450k b =⎧⎨=⎩, 即y (辆)与x (月)之间的函数表达式y =50x +450;(2)当x =5时,y =50×5+450=700, 即该摩托车厂2021年5月摩托车月产量700辆;(3)不存在某月月产量是725辆,理由:令725=50x +450,解得x =5.5,∵x 为整数,∴不存在某月月产量是725辆.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 19.36(米2)【解析】连接AC ,根据勾股定理,求得AC ,再根据勾股定理的逆定理,判断三角形ACD 是直角三角形,这块草坪的面积等于两个直角三角形的面积之和.解:连接AC ,∵AB BC ⊥,∴90ABC ∠=,∵3AB =米,4BC =米,∴5AC =米,∵CD=13,AD=12,∴222AC AD CD +=,∴ACD △为直角三角形,∴ 草坪的面积等于342512263036ABC ACD S S =+=⨯÷+⨯÷=+=(米2).【点评】本题考查了勾股定理和勾股定理的逆定理,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.20.(1)如图所示,见解析;(2)△ABC 的面积为2;(3【解析】(1)首先确定A 、B 、C 三点关于x 轴对称的对称点位置,再连接即可;(2)利用矩形面积减去周围多余三角形的面积即可;(3) 作出B 关于x 轴的对称点B ,再连接BC ,交x 轴于点P ,根据轴对称的性质可得BP=BP ,然后再计算△BCP 的周长即可.解:(1)如图所示:(2)△ABC 的面积:2×3﹣12×2×2﹣12×1×3﹣12×1×1=2; (3)如图所示:过点B 关于x 轴的对称点B ',再连接B'C ,交x 轴于点P ,根据轴对称的性质可得BP=B'P , △BCP 周长=BC+PC+BP =BC+B'C所以△BCP【点评】此题主要考查了作图,轴对称变换,关键是正确确定组成图形的关键点的对称点的位置.21.(1)见解析;(2)证明见解析【解析】()1仿照已知即可框出类似的部分()2设中间的数为n,其他三个分别为n+7,n,n-7,通过列式计算即可解:(1)解:答案不唯一,如:==7=.(2)证明:设中间那个数为n,则:====,7=.7【点评】此题考查了整式和有理数的混合运算,数字的变化规律,由特殊到一般,得出一般性结论解决问题.22.(1)村庄能听到宣传,见解析(2)村庄总共能听到8分钟的宣传【解析】(1)根据村庄A到公路MN的距离为600米<1000米,于是得到结论;(2)根据勾股定理得到BP=BQ=800米,求得PQ=1600米,于是得到结论.解:(1)村庄能听到宣传,理由:∵村庄A到公路MN的距离为600米<1000米∴村庄能听到宣传(2)如图:假设当宣讲车行驶到P点开始影响村庄,行驶QD点结束对村庄的影响则AP=AQ=1000米,AB=600米∴BP=BQ800=米∴PQ=1600米∴影响村庄的时间为:1600÷200=8分钟∴村庄总共能听到8分钟的宣传.23.(1)AP=10;(2)点P在线段BC上,当△ABP为等腰三角形时,t的值为133秒;(3)在点P的运动过程中,当t的值为3秒或9秒时,PD平分∠APC.解:(1)由题意得:BP=2t,则PC=BC﹣BP=12﹣2t,当t=3秒时,PC=12﹣2×3=6,∵∠ACB=90°,∴AP=10;(2)点P在线段BC上,当△ABP为等腰三角形时,PA=PB=2t,则PC=12﹣2t,在Rt△APC中,由勾股定理得:82+(12﹣2t)2=(2t)2,解得:t=133,即点P在线段BC上,当△ABP为等腰三角形时,t的值为133秒;(3)分两种情况:①点P在线段BC上时,过点D作DE⊥AP于E,如图2所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∵PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=12﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE4,∴AP=AE+PE=16﹣2t,在Rt△APC中,由勾股定理得:82+(12﹣2t)2=(16﹣2t)2,解得:t=3;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图3所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣12,∴AD=AC﹣CD=8﹣3=5,∴AE4,∴AP=AE+PE=2t﹣8,在Rt△APC中,由勾股定理得:82+(2t﹣12)2=(2t﹣8)2,解得:t=9;综上所述,在点P的运动过程中,当t的值为3秒或9秒时,PD平分∠APC.。

河南省郑州市第八十中学2020-2021学年七年级上学期第一次月考数学试题(wd无答案)

河南省郑州市第八十中学2020-2021学年七年级上学期第一次月考数学试题(wd无答案)

河南省郑州市第八十中学2020-2021学年七年级上学期第一次月考数学试题一、单选题(★) 1. 如图图形从三个方向看形状一样的是()A.B.C.D.(★) 2. ﹣的绝对值是()A.﹣2B.C.﹣D.2(★) 3. 关于0的叙述正确的是()A.是正整数B.是负整数C.是整数D.分数(★) 4. 小明是个喜欢观察的孩子,他发现家里冰箱的说明书上有这样一段描述“冰箱设置最适宜的温度是冷藏室零上4度,冷冻室零下24度”,小明立刻知道冰箱的冷藏室和冷冻室的温差是()度.A.20B.18C.24D.28(★★) 5. 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同(★★★) 6. 下列算式的结果中是负数的是()A.﹣7﹣(﹣8)B.﹣C.(﹣2)+(﹣3)﹣(﹣4)D.0﹣(﹣2019)(★) 7. 数轴上点A表示的数为2019,点B表示的数为2020,那么点A和点B之间的距离为()A.1B.2019C.2020D.4039(★★) 8. 如图所示,截面的形状是()A.长方形B.平行四边形C.梯形D.五边形(★★) 9. 如图,图(1)和图(2)中所有的正方形都完全相同,将图(1)的正方形放在图(2)中的某一位置,其中所组成的图形不能围成正方体的是()A.①B.②C.③D.④(★★★) 10. 已知a、b两个数表示的点在数轴上如图所示,以下结论正确的有()个.①a+b>0;②a﹣b>0;③|a|>|b|;④﹣b>a;⑤若|a|=5,|b|=2,那么a+b=±3,±7.A.2B.3C.4D.5二、填空题(★★) 11. 计算:﹣1+(﹣)=_____.(★★) 12. 某地气象统计资料表明,高度每增加1000米,气温就下降大约6度,现在地面的气温为26度,那么高度为10000米的高空的气温大约为_____度.(★★) 13. 一个小立方体的六个面分别标有数字1、2. 3、4、5、6,从三个不同的方向看到的情形如图所示,则数字6的对面是________.(★★★) 14. 数轴上点 A表示的数是-5 , 点 B到点 A的距离是3, 则点 B所表示的数是________.(★★★) 15. 对于一个运算a※b=,已知|a|=3,|b|=2,那么a※b=_____.三、解答题(★★) 16. 以下四个有理数:﹣3,4,0,0.5(1)把以上各数及其相反数表示在数轴上;(2)用>号把以上数轴上的各数连接起来.(★★★) 17. 计算(1)﹣3 ﹣(+5 )﹣(﹣6 )+ ;(2)﹣2+4﹣6+8﹣10+12﹣…﹣2018+2020.(★★★) 18. 如图是由9个相同的棱长为2cm小立方体组成的一个几何体(1)请利用下方网格画出这个几何体的从正面看到主视图、从左面看到的左视图和从上面看到的俯视图(一个网格为小立方体的一个面).(2)计算这个堆积几何体的表面积(含底面).(★★★★) 19. 如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a,图2中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图1中大正方体的棱长之和为m,图2中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.(★★) 20. 中秋节期间,子涵和妈妈一块去商场购买月饼,妈妈买了一盒某品牌月饼共计8枚.回家后子涵很仔细地看了看标签和有关说明:子涵把8枚月饼的质量(重量)称重后统计列表如表(单位:克):枚数12345678(个)重量565554.856.255.355.354.754.3(克)(1)子涵为了简化运算,选取一个恰当的基准质量,这个基准质量是克.(2)依据这个基准质量,子涵把超出的部分记为正,不足的部分记为负,列出表(不完整)枚数12345678(个)重量+1.2+0.3+0.3(克)请补全表格,并计算这8枚月饼的平均质量.(3)当子涵看到说明书上标记的总质量为440±2克时,子涵断定妈妈买的月饼在总质量上是合格的.你知道为什么吗?(★★) 21. 与同伴做以下游戏:每个人从同一副扑克牌(去掉大小王和J,Q,K)中选取3张黑色和3张红色牌(规定黑色为负,红色为正),使得6张牌的总分为0.两人轮流从同伴手中抽取1张牌,10次后,计算每人手中牌的总分,得分高者为胜.温馨提示:一副扑克牌的组成(大、小王和4个花色:红桃,方块为红色,黑桃、梅花为黑色,每个花色计13张从1到10,J,Q,K共计54张)(1)你希望抽到哪种颜色的牌?你希望哪种颜色的牌不被抽走?(2)游戏结束后,你手中牌的总分与同伴手中牌的总分有什么关系?(3)你可能得到的最高分是多少?(★★★) 22. (数轴是我们进入七年级后研究的一个很重要的数学工具,它不但让我们在数轴上表示所有的有理数,让数变得具体而形象,还帮助我们理解了相反数和绝对值;当然,数轴也可以解决一些实际问题:小华家,小明家,学校在一条东西的大街上,小华家在学校的东面距学校500米,小明家在学校的西面距学校300米.(1)画出如图的数轴(学校为原点,小华家为A点,小明家为B点),数轴的单位长度为实际的米.(2)列算式表示小华与小明家之间的距离.(3)周末小明自西向东,小华自东向西出去玩,他们每分钟都走80米,问几分钟后两人相遇?相遇地点在学校的哪边?在数轴上用点C表示出来.。

2020-2021学年河南省郑州市荥阳市龙门实验中学七年级上学期第一次月考数学试卷 (解析版)

2020-2021学年河南省郑州市荥阳市龙门实验中学七年级上学期第一次月考数学试卷 (解析版)

2020-2021学年河南省郑州市荥阳市龙门实验中学七年级(上)第一次月考数学试卷一、选择题(共10小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.20212.图中为某几何体的分别从上面、前面、左边看到的三个图形,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥3.下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A.B.C.D.4.如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m,再下沉10m,然后上升7m,此时潜艇的海拔高度可记为()A.15m B.7m C.﹣18m D.﹣25m5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.6.下列运算中正确的个数有()(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(﹣)﹣(+)=﹣.A.1个B.2个C.3个D.4个7.给出下列说法:①1乘任何有理数都等于这个数本身;②0乘任何数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与本身相等的数是±1,其中正确的有()A.1 个B.2 个C.3 个D.4 个8.下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数9.有理数a、b在数轴上的位置如图所示,下列各式正确的是()A.ab>0B.a+b<0C.a﹣b>0D.b﹣a>010.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字()的点重合.A.0B.1C.2D.3二.填空题(共5小题,满分15分,每小题3分)11.笔尖在纸上快速滑动写出英文字母C,这说明了.12.下列说法:其中正确的有个①球的截面一定是圆;②正方体的截面可以是五边形;③棱柱的截面不可能是圆;④长方体的截面一定是长方形,13.数轴上,点B在点A的右边,已知点A表示的数是﹣2,且AB=5.那么点B表示的数是.14.在﹣8,2020,3,0,﹣5,+13,,﹣6.9中,正整数有m个,负数有n个,则m+n 的值为.15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x ≤0时,化简[x]+(x)+[x)的结果是.三.解答题(共7小题,满分55分)16.用适当的方法计算(能用简便运算的就用简便运算)(1)﹣16﹣(﹣12)﹣24+18;(2)﹣(﹣1)+(﹣1)﹣;(3)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣).17.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图.18.把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,1,﹣3,﹣(﹣0.5),﹣|﹣|,+(﹣4).19.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期一二三四五六日增减+100﹣200+400﹣100﹣100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?20.对于有理数a,b,定义一种新运算“⊙”规定a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简a⊙b;(3)已知(a⊙a)⊙a=8+a,求a的值.21.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.22.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.(1)在图1的数轴上,AC=个长度单位;数轴上的一个长度单位对应刻度尺上的cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.参考答案一.选择题(共10小题,满分30分,每小题3分)1.﹣2021的相反数是()A.﹣2021B.﹣C.D.2021【分析】利用相反数的定义分析得出答案.解:﹣2021的相反数是:2021.故选:D.2.图中为某几何体的分别从上面、前面、左边看到的三个图形,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是正三棱柱.故选:C.3.下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A.B.C.D.【分析】利用正方体及其表面展开图的特点解题.解:A、手的对面是勤,不符合题意;B、手的对面是口,符合题意;C、手的对面是罩,不符合题意;D、手的对面是罩,不符合题意;故选:B.4.如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m,再下沉10m,然后上升7m,此时潜艇的海拔高度可记为()A.15m B.7m C.﹣18m D.﹣25m【分析】根据下沉减,上升加,列出算式计算即可解答.解:﹣15﹣10+7=﹣18(m).故此时潜艇的海拔高度可记为﹣18m.故选:C.5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选:C.6.下列运算中正确的个数有()(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(﹣)﹣(+)=﹣.A.1个B.2个C.3个D.4个【分析】根据有理数的加减运算法则分别计算即可.解:(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(﹣)﹣(+)=.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.7.给出下列说法:①1乘任何有理数都等于这个数本身;②0乘任何数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与本身相等的数是±1,其中正确的有()A.1 个B.2 个C.3 个D.4 个【分析】直接利用倒数以及相反数的定义分别分析得出答案.解:①1乘任何有理数都等于这个数本身,正确;②0乘任何数的积均为0,正确;③﹣1乘任何有理数都等于这个有理数的相反数,正确;④一个数的倒数与本身相等的数是±1,正确.故选:D.8.下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数【分析】分别根据有理数大小比较方法,绝对值的性质,相反数的定义以及有理数的定义逐一判断即可.解:A.﹣4<8,故本选项符合题意;B.如果a>b,那么|b﹣a|=a﹣b,故本选项不合题意;C.﹣|﹣(+0.8)|=﹣0.8,故本选项不合题意;D.没有最小的有理数,故本选项不合题意.故选:A.9.有理数a、b在数轴上的位置如图所示,下列各式正确的是()A.ab>0B.a+b<0C.a﹣b>0D.b﹣a>0【分析】根据数轴上点的位置确定出a+b,a﹣b以及ab的正负即可.解:由题意:a<0,b>0,|b|>|a|,∴ab<0,a+b>0,a﹣b<0,b﹣a>0,故选:D.10.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字()的点重合.A.0B.1C.2D.3【分析】由于圆的周长为4个单位长度,所以只需先求出数轴在此圆上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,3,2,1的点重合.解:∵﹣1﹣(﹣2018)=2017,2017÷4=504…1,∴数轴上表示数﹣2018的点与圆周上起点处表示的数字重合,即与3重合.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.笔尖在纸上快速滑动写出英文字母C,这说明了点动成线.【分析】线是由无数点组成,字是由线组成的,所以点动成线;解:笔尖在纸上快速滑动写出英文字母C,这说明了点动成线;故答案为:点动成线12.下列说法:其中正确的有3个①球的截面一定是圆;②正方体的截面可以是五边形;③棱柱的截面不可能是圆;④长方体的截面一定是长方形,【分析】用一个平面截一个几何体得到的面叫做几何体的截面.解:①球的截面一定是圆,正确;②正方体的截面可以是五边形,过5个面时得到的截面可以是五边形,正确;③过棱柱的几个面得到的截面就是几边形,都不会出现圆,正确;④长方体的截面不一定是长方形,还可能是三角形,错误;正确的有3个,故答案为:3.13.数轴上,点B在点A的右边,已知点A表示的数是﹣2,且AB=5.那么点B表示的数是3.【分析】根据数轴表示数的意义,在点A的右边,到点A距离为5的点所表示的数为3.解:﹣2+5=3,故答案为:3.14.在﹣8,2020,3,0,﹣5,+13,,﹣6.9中,正整数有m个,负数有n个,则m+n 的值为5.【分析】根据正整数,负分数的定义得出它们的个数,再代入计算即可.解:正整数有2020,+13,共2个;负数有﹣8,﹣5,﹣6.9,共3个;∴m=2,n=3,∴m+n=2+3=5.故答案为:5.15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x ≤0时,化简[x]+(x)+[x)的结果是﹣2,﹣1,0.【分析】分三种情况讨论x的范围:①﹣1<x<﹣0.5,②﹣0.5<x<0,③x=0即可得到答案.解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0.故[x]+(x)+[x)的结果是﹣2,﹣1,0.故答案为:﹣2,﹣1,0.三.解答题(共7小题,满分55分)16.用适当的方法计算(能用简便运算的就用简便运算)(1)﹣16﹣(﹣12)﹣24+18;(2)﹣(﹣1)+(﹣1)﹣;(3)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣).【分析】利用加法的交换律、结合律,逐题进行计算即可.解:(1)﹣16﹣(﹣12)﹣24+18=(﹣16)+12+(﹣24)+18=[(﹣16)+(﹣24)]+(12+18)=(﹣40)+30=﹣10;(2)﹣(﹣1)+(﹣1)﹣=[+(﹣1)]+(1﹣)=(﹣1)+1=;(3)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣)=1+1﹣+=(1+)+(1﹣)=2+=2.17.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图.【分析】根据主视图,左视图的定义画出图形即可.解:主视图,左视图如图所示:18.把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,1,﹣3,﹣(﹣0.5),﹣|﹣|,+(﹣4).【分析】先把各数化简,在数轴上表示出各数,再根据数轴的特点把这些数按从大到小的顺序用“>”连接起来.解:如图所示:根据数轴的特点把这些数按从大到小的顺序用“>”连接起来为1>﹣(﹣0.5)>0>﹣|﹣|>﹣3>+(﹣4).19.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期一二三四五六日增减+100﹣200+400﹣100﹣100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?【分析】(1)把前三天的记录相加,再加上每天计划生产量,计算即可得解;(2)根据正负数的意义确定星期三产量最多,星期二产量最少,然后用记录相减计算即可得解;(3)求出一周记录的和,然后根据工资总额的计算方法列式计算即可得解.解:(1)(+100﹣200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)+400﹣(﹣200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)5000×7+(100﹣200+400﹣100﹣100+350+150)=35600(个),0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.20.对于有理数a,b,定义一种新运算“⊙”规定a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简a⊙b;(3)已知(a⊙a)⊙a=8+a,求a的值.【分析】(1)根据a⊙b=|a+b|+|a﹣b|,可以计算出2⊙(﹣3)的值;(2)根据数轴可以得到a+b和a﹣b的值,从而可以化简a⊙b;(3)根据题意,利用分类讨论的方法可以求得a的值.【解答】解(1)∵a⊙b=|a+b|+|a﹣b|,∴2⊙(﹣3)=|2+(﹣3)|+|2﹣(﹣3)|=1+|2+3|=1+5=6;(2)由数轴可知:a+b<0,a﹣b>0,则a⊙b=|a+b|+|a﹣b|=﹣a﹣b+a﹣b=﹣2b;(3)当a≥0时,(a⊙a)⊙a=(|a+a|+|a﹣a|)⊙a=2a⊙a=|2a+a|+|2a﹣a|=3a+a=4a,∵(a⊙a)⊙a=8+a,∴4a=8+a解得,a=;当a<0时,(a⊙a)⊙a=(|a+a|+|a﹣a|)⊙a=(﹣2a+0)⊙a=(﹣2a)⊙a=|﹣2a+a|+|﹣2a﹣a|=﹣a﹣3a=﹣4a∵(a⊙a)⊙a=8+a,∴﹣4a=8+a解得,a=.由上可得,a的值是或.21.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了8条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.22.如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.(1)在图1的数轴上,AC=9个长度单位;数轴上的一个长度单位对应刻度尺上的0.6cm;(2)求数轴上点B所对应的数b;(3)在图1的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.【分析】(1)根据两点间的距离解答即可;(2)根据题意和对应关系可得方程求得数轴上点B所对应的数b;(3)可设点Q所表示的数是x,根据AQ=2QB得到关于x的方程,再解方程即可求解.解:(1)AC=4﹣(﹣5)=9(个长度单位),数轴上的一个长度单位对应刻度尺上的5.4÷9=0.6(cm);故答案为:9;0.6.(2)依题意有1.8=0.6(b+5),解得b=﹣2,即数轴上点B所对应的数b为﹣2;(3)设点Q所表示的数是x,依题意有x﹣(﹣5)=2(﹣2﹣x),解得x=﹣3.故点Q所表示的数是﹣3.。

2020-2021学年河南郑州七中八年级(上)第一次月考数学试卷(Word+答案)

2020-2021学年河南郑州七中八年级(上)第一次月考数学试卷(Word+答案)

2020-2021学年河南郑州七中八年级(上)第一次月考数学试卷
一.选择题
1.(3分)在实数:﹣,3.1415926,π,,3.15,,中,无理数的个数为()A.2个B.3个C.4个D.5个
2.(3分)下列各组数中,分别以它们为边长能构成直角三角形的是()
A.3,4,5B.,,C.D.32,42,52
3.(3分)△ABC的三边长分别为a,b,c.下列条件,其中能判断△ABC是直角三角形的个数有()
①∠A=∠B﹣∠C
②a2=(b+c)(b﹣c)
③∠A:∠B:∠C=3:4:5
④a:b:c=5:12:13
A.1个B.2个C.3个D.4个
4.(3分)下列运算中错误的有()
①=4,②=±,③=﹣3,④±=3.
A.4个B.3个C.2个D.1个
5.(3分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()
A.2B.C.D.
6.(3分)如图,有一圆柱,其高为8cm,它的底面周长为16cm,在圆柱外侧距下底1cm的A处有一只蚂蚁,它想得到距上底1cm的B处的食物,则蚂蚁经过的最短距离为()
第1页(共13页)。

河南省郑州市2020-2021学年八年级上学期期末数学试卷含答案

河南省郑州市2020-2021学年八年级上学期期末数学试卷含答案

2020-2021学年河南省郑州市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1下列各数中,是无理数的是()A.0B.πC.D.3.14159262如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC 修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了()A.2米B.4米C.6米D.8米3下列说法正确的是()A.若点A(3,﹣1),则点A到x轴的距离为3B.平行于y轴的直线上所有点的纵坐标都相同C.(﹣2,2)与(2,﹣2)表示两个不同的点D.若点Q(a,b)在x轴上,则a=04列方程组解古算题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”题目大意是:几个人共同购买一件物品,每人出8钱,余3钱;每人出7钱,缺4钱.设参与共同购物的有x个人,物品价值y钱,可列方程组为()A.B.C.D.5下列问题中,两个变量之间是正比例函数关系的是()A.汽车以80km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系B.圆的面积y(cm2)与它的半径x(cm)之间的关系C.某水池有水15m3,我打开进水管进水,进水速度5m3/h,xh后水池有水ym3D.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系6在下列各图象中,y不是x的函数的是()A.B.C.D.7如图,在同一直角坐标系中作出一次函数y=k1x与y=k2x+b的图象,则二元一次方程组的解是()A.B.C.D.8如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是()A.6B.8C.9D.159如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)10结合学习函数的经验,小红在平面直角坐标系中画出了函数y=的图象,如图所示根据图象,小红得到了该函数四条结论,其中正确的是()A.y随x的增大而减小B.当x=﹣1时,y有最大值C.当x=2与x=﹣2时,函数值相等D.当x>0时,0<y<1二.填空题(共5小题,每小题3分,共15分)11“你喜欢数学吗?”这句话命题.(填“是”或者“不是”)12请写出一个大于且小于的整数:.13如图,所有的四边形都是正方形,所有的三角形都是直角三角形.则下列关于面积的等式:①S A=S B+S C;②S A=S F+S G+S B;③S B+S C=S D+S E+S F+S G,其中成立的有(写出序号即可).14已知m、n满足方程组,则m+n的值是.15如图所示,把长方形AOBC放在直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点C的坐标为(2,1),将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD交x轴于点E,则点D的坐标为.三、解答题(本大题共7小题,共75分)16计算:+(﹣2)2﹣÷.17为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:平均分中位数方差合格率优秀率甲 6.86 3.7690%30%乙7.27.5 1.9680%20%如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.18小明说,在一次函数y=kx+b中,x每增加1,kx增加了k,b没变,因此,y也增加了k.而如图所示的一次函数图象中从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k的值是2.(1)小明这种确定k的方法有道理吗?说说你的认识;(2)已知一次函数的图象经过(0,3)、(1,1)两点,下面运用两种方法求了这个一次函数的表达式,请你将过程补充完整.方法一:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,∴b=.∵x从0变成1时,增加了1,函数值从3变为1,增加了﹣2,∴k=.∴该一次函数的表达式为.方法二:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,把(0,3)、(1,1)代入y=kx+b得,解得.∴该一次函数的表达式为.(3)像(2)中的方法二,先设出函数的表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做.19.古埃及人曾用下面的方法得到直角,如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)伤照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)20在平面直角坐标系中.(1)如何确定一个给定的点的坐标?请你举例说明.(2)某个图形上各点的纵坐标不变,而横坐标变为原来的相反数,此图形却未发生任何改变,你认为可能吗?请举例说明.21. 2021年郑州市中招体育考试统考项目为:长跑、立定跳远、足球运球,选考项目(50米跑或1分钟跳绳).为了备考练习,很多同学准备重新购买足球、跳绳.(1)某校九(1)班有部分同学准备统一购买新的足球和跳绳.经班长统计共需要购买足球的有12名同学,需要购买跳绳的有10名同学.请你根据如图中班长和售货员阿姨的对话信息,分别求出足球和跳绳的单价.(2)由于足球和跳绳的需求量增大,该体育用品商店老板计划再次购进足球a个和跳绳b根(其中a>15),恰好用了1800元,其中足球每个进价为80元,跳绳每根的进价为15元,则有哪几种购进方案?(3)假如(2)中所购进的足球和跳绳全部售出,且单价与(1)中的售价相同,为了使销售获利最多,应选择哪种购进方案?22一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.2020-2021学年河南省郑州市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1下列各数中,是无理数的是()A.0B.πC.D.3.1415926【考点】无理数.【专题】实数;数感.【答案】B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,属于有理数,选项不合题意;B、π是无理数,选项符合题意;C、是分数,属于有理数,选项不合题意;D、3.1415926是有限小数,属于有理数,选项不合题意.故选:B.2如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC 修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了()A.2米B.4米C.6米D.8米【考点】勾股定理的应用.【专题】等腰三角形与直角三角形;应用意识.【答案】B【分析】根据勾股定理可得答案.【解答】解:由勾股定理,得捷径AC==10(m),多走了8+6﹣10=4(m).故选:B.3下列说法正确的是()A.若点A(3,﹣1),则点A到x轴的距离为3B.平行于y轴的直线上所有点的纵坐标都相同C.(﹣2,2)与(2,﹣2)表示两个不同的点D.若点Q(a,b)在x轴上,则a=0【考点】坐标与图形性质.【专题】平面直角坐标系;应用意识.【答案】C【分析】根据坐标系中点的位置特征一一判断即可.【解答】解:A、若点A(3,﹣1),则点A到x轴的距离应该是1,本选项错误,不符合题意.B、平行于y轴的直线上所有点的纵坐标都相同,错误,应该是横坐标相同,本选项不符合题意.C、(﹣2,2)与(2,﹣2)表示两个不同的点,正确,本选项符合题意.D、若点Q(a,b)在x轴上,应该是b=0,本选项错误,不符合题意.故选:C.4列方程组解古算题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”题目大意是:几个人共同购买一件物品,每人出8钱,余3钱;每人出7钱,缺4钱.设参与共同购物的有x个人,物品价值y钱,可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【答案】A【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解:设参与共同购物的有x个人,物品价值y钱,可列方程组为,故选:A.5下列问题中,两个变量之间是正比例函数关系的是()A.汽车以80km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系B.圆的面积y(cm2)与它的半径x(cm)之间的关系C.某水池有水15m3,我打开进水管进水,进水速度5m3/h,xh后水池有水ym3D.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系【考点】正比例函数的定义.【专题】一次函数及其应用;应用意识.【答案】见试题解答内容【分析】根据正比例函数的定义逐个判断即可求解.【解答】解:选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:y=πx2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A.6在下列各图象中,y不是x的函数的是()A.B.C.D.【考点】函数的概念.【专题】常规题型;数据分析观念.【答案】C【分析】由函数的概念可知,在变化过程两个变量x、y,如果给x一个值,y都有唯一确定的值与其对应,那么y是x的函数;接下来对题目中给出的四个选项的图象进行判断,即可得到y不是x的函数的图象.【解答】解:选项A、B、D,对于每一个x,都有唯一的y值与其对应,故选项A、B、D是函数图象,选项C,对于一个x有多个y与之对应,故y不是x的函数的图象.故选:C.7如图,在同一直角坐标系中作出一次函数y=k1x与y=k2x+b的图象,则二元一次方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】一次函数及其应用;模型思想.【答案】B【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【解答】解:∵一次函数y1=k1x与y=k2x+b的图象的交点坐标为(1,3),∴二元一次方程组的解为.故选:B.8如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是()A.6B.8C.9D.15【考点】平面展开﹣最短路径问题.【专题】等腰三角形与直角三角形;运算能力.【答案】D【分析】此类题目只需要将其展开便可直观的得出解题思路.将台阶展开得到的是一个矩形,蚂蚁要从B点到A点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.【解答】解:将台阶展开,如图,因为AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以蚂蚁爬行的最短线路为15.答:蚂蚁爬行的最短线路为15.故选:D.9如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【考点】规律型:点的坐标;坐标与图形变化﹣对称.【专题】平面直角坐标系;平移、旋转与对称;几何直观.【答案】C【分析】观察图形可知每四次对称为一个循环组依次循环,用2021除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.【解答】解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.10结合学习函数的经验,小红在平面直角坐标系中画出了函数y=的图象,如图所示根据图象,小红得到了该函数四条结论,其中正确的是()A.y随x的增大而减小B.当x=﹣1时,y有最大值C.当x=2与x=﹣2时,函数值相等D.当x>0时,0<y<1【考点】函数值;函数的图象.【专题】函数及其图象;几何直观;运算能力.【答案】D【分析】根据函数的图象以及函数的解析式逐一判断即可.【解答】解:A.由图象可知,当x>﹣1时,y随x的增大而减小,故本选项不合题意;B.函数的自变量的取值范围为x≠﹣1,故本选项不合题意;C.当x=2时,函数值为;当x=﹣2时,函数值为1,故本选项不合题意;D.由图象可知,当x>0时,0<y<1,故本选项符合题意.故选:D.二.填空题(共5小题,每小题3分,共15分)11“你喜欢数学吗?”这句话命题.(填“是”或者“不是”)【考点】命题与定理.【专题】线段、角、相交线与平行线;数据分析观念.【答案】不是.【分析】根据命题的定义确定答案即可.【解答】解:“你喜欢数学吗?”这句话没有对事件作出判断,是疑问句,不是命题,故答案为:不是.12请写出一个大于且小于的整数:.【考点】估算无理数的大小.【专题】实数;数感.【答案】见试题解答内容【分析】根据无理数的估算,找出在与的整数,任选一个即可.【解答】解:因为,,所以大于且小于的整数有2,3.故答案为:2(或3).13如图,所有的四边形都是正方形,所有的三角形都是直角三角形.则下列关于面积的等式:①S A=S B+S C;②S A=S F+S G+S B;③S B+S C=S D+S E+S F+S G,其中成立的有(写出序号即可).【考点】勾股定理.【专题】等腰三角形与直角三角形;矩形菱形正方形;推理能力.【答案】见试题解答内容【分析】由勾股定理和正方形的性质得S A=S B+S C,S B=S D+S E,S C=S F+S G,即可得出结论.【解答】解:由勾股定理和正方形的性质可知:S A=S B+S C,S B=S D+S E,S C=S F+S G,∴S A=S B+S C=S F+S G+S B,S B+S C=S D+S E+S F+S G,故答案为:①②③.14已知m、n满足方程组,则m+n的值是.【考点】二元一次方程组的解;解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【答案】4.【分析】把方程组中的两个方程相加可得4m+4n=16,进而得出m+n的值.【解答】解:,①+②,得4m+4n=16,即4(m+n)=16,所以m+n=4.故答案为:4.15如图所示,把长方形AOBC放在直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点C的坐标为(2,1),将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD交x轴于点E,则点D的坐标为.【考点】矩形的性质;坐标与图形变化﹣对称;翻折变换(折叠问题).【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】由“AAS”可证△AOE≌△BDE,可得AE=BE,OE=ED,由勾股定理可求BF的长,由面积法可求DH,即可求解.【解答】解:如图,过点D作DH⊥OB于H,∵四边形AOBC是矩形,点C的坐标为(2,1),∴OA=BC=1,AC=OB=2,∵将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,∴AD=AC=2,BD=BC=1,在△AOE和△BDE中,,∴△AOE≌△BDE(AAS),∴AE=BE,OE=ED,设AE=BE=x,则OE=2﹣x,∵OA2+OE2=AE2,∴12+(2﹣x)2=x2,解得x=,∴BE=,DE=OE=,∵S△DEB=×DE×BD=×BE×DH,∴DH=,∴BH===,∴OH=,∴点D(,﹣),故答案为:(,﹣).三、解答题(本大题共7小题,共75分)16计算:+(﹣2)2﹣÷.【考点】分母有理化;二次根式的混合运算.【专题】二次根式;运算能力.【答案】12.【分析】先把除法运算化为乘法运算,再利用二次根式的性质和乘法法则运算,然后合并即可.【解答】解:原式=+12﹣×=+12﹣=+12﹣=12.17为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:平均分中位数方差合格率优秀率甲 6.86 3.7690%30%乙7.27.5 1.9680%20%如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.【考点】折线统计图;中位数;方差.【专题】统计的应用;应用意识.【答案】见试题解答内容【分析】根据平均分,中位数,方差,合格率,优秀率分析即可.答案不唯一.【解答】解:从合格率以及优秀率来看应该选甲.从平均分,中位数,方差来看应该选乙.18小明说,在一次函数y=kx+b中,x每增加1,kx增加了k,b没变,因此,y也增加了k.而如图所示的一次函数图象中从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k的值是2.(1)小明这种确定k的方法有道理吗?说说你的认识;(2)已知一次函数的图象经过(0,3)、(1,1)两点,下面运用两种方法求了这个一次函数的表达式,请你将过程补充完整.方法一:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,∴b=.∵x从0变成1时,增加了1,函数值从3变为1,增加了﹣2,∴k=.∴该一次函数的表达式为.方法二:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,把(0,3)、(1,1)代入y=kx+b得,解得.∴该一次函数的表达式为.(3)像(2)中的方法二,先设出函数的表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做.【考点】一次函数的图象;一次函数的性质;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.【专题】一次函数及其应用;运算能力;应用意识.【答案】(1)见解答;(2)3,﹣2,y=﹣2x+3.,.y=﹣2x+3.(3)待定系数法.【分析】(1)利用待定系数法即可证得;(2)利用待定系数法和题目所述的方法求解即可.(3)待定系数法.【解答】解:(1)有道理,将x+1代入得:y2=k(x+1)+b,∴y2﹣y=k(x+1)+b﹣kx﹣b=k,∵y2﹣y=2,∴k=2;故小明这种确定k的方法有道理的;(2)方法一:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,∴b=3.∵x从0变成1时,增加了1,函数值从3变为1,增加了﹣2,∴k=﹣2.∴该一次函数的表达式为y=﹣2x+3.方法二:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,把(0,3)、(1,1)代入y=kx+b得,解得.∴该一次函数的表达式为y=﹣2x+3.故答案为3,﹣2,y=﹣2x+3.,.y=﹣2x+3.(3)先设出函数的表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法.故答案为待定系数法.19.古埃及人曾用下面的方法得到直角,如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)伤照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)【考点】勾股定理的逆定理.【专题】等腰三角形与直角三角形;应用意识.【答案】(1)理由见解答;(2)答图见解答.【分析】(1)根据勾股定理的逆定理进行证明即可;(2)根据勾股定理的逆定理,可用31个等距的结把一根绳子分成等长的30段,一个工匠同时握住绳子的第1个结和第31个结,两个助手分别握住第6个结和第18个结,拉紧绳子,就会得到一个直角三角形,其直角在第6个结处.【解答】解:(1)设相邻两个结点之间的距离为a,则此三角形三边的长分别为3a、4a、5a,∵(3a)2+(4a)2=(5a)2,∴以3a、4a、5a为边长的三角形是直角三角形;(2)如图所示:20在平面直角坐标系中.(1)如何确定一个给定的点的坐标?请你举例说明.(2)某个图形上各点的纵坐标不变,而横坐标变为原来的相反数,此图形却未发生任何改变,你认为可能吗?请举例说明.【考点】点的坐标.【专题】常规题型;几何直观.【答案】(1)在数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.(2)可能.例如本身关于y轴或轴对称图形.【分析】(1)根据在数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标即可确定.(2)由题意可知满足条件的有关于y轴对称的图形或轴对称图形.【解答】解:(1)在数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,如下图点A,横坐标对应5,中坐标对应3.故点A(5,3).由此确定一个点在直角坐标系上的坐标.(2)可能.例如,当图形关于y轴对称时,图形上各点纵坐标不变,横坐标变为原来的相反数,此时图形未改变,如上图△BCD.故答案为可能,例如本身关于y轴或轴对称图形.21. 2021年郑州市中招体育考试统考项目为:长跑、立定跳远、足球运球,选考项目(50米跑或1分钟跳绳).为了备考练习,很多同学准备重新购买足球、跳绳.(1)某校九(1)班有部分同学准备统一购买新的足球和跳绳.经班长统计共需要购买足球的有12名同学,需要购买跳绳的有10名同学.请你根据如图中班长和售货员阿姨的对话信息,分别求出足球和跳绳的单价.(2)由于足球和跳绳的需求量增大,该体育用品商店老板计划再次购进足球a个和跳绳b根(其中a>15),恰好用了1800元,其中足球每个进价为80元,跳绳每根的进价为15元,则有哪几种购进方案?(3)假如(2)中所购进的足球和跳绳全部售出,且单价与(1)中的售价相同,为了使销售获利最多,应选择哪种购进方案?【考点】列代数式;一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;运算能力;推理能力.【答案】见试题解答内容【分析】(1)设足球和跳绳的单价分别为x元、y元,由题意列出方程组,解方程组解可;(2)由题意得80a+15b=1800(a>15),当全买足球时,可买足球的数量为22.5,对a、b的值进行讨论得两种方案即可;(3)求出方案一利润和方案二利润,即可得出结论.【解答】解:(1)设足球和跳绳的单价分别为x元、y元,由题意得:,解得:,∴足球和跳绳的单价分别为100元、20元,答:足球和跳绳的单价分别为100元、20元;(2)由题意得:80a+15b=1800,(a>15),当全买足球时,可买足球的数量为:=22.5,∴15<a<22.5,当a=16时,b=(舍去);当a=17时,b=(舍去);当a=18时,b=24;当a=19时,b=(舍去);当a=20时,b=(舍去);当a=21时,b=8;当a=22时,b=(舍去);∴有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;答:有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;(3)方案一利润:(100﹣80)×18+(20﹣15)×24=480(元),方案二利润:(100﹣80)×21+(20﹣15)×8=460(元),∵480元>460元,∴选方案一,购进足球18个,跳绳24根.22一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.【考点】平行线的判定与性质.【专题】线段、角、相交线与平行线;等腰三角形与直角三角形;推理能力.【答案】见试题解答内容【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:当AC∥DE时,如图所示:则∠CAE=∠E=90°;当BC∥AD时,如图所示:则∠CAE=180°﹣∠C﹣∠DAE=180°﹣30°﹣45°=105°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠CAE=∠CAB+∠EAB=90°+60°=150°;综上所述:∠CAE的度数为90°或105°或150°.。

河南省郑州市金水区2022-2023学年八年级上学期期中数学试题(含答案解析)

河南省郑州市金水区2022-2023学年八年级上学期期中数学试题(含答案解析)

河南省郑州市金水区2022-2023学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,无理数是()A .227B C .2πD .3.14159262.满足下列条件的ABC 不是直角三角形的是()A .::2:3:4ABC ∠∠∠=B .2220a b c +-=C .A B C ∠-∠=∠D .3BC =,4AC =,5AB =3.下列计算正确的是()A ±4B 8C 13=D .34.如图所示的是一所学校的平面示意图,若用(3,2)表示教学楼,(4,0)表示旗杆,则实验楼的位置可表示成()A .(1,﹣2)B .(﹣2,1)C .(﹣3,2)D .(2,﹣3)5.下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是()A .小车在下滑过程中下滑时间t 和支撑物的高度h 之间的关系B .三角形一边上的高一定时,三角形的面积s 与这边的长度x 之间的关系C .骆驼某日的体温T 随着这天时间t 的变化曲线所确定的温度T 与时间t 的关系D .一个正数x 的平方根是y ,y 随着这个数x 的变化而变化,y 与x 之间的关系6.利用估算判断大小正确的是()A 3.8B >C 3>0D 58<7.对于一次函数24y x =-+,下列结论正确的有()①函数的图象不经过第三象限;②函数的图象与x 轴的交点坐标是()20,;③函数的图象向下平移4个单位长度得2y x =-的图象;④若两点()11A y ,,()23B y ,在该函数图象上,则12y y <.A .1个B .2个C .3个D .4个8.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7米,梯子顶端到地面的距离AC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A D '为1.5米,则小巷的宽为()A .2.5米B .2.6米C .2.7米D .2.8米9.在同一平面直角坐标系中,函数y kx =与3y x k =+-的图象不可能是()A .B .C .D .10.如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x 轴,y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2022分钟时,这个粒子所在位置的坐标是()A .(44,4)B .(44,3)C .(44,2)D .(44,1)二、填空题11_____.12.若x ,y 为实数,且满足30x -+,则2022x y ⎛⎫ ⎪⎝⎭的值是______.13.如图,ABC 是直角三角形,点C 表示2-,且3AC =,1AB =,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A M ,两点间的距离为______.14.已知点A 的坐标为(1,2),直线AB ∥x 轴,且AB =5,则点B 坐标为_______________.15.如图,直线AB 的解析式为y x b =-+分别与x ,y 轴交于A B ,两点,点A 的坐标为()30,,过点B 的直线交x 轴负半轴于点C ,且:3:1OB OC =,在x 轴上方存在点D ,使以点A B D ,,为顶点的三角形与ABC 全等,则点D 的坐标为______.三、解答题16.计算:4;(2))22.17.已知,点A (﹣2,1)和点B (4,3).(1)在坐标平面内描出点A 和点B 的位置.(2)连接AB 并计算AB 的长度.(3)若点C (a ﹣1,2b +3)与点B (4,3)关于x 轴对称,求a ﹣b 的值.18.勾股定理是初中数学学习的重要定理之一,这个定理的验证方法有很多,你能验证它吗?请你根据所给图形选择一种方法,画出验证勾股定理的方法,并写出验证过程.19整数部分是11,请回答以下问题:的小数部分是______,5______;(2)若ab 1a b ++的平方根.20.如图,BDE △是将长方形纸片ABCD 沿对角线BD 折叠后得到的.(1)试判断BDE △的形状,并说明理由;(2)若8CD =,16BC =,求BDE △的面积.21.请根据函数相关知识,对函数231y x =--的图象与性质进行探究,并解决相关问题.①列表;②描点;③连线.x (0123)4567…y…5m 11-13n7…(1)表格中:m =______,n =______.(2)在直角坐标系中画出该函数图象.(3)观察图象:①根据函数图象可得,该函数的最小值是______;②观察函数231y x =--的图象,写出该图象的一条性质;③进一步探究函数图象发现:函数图象与x 轴有______个交点,所以对应的方程2310x --=有______个解.22.甲、乙两人参加从A 地到B 地的长跑比赛,两人在比赛时所跑的路程y (米)与时间x (分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)______先到达终点(填“甲”或“乙”);(2)根据图象,求出甲的函数表达式;(3)求何时甲乙相遇?(4)根据图象,直接写出何时甲与乙相距250米.参考答案:1.C【分析】根据无理数的三种形式:(1)开不尽方的数,(2)无限不循环小数,(3)含有π的数,进行求解即可.【详解】解:根据题意可得:2274=是有理数,2π是无理数,3.1415926是有理数,故选:C .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:(1)开不尽方的数,(2)无限不循环小数,(3)含有π的数.2.A【分析】根据勾股定理的逆定理,三角形的内角和定理,逐一进行判断即可.【详解】解:A. ::2:3:4A B C ∠∠∠=,180A B C ∠+∠+∠=︒,80C ∴∠=︒,ABC ∴ 不是直角三角形,故A 符合题意;B. 2220a b c +-=,222a b c ∴+=,ABC ∴ 是直角三角形,故B 不符合题意;C. A B C ∠-∠=∠,A B C ∴∠=∠+∠,180A B C ∠+∠+∠=︒ ,90A ∴∠=︒,ABC ∴ 是直角三角形,故C 不符合题意;D. 3BC =,4AC =,5AB =,2222223425525BC AC AB ∴+=+===,,222BC AC AB ∴+=,ABC ∴ 是直角三角形,故D 不符合题意;故选:A .【点睛】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.3.C【分析】根据立方根、平方根以及算术平方根的意义求解即可.【详解】解:A,原计算错误,不符合题意;B,原计算错误,不符合题意;C13=,正确,符合题意;D、故选:C.【点睛】本题考查了算术平方根、立方根,理解算术平方根、立方根的意义是解决问题的关键.4.D【分析】直接利用已知点坐标得出原点位置进而得出答案.【详解】解:如图所示:实验楼的位置可表示成(2,﹣3).故选:D.【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.5.D【分析】根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C 、骆驼某日的体温T 随着这天时间t 的变化曲线所确定的温度T 与时间t 的关系,对于每一个确定的时间,温度T 都有唯一值与之对应,满足函数的关系,故不符合题意;D 、∵一个正数x 的平方根是y ,∴()2x y =±,对于每一个确定的x ,y 都有两个值与之对应,不满足函数的关系,故符合题意;故选D .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.6.D【分析】估算无理数的大小,利用实数大小的比较法则,比较即可得出正确的结论.【详解】解:A 、∵14.44<15<16,∴,故该选项错误;B<<C<3<30<,故该选项错误;D 、∵15459028888--===<,58<,故该选项正确;故选:D .【点睛】本题考查了实数大小的比较.正确估计各无理数大小是求解本题的关键.7.C【分析】根据一次函数的k 和b 的符号结合一次函数的图象和性质,来判断是否正确.【详解】解:由24y x =-+可知:2040k b =-<=>,,∴直线经过一、二、四象限,故①正确;当0y =时,240x -+=,解得2x =,∴函数的图象与x 轴的交点坐标是()20,,故②正确;函数的图象向下平移4个单位长度得:2442y x x =-+-=-,即2y x =-故③正确;20k =-< ,y ∴随x 的增大而减小,12y y ∴>,故④错误;故选:C .【点睛】本题考查的是一次函数的图象和性质,解题的关键是根据k 和b 的符号来判断直线经过第几象限,会求直线与坐标轴的交点.8.C【分析】在Rt △ABC 中,利用勾股定理计算出AB 长,再在Rt △A′BD 中利用勾股定理计算出BD 长,然后可得CD 的长.【详解】解:在Rt △ABC 中,=2.5(米),∴A′B=2.5米,在Rt △A′BD 中,(米),∴BC+BD=2+0.7=2.7(米),故选:C .【点睛】本题考查了勾股定理的应用,关键是掌握利用勾股定理求有关线段的长度的方法.9.C【分析】根据题意,利用分类讨论的方法,可以判断各个选项中的图象是否正确,从而可以解答本题.【详解】解:当k >0时,一次函数y =kx 的图象经过第一、三象限,3k -可能大于0也可能小于0,所以一次函数3y x k =+-的图象经过第一、三、四象限或第一、二、三象限,故选项A 、B 都可能;当k <0时,一次函数y =kx 的图象经过第二、四象限,30k ->一次函数3y x k =+-的图象经过第一、二、三象限,故选项D 有可能,选项C 不有可能;故选:C【点睛】本题考查一次函数的性质、一次函数的图象、正比例函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.C【分析】根据题意依次写出第一象限内从运动过的点坐标及其对应的运动时间,分析后发现,点n n (,),对应运动的时间为(1)n n +分钟.当n 为奇数时,运动方向向左;当n 为偶数时,运动方向向下.利用该规律,将2022写成444542⨯+,可以看做点44,44()向下运动42个单位长度,进而求出结果.【详解】解:由题意及图形分析可得,当点(1,1)时,运动了2分钟,2=12⨯,方向向左,当点22(,)时,运动了6分钟,6=23⨯,方向向下,当点(3,3)时,运动了12分钟,1234=⨯,方向向左,当点(4,4)时,运动了20分钟,2045=⨯,方向向下,……∴点n n (,),运动了(1)n n +分钟,当n 为奇数时,方向向左;当n 为偶数时,方向向下.2022444542∴=⨯+,方向向下,则当运动在第2022分钟时,可以看做点4444(,)再向下运动42分钟,44422-=,即到达44,2().故选:C .【点睛】本题考查点的坐标的规律变化的分析推理能力.合理寻找特殊点与序号变化间的关系是解题的关键.11【详解】5,=25,=∴512.1【分析】利用非负数的性质求出x ,y 的值,代入计算即可.【详解】解:30x - ,3060x x y ∴-=+-=,,33x y ∴==,,20222022313x y ⎛⎫⎛⎫∴== ⎪ ⎪⎝⎭⎝⎭,故答案为:1.【点睛】本题考查的是绝对值的非负性,算术平方根的非负性,解题的关键是根据非负数的性质求出x ,y 的值.133##3-+【分析】3AC =,1AB =,根据勾股定理可求出BC 的长,因为BC CM =,所以AM CM AC =-即可得到答案.【详解】解:根据勾股定理可得:BC ===CM BC ∴==3AC = ,3AM CM AC ∴=-=,∴A M ,3,3.【点睛】本题考查了两点间的距离与勾股定理的计算,用勾股定理计算出BC 的长是解题的关键.14.(﹣4,2)或(6,2)【分析】由直线//AB x 轴可确定点B 的纵坐标为2,然后分当点B 在点A 左边和点B 在点A 右边两种情况,结合5AB =解答即可.【详解】解:∵AB ∥x 轴,点A 的坐标为(1,2),∴点B 的纵坐标为2,∵AB =5,∴点B 在点A 的左边时,横坐标为1﹣5=﹣4,点B 在点A 的右边时,横坐标为1+5=6,∴点B 的坐标为(﹣4,2)或(6,2).故答案为(﹣4,2)或(6,2).【点睛】本题考查了图形与坐标,属于基础题目,正确分类、掌握解答的方法是解题关键.15.()43,或()34,【分析】将点A 的坐标代入直线AB 的解析式为y x b =-+,可求得直线AB 的解析式,从而可得到OB OC OA AC BC AB 、、、、、的长度,再分ABC ABD △≌△和ABC BAD ≌两种情况进行讨论即可得到答案.【详解】解: 点A 在直线AB y x b =-+:上,30b ∴-+=,3b ∴=∴直线AB 的解析式为:3y x =-+,当0x =时,3y =,当0y =时,30x -+=,解得3x =,∴点B 坐标为()03,,点A 的坐标为()30,,33OB OA ∴==,,OA OB ∴=,45BAO ABO ∴∠=∠=︒,:3:1OB OC =,1314OC AC OA OC ∴==+=+=,,由勾股定理得:BC ===AB == 以点A B D ,,为顶点的三角形与ABC 全等,当ABC ABD △≌△时,如图所示,此时45BAC BAD ∠=∠=︒,且4AC AD ==,90CAD CAB BAD ∴∠=∠+∠=︒,即DA AC ⊥,∴点D 的横坐标为3,纵坐标为4,∴点D 的坐标为:()34,;当ABC BAD ≌时,如图所示,此时45BAC DBA ∠=∠=︒,4AC BD ==,BD AC ∴∥,∴点D 的横坐标为4,纵坐标为3,∴点D 的坐标为:()43,,综上所述:点D 的坐标为()34,或()43,.【点睛】本题考查的是一次函数图像上的坐标特征,涉及到三角形全等、平行线的性质、勾股定理的运用等,并注意分类求解,题目难度较大.16.(1)4(2)24-【分析】(1)根据二次根式的运算法则进行计算即可;(2)根据二次根式的运算法则进行计算,注意的是完全平方式的展开是三项.【详解】(144=4=;(2)解:)22()34=-⨯(7=-⨯24=-+24=.【点睛】本题考查的是二次根式的混合运算,解题的关键是熟练掌握运算法则和完全平方式的展开式.17.(1)见解析;(2)AB =(3)a -b 的值为8.【分析】(1)利用点A 、B 的坐标描点即可;(2)根据两点之间的距离公式计算即可;(3)根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,进而得出方程组,即可求解.【详解】解:(1)如图,点A 、点B 为所作;(2)AB =(3)∵点C (a ﹣1,2b +3)与点B (4,3)关于x 轴对称,∴a -1=4,2b +3=-3,解得:a =5,b =-3,∴a -b =5-(-3)=8.【点睛】本题主要考查了关于x 轴对称的点的坐标以及勾股定理,关键是掌握点的坐标的变化规律.18.见解析【分析】根据勾股定理的定义及几何图形的面积法进行证明即可得解.【详解】如下图,根据几何图形的面积可知:222211()42422a b ab a b ab ab c +-⨯=++-⨯=整理得:222a b c +=.【点睛】本题主要考查了勾股定理的推到,熟练掌握面积法推到勾股定理是解决本题的关键.19.3,4(2)3±【分析】(1)估算无理数的近似数,减去整数部分,即为小数部分;(2a、b的值,代入代数式求解即可.【详解】(1)解:34<,3,3-;34<<,5∴-的整数部分为1,5∴-的小数部分为:514=-3,4;3,4;(2)解:910<<,9,即9a=,12<<Q,的整数部分为1,1,即1b,1a b∴+-911=+-9=,3=±,1a b∴+-的平方根为3±.【点睛】本题考查的是平方根以及无理数大小的估算,根据题意正确确定无理数的整数部分与小数部分是解题的关键.20.(1)等腰三角形,理由见解析;(2)40.【分析】(1)如图(见解析),先根据长方形的性质、平行线的性质可得13∠=∠,再根据折叠的性质可得12∠=∠,从而可得23∠∠=,然后根据等腰三角形的判定即可得出结论;(2)先根据矩形的性质可得168AD BC AB CD ====,,90A ∠=︒,设DE BE x ==,从而可得16AE x =-,再在Rt ABE 中,利用勾股定理可求出x 的值,然后利用三角形的面积公式即可得.【详解】解:(1)BDE △是等腰三角形,理由如下:∵四边形ABCD 是长方形,∴AD BC ∥,13∠∠∴=,由折叠的性质可知:12∠=∠,23∴∠=∠,∴DE BE =,∴BDE △是等腰三角形;(2)∵四边形ABCD 是长方形,8CD =,16BC =,∴168AD BC AB CD ====,,90A ∠=︒,设DE BE x ==,则16AE x =-,在Rt ABE 中,222BE AE AB =+,即2228(16)x x =+-,解得10x =,∴10DE =,∴111084022BDE S DE AB =⋅=⨯⨯= .【点睛】本题考查了矩形折叠问题,熟练掌握矩形和折叠的性质是解题关键.21.(1)3,5(2)见解析(3)①1-;②当3x ≥时,y 随x 的增大而增大,当3x ≤时,y 随x 的增大而减小;③2,2【分析】(1)分别将1x =,6x =代入解析式,即可求得m n 、的值;(2)利用描点法画出函数图象即可;(3)①通过观察函数图象直接可求解;②通过观察函数的图象写出符合函数图像的性质即可;③通过观察函数图象直接求解即可.【详解】(1)解:当1x =时,21313y =⨯--=,当6x =时,26315y =⨯--=,35m n ∴==,,故答案为:3,5;(2)解:画出图如图所示:(3)解:①当3x =时,y 有最小值为:1-,故答案为:1-;②当3x ≥时,y 随x 的增大而增大,当3x ≤时,y 随x 的增大而减小;③函数图象与x 轴有2个交点,方程2310x --=有两个解,分别是72x =或52x =,故答案为:2,2.【点睛】本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,会用描点法画出函数图象,数形结合是解题的关键.22.(1)乙(2)甲的表达式为:250y x=(3)甲乙在12分钟时相遇(4)5分钟或11分钟或13分钟或19分钟时甲乙相距250米【分析】(1)依据函数图象可得到两人跑完全程所用的时间,从而可知道谁先到达终点;(2)甲的函数图象是正比例函数,直线经过点()20,5000,可求出解析式;(3)当1016x <<时,甲乙两人相遇,求得乙的路程与时间的函数关系式,再求得两个函数图象的交点坐标即可;(4)根据题意列方程解答即可.【详解】(1)解:由函数图象可以:甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点,故答案为:乙;(2)解:设甲跑的路程y (米)与时间x (分钟)之间的函数关系式为:y kx =,经过点()20,5000,500020k ∴=,解得:250=k ,∴甲的函数解析式为:250y x =;(3)解:设甲乙相遇后(即1016x <<),乙跑的路程y (米)与时间x (分钟)之间的函数关系式为:y kx b =+,经过点()102000,,()165000,,联立方程可得:102000165000k b k b +=⎧⎨+=⎩,解得5003000k b =⎧⎨=-⎩,∴乙的函数解析式为:5003000y x =-,再联立方程:5003000250y x y x =-⎧⎨=⎩,解得123000x y =⎧⎨=⎩,∴甲乙在12分钟时相遇;(4)解:设此时起跑了x 分钟,根据题意得,200025025010x x -=或2503000250x =-或5000250250x -=或5003000250250x x --=,解得:5x =或11x =或19x =或13x =,∴5分钟或11分钟或13分钟或19分钟时甲乙相距250米.【点睛】本题主要考查了一次函数的应用,求得甲乙两人的路程与时间的函数关系式是解题的关键.。

2020-2021学年河南省郑州市七年级第一学期第一次月考地理试卷含答案详解

2020-2021学年河南省郑州市七年级第一学期第一次月考地理试卷含答案详解

【最新】河南省郑州市七年级第一学期第一次月考地理试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.通过精确测量发现,地球是一个 ( )A.正圆形球体 B.纺锤形球状C.不规则球体 D.规则球体2.在日常生活中,能够说明地球是球体的自然现象是()A.太阳东升西落 B.站得高,看的远C.日全食 D.水往低处流3.地球上的0°经线和0°纬线相比( )A.正好相等B.0°经线较长C.0°纬线较长D.不可比较4.地球上最长的纬线圈是()A.北回归线 B.南回归线C.赤道 D.北极圈5.本初子午线是指()A.赤道 B.0°经线 C.180°经线 D.20°W经线6.习惯上划分东西半球的分界线是( )A.20°W,160°EB.20°E,160°WC.0°经线和0°纬线D.0°经线和180°经线7.地球自转的方向是()A.自西向东 B.自东向西C.自南向北 D.自北向南8.一架飞机从北极点附近的岛屿上出发一直往南飞,它将可以()A.返回出发点 B.到达南极点C.停留在赤道上 D.以上说法都不对9.下列关于经纬线的说法,正确的是()A.纬线长度都相等 B.每条纬线都自成一个圆C.地球仪上经线有360条 D.所有经线长度都不相等10.下列图正确反映了地球自转方向的是()11.南、北半球的分界线是()A.回归线 B.赤道 C.极圈 D.本初子午线12.在地理上用字母表示经纬度,习惯上用S表示()A.东经 B.西经 C.南纬 D.北纬13.下列自然现象中,由地球自转造成的是()A.昼夜长短的变化 B.四季变化C.昼夜现象 D.昼夜交替现象14.地球公转的周期是()A.一年 B.一天 C.一月 D.一季15.中纬度是指()A.0°~30°B.23.5°~66.5°C.30°~60°D.60°~90°16.当北半球是冬季时,南半球的季节是()A.冬季 B.春季 C.夏季 D.秋季17.热带与北温带的分界线是()A.北极圈 B.南极圈 C.北回归线 D.南回归线18.在地球上的寒带地区()A.全年炎热 B.无极昼极夜现象C.四季分明 D.无阳光直射现象19.我国大部分地区分布在五带中的()A.北寒带 B.北温带 C.热带 D.南温带20.有一位建筑师,想要建造一座四面窗户都朝向北方的房子,你认为应该建在()A.北极点 B.南极点 C.赤道 D.北回归线21.从南极到北极,纬度变化的规律是()A.由大变小再增大B.逐渐增大C.逐渐减小D.由小变大再变小22.在地球上出现极昼、极夜现象的地方在 ( )A.寒带 B.赤道 C.热带 D.温带23.在南北回归线之间的地区是()A.北温带B.南温带C.热带D.寒带24.下面四条纬线中最长的是A.10°N B.40°N C.20°S D.66.5°S二、填空题25.在图上相应的方框内标填写五带名称。

2023-2024学年河南省郑州市金水区龙门实验学校八年级(下)月考数学试卷(含答案)

2023-2024学年河南省郑州市金水区龙门实验学校八年级(下)月考数学试卷(含答案)

2023-2024学年河南省郑州市金水区龙门实验学校八年级(下)月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列不等式中,是一元一次不等式的是( )A. 1x +1>2 B. x2>9 C. 2x+y≤5 D. 12(x−3)<02.下列判断中,不正确的是( )A. 若a<b,则−2a>−2bB. 若5a>6a,则a<0C. 若a<b,则ac2<bc2D. 若ac2<bc2,则a<b3.如果等腰三角形的两边长分别3和6,则它的周长为( )A. 9B. 12C. 15D. 12或154.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )A. AC,BC两边高线的交点处B. AC,BC两边中线的交点处C. AC,BC两边垂直平分线的交点处D. ∠A,∠B两内角平分线的交点处5.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.与作图要求一致的图形顺序是( )A. ①②③④B. ③②④①C. ②④③①D. ②③④①6.下列说法正确的是( )A. x≤2的正整数解只有一个B. x=−3是2x−1<0的解C. 不等式−3x>12的解集是x>−4D. 不等式x<10的整数解有10个7.在△ABC 中,AB =AC ,∠BAC =36°,DE 垂直平分AB ,垂足为D ,交AC 于点E ,延长DE 交BC 延长线于点F ,连接AF 、BE.图中等腰三角形共有( )个.A. 3B. 4C. 5D. 68.小明准备用零花钱购买一个学生VR 眼镜,他已经存有60元,从现在起计划每月平均存25元.他想购买的这款眼镜至少需要480元,如果存钱x 个月,下列符合题意的不等式为( )A. 25x +60≥480B. 25x−60≥480C. 25x +60≤480D. 25x−60≤4809.如图,△ABC 和△ECD 都是等边三角形,且点B 、C 、D 在一条直线上,连接BE 、AD ,点M 、N 分别是线段BE 、AD 上的两点,且BM =13BE ,AN =13AD ,则△CMN 的形状是( )A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形10.已知:如图△ABC 中,BD 为△ABC 的角平分线,且BD =BC ,E 为BD 延长线上的一点,BE =BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ;②∠BCE +∠BCD =180°;③AD =AE =EC ;④BA +BC =2BF.其中正确的是( )A. ①②③B. ①③④C. ①②④D. ①②③④二、填空题:本题共5小题,每小题3分,共15分。

河南省郑州市郑州中学2020-2021学年七年级上学期期中数学试题 (1)

河南省郑州市郑州中学2020-2021学年七年级上学期期中数学试题 (1)
关注组卷网服务号,可使用移动教学助手功能(布置作业、线上考试、加入错题本、错题训练)。
学科网长期征集全国最新统考试卷、名校试卷、原创题,赢取丰厚稿酬,欢迎合作。
钱老师 QQ:537008204 曹老师 QQ:713000635
A.213×106B.21.3×107C.2.13×108D.2.13×109
【答案】C
3.下列单项式中,与 同类项的是()
A. B. C. D.
【答案】A
4. 在棱柱中( )
A. 只有两个面平行
B. 所有的棱都平行
C. 所有的面都是平行四边形
D. 两底面平行,且各侧棱也互相平行
【答Байду номын сангаас】D
5.下列各组数:-52和(-5)2,(-3)3和-33,-(-2)3和-23,(-1)2019和(-1)2020,其中结果不相等 共有()
郑州中学初中部2020—2021学年上学期期中考试
七年级数学试卷
考试时间:90分钟满分:100分
一、选择题(每小题3分,共30分)
1.与2和为0的数是( )
A.﹣2B.2C. D.﹣
【答案】A
2.国家提倡“低碳减排”,某公司计划在海边建风能发电站,发电站年均发电量为213000000度,将数据213000000用科学记数法表示为( )
【答案】(1)记时制应付的费用为4.2x元,包月制应付的费用为(50+1.2x)元;(2)选择包月制合算.
21.在罗山县某住房小区建设中,为了提高业主 宜居环境,某小区规划修建一个广场(平面图如图所示).
(1)用含m、n的代数式表示该广场的面积S;
(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.
⑶如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.

2020-2021学年河南省实验中学八年级上学期第一次月考数学试卷 (Word版 含解析)

2020-2021学年河南省实验中学八年级上学期第一次月考数学试卷 (Word版 含解析)

2020-2021学年河南省实验中学八年级(上)第一次月考数学试卷一、选择题(共10小题).1.(3分)下列各数:,3.14159265,﹣8,,π,0.,0.8080080008…(相邻两个8之间依次多一个0),其中无理数的个数为()A.1个B.2个C.3个D.4个2.(3分)的平方根是()A.B.﹣C.±D.3.(3分)下列四组数中,是勾股数的是()A.0.3,0.4,0.5B.32,42,52C.3,4,5D.4.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.5.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c26.(3分)如图,数轴上点A所表示的实数是()A.B.C.D.27.(3分)如图,是一扇高为2m,宽为1.5m的门框,李师傅有3块薄木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是()A.①号B.②号C.③号D.均不能通过8.(3分)下列说法中,正确的个数有()①不带根号的数一定是有理数;②任意一个实数都可以用数轴上的点表示;③无限小数都是无理数;④是17的平方根;A.1个B.2个C.3个D.4个9.(3分)已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为()A.或B.C.D.或10.(3分)如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3,现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD 的度数为()A.150°B.135°C.120°D.108°二.填空题(每小题3分,共15分)11.(3分)比较大小3(填“>”、“<”或“=”);12.(3分)若+(3﹣y)2=0,那么y x=.13.(3分)若一个正数x的两个平方根分别是3m+1与﹣2m﹣3,则x的值是.14.(3分)如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程是.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′为线段MN的三等分点时,BE的长为.三.解下列各题(共75分)16.(10分)计算下列各题.(1);(2)(43)2.17.(8分)先化简,再求值:(x+)(x﹣)﹣x(x﹣6)+9,其中x=﹣1.18.(10分)在海洋上有一近似于四边形的岛屿,其平面如图甲,小明据此构造处该岛的一个数学模型(如图乙四边形ABCD),AC是四边形岛屿上的一条小溪流,其中∠B=90°,AB=BC=5千米,CD=千米,AD=4千米.(1)求小溪流AC的长.(2)求四边形ABCD的面积.(结果保留根号)19.(10分)已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.20.(8分)问题背景:在△ABC中,AB,BC,AC三边的长分别为,求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示,这样不需要求高,而借用网格就能计算出它的面积.请将△ABC的面积直接填写在横线上.思维拓展:我们把上述求△ABC面积的方法叫做构图法,若△ABC中,AB,BC,AC三边长分别为,2(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,直接写出此三角形最长边上的高是.21.(9分)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,求蚂蚁从外壁A处到达内壁B处的最短距离.22.(10分)阅读下列运算过程,并完成各小题:;.数学上把这种将分母中的根号去掉的过程称作“分母有理化”,如果分母不是一个无理数,而是两个无理数的和或差,此时也可以进行分母有理化,如:1;.模仿上例完成下列各小题:(1)=;(2)=;(3)=;(4)请根据你得到的规律计算下题:(n 为正整数).23.(10分)如图所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)则BC=cm;(2)当t为何值时,点P在边AC的垂直平分线上?此时CQ=;(3)当点Q在边CA上运动时,直接写出使△BCQ成为等腰三角形的运动时间.参考答案一.选择题(每小题3分,共30分)1.(3分)下列各数:,3.14159265,﹣8,,π,0.,0.8080080008…(相邻两个8之间依次多一个0),其中无理数的个数为()A.1个B.2个C.3个D.4个解:是分数,属于有理数;3.14159265是有限小数,属于有理数;﹣8,是整数,属于有理数;0.是循环小数,属于有理数;无理数有π,0.8080080008…(相邻两个8之间依次多一个0)共2个.故选:B.2.(3分)的平方根是()A.B.﹣C.±D.解:的平方根是±;故选:C.3.(3分)下列四组数中,是勾股数的是()A.0.3,0.4,0.5B.32,42,52C.3,4,5D.解:A、0.32+0.42=0.52,能构成直角三角形,但不是整数,不是勾股数,故本选项不符合题意;B、(32)2+(42)2≠(52)2,不是勾股数,故本选项不符合题意;C、32+42=52,是勾股数,故本选项符合题意;D、()2+()2≠()2,不是勾股数,故本选项不符合题意.故选:C.4.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.解:A、原式为最简二次根式,符合题意;B、原式=6,不符合题意;C、原式=2,不符合题意;D、原式=,不符合题意.故选:A.5.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c2解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC为直角三角形,故此选项不合题意;B、∵()2=12+12,∴能构成直角三角形,故此选项不合题意;C、设∠A=3x°,∠B=4x°,∠C=5x°,3x+4x+5x=180,解得:x=15,则5x°=75°,∴△ABC不是直角三角形,故此选项符合题意;D、∵b2=a2+c2,∴能构成直角三角形,故此选项不符合题意.故选:C.6.(3分)如图,数轴上点A所表示的实数是()A.B.C.D.2解:由勾股定理,得斜线的为=,由圆的性质得:点A表示的数为﹣1+,即﹣1.故选:B.7.(3分)如图,是一扇高为2m,宽为1.5m的门框,李师傅有3块薄木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是()A.①号B.②号C.③号D.均不能通过解:因为=2.5,所以木板的长和宽中必须有一个数据小于2.5米.所以选③号木板.故选:C.8.(3分)下列说法中,正确的个数有()①不带根号的数一定是有理数;②任意一个实数都可以用数轴上的点表示;③无限小数都是无理数;④是17的平方根;A.1个B.2个C.3个D.4个解:①π不带根号的数,是无理数,原来的说法错误;②任意一个实数都可以用数轴上的点表示是正确的;③无限小数0.是有理数,原来的说法错误;④是17的平方根是正确的.故选:B.9.(3分)已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为()A.或B.C.D.或解:当△ABC是锐角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,由勾股定理得,AC===2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2,当△ABC是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2,则BC的长为2或2,故选:D.10.(3分)如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3,现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD 的度数为()A.150°B.135°C.120°D.108°解:连接PG,如图所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,AG=PC=3,∵PA=1,PD=2,PC=3,将△PCD剪下,并将它拼到如图所示位置(C与A重合,P 与G重合,D与D重合),∴PD=GD=2,∠CDP=∠ADG,∴∠PDG=∠ADC=90°,∴△PDG是等腰直角三角形,∴∠GPD=45°,PG=PD=2,∵AG=PC=3,AP=1,PG=2,∴AP2+PG2=AG2,∴∠GPA=90°,∴∠APD=90°+45°=135°;故选:B.二.填空题(每小题3分,共15分)11.(3分)比较大小<3(填“>”、“<”或“=”);解:∵3=,<,∴<3,故答案为:<.12.(3分)若+(3﹣y)2=0,那么y x=9.解:∵+(3﹣y)2=0,∴x﹣2=0,3﹣y=0,解得:x=2,y=3,故y x=32=9.故答案为:9.13.(3分)若一个正数x的两个平方根分别是3m+1与﹣2m﹣3,则x的值是49.解:由题意可知:3m+1﹣2m﹣3=0,解得:m=2,∴3m+1=7,∴x=72=49,故答案为:49.14.(3分)如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程是4.解:如图,∵AG=3,AP=AB=5,∴PG=4,∴BG=8,∴PB==4.故这只蚂蚁的最短行程应该是4.故答案为:4.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC 于点M,N.当点B′为线段MN的三等分点时,BE的长为或.解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.三.解下列各题(共75分)16.(10分)计算下列各题.(1);(2)(43)2.解:(1)原式=﹣+=;(2)原式=4﹣3+2=4﹣3+4=4+.17.(8分)先化简,再求值:(x+)(x﹣)﹣x(x﹣6)+9,其中x=﹣1.解:原式=x2﹣3﹣x2+6x+9=6x+6,当x=﹣1时,原式=6(x+1)=6.18.(10分)在海洋上有一近似于四边形的岛屿,其平面如图甲,小明据此构造处该岛的一个数学模型(如图乙四边形ABCD),AC是四边形岛屿上的一条小溪流,其中∠B=90°,AB=BC=5千米,CD=千米,AD=4千米.(1)求小溪流AC的长.(2)求四边形ABCD的面积.(结果保留根号)解:(1)∵∠B=90°,AB=BC=5千米,∴AC===5(千米);(2)∵AC2=(5)2=50,CD2+AD2=()2+(4)2=50,∴AC2=CD2+AD2,则∠D=90°,S四边形ABCD=S△ABC+S△ACD=×5×5+××4=(+2)平方千米.19.(10分)已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.解:(1)∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2;∵,c是的整数部分,∴c=3;(2)3a﹣b+c=15﹣2+3=16,16的平方根是±4.20.(8分)问题背景:在△ABC中,AB,BC,AC三边的长分别为,求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示,这样不需要求高,而借用网格就能计算出它的面积.请将△ABC的面积直接填写在横线上.思维拓展:我们把上述求△ABC面积的方法叫做构图法,若△ABC中,AB,BC,AC三边长分别为,2(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,直接写出此三角形最长边上的高是a.解:问题背景:S△ABC=3×3﹣×1×2﹣×1×3﹣×2×3=.思维拓展:如图作BH⊥AC于H.∵S△ABC=•AC•BH=2a×4a﹣×2a×2a﹣×a×2a﹣×a×4a=3a2,∴×a×BH=3a2,∴BH=a.21.(9分)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,求蚂蚁从外壁A处到达内壁B处的最短距离.解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==20(cm).答:蚂蚁从外壁A处到达内壁B处的最短距离是20cm.22.(10分)阅读下列运算过程,并完成各小题:;.数学上把这种将分母中的根号去掉的过程称作“分母有理化”,如果分母不是一个无理数,而是两个无理数的和或差,此时也可以进行分母有理化,如:1;.模仿上例完成下列各小题:(1)=;(2)=;(3)=2﹣;(4)请根据你得到的规律计算下题:(n 为正整数).解:(1)(1)=;(2)=﹣=﹣=;(3)==2﹣;(4)原式=﹣1+﹣+…+﹣=﹣1.故答案为;;﹣2.23.(10分)如图所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)则BC=12cm;(2)当t为何值时,点P在边AC的垂直平分线上?此时CQ=13cm;(3)当点Q在边CA上运动时,直接写出使△BCQ成为等腰三角形的运动时间.解:(1)∵∠B=90°,AB=16cm,AC=20cm∴BC===12(cm).故答案为:12;(2)∵点P在边AC的垂直平分线上,∴PC=PA=t,PB=16﹣t,在Rt△BPC中,BC2+BP2=CP2,即122+(16﹣t)2=t2解得:t=.此时,点Q在边AC上,CQ=(cm);故答案为:13cm.(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,∴,∴=.∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。

2020-2021学年度第一学期八年级数学月考试卷含答案共六套

2020-2021学年度第一学期八年级数学月考试卷含答案共六套

2020-2021学年八年级(上)第一次月考数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x22.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣24.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km二、填空题(共4题,每题5分)11.函数中,自变量x的取值范围是.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是.14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是.三、解答题(共8题,共90分)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a=;b=.(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?参考答案与试题解析一.选择题(共10小题)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x2【分析】根据一次函数的定义解答.【解答】解:A、是正比例函数,特殊的一次函数,故本选项符合题意;B、自变量次数不为1,不是一次函数,故本选项不符合题意;C、单a=0时,它不是一次函数,故本选项不符合题意;D、自变量次数不为1,不是一次函数,故本选项不符合题意.故选:A.2.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,4)故选:D.3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣2【分析】根据两点所在直线平行于x轴,那么这两点的纵坐标相等解答即可.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.4.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限【分析】根据一次函数的性质判定即可.【解答】解:关于函数y=﹣﹣1,A、当x=2时,y=﹣﹣1=﹣2,说法正确,不合题意;B、∵k=﹣,∴y随x的增大而减小,说法正确,不合题意;C、∵k=﹣,∴y随x的增大而减小,∴若x1>x2,则y1<y2,说法错误,符合题意;D、图象经过第二、三、四象限,说法正确,不合题意;故选:C.5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.【分析】根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵2x﹣3y=6,∴y=x﹣2,∴当x=0,y=﹣2;当y=0,x=3,∴一次函数y=x﹣2,与y轴交于点(0,﹣2),与x轴交于点(3,0),即可得出选项D符合要求,故选:D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.【分析】设y﹣1=kx(k≠0),把x=3,y=2代入求出k的值,把x=﹣1代入函数关系式即可得到相应的y的值;【解答】解:设y﹣1=kx(k≠0),则由x=3时,y=2,得到:2﹣1=3k,解得k=.则该函数关系式为:y=x+1;把x=﹣1代入y=x+1得到:y=﹣+1=;故选:D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.【分析】根据前20秒匀加速进行,20秒至50秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y随时间x的增加而增加,故选:C.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【解答】解:当ab>0,a,b同号,y=abx经过一、三象限,同正时,y=ax+b过一、三、二象限;同负时过二、四、三象限,当ab<0时,a,b异号,y=abx经过二、四象限a<0,b>0时,y=ax+b过一、三、四象限;a>0,b<0时,y=ax+b过一、二、四象限.故选:D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n【分析】根据一次函数的解析式判断出其增减性,再根据点的横坐标的特点即可得出结论.【解答】解:∵直线y=﹣x+b中,k=﹣1<0,∴y随x的增大而减小.∵﹣1<0<2,∴m>b>n.故选:C.10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:根据图象可知甲用了(3.5﹣1)小时走了200千米,所以甲的速度为:200÷2.5=80km/h,故选项A不合题意;由图象横坐标可得,乙先出发的时间为1小时,两车相距(200﹣140)=60km,故乙车的速度是60km/h,故选项B不符合题意;140÷(80+60)=1(小时),即甲车出发1h与乙车相遇,故选项C不合题意;200﹣(200÷60﹣1)×80=km,即乙车到达目的地时甲车离B地km,故选项D符合题意.故选:D.二.填空题(共4小题)11.函数中,自变量x的取值范围是x>﹣2 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x+2≠0,解得x≠﹣2,故x>﹣2.故答案为x>﹣2.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是(﹣2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0).13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是(﹣9,﹣9)或(3,﹣3).【分析】根据点到两坐标轴的距离相等列出绝对值方程求出a的值,然后求解即可.【解答】解:∵点P(2a+1,a﹣4)到两坐标轴的距离相等,∴|2a+1|=|a﹣4|,∴2a+1=a﹣4或2a+1=﹣(a﹣4),解得a=﹣5或a=1,当a=﹣5时,点P的坐标为(﹣9,﹣9),当a=1时,点P的坐标为(3,﹣3),综上所述,点P的坐标为(﹣9,﹣9)或(3,﹣3),故答案为:(﹣9,﹣9)或(3,﹣3).14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2 .【分析】根据已知条件得到直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),求得直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,得到直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,得到直线BC的解析式为y=x﹣2,于是得到结论.【解答】解:令x=0,则y=0•k﹣2=﹣2,所以直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),∵当x=1时,y=x﹣1=0,当x=4时,y=x﹣1=3,∴直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,则,解得.所以直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,则,解得.所以直线BC的解析式为y=x﹣2,若直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2,故答案为≤k≤2:三.解答题(共8小题)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.【分析】(1)根据两平行直线的解析式的k值相等求出k,然后根据截距为1求出b值,即可得解;(2)把点P(﹣2,)代入解析式,检验即可.【解答】解:(1)设这个函数的解析式为y=kx+b,∵一次函数的图象平行于y=﹣x,且截距为1,∴k=﹣,b=1,∴这个函数的解析式为y=﹣x+1;(2)当x=﹣2时,y=+1=,故点P(﹣2,)不在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.【分析】(1)根据正比例函数的定义列式计算即可得解;(2)设平移后的函数的解析式为y=2x+b,把(1,﹣2)代入求得b的值,即可求得结论.【解答】解:(1)根据题意得,m2﹣1=0且m+1≠0,解得m=±1且m≠﹣1,所以m=1.所以该函数的表达式为y=2x;(2)设平移后的函数的解析式为y=2x+b,∵经过(1,﹣2),∴﹣2=2+b,∴b=﹣4,∴函数图象沿y轴向下平移4个单位,使其经过(1,﹣2).17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用△A1B1C1所在矩形面积减去周围三角形面积得出答案.【解答】解:(1)如图所示:△A1B1C1,点A1(﹣1,5),B1(﹣2,3),C1(﹣4,4);(2)△A1B1C1的面积为:2×3﹣×1×3﹣×2×1﹣×1×2=2.5;18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.【分析】(1)先利用描点法画出一次函数图象,然后利用直线与x轴的交点坐标确定方程﹣x+3=0的解;(2)利用x轴上方所对应的自变量的范围确定不等式的解集;(3)利用图象确定y=﹣3和y=6对应的自变量的值,从而得到对应的x的取值范围.【解答】解:(1)如图,∵直线与x轴的交点坐标为(2,0),∴方程﹣x+3=0的解为x=2,(2)如图,∵x<2时,y>0,∴不等式﹣x+3>0的解集为x<2;(3)如图,﹣2<x≤4时,﹣3≤y<6.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)【分析】(1)运用待定系数法求解即可;(2)把h=226代入(1)中的结论即可.【解答】解:根据表格中数据,d每增加1,身高增加9cm,故d与h是一次函数关系,设这个一次函数的解析式是:h=kd+b,,解得,故一次函数的解析式是:h=9d﹣20;(2)当h=226时,9d﹣20=226,解得d=27.3.即姚明的身高是226厘米,可预测他的指距约为27.3厘米.20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.【分析】(1)把C(m,2)代入y=2x﹣2中可求出m的值;(2)利用待定系数法求直线l2的解析式;(3)结合图象写出y=kx+b的函数值大于2且直线l1在直线l2上方对应的自变量的范围;(4)根据两直线解析式确定A、D点的坐标,然后利用三角形面积公式计算.【解答】解:(1)把C(m,2)代入y=2x﹣2得2m﹣2=2,解得m=4;(2)把C(2,2),B(3,1)代入y=kx+b得,解得,∴直线l2的解析式为y=﹣x+4;(3)2<x<3;(3)当y=0时,2x﹣2=0,解得x=1,则C(1,0),当y=0时,﹣x+4=0,解得x=4,则A(4,0),∴S△ACD=×(4﹣1)×2=3.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.【分析】(1)分段函数,运用待定系数法解答即可;(2)根据(1)的结论解答即可;(3)根据(1)可得乙队的工作效率,从而计算出乙队单独完成这项工程要60天.【解答】解:(1)当x≤10时,设y=kx,根据题意得,解得k=,∴y=;当x>10时,设y=k1x+b,根据题意得:,解得,∴y=.(天)∴10<x≤28,∴;(2)由(1)得,当y=1时,,解得x=28.答:这项工程全部完成需要28天;(3)(1﹣)÷(28﹣10)=(天),(天),答:乙队单独完成这项工程需要60天.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a= 4 ;b=10 .(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?【分析】(1)根据题意和图象中的数据可以求得a、b的值;(2)根据函数图象中的数据可以求得甲工作2小时后的安装的零件数y与时间x的函数关系;(3)根据函数图象,利用分类讨论的方法可以求得甲、乙两人在什么时间生产的零件总数相差8个.【解答】解:(1)由图可得,a=10﹣6=4,b=4+(40﹣10)÷(10÷2)=4+30÷5=4+6=10,故答案为:4,10;(2)甲后来的速度为:=6件/小时,甲做完40个需要的时间为:2+(40﹣4)÷6=2+36÷6=2+6=8,设甲工作2小时后的安装的零件数y与时间x的函数关系是y=kx+b,∵甲工作2小时后的安装的零件数y与时间x的函数图象过点(2,4),(8,40),∴,得,即甲工作2小时后的安装的零件数y与时间x的函数关系是y=6x﹣8(2<x≤8);(3)设t小时时,甲、乙两人生产的零件总数相差8个,乙的速度为:10÷2=5件/小时,当4<t≤8时,6+(t﹣4)×(6﹣5)=8,解得,t=6,当8<t<10时,5(10﹣t)=8,解得,t=8.4,答:甲、乙两人在6小时或8.4小时时生产的零件总数相差8个.2020-2021学年度第一学期第一次月考八年级数学试题卷考试方式:闭卷考试时间:100 分钟满分:120 分一.选择题(共10小题,每题3分,共30分,请把正确答案写在答案卷上.)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.下列各条件不能作出唯一直角三角形的是()A.已知两直角边 B.已知两锐角C.已知一直角边和它们所对的锐角 D.已知斜边和一直角边3.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1 B.2 C.3 D.44.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的()A.CB=CD B.BAC=∠DAC C.BCA=DCA D.∠B=∠D=9005.如图,请仔细观察用直尺和圆规作一个角等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出'''A O B AOB ∠=∠的依据是( )A.SASB.ASAC.AASD.SSS6.如图,将三角形纸片ABC 折叠,使点C 与点A 重合,折痕为DE . 若∠B =80°,∠BAE =26°,则∠EAD 的度数为( )A.36°B. 37°C.38°D.45°7.如图,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )8.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A. A,C 两点之间B. E,G 两点之间C. B,F 两点之间D. G,H 两点之间9.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB =20cm ,AC =8cm ,则DE 的长是( )A .4cmB .3cmC .2cmD .1cm10.如图,在△ABC 中,∠A=∠B ,∠ACB=90°,点D 、E 在AB 上,将△ACD 、△B CE 分别沿CD 、CE 翻折,点A 、B 分别落在点A′、B′的位置,再将△A′CD 、△B′CE 分别沿A′C 、B′C 翻折,点D 与点E 恰好重合于点O ,则∠A′OB′的度数是( ) A .90°B .120°C .135°D .150°二.填空题(共8小题,每题2分,共16分,请把结果直接填在答案卷上.)11.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有 个.AC OB DA'C O'B'DBAE DC第3题B CDA(第4题图) (第5题图)(第6题图)(第8题图) (第9题图) (第10题图)12.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是 .13.如图,AC=BD ,要使△ABC ≌△DCB (SAS ),只要添加一个条件 .14.如图,△ABC 的周长为32,且BD=DC ,AD ⊥BC 于D ,△ACD 的周长为24,那么AD 的长为 . 15.如图,已知AB ∥CF ,E 为DF 的中点,若AB =8 cm ,BD =3 cm ,则CF = cm .16.如图,点D 在边BC 上,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,D ,BD =CF ,BE =CD .若∠AFD =155°,则∠EDF = .17.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有 个(不含△ABC ).18.已知在△ABC 中,AB=5,BC=7,BM 是AC 边上的中线,则BM 的取值范围为 .三.解答题(共8小题,共74分. 解答需写出必要的文字说明或演算步骤.)19.(本题满分12分)如图,在3×3的正方形网格中,有一个以格点为顶点的三角形.(1)请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三幅图不能重复).(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有 个.20.(本题满分8分)如图,在所给正方形网格图中完成下列各题:①画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;FEDCB A(第15题图) (第16题图)(第17题图)(第12题图)(第13题图) (第14题图)②在DE上画出点Q,使QA+QC最小.(用直尺画图,保留痕迹)21.(本题满分8分)已知△ABC,按下列要求作图:(尺规作图,保留痕迹不写作法。

2020-2021学年八年级上学期第一次月考数学试题(含解析答案)

2020-2021学年八年级上学期第一次月考数学试题(含解析答案)

2020-2021八年级上第一次月考数学试卷一、选择题(每小题3分,共30分)1. 在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 一次函数34y x =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 小虫在小方格上沿着小方格的边爬行,它的起始位置是A (2,2)先爬到B (2,4),再爬到C (5,4),最后爬到D(5,6),则小虫共爬了( )A. 7个单位长度B. 5个单位长度C. 4个单位长度D. 3个单位长度4. 函数3x y x =-中自变量x 的取值范围是( ) A. 0x > B. 3x ≠ C. 3x o x >≠且 D. 3x x ≥0≠且 5. 一辆客车从霍山开往合肥,设客车出发t h 后与合肥的距离为s km ,则下列图象中能大致反映s 与t 之间函数关系的是( )A.B. C. D. 6. 若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( )A. y=-x+6(0<x <6)B. y=-x+6(0<x≤3)C. y=-2x+12(0<x <6)D. y=-x+6(3<x <6) 7. 在平面直角坐标系中,点A(x ,1-x)一定不在( )A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限8. 如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 如图,函数y=2x 和y=ax+4的图像相交于点A (m ,3),则不等式2x <ax+4的解集为( )A. x >32B. x <3C. x<32 D. x >310. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面二、填空题(每小题3分,共18分)11. 若教室中的5排3列记为(5,3),则3排5列记为_____.12. 根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为____________.x-2 0 1 y3 p 013. 已知点P(m -3,1-2m)在第三象限,则由所有满足题意的整数m 组成的最大两位数是____. 14. 一次函数 y =kx +b (k ≠0)的图象如图所示,当 y >0 时,则 x <________.15. 若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________16. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,图中的函数图象刻画了“龟免再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程),有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米;③乌龟在途中休息了10分钟; ④兔子比乌龟早10分钟到达终点.其中正确的说法是_____(把你认为正确说法的序号都填上);三、解答题(共52分)17. 一次函数的图像经过点(-2,3)和(1,-3)(1)一次函数解析式;(2)判定(-1,1)是否在此直线上?18. 一根弹簧的原长是10cm ,且每挂重1kg 就伸长0.5cm ,它的挂重不超过10kg . (1)挂重后弹簧的长度y (cm )与挂重x (kg )之间的函数关系式;(2)写出自变量的取值范围;(3)挂重多少千克时,弹簧长度为12.5cm ?19. 在如图所示的直角坐标系中,画图并解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 先向上平移4个单位,再向左平移3个单位得到△A 1B 1C 1;请你在图中画出△A 1B 1C 1. (3)求出线段A 1B 1所在直线l 的函数解析式,并写出在直线l 上线段A 1B 1从B 1到A 1的自变量x 的取值范围.20. 已知2y-3与3x+1成正比例,且x=2时,y=5.(1)求y 与x 之间的函数关系式;(2)求该函数与坐标轴围成的图形面积;21. 定义[p ,q ]为一次函数y =px +q 的特征数.(1)若特征数是[k-1,k2-1]的一次函数为正比例函数,求k的值;(2)在平面直角坐标系中,有两点A(-m,0),B(0,-2m),且△OAB的面积为4(O为原点),若一次函数的图象过A,B两点,求该一次函数的特征数.22. 双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:,爸爸的速度是,点A的坐标;(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y(km)与行走时间x(h)的函数关系式.2020-2021八年级上第一次月考数学试卷—解析卷一、选择题(每小题3分,共30分)1. 在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵-20,2x +10,∴点P (-2,2x +1)在第二象限,故选B .2. 一次函数34y x =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】根据一次函数的性质即可得到结果.,图象经过一、三、四象限,不经过第二象限,故选B.3. 小虫在小方格上沿着小方格的边爬行,它的起始位置是A (2,2)先爬到B (2,4),再爬到C (5,4),最后爬到D(5,6),则小虫共爬了( )A. 7个单位长度B. 5个单位长度C. 4个单位长度D. 3个单位长度 【答案】A【解析】本题考查了平面直角坐标系内点的位置的变化,注意小虫是沿横坐标爬行还是沿纵坐标爬行即可. 分析小虫的爬行路线即可得解.解:从A (2,2),爬行到B (2,4),爬行了4-2=2个单位,再爬行到C (5,4),又爬行了5-2=3个单位,最后爬行到D (5,6),又爬行了6-4=2个单位,所以小虫一共爬行了2+3+2=7个单位.故选A .4. 函数3x y x =-中自变量x 的取值范围是( ) A. 0x >B. 3x ≠C. 3x o x >≠且D. 3x x ≥0≠且【答案】D【解析】【分析】 让二次根式的被开方数大于等于0,原式的分母不等于0,列不等式组求解即可解答.【详解】解:根据题意得:x≥0且3-x≠0,∴x 的取值范围是x≥0且x≠0.故选D.【点睛】本题考查二次根式和分式有意义是条件,二次根式的被开方数必须是非负数,分式的分母不能为0.5. 一辆客车从霍山开往合肥,设客车出发t h 后与合肥的距离为s km ,则下列图象中能大致反映s 与t 之间函数关系的是( )A. B. C. D.【答案】B【解析】分析:因为匀速行驶,图象为线段,时间和路程是正数,客车从霍山出发开往合肥,客车与合肥的距离越来越近,路程由大变小,由此选择合理的答案.详解:客车是匀速行驶的,图象为线段,s 表示客车从霍山出发后与合肥的距离,s 会逐渐减小为0;A 、C 、D 都不符.故选B . 点睛:本题主要考查了函数图象,解题时应首先看清横轴和纵轴表示量,然后根据实际情况采用排除法求解.6. 若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( )A. y=-x+6(0<x <6)B. y=-x+6(0<x≤3)C. y=-2x+12(0<x <6)D. y=-x+6(3<x <6) 【答案】D【解析】【分析】根据长方形的周长公式,可得y 和x 之间的函数解析式,由x >0,-x+6>0,x >y ,从而可以得出x 的取值范围.【详解】解:∵长方形的周长为12∴y=-x+6∵x >0,-x+6>0,x >y∴3<x <6故选:D【点睛】本题考查了函数关系式,函数自变量的取值范围,利用矩形周长公式得出不等式组是解题关键. 7. 在平面直角坐标系中,点A(x ,1-x)一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】分析:分x 是正数和负数两种情况讨论求解.详解:x >0时,1﹣x 可以是负数也可以是正数,∴点P 可以在第一象限也可以在第四象限,x <0时,1﹣x >0,∴点P 在第二象限,不在第三象限.故选C .点睛:本题考查了点的坐标,根据x 的情况确定出1﹣x 的正负情况是解题的关键.8. 如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】C【解析】【分析】先根据a 、b 的取值范围,判断出一次函数所过的象限,再根据k 的取值范围,判断出正比例函数所过的象限,那么二者所过的公共象限即为点P 所在象限.【详解】解:∵函数y=ax+b (a<0,b <0)的图象经过第二、三、四象限,y=kx (k>0)的图象过原点、第一、三象限,∴点P 应该位于第三象限.故选C .9. 如图,函数y=2x 和y=ax+4的图像相交于点A (m ,3),则不等式2x <ax+4的解集为( )A. x>32B. x<3C. x<32D. x>3【答案】C【解析】【分析】将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.【详解】解:将点A(m,3)代入y=2x得,2m=3,解得,m=3 2∴点A的坐标为(32,3),∴由图可知,不等式2x<ax+4的解集为x<3 2故选:C【点睛】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.10. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面【答案】D【解析】A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.二、填空题(每小题3分,共18分)11. 若教室中的5排3列记为(5,3),则3排5列记为_____.【答案】(3,5)【解析】【分析】根据有序数对的第一个数表示排数,第二个数表示列式解答.【详解】∵5排3列记为(5,3),∴3排5列记为(3,5).故答案为(3,5).【点睛】本题考查的知识点是坐标确定位置,解题的关键是熟练的掌握坐标确定位置. 12. 根据下表中一次函数的自变量x与函数y的对应值,可得p的值为____________.【答案】1【解析】一次函数的解析式为y=kx+b(k≠0),∵x=−2时y=3;x=1时y=0,∴23k bk b-+=⎧⎨+=⎩,解得11kb=-⎧⎨=⎩,∴一次函数的解析式为y=−x+1,∴当x=0时,y=1,即p=1.故答案为1.13. 已知点P(m-3,1-2m)在第三象限,则由所有满足题意的整数m组成的最大两位数是____.【答案】21【解析】【分析】根据点P(m-3,1-2m)在第三象限,可求出m的取值,再根据m为整数得出m的值,即可解答.【详解】∵点P (m -3,1-2m )在第三象限,∴m -3<0,1-2m <0,解得12<m <3, ∴m 可以求得的整数值为1,2,故所有满足题意的整数m 组成的最大两位数是21,故答案为21. 【点睛】此题主要考查列不等式,解题的关键是熟知坐标系的坐标特点列出不等式.14. 一次函数 y =kx +b (k ≠0)的图象如图所示,当 y >0 时,则 x <________.【答案】1【解析】【分析】直接根据一次函数的图象进行解答即可.【详解】解:由一次函数y=kx+b 的图象可知,当x<1时,函数的图象在x 轴上方,∴当y>0时,x<1.故答案为:1.【点睛】本题主要考查一次函数的图像与性质.15. 若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 【答案】1或79-; 【解析】 【分析】 点坐标到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,根据它们相等列式求出a 的值.【详解】解:点()35,62P a a +--到x 轴的距离是62a --,到y 轴的距离是35a +,列式:6235a a --=+,6235a a --=+,解得79a =-,符合题意, ()6235a a --=-+,解得1a =,符合题意.故答案是:1或79 .【点睛】本题考查点坐标的意义和解绝对值方程,解题的关键是掌握点坐标的定义和解绝对值方程的方法.16. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,图中的函数图象刻画了“龟免再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程),有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米;③乌龟在途中休息了10分钟;④兔子比乌龟早10分钟到达终点.其中正确的说法是_____(把你认为正确说法的序号都填上);【答案】②③④.【解析】【分析】①由当x=40时,y2=0,可得出兔子比乌龟晚出发40分钟,说法①错误;②由两函数图象的终点纵坐标均为1000,可得出“龟兔再次赛跑”的路程为1000米,说法②正确;③观察y1与x之间的函数图象结合40﹣30=10,可得出乌龟在途中休息了10分钟,说法③正确;④观察y1,y2与x之间的函数图象结合60﹣50=10,可得出兔子比乌龟早10分钟到达终点,说法④正确.综上即可得出结论.【详解】①∵当x=40时,y2=0,∴兔子比乌龟晚出发40分钟,说法①错误;②∵两函数图象的终点纵坐标均为1000,∴“龟兔再次赛跑”的路程为1000米,说法②正确;③∵40﹣30=10(分钟),∴乌龟在途中休息了10分钟,说法③正确;④∵60﹣50=10(分钟),∴兔子比乌龟早10分钟到达终点,说法④正确.综上所述:正确的说法有②③④.故答案为②③④.【点睛】本题考查了一次函数的应用,观察函数图象逐一分析四条结论的正误是解题的关键.三、解答题(共52分)17. 一次函数的图像经过点(-2,3)和(1,-3)(1)一次函数解析式;(2)判定(-1,1)是否在此直线上?【答案】(1)y=-2x-1; (2)在;【解析】【分析】(1)先把点(-2,3)和(1,-3)代入y=kx+b ,得到关于k 、b 的方程,然后解方程组即可;(2)把x=-1代入①中的一次函数中计算出对应的函数值,然后进行判断.【详解】解:(1)设一次函数解析式为y=kx+b ,把(2,3)与(-1,-3)代入得:233k b k b -+=⎧⎨+=-⎩解得:21k b =-⎧⎨=-⎩一次函数解析式为:y=-2x-1(2)一次函数解析式为y=-2x-1,当x=-1时,y=-2x-1=-2×(-1)-1=2-1=1,所以点(-1,1)在直线y=-2x-1上.【点睛】本题考查了待定系数法求一次函数解析式:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;(2)将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.18. 一根弹簧的原长是10cm ,且每挂重1kg 就伸长0.5cm ,它的挂重不超过10kg .(1)挂重后弹簧的长度y (cm )与挂重x (kg )之间的函数关系式;(2)写出自变量的取值范围;(3)挂重多少千克时,弹簧长度为12.5cm ?【答案】(1)100.5y x =+ ;(2)010x ≤≤ ;(3)5kg【解析】【分析】(1)根据题意列出长度y 和挂重x 之间的函数关系式;(2)根据挂重不超过10kg ,得到自变量的取值范围;(3)令125y .=,代入函数解析式求出x 的值.【详解】解:(1)每挂重1kg 就伸长0.5cm ,挂重x kg 就伸长0.5x cm ,100.5y x =+;(2)∵挂重不超过10kg ,∴010x ≤≤;(3)令125y .=,则100.512.5x +=,解得5x =,答:挂重5kg 时,弹簧长度是12.5cm .【点睛】本题考查一次函数的应用,解题的关键是根据题意列出一次函数解析式进行求解.19. 在如图所示的直角坐标系中,画图并解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 先向上平移4个单位,再向左平移3个单位得到△A 1B 1C 1;请你在图中画出△A 1B 1C 1. (3)求出线段A 1B 1所在直线l 的函数解析式,并写出在直线l 上线段A 1B 1从B 1到A 1的自变量x 的取值范围.【答案】(1)()()2,0,1,4A B --;(2)见解析;(3)41633y x =+,()41x -≤≤- 【解析】【分析】(1)根据A 、B 所在位置,写出点坐标;(2)根据点的平移画出111A B C △; (3)利用待定系数法求出一次函数解析式并写出自变量的取值范围.【详解】解:(1)根据A 、B 所在位置,写出它们的坐标,()2,0A ,()1,4B --;(2)如图所示:(3)()11,4A -,()14,0B -, 设直线l 的解析式为:y kx b =+,440k b k b -+=⎧⎨-+=⎩,解得43163k b ⎧=⎪⎪⎨⎪=⎪⎩, ()4164133y x x =+-≤≤-. 【点睛】本题考查平面直角坐标系中的点坐标和点坐标的平移以及一次函数解析式的求解,解题的关键是掌握点坐标的平移方法和待定系数法求函数解析式的方法.20. 已知2y-3与3x+1成正比例,且x=2时,y=5.(1)求y 与x 之间的函数关系式;(2)求该函数与坐标轴围成的图形面积;【答案】(1)322y x =+;(2)43【解析】【分析】(1)设()2331y k x -=+,将题目所给的x 和y 的值代入,求出k 的值,得到关系式;(2)求出一次函数与坐标轴的交点坐标,再求出围成的三角形的面积.【详解】解:(1)设()2331y k x -=+,当2x =时,5y =,则()253321k ⨯-=⋅⨯+,解得1k =,∴2331y x -=+,整理得322y x =+; (2)令0x =,得2y =,与y 轴交于点()0,2,令0y =,得43x =-,与x 轴交于点4,03⎛⎫- ⎪⎝⎭, ∴该函数图象与坐标轴围成的三角形面积是1442233⨯⨯=. 【点睛】本题考查正比例的定义,一次函数图象与坐标轴的交点,解题的关键是掌握用待定系数法求解析式的方法和一次函数图象与坐标轴交点坐标的求解方法.21. 定义[p ,q ]为一次函数y =px +q 的特征数.(1)若特征数是[k -1,k 2-1]的一次函数为正比例函数,求k 的值;(2)在平面直角坐标系中,有两点A (-m ,0),B (0,-2m ),且△OAB 的面积为4(O 为原点),若一次函数的图象过A ,B 两点,求该一次函数的特征数.【答案】(1)-1;(2)[-2,-4]或[-2,4].【解析】分析:(1)根据题意中特征数的概念,可得k ﹣1与k 2﹣1的关系;进而可得k 的值;(2)根据△OAB 的面积为4,可得m 的方程,解即可得m 的值,进而可得答案.详解:(1)∵特征数为[k ﹣1,k 2﹣1]的一次函数为y =(k ﹣1)x +k 2﹣1,∴k 2﹣1=0,k ﹣1≠0,∴k =﹣1;(2)∵A (﹣m ,0),B (0,﹣2m ),∴OA =|﹣m |,OB =|﹣2m |,若S △OBA =4,则12•|﹣m |•|﹣2m |=4,m =±2,∴A (2,0)或(﹣2,0),B (0,4,)或(0,﹣4),∴一次函数为y =﹣2x ﹣4或y =﹣2x +4,∴过A ,B 两点的一次函数的特征数[﹣2,﹣4],[﹣2,4].点睛:本题要理解题目中的定义以及正比例函数的概念,根据正比例函数中的b =0,即可列方程求解.22. 双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:,爸爸的速度是 ,点A 的坐标 ;(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y (km )与行走时间x (h )的函数关系式.【答案】(1)16/km h ,32/km h ,5,164⎛⎫ ⎪⎝⎭;(2)20km ;(3)11602138243316442x x y x x x ⎧⎛⎫<< ⎪⎪⎝⎭⎪⎪⎛⎫=≤<⎨ ⎪⎝⎭⎪⎪⎛⎫-≤≤⎪ ⎪⎝⎭⎩【解析】【分析】(1)根据图象求出小明速度,再得到爸爸的速度,用爸爸追上小明所走的路程求出点A 坐标;(2)设从爸爸追上小明的地点到公园路程为n (km ),列式求出n 的值,再加上16得到整个路程长; (3)用待定系数法求出一次函数解析式,并利用分段函数的形式表示.【详解】解:(1)小明的速度1816/2km h =÷=, 爸爸的速度16232/km h =⨯=, 53321644km ⎛⎫⨯-= ⎪⎝⎭,则5,164A ⎛⎫ ⎪⎝⎭, 故答案是:16/km h ,32/km h ,5,164⎛⎫ ⎪⎝⎭; (2)设从爸爸追上小明地点到公园路程为n (km ),7.5163260n n -=,解得4n =, ∴小明家到滨湖森林湿地公园的路程16420km =+=;(3)设直线AB 的解析式为:116y x b =+131684b ⨯+=,解得14b =-, ∴直线AB 的解析式为:164y x =-,∴小明行走路程y (km )与行走时间x (h )的函数关系式为:11602138243316442x x y x x x ⎧⎛⎫<< ⎪⎪⎝⎭⎪⎪⎛⎫=≤<⎨ ⎪⎝⎭⎪⎪⎛⎫-≤≤⎪ ⎪⎝⎭⎩. 【点睛】本题考查一次函数的实际应用,解题的关键是能够通过函数图象分析出运动过程,并结合一次函数的解析式进行求解.。

河南省郑州市金水区实验中学2023-2024学年八年级上学期期末数学试题

河南省郑州市金水区实验中学2023-2024学年八年级上学期期末数学试题

河南省郑州市金水区实验中学2023-2024学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________ <,则下列不等式中正确的是()2.已知a b二、填空题11.8-的立方根是.12.请写出一个图象平行于直线5y x =-,且过第一、二、四象限的一次函数的表达式.13.若方程组 26252x y a x y a-=-⎧⎨+=⎩的解满足 9x y +=,则 a 的值为. 14.在实数范围内规定新运算“▲”,其规则是:3a b a b =-▲.已知关于x 的不等式2x k ≥▲的解集在数轴上如图表示,则k 的值是.15.如图,在直角三角形ABC 中,90,60,6C BAC AC ∠=︒∠=︒=,点D 是BC 边上的一点(不与B 、C 重合),连接AD ,将ACD V 沿AD 折叠,使点C 落在点E 处,当BDE V 是直角三角形时,CD 的长为.三、解答题白球A 和6号球B ,小明希望A 球撞击桌边上C 点后反弹,再击中B 球.建立如图所示的坐标系,白球的坐标为()40,60A ,6号球的坐标为()70,30B .(1)若点A 与点A '关于x 轴对称,直接写出点A '坐标;(2)运用一次函数的知识,求出C 点坐标;(3)设桌边RQ 上有三个球袋,位置分别在()()100120200120R S Q 、,、,,判定6号球被从C 点反弹出的白球撞击后,能否落入球袋中(假定6号球被撞击后的速度足够大),写出球袋名称并说明理由.23.正方形ABCD 中,90AB BC CD DA BAD ABC BCD CDA ===∠=∠=∠=∠=︒,,点H 为射线BA 上的一个动点,连接CH ,把BCH V 沿着CH 翻折,得到GCH △.(1)如图1,连接DG ,当15BCH ∠=︒时,CDG V 的形状是.(2)当点G 落在正方形内部时,过G 作EF AD ∥,分别交AB DC 、于E 和F ,延长HG 交AD 于点M ,连接CM 交EF 于点N (如图2).判断MGN V 的形状,并说明理由.(3)如图3,已知正方形ABCD 的边长为6,点H 在射线BA 上运动,当4AH =时,把BCH V 沿CH 翻折得到GCH △,射线HG 交射线AD 于点M ,请直接写出AM 的长.。

河南省郑州市金水区2023-2024学年八年级上学期期末考试数学试题(含答案)

河南省郑州市金水区2023-2024学年八年级上学期期末考试数学试题(含答案)

2023-2024学年上期学情监测八年级数学注意:本试卷分试题卷和答题卡两部分。

考试时间90分钟,满分120分。

考生应首先阅读试题卷及答题卡上的相关信息,然后在答题卡上作答,在试题卷上作答无效。

交卷时只交答题卡。

一、选择题(每小题3分,共30分) 下列各小题均有四个选项,其中只有一个是正确的.1. 下列四个实数中是无理数的是( )A. B. 0 C. 0.001 D.2. 八(1) 班要举行主题为“青春启航,畅想未来”的2024年新年联欢会,小明想做一个直角三角形道具,下面三种尺寸的木条,能够直接作为直角三角形三边的是( )A. 10cm 20cm 30cmB. 20cm 30cm 40cmC. 30cm 40cm 50cmD. 40cm 50cm 60cm3.生活中我们经常需要准确描述物体的位置,下列条件不能确定物体位置的是( )A. 东经113°北纬34°B. 距离二七纪念堂10kmC. 中原福塔北偏东20°, 距离500mD. 物理第一实验室3排1座4. 当光从一种介质射向另一种介质时,光线会发生折射,不同介质的折射率不同. 如图,水平放置的水槽中装有适量水,空气中两条平行光线射入水中,两条折射光线也互相平行.若∠1=110° , 则∠2的度数为( )A. 70°B. 60°C. 50°D. 40°5. 下列命题是真命题的是( )A. 面积相等的两个三角形全等B. 相等的角是对顶角C. 两直线平行,内错角相等D. 若则a≠c6.《义务教育课程方案(2022年版) 》在改进教育评价部分强调:要强化素养导向,注重对正确价值观、必备品格和关键能力的考查,开展综合素质评价. 某校积极响应号召,期末从德、智、体、美、劳五方面对学生进行综合素质评价,将德、智、体、类、劳五项得分按2:3:2:2:1的比例确定综合成绩. 小亮本学期五项得分如图所示,则他期末综合素质评价成绩为( )A. 7分B. 8分C. 9分D. 10分7. 如图, 平面直角坐标系中有A, B, C, D四个点, 一次函数y= kx+1(0<k<1)的图象可能经过( )A. 点AB. 点BC. 点CD. 点D8.小明用5 张正方形纸片摆成了如图所示的图形,图中空白处的三角形均为直角三角形, 若正方形A, C, D 的面积依次为36, 64, 144, 则正方形B 的面积为( )A. 172B. 100C. 80D. 449.《九章算术》是中国古代数学专著,共有九卷,收录246个问题. 在卷八“方程”中记载:“今有五雀六燕,集称之衡,雀俱重,燕俱轻. 一雀一燕交而处,衡适平. 并雀、燕重一斤. 问雀、燕一枚各重几何? ”译文:“现在有5只雀、6只燕,分别集中放在天平上称重,聚在一起的雀重燕轻. 将一只雀一只燕交换位置而放,天平恰好平衡. 5 只雀、6只燕重量共一斤. 问雀和燕各重多少? ”中国古代的1斤为16两,设1只雀重x两,一只燕重y两,則符合题意的方程组是( )10.小明在公园半圆形步道上练习长跑,如图,AB是半圆的直径,O 是半圆的圆心,C是半圆上一点. 他沿着O-A-C-B-O 的路径匀速跑步,从他离开点O 开始计时,则他到点O的距离s与跑步时间t之间的关系基本符合( )二、填空题(每小题3分,共15分)11. 如图,标准魔方是魔方比赛中最常见的类型.标准魔方的一个面的面积约为若它的棱长为acm,a在两个连续的整数之间,则这两个连续整数中,较小的整数是.12. 窗花是我国民间传统剪纸艺术,如图,蝴蝶窗花可以看作轴对称图形,将其放置在平面直角坐标系中,对称轴是y轴,A,B是一对对应点,若点A的坐标为(3,1) ,则点B的坐标为.13. 举一个反例就可以说明一个命题是假命题. 要说明命题“如果a是无理数,b是无理数,那么a与b之积仍是无理数”是假命题,可以举反例:.14. 如图, 长方形ABCD 的边AB在数轴上, 点A, B对应的数分别为-1, 2, 边AD的长为1,以点B为圆心,对角线BD的长为半径画弧,交数轴于点P,则点P 表示的数是.15. 如图, Rt△ACB 中,∠ACB=90° , AB=10, BC=8, 点D为线段CB 上一个动点,将△ADB 沿直线AD 翻折得到△ADE, 线段AE交直线CB 于点 F. 若为直角三角形, 则BD的长是.三、解答题(本大题共7小题,共75分)16. (每小题6分, 共12分) 计算:17.(10分)在《二元一次方程组》单元回顾与整理时,刘老师给出方程组请同学们用自己喜欢的方法解这个方程组,小明和小颖解方程组的部分过程如下:小明: ①-②, 得3x=1.小颖: 由②, 得3x+(2x-y)=2. ③把①代入③, 得3x+(-1)=2.(1) ①小明和小颖解方程组的过程是否正确(在横线处填写“正确”或“不正确”):小明的过程小颖的过程②小明和小颖解二元一次方程组的方法虽然不同,但基本思路相同,都是.(2) 请你用喜欢的方法解二元一次方程组18.(10 分)郑州市气象台2023 年12月11日3时40分发布暴雪红色预警信号:过去6小时,郑州站降雪量已达14.2毫米,积雪深度10厘米. 当天,郑州市教育局下发了关于极端恶劣天气条件下临时停课的通知. 某校学生积极参加社区组织的扫雪除冰工作,小明同学为了解七、八年级学生的参与时间(分钟),从两个年级各随机抽取60名学生进行调查,并对数据(时间) 进行整理、表示和分析.① 八年级学生参与时间的频数直方图如图(数据分成6 组: 20≤x<30, 30≤x<40,40≤x<50, 50≤x<60, 60≤x<70, 70≤x<80).② 八年级学生参与时间在50≤x<60这一组的是: 50, 50.5, 50.5, 51, 56, 57, 57,58, 58.5, 58.5, 59, 59, 59, 59.5.③学生参与时间的平均数、中位数、众数如下表.年级平均数中位数众数七年55.6 57 68级八年56.8 m 67级根据以上信息,回答下列问题:(1) 表格中m= .(2) 你认为哪个年级学生参与扫雪除冰工作更积极? 请说明理由.(3) 七年级共有学生1200名,七(4) 班学生小亮说:“我参与扫雪除冰56分钟,高于七年级学生扫雪除冰时间的平均数55.6分钟,所以七年级至少有600名学生比我参与的时间少.”小亮的说法是否正确? 请说明理由.19.(10分) “农场小达人”社团计划在春天到来之前整修教学楼顶层的平台,用于建设菜园和花圃. 如图,A处是顶层平台自来水管的位置,B, C 两处分别计划修建菜园和花圃, B, C两处相距20m, A, B两处相距16m,A,C两处相距12m. 为了便于用水,小华在图纸上帮助设计了两种水管铺设方案。

河南省郑州外国语中学2020-2021学年七年级上学期第一次月考数学试题

河南省郑州外国语中学2020-2021学年七年级上学期第一次月考数学试题

河南省郑州外国语中学2020-2021学年七年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在一条南北方向的跑道上,张强先向北走了10米,此时他的位置记作10+米.又向南走了13米,此时他的位置在( )A .23+米处B .13+米处C .3-米处D .23-米处 2.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯ 3.2021年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:4+,0,5+,3-,2+,则这5天他共背诵汉语成语( )A .38个B .36个C .34个D .30个 4.数轴上到点-2 的距离为 5 的点表示的数为( )A .-3B .-7C .3 或-7D .5 或-3 5.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( )A .3B .2C .1-D .06.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( )A .a b b a -<<-<B .a b b a >->>-C .b a b a <-<-<D .a b b a -<-<< 7.下列各组数中,数值相等的是( )A .-22和(-2)2B .212-和212⎛⎫- ⎪⎝⎭C .(-2)2和22D .212⎛⎫-- ⎪⎝⎭和212- 8.若a -b >0,则下列各式中一定正确的是()A .a <bB .ab <0C .>0D .-a <-b 9.下列说法中:①0是最小的的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤-2π是有理数;⑥平方等于它本身的数有±1;⑦无限小数都不是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为( )A .7个B .6个C .5个D .4个10.一只小球落在数轴上的某点P O ,第一次从P 0向左跳1个单位到P 1,第二次从P 1向右跳2个单位到P 2,第三次从P 2向左跳3个单位到P 3,第四次从P 3向右跳4个单位到P 4……若按以上规律跳了100次时,它落在数轴上的点P 100所表示的数恰好是2019,则这只小球的初始位置点P 0所表示的数是( )A .1969B .1968C .-1969D .-1968二、填空题11.检查商店出售的袋装白糖,白糖加袋按规定重500g ,一袋白糖重499g ,就记作一1g ,如果一袋白糖重503g ,应记作_________12.下列四组有理数的比较大小:(1)-1<2;,(2)-(-1)>-(-2);(3)5+-6⎛⎫⎪⎝⎭<6--7;(4)5-6<6-7,正确的序号是_____. 13.定义:对任何有理数,a b ,都有22a b a ab b ⊗=++,若已知22(2)(3)a b -++=0,则a b ⊗=____________.14.根据“二十四点”游戏的规则,用仅含有加、减、乘、除及括号的运算式,使2,-3,-4,4的运算结果等于24:__________________________(只要写出一个算式即可).15.观察算式:1325+=;23211+=;33229+=;43283+=;532245+=;632731+=;…….则201932019+的个位数字是_____.三、解答题16.计算:(1)()()()324252846+-⨯--÷+-(2)()24113111237341224⎛⎫⎛⎫----+-+-÷- ⎪ ⎪⎝⎭⎝⎭17.请在数轴上表示下列各数:3--,4,-1.5,-5,122并将它们用“>”连接起来 18.已知 |x|=3,|y|=7.(1)若x<y ,求x+y 的值;(2)若xy<0,求x-y 的值 19.已知:代数轴上有理数m 所表示的点到原点的距离为3个单位长度,a 、b 互为相反数且都不为零,c 、d 互为倒数,求3a+3b+(a b﹣3cd )﹣m 2的值. 20.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km ):(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费10元,超过3km 的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?21.阅读理解题:1123523236++==⨯;11347343412++==⨯;11459454520++==⨯. (1)请在理解上面计算方法的基础上,把下面两个数表示成两个分数的和的形式(分别写出表示的过程和结果).1342=______=______,1772=______=______. (2)利用以上所得的规律进行计算:35791113151726122030425672-+-+-+-. 22.数轴上从左到右有A ,B ,C 三个点,点C 对应的数是10,AB =BC =20.(1)点A 对应的数是.点B 对应的数是.(2)若数轴上有一点D ,且BD =4,则点D 表示的数是什么?(3)动点P 从A 出发,以每秒4个单位长度的速度向终点C 移动,同时,动点Q 从点B 出发,以每秒1个单位长度的速度向终点C 移动,设移动时间为t 秒.当点P 和点Q 间的距离为8个单位长度时,求t 的值.参考答案1.C【分析】以出发点为原点的,张强先向北走了10米,记作+10米.又向南走了13米,记作−13米,此时的位置可用+10−13来计算.【详解】+10−13=−3米,故选:C.【点睛】考查数轴表示数、正数、负数的意义,正负数可以表示具有相反意义的量,有理数由符号和绝对值构成.2.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】210万=2100000,2100000=2.1×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A【分析】总成语数= 5天数据记录结果的和+6×5,即可求解.【详解】解:(+4+0+5-3+2)+5×6=38个,∴这5天他共背诵汉语成语38个,故选A.【点睛】本题考查了正数和负数,正确理解所记录的数的意义,列出代数式是关键.4.C【分析】根据数轴上到一个点距离相等的点有两个,位于该点的左右,可得答案.【详解】解:在数轴上与−2的距离为5的点表示的数是−2+5=3或−2−5=−7,故选C .【点睛】本题考查了数轴,利用了数轴上到一点距离相等的点有两个,位于该点的左右. 5.B【分析】先用a 的式子表示出点C ,根据点C 与点B 互为相反数列出方程,即可求解.【详解】由题可知:A 点表示的数位a ,B 点标示的数位1,∵C 点是A 向左平移3个单位长度,∴C 点可表示为:a-3,又∵点C 与点B 互为相反数,∴a -3=-1∴a=2.故答案选B .【点睛】本题主要考察了数轴上数的表示,准确表示平移后的点,找到等量关系列出方程是关键. 6.A【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,,a b b a ∴-<<-<.【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大. 7.C【分析】根据有理数的乘方的运算方法,求出每组中的两个算式的值各是多少,判断出各组数中,数值相等的是哪个即可.【详解】解:224-=-,2(2)4-=,222(2)-≠-,∴选项A 不符合题意;21122-=-,211()24-=,2211()22-≠-,∴选项B 不符合题意; 2(2)4-=,224=,22(2)2-=,∴选项C 符合题意; 211()24--=-,21122-=-,2211()22--≠-,∴选项D 不符合题意. 故选:C .【点睛】此题主要考查了有理数的乘方的运算方法,要熟练掌握.8.D【分析】由a -b >0可得:a >b ,因而a <b 错误;当a >0, b >0时,ab <0错误;当a=2,b=-1时,0a b <,因而0a b>错误;根据:不等式两边乘(或除以)同一个负数,不等号的方向改变.在不等式a >b 的两边同时乘以-1,得到:-a <-b 即可得出答案.【详解】∵a -b >0,∴a >b ,故A 错误;∴-a <-b ;故D 正确当a >0, b >0时,ab <0,故B 错误; 当a=2,b=-1时,0a b <,因而0a b>,故C 错误 故答案为:D .本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.9.A【分析】根据有理数的分类,依此即可作出判断.【详解】解:①没有最小的整数,故①错误;②有理数包括正数、0和负数,故②错误;③正整数、负整数、0、正分数、负分数统称为有理数,故③错误;④非负数就是正数和0,故④错误; ⑤2π-是无理数,故⑤错误; ⑥平方等于它本身的数有1和0;故⑥错误;⑦无限循环小数是有理数,故⑦错误;⑧正数中没有最小的数,负数中没有最大的数,故⑧正确的.故其中错误的说法的个数为7个.故选:A .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数. 10.A【分析】根据每一次跳动,表示出每一次跳动得到数,找出规律列出等式即可.【详解】解:设P 0所表示的数是a ,则a−1+2−3+4−…−99+100=2019,则a+(−1+2)+(−3+4)+…+(−99+100)=2019.a+50=2019,解得:a=1969.点P 0表示的数是1969.故选A.此题考查数字的变化规律,数轴的认识、有理数的加减,根据题意列出算式,找出简便计算方法是解题的关键.11.+3g .【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:根据题意可得:超出标准质量记为+,所以低于标准质量记为:−,因此,503克高于标准质量3克,记为+3克.故答案为:+3g .【点睛】本题考查了正负数在实际生活中应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.要求熟练应用正负数与规定的标准数据之间的加减来确定实际数据. 12.(1)(4)【分析】按有理数大小比较法则,两两比较,然后进行判断.【详解】解:(1)正数大于负数,所以12-<,故原比较正确;(2)因为(1)1--=,(2)2--=,所以(1)(2)--<--,故原比较错误;(3)因为55()66+-=-,66||77--=-,而5667<,所以56()||67+->--,故原比较错误; (4)因为55||66-=,66||77-=,而5667<,所以56||||67-<-,故原比较正确; 正确的是(1),(4).故答案为:(1),(4).【点睛】本题主要考查了有理数大小的比较.解题的关键是掌握有理数大小的比较方法,要注意:正数都大于0,负数都小于0,正数大于负数;两个负数,绝对值大的反而小.13.7.【分析】先求出a ,b 的值,2和-3分别代表新运算中的a 、b ,把a 、b 的值代入所给的式子即可求值. 【详解】解:∵22(2)(3)a b -++=0,∴a=2,b= -3,∴22a b a ab b ⊗=++=2222(3)(3)+⨯-+-=4-6+9=7,故答案为:7.【点睛】本题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.解题的关键是对号入座不要找错对应关系.14.答案不唯一【解析】根据题意可以列式为(-3) ×4×(2-4)= 24, 答案不唯一.15.6.【分析】首先找出31,32,33,34,35,36⋯32019的末位数字的规律,再求出32019+2019的末位数字即可.【详解】∵31=3,32=9,33=27,34=81,35=243,36=729⋯∴末位数字分别是3,9,7,1,每四组一个循环,∵2019÷4=504⋯3, ∴32019的末位数字是7,因此,32019+2019的末位数字是6.故答案为6.【点睛】本题考查了数学的变化规律,知道末位数字每四组一循环是解题的关键.16.(1)7;(2)-10【分析】(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的; (2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:(1)()()()324252846+-⨯--÷+-, ()()=485736+-⨯--+,=440736-++,7=;(2)()24113111237341224⎛⎫⎛⎫----+-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()1131=1292473412⎛⎫---+-+-⨯- ⎪⎝⎭ ()()()1131=1724242473412--⨯-⨯-+⨯--⨯- =118182--+-+,=10-.【点睛】本题考查了有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:--得+,-+得-,++得+,+-得-.17.4>122>-1.5>3-->-5,数轴见详解 【分析】先把绝对值化简,再在数轴上找出对应的点,然后比较大小.【详解】 3=-3--,在数轴上表示如下:,4>122>-1.5>3-->-5 【点睛】本题考查了有理数大小比较的方法.注意在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.18.(1)4或10;(2)-10或10;【分析】(1)根据绝对值的性质求出x 、y ,再根据x<y 判断出x 、y 的对应情况,然后相加即可得解;(2)根据绝对值的性质求出x 、y ,再根据xy<0,判断x 、y 异号,然后相减即可得解;【详解】解:(1)∵|x|=3,|y|=7,∴3x =±,y=7±,∵x<y ,∴x=3,y=7或x=-3,y=7;当x=3,y=7时,x+y=3+7=10;当x=-3,y=7时,x+y=-3+7=4;综上所述,x+y 的值为4或10;(2)∵|x|=3,|y|=7,∴3x =±,y=7±,∵xy<0,∴x=3,y=-7或x=-3,y=7;当x=3,y=-7时,x-y=3-(-7)=3+7=10;当x=-3,y=7时,x-y=-3-7=-10;综上所述,x-y 的值为-10或10;【点睛】本题主要考查了绝对值,有理数的加法,有理数的减法,掌握绝对值,有理数的加法,有理数的减法是解题的关键.19.-13.【分析】利用绝对值的代数意义,相反数,以及倒数的性质求出各自的值,代入原式计算即可求出值.【详解】解:根据题意得:m=±3,a+b=0,a b=﹣1,cd=1,则原式=3(a+b )+a b﹣3cd ﹣m 2=0﹣1﹣3﹣9=﹣13. 【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(1)驾驶员在公司的南边10千米处;(2)在这个过程中共耗油4.8升;(3)驾驶员共收到车费68元【分析】(1)根据有理数加法即可求出答案;(2)根据题意列出算式即可求出答案;(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(﹣4)+(﹣3)+10=10(km ),答:接送完第五批客人后,该驾驶员在公司的南边10千米处;(2)(5+2+|﹣4|+|﹣3|+10)×0.2=24×0.2=4.8(升),答:在这个过程中共耗油4.8升;(3)[10+(5﹣3)×1.8]+10+[10+(4﹣3)×1.8]+10+[10+(10﹣3)×1.8]=68(元), 答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查有理数的加法运算的实际应用,解题的关键是掌握有理数的加法法则,并且能够根据题意列出算式.21.(1)6767+⨯,1167+,8989+⨯,1189+;(2)89 【分析】(1)利用题目中给出的算式即可求解;(2)根据题意,将每一项表示成两个分数的和的形式,即可求解.【详解】解:(1)713674261176+=+=⨯,178911728989+==+⨯, 故答案为:6767+⨯,1167+,8989+⨯,1189+; (2)35791113151726122030425672-+-+-+-1111111111111111223344556677889⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-+++-+++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111111111111111223344556677889=+--++--++--++-- 119=- 89=. 【点睛】本题考查分数的加减运算,理解题目中给出的算式是解题的关键.22.(1)-30;-10;(2)-14或-6;(3)t 的值为4或283 【分析】(1)由AB ,BC 的长度结合点C 对应的数及点A ,B ,C 的位置关系,可得出点A ,B 对应的数;(2)根据两点间的距离公式求解;(3)由点P ,Q 的出发点、运动方向及速度,可得出运动时间为t 秒时点P ,Q 对应的数;结合8PQ =,可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论.【详解】解:(1)20AB BC ==,点C 对应的数是10,点A 在点B 左侧,点B 在点C 左侧, ∴点B 对应的数为102010-=-,点A 对应的数为102030--=-.故答案为:30-;10-.(2)由于点B 对应的数为10-,4BD =,所以点D 表示的数为14-或6-; (3)当运动时间为t 秒时,点P 对应的数是430t -,点Q 对应的数是10t -. 依题意,得:|10(430)|8t t ---=,2038t ∴-=或3208t -=,解得:4t =或283t =. t ∴的值为4或283. 【点睛】 本题考查了一元一次方程的应用、数轴以及两点间的距离,解题的关键是:(1)根据线段AB ,BC的长度,找出点A,B对应的数;(3)用含t的代数式表示出点P,Q对应的数;利用两点间的距离公式,找出关于t的一元一次方程.。

2020-2021学年河南省郑州外国语中学八年级上学期第一次月考数学试卷 (解析版)

2020-2021学年河南省郑州外国语中学八年级上学期第一次月考数学试卷 (解析版)

2020-2021学年河南省郑州外国语中学八年级(上)第一次月考数学试卷一、选择题(共10小题).1.(3分)在实数3.14,,1.,,,,,中无理数有()A.1个B.2个C.3个D.4个2.(3分)下列各组数中互为相反数的一组是()A.﹣3与B.﹣3与C.﹣3与D.|﹣3|与33.(3分)下列计算正确的是()A.B.C.D.3+24.(3分)适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=;②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25;⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个5.(3分)已知点P(2m﹣6,m﹣1)在x轴上,则点P的坐标是()A.(1,0)B.(﹣4,0)C.(0,2)D.(0,3)6.(3分)估计的值在()A.4与5之间B.5与6之间C.6与7之间D.7与8之间7.(3分)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.B.5cm C.D.7cm8.(3分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=12,且AC+BC=10,则AB的长为()A.2B.2C.2D.29.(3分)如图所示,在△ABC中,点D是BC上的一点,已知AC=CD=5,AD=6,BD=,则△ABC的面积是()A.18B.36C.72D.12510.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)二.填空题(每小题3分,共15分)11.(3分)的平方根为.12.(3分)比较大小:﹣3﹣2(填“<”或“>”).13.(3分)已知点A(m,﹣2)和点B(3,n),若直线AB∥x轴,且AB=4,则m+n 的值.14.(3分)如图,长方形ABCO中,AB=2,BC=5,且如图放置在坐标系中,若将其沿着OB对折后,A′为点A的对应点,则OA′与BC的交点D的坐标为.15.(3分)如图,在△ABC中,AC=BC=13,AB=24,D是AB边上的一个动点,点E 与点A关于直线CD对称,当△ADE为直角三角形时,则AD的长为.三.解答题(共55分)16.(8分)计算下列各题:(1)9﹣7+5;(2)(﹣)﹣2﹣(﹣1)2020×(π﹣)0﹣+.17.(7分)先化简,再求值:(2x+y)2+(x+2y)2﹣2(x+2y)(2x+y),其中x=+1,y=﹣1.18.(10分)如图,A(﹣3,2),B(﹣1,﹣2),C(1,﹣1),将△ABC向右平移3个单位长度,然后再向上平移1个单位长度,可以得到△A1B1C1.(1)画出△A1B1C1;(2)△A1B1C1的面积为;(3)已知点P在x轴上,以A1、C1、P为顶点的三角形面积为,则P点的坐标为.19.(9分)如图,在△ABC中,D是BC上一点,若AB=10,BD=6,AD=8,AC=17.(1)求DC的长.(2)求△ABC的面积.20.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.21.(12分)在Rt△ABC中,AB=AC,D为直线BC上一动点(不与点B、C重合),连接AD,以AD为直角边作Rt△ADE,且AD=AE,连接EC.(1)如图1,当点D在边BC延长线上时,易证BD=CE,且BD⊥CE;此时BD2,CD2,AD2三者之间的数量关系为:;(2)如图2,当点D在边BC上(点D不与点B,C重合)时,(1)中BD2,CD2,AD2三者之间数量关系是否仍成立,请给予证明:若不成立,请说明理由.(3)类比构造:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD =13,CD=5,直接写出边AD的长.参考答案一、选择题(每小题3分,共30分)1.(3分)在实数3.14,,1.,,,,,中无理数有()A.1个B.2个C.3个D.4个解:3.14是有限小数,属于有理数;=3,是整数,属于有理数;1.是循环小数,属于有理数;是分数,属于有理数;无理数有:,,共3个.故选:C.2.(3分)下列各组数中互为相反数的一组是()A.﹣3与B.﹣3与C.﹣3与D.|﹣3|与3解:①=3,和﹣3互为相反数,故A正确;②=﹣3,不是﹣3的相反数,故B错误;③﹣3和﹣互为倒数,不互为相反数,故C错误;④|﹣3|和3相等,故D错误.综上可知只有A正确.故选:A.3.(3分)下列计算正确的是()A.B.C.D.3+2解:A、﹣=2﹣=,故此选项正确;B、+无法合并,故此选项错误;C、4﹣3=,故此选项错误;D、3+2无法合并,故此选项错误;故选:A.4.(3分)适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=;②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25;⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个解:①,根据勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,根据勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,根据勾股定理的逆定理不是直角三角形,故不是.故选:A.5.(3分)已知点P(2m﹣6,m﹣1)在x轴上,则点P的坐标是()A.(1,0)B.(﹣4,0)C.(0,2)D.(0,3)解:∵点P(2m﹣6,m﹣1)在x轴上,∴m﹣1=0,解得:m=1,故2m﹣6=﹣4,则点P的坐标是(﹣4,0).故选:B.6.(3分)估计的值在()A.4与5之间B.5与6之间C.6与7之间D.7与8之间解:∵,根据算术平方根的意义可知,5<<6,∴估计的值在5与6之间.故选:B.7.(3分)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.B.5cm C.D.7cm解:侧面展开图如图所示,∵圆柱的底面周长为6cm,∴AC′=3cm,∵PC′=BC′,∴PC′=×6=4cm,在Rt△ACP中,AP2=AC′2+CP2,∴AP==5.故选:B.8.(3分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=12,且AC+BC=10,则AB的长为()A.2B.2C.2D.2解:由勾股定理得,AC2+BC2=AB2,∵S1+S2=12,∴×π×()2+π×()2+AC×BC﹣π×()2=12,∴AC×BC=24,AB===2.故选:A.9.(3分)如图所示,在△ABC中,点D是BC上的一点,已知AC=CD=5,AD=6,BD=,则△ABC的面积是()A.18B.36C.72D.125解:作AE⊥CD于点E,作CF⊥AD于点F,∵AC=CD=5,AD=6,CF⊥AD,∴AF=3,∠AFC=90°,∴CF==4,∵,∴,解得.AE=,∵BD=,CD=5,∴BC=,∴△ABC的面积是:==18,故选:A.10.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.二.填空题(每小题3分,共15分)11.(3分)的平方根为±2.解:∵4的立方等于64,∴64的立方根等于4.4的平方根是±2,故答案为:±2.12.(3分)比较大小:﹣3>﹣2(填“<”或“>”).解:∵3=,2=,∴﹣3>﹣2,故答案为:>.13.(3分)已知点A(m,﹣2)和点B(3,n),若直线AB∥x轴,且AB=4,则m+n 的值5或﹣3.解:∵点A(m,﹣2)和点B(3,n)且直线AB∥x轴,∴n=﹣2,∵AB=4,∴m=3+4=7或m=3﹣4=﹣1,当m=7时,m+n=7﹣2=5;当m=﹣1时,m+n=﹣1﹣2=﹣3;综上,m+n=5或﹣3;故答案为:5或﹣3.14.(3分)如图,长方形ABCO中,AB=2,BC=5,且如图放置在坐标系中,若将其沿着OB对折后,A′为点A的对应点,则OA′与BC的交点D的坐标为(﹣,2).解:∵长方形ABCO中,OA∥BC,∴∠AOB=∠CBO,由折叠的性质得,∠AOB=∠BOD,∴∠DBO=∠BOD,∴BD=OD,设CD=x,则BD=OD=5﹣x,∵OC=AB=2,∴(5﹣x)2=x2+22,∴x=,∴CD=,∴D(﹣,2),故答案为:(﹣,2).15.(3分)如图,在△ABC中,AC=BC=13,AB=24,D是AB边上的一个动点,点E 与点A关于直线CD对称,当△ADE为直角三角形时,则AD的长为7或17.解:作CF⊥AB于F,∵在△ABC中,AC=BC=13,AB=24,∴AF=12,∴CF==5,①如图1,当点D在AF上时,∵∠ADE=90°,∴∠ADC=∠EDC=(360°﹣90°)÷2=135°.∴∠CDF=45°.∴CF=DF.∴AD=AF﹣DF=AF﹣CF=12﹣5=7.②如图2,当点D在BF上时,∵∠ADE=90°,∴∠CDF=45°.∴CF=DF.∴AD=AF+DF=AF+CF=12+5=17.三.解答题(共55分)16.(8分)计算下列各题:(1)9﹣7+5;(2)(﹣)﹣2﹣(﹣1)2020×(π﹣)0﹣+.解:(1)9﹣7+5=9﹣14+20=15.(2)(﹣)﹣2﹣(﹣1)2020×(π﹣)0﹣+=4﹣1×1﹣4+5=4.17.(7分)先化简,再求值:(2x+y)2+(x+2y)2﹣2(x+2y)(2x+y),其中x=+1,y=﹣1.解:(2x+y)2+(x+2y)2﹣2(x+2y)(2x+y)=4x2+4xy+y2+x2+4xy+4y2﹣4x2﹣2xy﹣8xy﹣4y2=x2﹣2xy+y2=(x﹣y)2,当x=+1,y=﹣1时,原式=[(+1)﹣(﹣1)]2=4.18.(10分)如图,A(﹣3,2),B(﹣1,﹣2),C(1,﹣1),将△ABC向右平移3个单位长度,然后再向上平移1个单位长度,可以得到△A1B1C1.(1)画出△A1B1C1;(2)△A1B1C1的面积为;(3)已知点P在x轴上,以A1、C1、P为顶点的三角形面积为,则P点的坐标为(5,0)或(3,0).解:(1)如图所示,△A1B1C1即为所求.(2)△A1B1C1的面积为4×5﹣×3×4﹣×1×2﹣×3×5=,故答案为:;(3)设点P(m,0),根据题意,得:•|m﹣4|×3=,解得m=5或m=3,∴点P的坐标为(5,0)或(3,0).故答案为:(5,0)或(3,0).19.(9分)如图,在△ABC中,D是BC上一点,若AB=10,BD=6,AD=8,AC=17.(1)求DC的长.(2)求△ABC的面积.解:(1)在△ABD中,AB=10,BD=6,AD=8,∴AB2=BD2+AD2,∴△ABD为直角三角形,∴AD⊥BC,即∠ADC=90°,在Rt△ADC中,AD=8,AC=17,根据勾股定理得:DC==15;(2)S△ABC=AD•BC=AD•(BD+DC)=84.20.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.21.(12分)在Rt△ABC中,AB=AC,D为直线BC上一动点(不与点B、C重合),连接AD,以AD为直角边作Rt△ADE,且AD=AE,连接EC.(1)如图1,当点D在边BC延长线上时,易证BD=CE,且BD⊥CE;此时BD2,CD2,AD2三者之间的数量关系为:BD2+CD2=2AD2;(2)如图2,当点D在边BC上(点D不与点B,C重合)时,(1)中BD2,CD2,AD2三者之间数量关系是否仍成立,请给予证明:若不成立,请说明理由.(3)类比构造:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD =13,CD=5,直接写出边AD的长6.解:(1)∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠B=45°,∴∠BCE=∠ACB+∠ACE=90°,∴∠ECD=90°,∵DE2=2AD2=CD2+CE2=CD2+BD2,∴BD2+CD2=2AD2;故答案为:BD2+CD2=2AD2;(2)证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,∴BD2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,∵AD=AE,∴ED2=2AD2∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,如图3所示:则△ADE是等腰直角三角形,∴∠ADE=45°,∵∠ABC=∠ACB=45°,∴AB=AC,∠BAC=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=13,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===12,∵∠DAE=90°,∴AD=AE=DE=×12=6,故答案为:6.。

2020-2021学年郑州外国语中学七年级上学期第一次月考数学试卷

2020-2021学年郑州外国语中学七年级上学期第一次月考数学试卷

2020-2021学年郑州外国语中学七年级上学期第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列说法中正确的是()A. 0既不是整数也不是分数B. 一个数的绝对值一定是正数C. 单项式23πx2的系数是23D. x3−2x2y2+3y2是四次三项式2.如图为主视方向的几何体,则它的俯视图是如图为主视方向的几何体,则它的俯视图是()A.B.C.D.3.辽宁省总面积约为14.59万平方公里,把14.59万平方公里用科学记数法表示为()平方公里.A. 1.459×104B. 14.59×104C. 1.459×102D. 1.459×1054.下面每一个图形都是由6个边长相同的小正方形形成的,其中能折叠成正方体的是()A. B.C. D.5.若ab≠0,则的取值不可能是()A. 0B. 1C. 2D. −26.−|−2021|等于()A. −2021B. 2021C. −12021D. 120217. 下列几何图形是立体图形的是( )A. 扇形B. 长方形C. 正方体D. 圆 8. 下列各数中,最小的数是( )A. 0B. 2016C. −1D. −2016 9. 在分数14,1520,912,34,25100,75100中,与1824相等的分数共有( ) A. 1个 B. 2个 C. 3个 D. 4个10. 马小虎在学习有理数的运算时,做了如下6道填空题:①(−5)+5= 0 ; ② −5−(−3)= −8 ; ③(−3)×(−4)= 12 ;④ 1 ; ⑤ ; ⑥ (−4)3= − 64 .你认为他做对了A. 6题B. 5题C. 4题D. 3题二、填空题(本大题共5小题,共15.0分)11. 已知a + =6,则a − = ______ .12. 笔尖在纸上快速滑动写出了一个又一个字,这说明了______;车轮旋转时,看起来像一个整体的圆面,这说明了______;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了______.13. 已知√2+23=2√23,√3+38=3√38,√4+415=4√415,…,若√9+a b =9√ab (a,b 均为实数),则根据以上规律√ab 的值为______.14. 现定义一种新运算:a※b =a b −a +b ,则(−5)※3= ______.15. 如图,一动点的初始位置位于数轴上的原点,现对该动点做如下移动:第1次从原点向右移动1个单位长度至A 点,第2次从A 点向左移动3个单位长度至B 点,第3次从B 点向右移动6个单位长度至C 点,第4次从C 点向左移动9个单位长度至D 点,…依此类推,移动2020次后该动点在数轴上表示的的数为______.三、计算题(本大题共2小题,共17.0分)16. 计算:(1)(+45)+(−92)+5+(−8)(2)(3)÷(4)+︱6−10︱−17. 假日公司的西湖一日游价格如下:A种:成人每位160元,儿童每位40元B种:5人以上团体,成人每位100元,儿童每位40元现有三对夫妇各带1个小孩,共9人,参加西湖一日游,最少要多少钱?四、解答题(本大题共4小题,共38.0分)18. 已知|a−3|+|2b−6|=0,求2a+b的值.19. 如图为一几何体的三视图,试画出其表面展开图(尺寸自选).20. 一种商品每件成本a元,按成本增加22%标价.(1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元?21. 要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图象,直接比较得出s甲2和s乙2哪个大?(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选______参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选______参赛更合适.【答案与解析】1.答案:D解析:解:A、0是整数,故A错误;B、一个数的绝对值一定是非负数,故B错误;C、单项式23πx2的系数是23π,故C错误;D、x3−2x2y2+3y2是四次三项式,故D正确;故选:D.根据零的意义,绝对值,单项式的系数,几次几项式的定义,可得答案.本题考查了有理数,单项式,多项式,理解各个定义是解题关键.2.答案:D解析:解:从上面看可得到三个左右相邻的长方形,如图所示:故选:D.找到从上面看所得到的图形即可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.答案:D解析:解:14.59万=145900=1.459×105.故选D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.59万有6位整数,所以可以确定n=6−1=5.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.答案:C解析:解:观察图形可知,能折叠成正方体的是.故选:C.利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.本题主要考查展开图折叠成几何体的知识点,牢记正方体的展开图是解题的关键.。

数学-2021学年河南省郑州市某校八年级(上)第一次月考数学试卷_含答案

数学-2021学年河南省郑州市某校八年级(上)第一次月考数学试卷_含答案

2020-2021学年河南省郑州市某校八年级(上)第一次月考数学试卷一.选择题(共9小题)1. 实数√2的相反数是( )A −√22B √22C −√2D √2 2. 下列四组数中,是勾股数的是( )A 8,15,17B 32,42,52C 0.3,0.4,0.5D ,,3. 已知点P(a 2+1, −√3),则点P 在( )A 第一象限B 第二象限C 第三象限D 第四象限4. 下列各数中,无理数有( )个.3.14159,,-,,0,,0.2525525552…(相邻两个2之间5的个数逐次加1).A 4B 3C 2D 15. 下列运算正确的是( )A B C D6. 如图所示,正方形ABGF 和正方形CDBE 的面积分别是100和36,则以AD 为直径的半圆的面积是( )A 4πB 8πC 12πD 16π7. 如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A 1.5B 2.4C 2.5D 3.58. 在平面直角坐标系中,若点M 在第三象限且到x 轴的距离为3,到y 轴的距离为2,则点M 关于x 轴对称点N 的坐标为( )A (3, −2)B (−2, 3)C (−3, 2)D (−2, −3)9. 如图,动P 从(0, 3)出发,沿所示的方向运动,每当碰到边时反弹,反弹时反射角等于入射角,第1次碰到长方形的边时的位置P(3, 0),当点P 第2016次碰到长方形的边时,点P 2016的坐标( )A (5, 0)B (0, 3)C (1, 4)D (8, 3)二.填空题(共5小题)10. 请你写出一个大于2小于3的无理数是________.11. 已知实数x,y满足x2−4x++4=0,则y x的立方根是________.12. 如图,ABCD是长方形地面,长AB=10m,宽AD=5m,中间竖有一堵砖墙高MN=1m.一只蚂蚱从点A爬到点C,它必须翻过中间那堵墙,则它至少要走13m.13. 对于实数m,n,定义运算m∗n=(m+2)2−2n.若2∗a=4∗(−3),则a=________.14. 若A点坐标为(2, 4),B点在x轴的正半轴且AB=,若点P是y轴上一点,且△ABP的面积为6,则点P的坐标为________.三.解答题(共7小题)15. 计算:(1).(2).16. 解方程:(1)3(x−1)2=36;(2)−27(m−1)3−125=0.17. 在如图的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(−4, 5),(−1, 3).(1)请在网格平面内画出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)分别写出点A′、B′、C′的坐标.18. 我市鸭绿江边的景观区内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积,经技术人员测量∠ABC=90∘,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.19. 如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一拖拉机在公路MN上以18km/ℎ的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?20. 如图甲,这是由8个同样大小的立方体组成的魔方,总体积为Vcm3.(1)用代数式表示这个魔方的棱长.(2)当魔方体积V=64cm3时,①求出这个魔方的棱长.②图甲中阴影部分是一个正方形ABCD,求出阴影部分正方形ABCD的边长.③把正方形ABCD放置在数轴上,如图乙所示,使得点A与数1重合,则D在数轴上表示的数为________.④请在乙图中数轴上准确画出表示实数的点E的位置(保留作图痕迹).21. 在平面直角坐标系中,线段OA=2,OC=4,以OA、OC为边作长方形OABC.(1)求AC的长;(2)将△ABC沿CD对折,使得点B的对应点B′落在AC上,折痕CD交AB于点D,求点D坐标;(3)在平面内,是否还存在点P(点B除外),使得△APC与△ABC全等?若存在,请直接写出所有符合题意的点P的坐标;若不存在,请说明理由.2020-2021学年河南省郑州市某校八年级(上)第一次月考数学试卷答案1. C2. A3. D4. B5. D6. B7. B8. B9. B10. √5等11. 412. 1313. −1314. (0, 5)或(0, −5)或(0, 1)或(0, −1)15. 原式=4−2+6−1=4;原式=8−4×-+=6−2-+=-.16. ∵ 3(x−1)4=36,∴ (x−1)2=12,∴ x−4=±2,∴ x=5+1或x=3−2;∵ −27(m−5)3−125=0∴ (m−2)3=-,∴ m−1=-,即m=-.17. 解:(1)、(2)如图所示;(3)由图可知,A′(4, 5)、B′(2, 1)、C′(1, 3).18. 连接AC.在Rt△ABC中,∵ ∠ABC=90∘,AB=20,BC=15,∴ AC=√AB2+BC2=√202+152=25(米).∴ 这个四边形对角线AC的长度为25米.在△ADC中,∵ CD=7,AD=24,AC=25,∴ AD2+CD2=242+72=252=AC2,∴ △ADC为直角三角形,∠ADC=90∘,∴ S四边形ABCD =S△ADC+S△ABC=12×15×20+12×7×24=234(平方米),∴ 四边形ABCD的面积为234平方米.19. 该校受影响拖拉机产生的噪声的影响时间为24秒20. ④如图,作一个长为6,使以原点为一个顶点,再以矩形的对角线的长为半径,与数轴的负半轴相交于点E.1−221. ∵ OA=2,OC=4,∴ AC===3;设AD=x,则BD=4−x,由折叠知:BC=B′C=6,BD=B′D=4−x.∴ AB′=2−2,∵ B′A2+B′D2=AD2,∴ +(7−x)2=x2,解得:x=4−.∴ D(5−,−2).①当点P与点O重合时,如图1,此时P(5;②当点P在第一象限时,如图2.∴ ∠PAC=∠CAB,∵ OC // AB,∴ ∠OCA=∠CAB,∴ ∠OCA=∠PAC,∴ AN=CN,设ON=a,则CN=AN=4−a,∴ a3+22=(8−a)2,解得,a=,∴ ON=,CN=,∵ BC=PC=2,∴ PN==,∵ S△PNC=CN⋅PM,∴ PM=,∴ MN=,∴ OM=ON+MN==,∴ P().③当点P在第四象限时,如图2.过点P作PM⊥AB于点M,PC交AB于点N,同理可得,AN=CN=,∴ PM=,MN=,∴ AM=AN−MN==,∴ P().综合以上可得点P的坐标为(0, 0)或().。

河南省郑州市金水区2023-2024学年八年级上学期期中数学试题

河南省郑州市金水区2023-2024学年八年级上学期期中数学试题

河南省郑州市金水区2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .2B .8C .334.满足下列条件的△ABC ,不是直角三角形的是()A .b 2=a 2﹣c 2B .a :b :C .∠C =∠A ﹣∠BD .∠A :∠5.估计5+1的值,应在()A .1和2之间B .2和3之间C .3和4之间6.如图①是某市的旅游示意图,小红在旅游示意图上画了方格,如图②.如果用表示中心广场的位置,那么影月湖的位置表示为()A .()3,3-B .()0,07.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是(..C ..将直线21y x =-向上平移3个单位长度后,得到直线y kx b =+,下列关于直线的说法正确的是().直线经过一、二、四象限.直线与y 轴交于点.直线经过点(1,3--.函数y 随x 的增大而减小.如图,数轴上点A 表示的数是-1,点B 表示的数是1,1BC =,∠为圆心,AC 长为半径画弧,与数轴交于原点右侧的点P ,则点P 表示的数是(51-B .52-31-《九章算术》是古代东方数学代表作,书中记载:今有开门去阃一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为的长是()A .50.5寸B .52寸C .101寸二、填空题11.9的立方根是15.如图,矩形AOBC 的边三、解答题16.计算:(1)11233⎛⎫-⨯ ⎪ ⎪⎝⎭;(2)()(03212271-+--+-17.如图,方格纸上每个小正方形的面积为(1)在方格纸上,请你以线段方法;若某户某月缴纳水费52元,则该户这个月的用水量是19.如图,一根直立的旗杆高8m,部A4m.(1)求旗杆距地面多高处折断;(2)工人在修复的过程中,发现在折断点若下次大风将旗杆从点D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?在正方形网格中,若点20.如图所示,ABC(1)在图中建立正确的平面直角坐标系;(2)作出ABC 关于x 轴的对称图形(3)求A B C ''' 的面积.21.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的以灵感,他惊喜的发现;当两个全等的直角三角形如图积法”来证明,下面是小聪利用图将两个全等的直角三角形按图1所示摆放,其中∠证明:连接DB ,过点D 作DF ⊥BC ∵S 四边形ADCB =S △ACD +S △ABC =又∵S 四边形ADCB =S △ADB +S △DBC =∴12b 2+12ab =12c 2+12a (b ﹣a )∴a 2+b 2=c 2请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中∠22.已知:如图,在Rt ABC △中,90C ∠=︒,5cm AB =,出发沿射线BC 以1cm /s 的速度移动,设运动的时间为(1)求BC边的长;(2)当ABP为直角三角形时,求t的值;(3)当ABP为等腰三角形时,求t的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省郑州市金水区第七初级中学2020-2021学年八年级上学期第
一次月考数学试题
一、单选题
(★) 1. 在实数:- ,3.145926,π,,345,,中,无理数的个数为()
A.2个B.3个C.4个D.5个
(★★) 2. 下列各组数中,分别以它们为边长的线段能构成直角三角形的是( )
A.3,4,5B.C.,2,D.
(★★) 3. △ABC的三边长分别为a,b,c,下列条件,其中能判断△ABC是直角三角形的个数有()
①∠A=∠B-∠C;②a 2=(b+c)(b-c);③∠A:∠B:∠C=3:4:5 ;④a:b:c=5:12:13 A.1个B.2个C.3个D.4个
(★★★) 4. 下列运算中错误的有()
① ② ,③ ,④ =3
A.4个B.3个C.2个D.1个
(★★) 5. 如图,在矩形中,,,边在数轴上,以点为圆心,的长为半径作弧交数轴于点,则点表示的数为()
A.B.C.2D.
(★★) 6. 如图,有一圆柱,其高为8cm,它的底面周长为16cm,在圆柱外侧距下底1cm的A 处有一只蚂蚁,它想得到距上底1cm的B处的食物,则蚂蚁经过的最短距离为()
A.10cm B.12cm C.15cm D.8cm
(★★) 7. 如图,直线 l上有三个正方形 a、b、c ,若 a、c的面积分别为5和11,则b 的面积为()
A.4B.6C.16D.55
(★★★) 8. 如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为()
A.3B.4C.5D.6
(★★★) 9. 某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是2.0米,高分别为2.8米,3.1米,3.4米,3.7米,则能通过该工厂厂门的车辆数是( )(参考数据:,,)
A.1B.2C.3D.4
(★★★★) 10. 勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )
A.121B.110C.100D.90
二、填空题
(★) 11. 的平方根是___________; =________
(★★★) 12. 如果a,b分别是2020的两个平方根,那么______.
三、解答题
(★★) 13. 比较大小:______________ (填“>”、“=”或“<”).
四、填空题
(★★) 14. 如图所示的图形由4个等腰直角形组成,其中直角三角形(1)的腰长为1cm,则直角三角形(4)的斜边长为______.
(★★★)15. 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图是由“赵爽弦图”变化得到的,它由八个全等直角三角形拼接而成,记图中正方形 ABCD,正方形 EFGH,正方形 MNKT的面积分别为 S 1, S 2, S 3,若 S 1+ S 2+ S 3=24,则 S 2的值为
_____.
五、解答题
(★★★) 16. 已知的平方根是,的算术平方根为
(1)求与的值;
(2)求的立方根.
(★★) 17. 计算.
(1)
(2)
(3)
(★★) 18. 图①、图②、图③均是的正方形网格,每个小正方形的边长为1,每个小正方
形的顶点称为格点,线段的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下
列要求以为边画.
要求:
(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;
(3)点在格点上.
(★★★) 19. 明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词,
翻译为:如图秋千细索OA悬挂于O点,静止时竖直下垂,A点为踏板位置,踏板离地高度为
一尺(AC=1尺).将它往前推进两步(EB⊥OC于点E,且EB=10尺),踏板升高到点B位置,此时踏板离地五尺(BD=CE=5尺),求秋千绳索(OA或OB)的长度.
(★★) 20. 在一浆纸上画两个全等的直角三角形,并把它们拼成如图形状,请你两种方法表示
这个梯形的面积,利用你的表示方法,你能得到勾股定理吗?
(★★★) 21. 阅读下面的文字,解答问题:
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用-1来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差
就是小数部分.
又例如:∵ ,即,
∴ 的整数部分为2,小数部分为(-2).
请解答:(1)的整数部分是,小数部分是 .
(2)如果的小数部分为 a,的整数部分为 b,求 a+ b- 的值;
(3)已知: 10+ = x+ y,其中 x是整数,且0< y<1,求 x- y的相反数.
(★★★★) 22. 探索:如图①,以△ABC的边AB、AC为直角边,A为直角顶点,向外作等腰
直角△ABD和等腰直角△ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由应用:如图②,要测量池塘两岸B、E两地之间的距离,已知测得∠ABC=45°,∠CAE=90°,
AB=BC=100米,AC=AE,求BE的长.。

相关文档
最新文档