中考真题(一元二次方程及根的判别式)1

合集下载

中考数学复习检测(6)(一元二次方程的根的判别式)

中考数学复习检测(6)(一元二次方程的根的判别式)

2006年中考数学复习同步检测(6)(一元二次方程的根的判别式)姓名一.填空题:1.已知:方程0232=--m x x 的一个根是23-,则m 的值是 ;2.如果关于x 的一元二次方程042=+-kx x 有两个等根,则_____=k ;3.下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 ;4.已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。

5.如果二次三项式k x x 2432+-在实数范围内总能分解成两个一次因式的积,则k 的取值范围是 ;6.在一元二次方程02=++c bx x 中)(c b ≠,若系数b 、c 可在1、2、3、4、5中取值,则其中有实数解的方程的个数是 ;二.选择题:7.关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为 ( )A. 1B. -lC. 1 或-1D. 12 8.关于x 的一元二次方程0322=-+ax x 的根的情况是 ( )A 有两个不相等的实数根B 有两个相等的实数根C 没有实数根D 不能确定9.若关于x 的一元二次方程012=++kx kx 有两个相等的实数根,则k 的值为 ( )A 0B 0或4C 4D 任意实数10.用换元法解方程112)1(31)2(82222=+-+-+x x x x x x 时,若设y xx x =+-2122,则可得到关于y 的整式方程是 ( ) A 081132=+-y y B 011832=-+y yC 031182=+-y yD 011382=-+y y11.一元二次方程0322=+-x x 的根的情况是 ( )A 有两个相等的实数根B 有两个不相等的实数根,且两根同号C 有两个不相等的实数根,且两根异号D 没有实数根12.已知关于x 的方程0)3(4122=+--m x m x 有两个不相等的实数根,那么m 的最大整数值是 ( )A 2B 1C 0D -113.方程02)1(2=++-m mx x m 有两个不相等的实数根,m 的取值为 ( )A m >0B m ≥0C m >0且m ≠1D 以上答案都不对14.如果关于x 的二次方程08)18(22=+++k x k kx 有两个不相等的实数根,那么k 的取值范围是 ( ) A 161-<k B 161->k C k ≥-161 D 不同于上述结论 15.关于x 的一元二次方程042=++c x ax ,若a 、c 异号,则该方程根的情况是 ( ) A 有两个相等的实根 B 有两个不相等的实根 C 没有实数根 D 无法确定16.如果关于x 的方程012=++px x 的一个实数根的倒数恰好是它的本身,那么p 的值是 ( )A 1B 2C ±1D ±217.关于x 的方程022=--kx x 的根的情况是 ( )A 有两个不相等的实根B 没有实数根C 有两个相等的实根D 根据k 的情况定18.已知关于x 的方程022=+-k x x 有实数根,则k 的取值范围是 ( )A k <1B k ≤1C k ≤-1D k ≥119.将多项式1842--x x 在实数范围内分解因式,其正确的是 ( ) A )252)(252(--+-x x B )252)(252(-+++x x C )52)(52(4+---x x D )522)(522(+---x x20.若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是 ( )A 、 43<m B 、 m ≤43 C 、 43>m 且m ≠2 D 、 m ≥43且m ≠2 21.在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程 ( ) A 、有两个不等实根 B 、有两个相等实根 C 、 没有实根 D 、 无法确定三.解答题:22.关于x 的方程01)12(22=-+-+k x k x 的两实根的平方和等于9,求k 的值;23.求证:无论m 取何值,方程03)7(92=-++-m x m x 都有两个不相等的实根;24.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x ;(1)有两个相等实根;(2)有两个不相等的实根;(3)没有实根。

小专题(二) 一元二次方程根的判别式及根与系数的关系

小专题(二) 一元二次方程根的判别式及根与系数的关系

小专题(二) 一元二次方程根的判别式及根与系数的关系1.(金华中考)一元二次方程x 2-3x -2=0的两根为x 1,x 2,则下列结论正确的是(C )A .x 1=-1,x 2=2B .x 1=1,x 2=-2C .x 1+x 2=3D .x 1x 2=22.(桂林中考)若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是(B )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>53.(玉林中考)关于x 的一元二次方程x 2-4x -m 2=0有两个实数根x 1、x 2,则m 2(1x 1+1x 2)=(D ) A .m 44 B .-m 44C .4D .-44.若关于x 的一元二次方程x 2+mx +m 2-3m +3=0的两根互为倒数,则m 的值等于(B )A .1B .2C .1或2D .05.若m 、n 是方程x 2-2 016x +2 017=0的两根,则(m 2-2 017m +2 017)(n 2-2 017n +2 017)的值是2_017.6.(湘潭中考)已知关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的值;(2)当x 1=1时,求另一个根x 2的值.解:(1)∵一元二次方程x 2-3x +m =0有两个不相等的实数根,∴b 2-4ac =(-3)2-4×1×m =9-4m>0.∴m<94. (2)根据一元二次方程根与系数的关系x 1+x 2=-b a,得1+x 2=3,∴x 2=2.7.设x 1,x 2是关于x 的方程x 2-4x +k +1=0的两个实数根.请问:是否存在实数k ,使得x 1x 2>x 1+x 2成立?试说明理由.解:不存在.理由如下:∵x 1,x 2是关于x 的方程x 2-4x +k +1=0的两个实数根,则b 2-4ac =(-4)2-4×1×(k +1)≥0,即16-4k -4≥0,解得k ≤3.由根与系数关系,得x 1+x 2=4,x 1x 2=k +1.假设存在实数k ,使得x 1x 2>x 1+x 2,则k +1>4,解得k >3.这与k ≤3相矛盾,∴假设不成立.∴不存在实数k ,使得x 1x 2>x 1+x 2成立.8.已知关于x 的一元二次方程x 2+(2m -3)x +m 2=0有两个实数根x 1,x 2.(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值.解:(1)Δ=(2m -3)2-4m 2=4m 2-12m +9-4m 2=-12m +9,∵方程有两个实数根,∴Δ≥0.∴-12m +9≥0.∴m ≤34. (2)由题意可得x 1+x 2=-(2m -3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m =6-m 2.∴m 2-2m -3=0.∴m 1=3,m 2=-1.又∵m ≤34,∴m =-1. ∴x 1+x 2=5,x 1x 2=1.∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.9.(鄂州中考)关于x 的方程(k -1)x 2+2kx +2=0.(1)求证:无论k 为何值,方程总有实数根;(2)设x 1,x 2是方程(k -1)x 2+2kx +2=0的两个根,记S =x 2x 1+x 1x 2+x 1+x 2,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.解:(1)证明:①当k -1=0,即k =1时,方程为一元一次方程2x +2=0,x =-1,有一个解; ②当k -1≠0,即k ≠1时,方程为一元二次方程.Δ=(2k)2-4×2(k -1)=4k 2-8k +8=4(k -1)2+4>0,方程有两个不等实根.综合①②,得无论k 为何值,方程总有实数根.(2)根据一元二次方程的两个根分别为x 1和x 2,由一元二次方程根与系数的关系,得x 1+x 2=-2k k -1,x 1x 2=2k -1, 又∵S =x 2x 1+x 1x 2+x 1+x 2, ∴S =x 21+x 22x 1x 2+x 1+x 2 =(x 1+x 2)2-2x 1x 2x 1x 2+x 1+x 2 =(-2k k -1)2-4k -12k -1+-2k k -1=2k 2k -1-2+-2k k -1=2k -2.当S =2时,2k -2=2,解得k =2.。

3.中考数学专题一元二次方程根的判别式、根与系数的关系母题题源系列(解析版)

3.中考数学专题一元二次方程根的判别式、根与系数的关系母题题源系列(解析版)

专题01 一元二次方程根的判别式、根与系数的关系【母题来源一】【2019•河南】一元二次方程(x+1)(x-1)=2x+3的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【解析】原方程可化为:x2-2x-4=0,∴a=1,b=-2,c=-4,∴Δ=(-2)2-4×1×(-4)=20>0,∴方程有两个不相等的实数根.故选A.【名师点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.【母题来源二】【2019•河北】小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是A.不存在实数根B.有两个不相等的实数根C.有一个根是x=-1 D.有两个相等的实数根【答案】A【解析】∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,∴(-1)2-4+c=0,解得:c=3,故原方程中c=5,则b2-4ac=16-4×1×5=-4<0,则原方程的根的情况是不存在实数根.故选A.【名师点睛】此题主要考查了根的判别式,正确得出c的值是解题关键.【母题来源三】【2019•荆州】若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【答案】A【解析】∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴Δ=k2-4b>0,∴方程有两个不相等的实数根.故选A.【名师点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一次函数的性质.【母题来源四】【2019•包头】已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是A.34 B.30C.30或34 D.30或36【答案】A【解析】当a=4时,b<8,∵a、b是关于x的一元二次方程x2-12x+m+2=0的两根,∴4+b=12,∴b=8不符合;当b=4时,a<8,∵a、b是关于x的一元二次方程x2-12x+m+2=0的两根,∴4+a=12,∴a=8不符合;当a=b时,∵a、b是关于x的一元二次方程x2-12x+m+2=0的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34,故选A.【名师点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.【母题来源五】【2019•上海】如果关于x的方程x2-x+m=0没有实数根,那么实数m的取值范围是________.【答案】m1 4 >【解析】由题意知Δ=1-4m<0,∴m14 >.故答案为:m14 >.【名师点睛】总结:一元二次方程根的情况与判别式Δ的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.【母题来源六】【2019•衡阳】关于x的一元二次方程x2-3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值.【解析】(1)根据题意得Δ=(-3)2-4k≥0,解得k94≤.(2)k的最大整数为2,方程x2-3x+k=0变形为x2-3x+2=0,解得x1=1,x2=2,∵一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,∴当x=1时,m-1+1+m-3=0,解得m32 =;当x=2时,4(m-1)+2+m-3=0,解得m=1,而m-1≠0,∴m的值为32.【母题来源七】【2019•黄石】已知关于x的一元二次方程x2-6x+(4m+1)=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根为x1、x2,且|x1-x2|=4,求m的值.【解析】(1)∵关于x的一元二次方程x2-6x+(4m+1)=0有实数根,∴Δ=(-6)2-4×1×(4m+1)≥0,解得:m≤2.(2)∵方程x2-6x+(4m+1)=0的两个实数根为x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1.【母题来源八】【2019•黄冈】若x1,x2是一元二次方程x2-4x-5=0的两根,则x1·x2的值为A.-5 B.5C.-4 D.4【答案】A【解析】∵x1,x2是一元二次方程x2-4x-5=0的两根,∴x1·x2ca==-5.故选A.【名师点睛】本题考查了根与系数的关系,牢记两根之积等于ca是解题的关键.【母题来源九】【2019•广东】已知x1,x2是一元二次方程x2-2x=0的两个实数根,下列结论错误的是A.x1≠x2B.x12-2x1=0C.x1+x2=2 D.x1·x2=2【答案】D【解析】∵Δ=(-2)2-4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2-2x=0的实数根,∴x12-2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2-2x=0的两个实数根,∴x1+x2=2,x1·x2=0,选项C不符合题意,选项D符合题意.故选D.【名师点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.【母题来源十】【2019•淄博】若x 1+x 2=3,x 12+x 22=5,则以x 1,x 2为根的一元二次方程是 A .x 2-3x +2=0 B .x 2+3x -2=0 C .x 2+3x +2=0 D .x 2-3x -2=0【答案】A【解析】∵x 12+x 22=5, ∴(x 1+x 2)2-2x 1x 2=5, 而x 1+x 2=3, ∴9-2x 1x 2=5, ∴x 1x 2=2,∴以x 1,x 2为根的一元二次方程为x 2-3x +2=0. 故选A .【名师点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2b a =-,x 1x 2c a=. 【母题来源十一】【2019•江西】设x 1,x 2是一元二次方程x 2-x -1=0的两根,则x 1+x 2+x 1x 2=__________. 【答案】0【解析】∵x 1、x 2是方程x 2-x -1=0的两根, ∴x 1+x 2=1,x 1×x 2=-1, ∴x 1+x 2+x 1x 2=1-1=0. 故答案为:0.【名师点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2b a =-,x 1·x 2ca=.【母题来源十二】【2019•娄底】已知方程x 2+bx +3=0__________.【解析】设方程的另一个根为c ,c =3,∴c =-【名师点睛】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键. 【母题来源十三】【2019•十堰】已知于x 的元二次方程x 2-6x +2a +5=0有两个不相等的实数根x 1,x 2. (1)求a 的取值范围;(2)若x 12+x 22-x 1x 2≤30,且a 为整数,求a 的值.【解析】(1)∵关于x 的一元二次方程x 2-6x +2a +5=0有两个不相等的实数根x 1,x 2, ∴Δ>0,即(-6)2-4(2a +5)>0,解得a <2. (2)由根与系数的关系知:x 1+x 2=6,x 1x 2=2a +5, ∵x 1,x 2满足x 12+x 22-x 1x 2≤30, ∴(x 1+x 2)2-3x 1x 2≤30, ∴36-3(2a +5)≤30, ∴a 32≥-,∵a 为整数, ∴a 的值为-1,0,1.【名师点睛】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k 的取值范围是解题的关键,注意方程根的定义的运用.【母题来源十四】【2019•鄂州】已知关于x 的方程x 2-2x +2k -1=0有实数根. (1)求k 的取值范围;(2)设方程的两根分别是x 1、x 2,且2112x x x x +=x 1·x 2,试求k 的值. 【解析】(1)∵原方程有实数根, ∴b 2-4ac ≥0∴(-2)2-4(2k -1)≥0, ∴k ≤1.(2)∵x 1,x 2是方程的两根,根据一元二次方程根与系数的关系,得: x 1+x 2=2,x 1·x 2=2k -1, 又∵2112x x x x +=x 1·x 2, ∴22121212x x x x x x +=⋅⋅, ∴(x 1+x 2)2-2x 1x 2=(x 1·x 2)2, ∴22-2(2k -1)=(2k -1)2,解之,得:1222k k ==-.经检验,都符合原分式方程的根,∵k ≤1,∴k =. 【名师点睛】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.【命题意图】这类试题主要考查一元二次方程根的判别式,常与一次函数、等腰三角形等知识结合考查.一元二次方程根与系数的关系. 【方法总结】1.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根; (2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根; (3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.2.(1)应用根的判别式时必须先将一元二次方程化成一般形式,然后确定a ,b ,c 的值;(2)此判别式只适用于一元二次方程,当无法判断方程是不是一元二次方程时,应对方程进行分类讨论;(3)当240b ac -=时,方程有两个相等的实数根,不能说成方程有一个实数根. 3.一元二次方程根的判别式的应用主要有以下三种情况: (1)不解方程,判定根的情况;(2)根据方程根的情况,确定方程系数中字母的取值范围; (3)应用判别式证明方程根的情况. 4.根与系数关系对于一元二次方程20ax bx c ++=(其中a b c ,,为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12cx x a=.5.一元二次方程根与系数的关系的应用(1)不解方程,求关于方程两根的代数式的值; (2)已知方程一根,求方程的另一根及方程中字母的值; (3)已知方程两根的关系,求方程中字母的值; (4)与根的判别式相结合,解决一些综合题. 6.与一元二次方程两根有关的几个代数式的变形(1)()()22222121122*********x x x x x x x x x x x x +=++-=+-;(2)12121211x x x x x x ++=; (3)12x x -==(4)()222121221211212122x x x x x x x x x x x x x x +-++==; (5)()()221212124x x x x x x -=+-;(6)()()()2121212x k x k x x k x x k ++=+++.1.【天津市滨海新区2019届中考一模数学试题】下列方程中,有两个不相等的实数根的方程是 A .28170x x +=- B .26100x x -=-C .290x +=-D .2440x x +=-【答案】B【解析】A .Δ=(-8)2-4×1×17=-4<0,故方程没有实数根,该选项不符合题意, B .Δ=(-6)2-4×1×(-10)=76>0,故方程有两个不相等的实数根,该选项符合题意, C .Δ=(-2-4×1×9=-4<0,故方程没有实数根,该选项不符合题意, D .Δ=(-4)2-4×1×4=0,故方程有两个相等的实数根,该选项不符合题意, 故选B .【名师点睛】本题考查一元二次方程根的情况与判别式Δ的关系:Δ>0时,方程有两个不相等的实数根;Δ=0时,方程有两个相等的实数根;Δ<0时,方程没有实数根.2.【2019年河南省第二届名校联盟中考数学模拟试卷(5月份)】若关于x 的一元二次方程mx 2-2x +1=0有两个实数根,则实数m的取值范围是A.m≤1B.m≤-1C.m≤1且m≠0D.m≥1且m≠0【答案】C【解析】根据题意得m≠0且Δ=(-2)2-4m≥0,解得m≤1且m≠0.故选C.【名师点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.3.【山东省诸城市部分学校2019届中考模拟(6月)数学试题】已知a、b、c为正数,若关于x的一元二次方程ax2+bx+c=0有两个实数根,则关于x的方程a2x2+b2x+c2=0解的情况为A.有两个不相等的正根B.有一个正根,一个负根C.有两个不相等的负根D.不一定有实数根【答案】C【解析】∵关于x的一元二次方程ax2+bx+c=0有两个实数根,∴Δ=b2-4ac≥0.又∵a、b、c为正数,∴b2-4ac+2ac=b2-2ac>0,b2+2ac>0.∵方程a2x2+b2x+c2=0的根的判别式Δ=b4-4a2c2=(b2+2ac)(b2-2ac)>0,∴该方程有两个不相等的实数根.设关于x的方程a2x2+b2x+c2=0的两个实数根为x1,x2,则x1+x2=22ba<0,x1x2=22ca>0,∴关于x的方程a2x2+b2x+c2=0有两个不相等的负根.故选C.【名师点睛】本题考查了根的判别式以及根与系数的关系,利用根的判别式及根与系数的关系,找出关于x的方程a2x2+b2x+c2=0有两个不相等的负根是解题的关键.4.【2019年四川省内江市中考数学模拟试卷(三)】关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是A.1 B.-1C.1或-1 D.2【答案】B【解析】依题意Δ>0,即(3a+1)2-8a(a+1)>0,即a2-2a+1>0,(a-1)2>0,a≠1,∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,∴x1-x1x2+x2=1-a,∴x1+x2-x1x2=1-a,∴3122a aa a++-=1-a,解得:a=±1,又a≠1,∴a=-1.故选B.【名师点睛】此题考查了根的判别式,根与系数的关系,以及一元二次方程的定义,一元二次方程中根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程没有实数根.5.【2019年山东省潍坊市中考数学一模试卷】已知关于x的方程x2+(k2-4)x+k-1=0的两实数根互为相反数,则k=__________.【答案】-2【解析】设方程的两根分别为x1,x2,∵x2+(k2-4)x+k-1=0的两实数根互为相反数,∴x1+x2,=-(k2-4)=0,解得k=±2,当k=2,方程变为:x2+1=0,Δ=-4<0,方程没有实数根,所以k=2舍去;当k=-2,方程变为:x2-3=0,Δ=12>0,方程有两个不相等的实数根;∴k=-2.故答案为:-2.【名师点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba;x1·x2=ca.也考查了一元二次方程的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.【2019年江西省南昌市十校联考中考数学模拟试卷(5月份)】已知α、β是一元二次方程x2-2019x+1=0的两实根,则代数式(α-2019)(β-2019)=__________.【答案】1【解析】∵α、β是一元二次方程x2-2019x+1=0的两实根,∴α+β=2019,αβ=1,∴(α-2019)(β-2019)=αβ-2019(α+β)+22019=1.故答案为:1.【名师点睛】本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.7.【河南省2019年中考数学模试题(一)】已知关于x的一元二次方程ax2-(a+2)x+2=0有两个不相等的正整数根时,整数a的值是__________.【答案】1【解析】∵方程ax2-(a+2)x+2=0是关于x的一元二次方程,∴a≠0.∵Δ=(a+2)2-4a×2=(a-2)2≥0,∴当a=2时,方程有两个相等的实数根,当a≠2且a≠0时,方程有两个不相等的实数根.∵方程有两个不相等的正整数根,∴a≠2且a≠0.设方程的两个根分别为x1、x2,∴x1·x2=2a,∵x1、x2均为正整数,∴2a为正整数,∵a为整数,a≠2且a≠0,∴a=1,故答案为:1.【名师点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是:①找出Δ=(a-2)2≥0;②找出x1·x2=2a为正整数.本题属于中档题,难度不大,解决该题型题目时,由方程的两根均为整数确定a的值是难点.8.【2019年江苏省盐城市建湖县中考数学二模试卷】已知关于x方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1=2x2,求m的值.【解析】(1)∵关于x方程x2-6x+m+4=0有两个实数根,∴Δ=(-6)2-4×1×(m+4)≥0,解得:m≤5.(2)∵关于x方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6,x1x2=m+4.又∵x1=2x2,∴x2=2,x1=4,∴4×2=m+4,∴m=4.【名师点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)根据根与系数的关系结合x1=2x2,求出x1,x2的值.9.【2019年江苏省泰州市兴化市中考数学二模试卷】已知关于x的一元二次方程x2-(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【解析】(1)∵Δ=[-(m+2)]2-4×2m=(m-2)2≥0,∴不论m为何值,该方程总有两个实数根.(2)∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB·AC=2m,∵ΔABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2-2AB·AC=BC2,即(m+2)2-2×2m=32,解得:m∴m的值是又∵AB•AC=2m,m为正数,∴m【名师点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.10.【湖北省黄石市河口中学2019届九年级中考模拟考试三数学试题】已知x1、x2是一元二次方程(a-6)x 2+2ax +a =0的两个实数根.(1)求实数a 的取值范围;(2)若x 1、x 2满足x 1x 2-x 1=4+x 2,求实数a 的值.【解析】(1)∵一元二次方程(a -6)x 2+2ax +a =0有两个实数根,∴(2a )2-4(a -6)×a ≥0,a -6≠0, 解得,a ≥0且a ≠6.(2)∵x 1、x 2是一元二次方程(a -6)x 2+2ax +a =0的两个实数根,∴x 1+x 2=26a a -,x 1·x 2=x 1·x 2=6a a -, ∵x 1x 2-x 1=4+x 2, ∴x 1x 2=4+x 2+x 1,即6a a -=4+26a a -, 解得,a =24.【名师点睛】本题考查的是一元二次方程根的判别式、根与系数的关系,x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=b a ,x 1x 2=c a,反过来也成立. 11.【北京市石景山区2019届九年级统一练习暨毕业考试数学试题】关于x 的一元二次方程2(3)x m x-+20m ++=.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值.【解析】(1)依题意,得()()224[3]42b ac m m ∆=-=-+-+ 26948m m m =++--()21m =+.∵2(1)0m +≥,∴0∆≥.∴方程总有两个实数根.(2)由2320x m x m -+++=().可化为:[](1)(2)0x x m --+=, 得1212x x m ==+,,∵方程的两个实数根都是正整数,m+≥.∴21m≥-.∴1-.∴m的最小值为1【名师点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.。

滚动小专题二一元二次方程根的判别式及根与系数的关系

滚动小专题二一元二次方程根的判别式及根与系数的关系

解:(1)①当 k=0 时,方程的解是 x=0,符合题意; ②当 k≠0 时,Δ=(k+1)2-4k·k4=2k+1≥0, ∴k≥-12且 k≠0. 综上所述,k 的取值范围是 k≥-12.
(2)不存在.理由如下: 假设存在实数 k,使方程的两根的倒数和为 1, ∴x11+x12=1. ∵x1+x2=-k+k 1,x1x2=14, ∵x11+x12=x2x+1x2x1=-k+k 1×4=1, 解得 k=-45.∵k≥-12, ∴不存在实数 k,使方程两根的倒数和为 1.
∴6-a=-1,-2,-3,-6,∴a=7,8,9,12.
(3)∵b= a-5+ 10-2a+50, ∴a=5,b=50. ∴-x2+10x+5=0, ∴x1+x2=10,x1x2=-5,x21=10x1+5.
∴原式=x21·x1+10x22+5x2-b =(10x1+5)·x1+10x22+5x2-50 =10(x21+x22)+5(x1+x2)-50 =10(x1+x2)2-20x1x2+5(x1+x2)-50 =10×102-20×(-5)+5×10-50
数学 中考考点精练34讲
第二单元 方程与不等式
长滚动小专题(二) 一元二次方程根的判别式及根与系数的关系
1基础过关
1.(2019·南充三诊)已知 k 为实数,关于 x 的方程 x2+k2=2(k-1)x 有 两个实数根 x1,x2. (1)求实数 k 的取值范围; (2)若(x1+1)(x2+1)=2,试求 k 的值.
(2)由|x1|=|x2|,可得 x1=x2 或 x1=-x2. 当 x1=x2 时,Δ=(2m+1)2-4m(m-2)=0, 解得 m=-112. 此时 x1=x2=-2( (2mm-+21))=15; 当 x1=-x2 时,x1+x2=-2mm-+21=0,

中考数学复习:一元二次方程根的判别式

中考数学复习:一元二次方程根的判别式

全国中考真题解析考点汇编☆一元二次方程根的判别式一、选择题1.(2011江苏苏州,8,3分)下列四个结论中,正确的是A.方程12xx+=-有两个不相等的实数根B.方程11xx+=有两个不相等的实数根C.方程12xx+=有两个不相等的实数根D.方程1x ax+=(其中a为常数,且2a>)有两个不相等的实数根考点:根的判别式.专题:计算题.分析:把所给方程整理为一元二次方程的一般形式,判断解的个数即可.解答:解:A、整理得:x2+2x+1=0,△=0,∴原方程有2个相等的实数根,故错误,不合题意;B、整理得:x2-x+1=0,△<0,∴原方程没有实数根,故错误,不合题意;C、整理得:x2-2x+1=0,△=0,∴原方程有2个相等的实数根,故错误,不合题意;D、整理得:x2-ax+1=0,△>0,∴原方程有2个b不相等的实数根,故正确,符合题意.故选D.点评:考查方程的实数根的问题;用到的知识点为:一元二次方程根的判别式大于0,方程有2个不相等的实数根;根的判别式等于0,方程有2个相等的实数根;根的判别式小于0,方程没有实数根.2.(2011重庆江津区,9,4分)已知关于x的一元二次方程(a﹣l)x2﹣2x+l=0有两个不相等的实数根,则a的取值范围是()A、a<2B、a>2C、a<2且a≠lD、a<﹣2考点:根的判别式。

专题:计算题。

分析:利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.解答:解:△=4﹣4(a﹣1)=8﹣4a>0得:a<2.又a﹣1≠0∴a<2且a≠1.故选C.点评:本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.3.(2011湖北荆州,9,3分)关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是()A、1B、-1C、1或-1D、2考点:根与系数的关系;根的判别式.专题:计算题.分析:根据根与系数的关系得出x1+x2=- ba,x1x2= ca,整理原式即可得出关于a的方程求出即可.解答:解:依题意△>0,即(3a+1)2-8a(a+1)>0,即a2-2a+1>0,(a-1)2>0,a≠1,∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,∴x1-x1x2+x2=1-a,∴x1+x2-x1x2=1-a,∴ 3a+1a- 2a+2a=1-a,解得:a=±1,又a≠1,∴a=-1.故选:B.点评:此题主要考查了根与系数的关系,由x1-x1x2+x2=1-a,得出x1+x2-x1x2=1-a是解决问题的关键.4.(2011•青海)关于x的一元二次方程x2+4x+k=0有实数解,则k的取值范围是()A、k≥4B、k≤4C、k>4D、k=4考点:根的判别式;解一元一次不等式。

一元二次方程的复习(根的判别式及应用题)

一元二次方程的复习(根的判别式及应用题)

一元二次方程根的判别式专及应用题(培优)例题1. 如果方程2210ax x ++=有两个不等实根,则实数a 的取值范围是________练习1、已知关于x 的一元二次方程x 2 +kx +1 =0有两个相等的实数根,则k = . 练习2、关于x 的一元二次方程 k -42-x 2x -4k =0有两个不相等的实数根,则k 的取值范围是 .练习3.关于x 的方程kx 2﹣4x ﹣=0有实数根,则k 的取值范围是 . 例题2、(根的判别式与化简求值综合)已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,则4)2(222-+-b a ab 的值为练习4、已知方程043222=-+-a ax x 没有实数根,(1)求a 的取值范围 (2)求代数式的值a a a -++-21682例题3、关于x 的一元二次方程.012=-+-m mx x(1)求证:方程总有两个实数根; (2)若方程有一根大于3,求m 的取值范围.练习5. 已知:关于x 的方程0122=-+kx x(1)求证:方程有两个不相等的实数根。

(2)若方程的一个根是-1,求它的另一个根及k 的值。

例题4、若△ABC 的三边长a ,b ,c 满足a ²+b ²+c ²-ab-bc-ac=0,则△ABC 的形状是?练习6、已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,判断△ABC 的形状( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 练习7、c b a ,,是△ABC 的三条边,且一元二次方程02)(2)(2=-++---b c a x b a x c a 有两个相等的初数根,判断△ABC 的形状,并证明你的结论。

练习8、筹腰三角形的边长分别为a ,b ,3,且a ,b 是关于x 的一元二次方程x ²-6x+n-1=0 的两根,则n 的值为练习9、已知:∆ABC 的三边分别是a b c 、、,方程02442=-++c b x a x 有两个相等的实数根,且a b c 、、 满足b c a =-23.(1)求证:∆ABC 是等边三角形.(2)若a b 、为方程0)32(22=+-+-k kx x 的两根,求k 的值.练习10、2011年底某市汽车拥有量为100万辆,而截止到2013年底,该市的汽车拥有量已达到144万辆.(1)求2011年底至2013年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2014年底全市汽车拥有量不超过...155.52万辆.预计2014年报废的汽车数量是2013年底汽车拥有量的10%,求2013年底至2014年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.例题6、某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?练习11、今年夏天,某西瓜经营户以2元/千克的价格购进一批西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多出售40千克。

中考复习——一元二次方程的根的判别式(解析版)

中考复习——一元二次方程的根的判别式(解析版)

中考复习——一元二次方程的根的判别式一、选择题1、一元二次方程2x2-3x+1=0的根的情况是().A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根答案:B解答:∵Δ=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.2、已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是().A. k<14B. k≤14C. k>4D. k≤14且k≠0答案:B解答:∵关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,∴Δ=b2-4ac≥0,∵a=1,b=-(2k+1),c=k2+2k,∴[-(2k+1)]2-4×1×(k2+2k)≥0,∴-4k≥-1,∴k≤14.选B.3、若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是().A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定答案:A解答:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴Δ=k2-4b>0,∴方程有两个不相等的实数根.选A.4、关于x的一元二次方程x2+2(m-1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是().A. m≤12B. m≤12且m≠0C. m<1D. m<1且m≠0答案:B解答:∵Δ=[2(m-1)]2-4m2=-8m+4≥0,∴m≤12.∵x1+x2=-2(m-1)>0,x1x2=m2>0,∴m<1,m≠0,∴m≤12且m≠0.5、关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,且α2+β2=12,那么m的值为().A. -1B. -4C. -4或1D. -1或4答案:A解答:由题意知α+β=-2(m-1)=2-2m,αβ=m2-m,且Δ=[2(m-1)]2-4(m2-m)≥0,4(m2-2m+1)-4m2+4m≥0,4m2-8m+4-4m2+4m≥0,-4m≥-4,m≤1,由α2+β2=12可有(α+β)2-2αβ=12,(2-2m)2-2(m2-m)=12,4m2-8m+4-2m2+2m-12=0,2m2-6m-8=0,m2-3m-4=0,(m-4)(m+1)=0,解得m1=-1,m2=4,∵m ≤1故m =-1. 故答案为:A.6、关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1.其中正确结论的个数是( ).A. 0个B. 1个C. 2个D. 3个答案:D解答:①两个整数根且乘积为正,两个根同号,由韦达定理有,x 1·x 2=2n >0,y 1·y 2=2m >0,y 1+y 2=-2n <0,x 1+x 2=-2m <0,这两个方程的根都为负根,①正确; ②由根判别式有:Δ=b 2-4ac =4m 2-8n ≥0,Δ=b 2-4ac =4n 2-8m ≥0, ∵4m 2-8n ≥0,4n 2-8m ≥0,∴m 2-2n ≥0,n 2-2m ≥0,m 2-2m +1+n 2-2n +1=m 2-2n +n 2-2m +2≥2,(m -1)2+(n -1)2≥2,②正确;③由根与系数关系可得2m -2n =y 1y 2+y 1+y 2=(y 1+1)(y 2+1)-1,由y 1、y 2均为负整数,故(y 1+1)(y 2+1)≥0,故2m -2n ≥-1,同理可得:2n -2m =x 1x 2+x 1+x 2=(x 1+1)(x 2+1)-1,得2n -2m ≥-1,即2m -2n ≤1,故③正确. 7、若关于x 的不等式x -2a<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( ). A. 有两个相等的实数根 B. 有两个不相等的实数根C. 无实数根D. 无法确定答案:C解答:解不等式x -2a <1得x <1+2a , 而不等式x -2a<1的解集为x <1, 所以1+2a=1,解得a =0, 又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.8、已知命题“关于x 的一元二次方程x 2+bx +1=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是( ).A. b=-1B. b=2C. b=-2D. b=0答案:A解答:Δ=b2-4,由于当b=-1时,满足b<0,而Δ<0,方程没有实数解,所以当b=-1时,可说明这个命题是假命题.9、在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c 是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A. 若M1=2,M2=2,则M3=0B. 若M1=1,M2=0,则M3=0C. 若M1=0,M2=2,则M3=0D. 若M1=0,M2=0,则M3=0答案:B解答:设3个函数的判别式分别为Δ1=a2-4,Δ2=b2-8,Δ3=c2-16,∵b2=ac,∴c=2ba,A选项,若M1=2,M2=2,则Δ1=a2-4>0,Δ2=b2-8>0,∵a>2,b2>8,∴c=2ba与4无法比较大小,∴Δ3=c2-16无法确定,故A错误;B选项,若M1=1,M2=0,则Δ1=a2-4=0,Δ2=b2-8<0,∴a=2,0<b2<8,∴c=282ba<=4,∴Δ3=c2-16<0,∴M3=0,故B正确;C选项,若M1=0,M2=2,则Δ1=a2-4<0,Δ2=b2-8>0,∴0<a<2,b2>8,∴C =2b a>4,∴Δ3=c 2-16>0, ∴M 3=2,故C 错误; D 选项,若M 1=0,M 2=0, 则Δ1=a 2-4<0,Δ2=b 2-8<0, ∴0<a <2,0<b 2<8,∴c =2b a与4无法比较大小,∴Δ3=c 2-16无法确定,故D 错误. 选B.10、已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个公共点. 有下列结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx +c +2=0无实数根; ③a -b +c ≥0; ④a b cb a++-的最小值为3.其中,正确结论的个数是( ).A. 1个B. 2个C. 3个D. 4个答案:D解答:∵b >a >0, ∴-2ba<0, 所以①正确;∵抛物线与x 轴最多有一个交点, ∴b 2-4ac ≤0,∴关于x 的方程αx 2+bx +c +2=0中,Δ=b 2-4a (c +2)=b 2-4ac -8a <0, 所以②正确;∵a >0及抛物线与x 轴最多有一个交点, ∴x 取任何值时,y ≥0,∴当x =-1时,a -b +c ≥0, 所以③正确;· 当x =-2时,4a -2b +c ≥0 a +b +c ≥3b -3a a +b +c ≥3(b -a )a b cb a++-≥3,所以④正确. 选D. 二、填空题11、若关于x 的一元二次方程(x +2)2=n 有实数根,则n 的取值范围是______. 答案:n ≥0解答:∵关于x 的一元二次方程(x +2)2=n 有实数根, ∴x 2+4x +4-n =0有实数根, ∴Δ=b 2-4ac =16-4(4-n )=4n ≥0, ∴n ≥0, 故答案为:n ≥0.12、已知关于x 的一元二次方程x 2+k =0有两个相等的实数根,则k 值为______. 答案:3解答:∵关于x 的一元二次方程x 2+k =0有两个相等的实数根,∴Δ=()2-4k =0,∴12-4k =0,解得k =3.13、已知x =4是一元二次方程x 2-3x +c =0的一个根,则另一个根为______. 答案:-1解答:设另一个根为t , 根据题意得4+t =3, 解得t =-1, 即另一个根为-1.14、若一元二次方程x 2+4x +c =0有两个不相等的实数根,则c 的值可以是______(写出一个即可). 答案:3解答:若一元二次方程x2+4x+c=0有两个不相等的实数根,则Δ=42-4c>0,故c<4.15、若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是______.答案:k≤5且k≠1解答:∵一元二次方程(k-1)x2+4x+1=0有实数根,∴k-1≠0,且b2-4ac=16-4(k-1)≥0,解得:k≤5且k≠1.16、已知关于x的一元二次方程x2-4x+m-1=0的实数根x1,x2,满足3x1x2-x1-x2>2,则m 的取值范围是______.答案:3<m≤5解答:由一元二次方程根与系数的关系,得x1x2=m-1,x1+x2=4,代入3x1x2-x1-x2>2,得3(m-1)-4>2,解得m>3,又Δ=16-4(m-1)≥0,解得m≤5,综上可知:3<m≤5.17、已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1和x2,且(x1-2)(x1-x2)=0,则k的值是______.答案:-2或-9 4解答:∵(x1-2)(x1-x2)=0,∴x1-2=0或x1-x2=0.①如果x1-2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2-2=0,得4+2(2k+1)+k2-2=0,整理,得k2+4k+4=0,解得k=-2.②如果x1-x2=0,那么(x1-x2)2=(x1+x2)2-4x1x2=[-(2k+1)]2-4(k2-2)=4k+9=0,解得k=-94.又∵Δ=(2k+1)2-4(2k+1)≥0.解得:k≥-94.所以k的值为-2或-94.18、关于x的方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,且x12+x22=3,则m=______.答案:0解答:∵方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,∴x1+x2=2m-1,x1x2=m2-1,∵x12+x22=(x1+x2)2-2x1x2=(2m-1)2-2(m2-1)=3,解得:m1=0,m2=2,∵方程有两实数根,∴Δ=(2m-1)2-4(m2-1)≥0,既m≤5 4∴m2=2(不合题意,舍去),∴m=0.19、关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解.其中正确的是______(填序号).答案:①③解答:当m=0时,x=-1,方程只有一个解,①正确;当m≠0时,方程mx2+x-m+1=0是一元二次方程,1-4m(1-m)=1-4m+4m2=(2m-1)2≥0,方程有两个实数解,②错误;把mx2+x-m+1=0分解为(x+1)(mx-m+1)=0,当x=-1时,m-1-m+1=0,即x=-1是方程mx2+x-m+1=0的根,③正确;故答案为∶①③.20、对于函数y=x n+x m,我们定义y’=nx n-1+mx m-1(mn为常数).例如y=x4+x2,则y’=4x3+2x.已知:y=13x3+(m-1)x2+m2x.(1)若方程y’=0有两个相等实数根,则m的值为______.(2)若方程y’=m-14有两个正数根,则m的取值范围为______.答案:(1)1 2(2)m≤34且m≠12解答:(1)y’=x2+2(m-1)x+m2=0方程有两个相等的实数根,则Δ=0,即Δ=4(m-1)2-4m2=-8m+4=0,则m=12.(2)y’=x2+2(m-1)x+m2=m-14,∴x2+2(m-1)x+m2-m+14=0.要使方程有两个实数根,则Δ=4(m-1)2-4(m2-m+14)≥0,∴m≤34.要使方程有正根,则当x=0时x2+2(m-1)x+m2-m+14>0,∴m≠12.答案为m≤34且m≠12.三、解答题21、已知关于x的一元二次方程(m-1)x2+2x-1=0有两个不相等的实数根,求m的取值范围.答案:m>0且m≠1.解答:∵一元二次方程有两个不等实根,∴Δ=22-4(m-1)×(-1)>0,即m>0,又m-1≠0,∴m≠1,∴m>0且m≠1.22、已知关于x的一元二次方程x2-3x+m=0有两个不相等的实数根x1、x2.(1)求m的取值范围.(2)当x1=1时,求另一个根x2的值.答案:(1)m<9 4(2)2解答:(1)由题意得:Δ=(-3)2-4×1×m=94m0,解得:m<94.(2)∵x1+x2=-ba=3,x1=1,∴x2=2.23、已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.答案:(1)k≤54.(2)k=-2.解答:(1)有两个实数根x1,x2,∴Δ=b2-4ac=(2k-1)2-4(k2-1)=-4k+5,∴-4k+5≥0,∴k≤54.(2)∵x12+x22=(x1+x2)2-2x1x2,∴(x1+x2)2-2x1x2=16+x1x2,∴(2k-1)2=16+3(k2-1)k2-4k-12=0,∴k=-2或k=6(舍),∴k=-2.24、已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围.(2)若x1,x2满足3x1=|x2|+2,求m的值.答案:(1)m的取值范围为m≤5.(2)符合条件的m的值为4.解答:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴Δ=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1·x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4.当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.25、已知:一元二次方程12x2+kx+k-12=0.(1)求证:不论k为何实数时,此方程总有两个实数根.(2)设k<0,当二次函数y=12x2+kx+k-12的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式.(3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?答案:(1)证明见解答.(2)此二次函数的解析式是y=12x2-x-32.(3)-2≤m≤2.解答:(1)∵Δ=k2-4×12×(k-12)=k2-2k+1=(k-1)2≥0,∴关于x的一元二次方程12x2+kx+k-12=0,不论k为何实数时,此方程总有两个实数根.(2)令y=0,则12x2+kx+k-12=0,∵x A+x B=-2k,x A·x B=2k-1,∴|x A-x B=2|k-1|=4,即|k-1|=2,解得k=3(不合题意,舍去),或k=-1,∴此二次函数的解析式是y=12x2-x-32.(3)由(2)知,抛物线的解析式是y =12x 2-x -32, 易求A (-1,0),B (3,0),C (1,-2),∴AB =4,AC,BC, 显然AC 2+BC 2=AB 2,得△ABC 是等腰直角三角形,AB 为斜边,∴外接圆的直径为AB =4,∴-2≤m ≤2.26、设m 是不小于-1的实数,使得关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根x 1,x 2.(1)若11x +21x =1,求132m-的值. (2)求111mx x -+221mx x --m 2的最大值. 答案:(1(2)当m =-1时,最大值为3.解答:(1)∵方程有两个不相等的实数根,∴Δ=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1,结合题意知:-1≤m <1.∵x 1+x 2=-2(m -2),x 1x 2=m 2-3m +3 ∴11x +21x =1212x x x x +=()22233m m m ---+=1 解得:m 1=12,m 2=12(不合题意,舍去) ∴132m-. (2)111mx x -+221mx x --m 2 =()()1212121221m x x mx x x x x x +--++-m 2=-2(m-1)-m2=-(m+1)2+3.当m=-1时,最大值为3.。

2022年中考数学真题-专题07 一元二次方程(1)(全国通用解析版)

2022年中考数学真题-专题07 一元二次方程(1)(全国通用解析版)

专题07 一元二次方程一.选择题1. 关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,则这两根之积为( ) A. 13 B. 23 C. 1 D. 13- 【答案】D【解析】【分析】根据一元二次方程根与系数的关系即可求解. 【详解】解:关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,设另一根为2x ,则223x x +=, 213x ∴=-, 213xx ∴=-, 故选:D【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.2. 方程2430x x ++=的两个根为( )A. 121,3x x ==B. 121,3x x =-=C. 121,3x x ==-D. 121,3x x =-=-【答案】D【解析】【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∴(1)(3)=0x x ++∴1213x x =-=-,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.3. 下列一元二次方程有实数解的是( )A. 2x 2﹣x +1=0B. x 2﹣2x +2=0C. x 2+3x ﹣2=0D. x 2+2=0 【答案】C【解析】【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根; B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根;故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.4. 用配方法解方程x 2-2x =2时,配方后正确的是( )A. ()213x +=B. ()216x +=C. ()213x -=D. ()216x -= 【答案】C【解析】【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【详解】解:x 2-2x =2,x 2-2x +1=2+1,即(x -1)2=3.故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5. 若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( )A. 36B. 36-C. 9D. 9- 【答案】C【解析】【分析】根据判别式的意义得到2640c ∆=-=,然后解关于c 的一次方程即可.【详解】解:∵方程260x x c ++=有两个相等的实数根∵26410c ∆=-⨯⨯=解得9c =故选:C .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的跟与24b ac ∆=-的关系,关键是分清楚以下三种情况:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根. 6. 已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( )A. 2022-B. 0C. 2022D. 4044 【答案】B【解析】【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∴2320220m m +-=,且m ≠0,∴32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.7. 已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A. 0,4B. 1,5C. 1,-5D. -1,5【答案】D【解析】【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可. 【详解】抛物线2y x mx =+的对称轴为直线2x =,221m ∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8. 学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A. 2625(1)400x -=B. 2400(1)625x +=C. 2625400x =D. 2400625x =【答案】B【解析】【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.9. 一元二次方程22560x x -+=的根的情况为( )A. 无实数根B. 有两个不等的实数根C. 有两个相等的实数根D. 不能判定【答案】A【解析】【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵Δ=(−5)2−4×2×6=-23<0,∴方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10. 已知关于x 的方程()22210x m x m --+=的两实数根为1x ,2x ,若()()12113++=x x ,则m 的值为( )A. 3-B. 1-C. 3-或3D. 1-或3【答案】A【解析】【分析】利用根与系数的关系以及()22=2140∆--≥m m 求解即可. 【详解】解:由题意可知:1221221x x m x x m+=-⎧⎨⋅=⎩,且()22=2140∆--≥m m ∵()()121212111=3++=⋅+++x x x x x x ,∴()22113+-+=m m ,解得:3m =-或1m =,∵()22=2140∆--≥m m ,即14m ≤, ∴3m =-,故选:A 【点睛】本题考查根与系数的关系以及根据方程根的情况确定参数范围,解题的关键是求出14m ≤,再利用根与系数的关系求出3m =-或1m =(舍去). 11. 小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( )A. ()22001242x +=B. ()22001242x -= C.()20012242x += D. ()20012242x -=【答案】A【解析】【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∴可列方程为:()22001242x +=,故选:A .【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.12. 关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是( )A. 4k >B. 4k <C. 4k <-D. 1k > 【答案】A【解析】【分析】根据一元二次方程根的判别式小于0即可求解.【详解】解:∵关于x 的一元二次方程240x x k -+=无实数解,∴1640k ∆=-<解得:4k >故选:A∵【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.13. 临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x ,则根据题意,可列方程为( )A. 8(12)11.52x +=B. 28(1)11.52x ⨯+=C. 28(1)11.52x +=D. ()28111.52x += 【答案】C【解析】 【分析】设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,∴28(1+)=11.52x故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.14. 若关于x 的一元二次方程20x x k +-=有两个实数根,则k 的取值范围是( ) A. 14k >- B. 14k ≥- C. 14k <- D. 14k ≤- 【答案】B【解析】 【分析】根据关于x 的一元二次方程x 2+x -k =0有两个实数根,得出Δ=b 2-4ac ≥0,即1+4k ≥0,从而求出k 的取值范围.【详解】解:∵x 2+x -k =0有两个实数根,∴Δ=b 2-4ac ≥0,即1+4k ≥0,解得:k ≥-14, 故选:B .【点睛】本题考查一元二次方程根的判别式,掌握Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根;Δ<0⇔方程没有实数根是本题的关键. 15. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A. ()316210x x -=B. ()316210x -=C. ()316210x x -=D. 36210x = 【答案】A【解析】【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16. 一元二次方程210x x +-=的根的情况是( )A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 只有一个实数根【答案】A【解析】【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac ∆=-=+=>∴一元二次方程210x x +-=的根的情况是有两个不相等的实数根, 故选:A.【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.17. 已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( )A. 0B. -10C. 3D. 10【答案】A【解析】【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键. 18. 若关于x 的一元二次方程2210ax x 有两个不相等的实数根,则a 的取值范围是( )A. 0a ≠B. 1a >-且0a ≠C. 1a ≥-且0a ≠D. 1a >- 【答案】B【解析】【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根, ∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.19. 关于x 的方程2320x kx --=实数根的情况,下列判断正确的是( )A. 有两个相等实数根B. 有两个不相等实数根C. 没有实数根D. 有一个实数根 【答案】B【解析】【分析】根据根的判别式直接判断即可得出答案.【详解】解:对于关于x 的方程2320x kx --=,∵()22341(2)980k k ∆=--⨯⨯-=+>,∴此方程有两个不相等的实数根.故选B .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20. 中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A. 2B. 32C. 12 【答案】A【解析】【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∵小正方形与每个直角三角形面积均为1, ∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0, ∴a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.二、填空题21. 请填写一个常数,使得关于x 的方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一) 【解析】【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a , ∵要使原方程有两个不同的实数根, ∴()2=240a ∆-->, ∴1a <,∴满足题意的常数可以为0, 故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键.22. 方程2x 2+1=3x 的解为________. 【答案】1211,2x x == 【解析】【分析】先移项,再利用因式分解法解答,即可求解. 【详解】解:移项得:22310x x -+=, ∵()()2110x x --=, ∵210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.23. 若一元二次方程2240x x m -+=有两个相等的实数根,则m =________. 【答案】2 【解析】【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,【详解】解:由题意可知:2a =,4b =-,c m =240b ac =-=, ∴16420m -⨯⨯=, 解得:2m =. 故答案为:2.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0>;方程有两个相等的实数根时,0=;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键. 24. 若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【解析】【分析】由题意解一元二次方程2640x x -+=得到3x =+3x =-据勾股定理得到直角三角形斜边的长是【详解】解:一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得66322x ±===±∴==,故答案为:【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.25. 已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______. 【答案】1 【解析】【分析】由一元二次方程根的判别式列方程可得答案. 【详解】解:一元二次方程有两个相等的实数根, 可得判别式0=, ∴440k -=, 解得:1k =. 故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.26. 一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______. 【答案】1 【解析】【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+=243101x x -++=+2441x x -+=()221x -=∴1k = 故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.27. 已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____. 【答案】3 【解析】【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可. 【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,∴x 1•x 2=31=3.故答案为3.【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•c x x baa=,.28. 若关于x 的一元二次方程220x x k -+=有实数根,则实数k 的取值范围是_____. 【答案】1k ≤ 【解析】【分析】由关于x 的一元二次方程220x x k -+=有实数根,可得440,k 再解不等式可得答案.【详解】解: 关于x 的一元二次方程220x x k -+=有实数根, ∴()22410k ∆=--⨯⨯≥, 即440,k解得:1k ≤ . 故答案为:1k ≤.【点睛】本题考查的是一元二次方程根的判别式的应用,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根. 29. 已知实数12,x x 是方程210x x +-=的两根,则12x x =______. 【答案】1- 【解析】【分析】由一元二次方程根与系数的关系直接可得答案. 【详解】解: 实数12,x x 是方程210x x +-=的两根,1211,1x x故答案为:1-【点睛】本题考查的是一元二次方程根与系数的关系,掌握“12cx x a=”是解本题的关键.30. 某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示). 【答案】30% 【解析】【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x 的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x (0x >),则2020年新注册用户数为100(1+x )万,2021年的新注册用户数为100(1+x )2万户, 依题意得100(1+x )2=169,解得:x 1=0.3,x 2=-2.3(不合题意舍去), ∴x =0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.31. 设1x ,2x 是方程2230x x +-=的两个实数根,则2212x x +的值为________.【答案】10 【解析】【分析】由根与系数的关系,得到122x x +=-,123x x =-,然后根据完全平方公式变形求值,即可得到答案. 【详解】解:根据题意,∵1x ,2x 是方程2230x x +-=的两个实数根, ∴122x x +=-,123x x =-,∴2212122212()2(2)2(3)10x x x x x x =+-=--⨯-=+;故答案为:10.【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式变形求值,解题的关键是掌握得到122x x +=-,123x x =-.32. 如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为______cm (玻璃瓶厚度忽略不计).【答案】7.5 【解析】【分析】如详解中图所示,将题中主视图做出来,用垂径定理、勾股定理计算即可.【详解】如下图所示,设球的半径为r cm ,则OG =EG -r =EF -GF -r =EF -AB -r =32-20-r =(12-r )cm , ∵EG 过圆心,且垂直于AD , ∵G 为AD 的中点, 则AG =0.5AD =0.5×12=6cm , 在Rt OAG 中,由勾股定理可得,222OA OG AG =+, 即222(12)6r r =-+, 解方程得r =7.5, 则球的半径为7.5cm .【点睛】本题考查了主视图、垂径定理和勾股定理的运用,准确做出立体图形的主视图是解题的关键.33. 已知关于x 的一元二次方程220x x m ++=有两个不相等的实数根,则实数m 的取值范围是______. 【答案】1m < 【解析】【分析】根据判别式的意义得到22410m ∆=-⨯⨯>,然后解不等式求出m 的取值即可.【详解】解:根据题意得22410m ∆=-⨯⨯>, 解得1m <,所以实数m 的取值范围是1m <. 故答案为:1m <.【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.34. 我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289 【解析】【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c+-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,, ∴6a b c +-=①,7a b -=②,131,22c c a b +-∴==, 222a b c +=③,22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭, 解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==, 故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c +-是解题的关键.35. 已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是________. 【答案】6 【解析】【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案. 【详解】∵a -b 2=4 ∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=--∵240b a =-≥ ∴4a ≥当a=4时,()213a --取得最小值为6 ∴222a a --的最小值为6 ∵22231422a a a b a --=-+- ∴22314a b a -+-的最小值6 故答案为:6.【点睛】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.三、解答题36. 解方程:x 2-2x -3=0 【答案】121,3x x =-= 【解析】【分析】利用因式分解法解一元二次方程即可得. 【详解】解:2230x x --=,(1)(3)0x x +-=,10x +=或30x -=, 1x =-或3x =,故方程的解为121,3x x =-=.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键. 37. 已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 【答案】(1)k 174≤; (2)k =3 【解析】【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可; (2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. 【小问1详解】解:∵一元二次方程2320x x k ++-=有实数根. ∴∆≥0,即32-4(k -2)≥0, 解得k 174≤∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.38. 建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【答案】(1)20% (2)18个【解析】【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.【小问1详解】解:设该市改造老旧小区投入资金的年平均增长率为x ,根据题意得:21000(1)1440x +=,解这个方程得,10.2x =,2 2.2x =-,经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%.设该市在2022年可以改造y 个老旧小区,由题意得:80(115%)1440(120%)y ⨯+≤⨯+, 解得181823y ≤. ∵y 为正整数,∴最多可以改造18个小区.答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.39. 阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= .(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n m m n +的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值. 【答案】(1)32;12- (2)132-(3或【解析】【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t-进行变形求解即可. 【小问1详解】解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-. 故答案为:32;12-. 【小问2详解】∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-, ∴22n m m n m n mn++= ()22m n mn mn +-= 23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=- 132=- 【小问3详解】∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-, ∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 924=+ 174=∴2t s -=或2t s -=-,当2t s -=时,11212t s s t st --===-当t s -=时,11212t s s t st --===- 综上分析可知,11s t-或. 【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出2t s -=或2t s -=-,是解答本题的关键. 40. 某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【解析】【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可; (2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【小问1详解】解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨, 由题意得:()2100800x x +-=,解得:300x =,∴2100500x -=,答:4月份再生纸的产量为500吨;【小问2详解】 解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭, 解得:%20%m =或% 3.2m =-(不合题意,舍去)∴20m =,∴m 的值20;【小问3详解】解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∴()2120011500y +=答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.41. 已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围;(2)若125x x =,求k 的值.【答案】(1)34k >(2)2【解析】【分析】(1)利用一元二次方程根的判别式大于0建立不等式,解不等式即可得;(2)先利用一元二次方程的根与系数的关系可得21215x x k =+=,再结合(1)的结论即可得.【小问1详解】 解:关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根,∴此方程根的判别式()()2221410k k ∆=+-+>, 解得34k >. 【小问2详解】解:由题意得:21215x x k =+=,解得2k =-或2k =,由(1)已得:34k >, 则k 的值为2.【点睛】本题考查了一元二次方程根的判别式、以及根与系数的关系,熟练掌握一元二次方程的相关知识是解题关键.42. 已知关于x 的一元二次方程22230x x m --=.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.【答案】(1)见解析 (2)1m =±【解析】【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【小问1详解】()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥,∴241240m +≥>,∴该方程总有两个不相等的实数根; 【小问2详解】方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-,∵25αβ+=,∴52αβ=-,∴522ββ-+=,解得:3β=,1α=-,∴23133m -=-⨯=-,即1m =±.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系.43. 阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务。

中考数学 中档题突破 专项训练一 一元二次方程根的判别式及根与系数的关系

中考数学 中档题突破 专项训练一 一元二次方程根的判别式及根与系数的关系

实数根x1,x2,且(x1+2)(x2+2)-2x1x2=17,则m的值为 A.2或6
( A)
B.2或8
C.2
D.6
5.(2022·襄州区模拟)如果关于x的一元二次方程kx2- 2k+1 x+1=0
有两个不等的实数根,那么k的取值范围是
( D)
1 A.k<2
1 B.k<2且k≠0
11
11
C.-2≤k<2 D.-2≤k<2且k≠0
∵m≤5且m≠5,
∴m=2.
程x2-6x+n-1=0的两根,则n的值为1100.
13.关于x的方程x2-2x+2m-1=0有实数根,且m为正整数,则此方程
的根为x1x=1=x2x2==1 1.
14.(2020·黄石)已知:关于x的一元二次方程x2+ m x-2=0有两个实 数根. (1)求m的取值范围; 解:(1)由题意,得 Δ=( m)2-4×1×(-2)=m+8≥0,且m≥0, 解得m≥0.
A.2 B.-1
1 C.-2 D.-2
3.(2019·荆州)若一次函数y=kx+b的图象不经过第二象限,则关于x
的方程x2+kx+b=0的根的情况是
( A)
A.有两个不等的实数根
B.有两个相等的实数根
C.无实数根
D.无法确定
4.(2022·仙桃)若关于x的一元二次方程x2-2mx+m2-4m-1=0有两个
C.k≤54且k≠0
D.k≥54
( C)
7.若菱形ABCD的一条对角线长为8,边CD的长是方程x2-10x+24=0的
一个根,则该菱形ABCD的周长为
( B)
A.16
B.24
C.16或24
D.48
8.关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程

一元二次方程(优选真题60道)中考数学真题(全国通用)(解析版)

一元二次方程(优选真题60道)中考数学真题(全国通用)(解析版)

三年(2021-2023)中考数学真题分项汇编【全国通用】一元二次方程(优选真题60道)一.选择题(共20小题)1.(2023•新疆)用配方法解一元二次方程x2﹣6x+8=0配方后得到的方程是()A.(x+6)2=28B.(x﹣6)2=28C.(x+3)2=1D.(x﹣3)2=1【分析】利用解一元二次方程﹣配方法,进行计算即可解答.【解答】解:x2﹣6x+8=0,x2﹣6x=﹣8,x2﹣6x+9=﹣8+9,(x﹣3)2=1,故选:D.【点评】本题考查了解一元二次方程﹣配方法,熟练掌握解一元二次方程﹣配方法是解题的关键.2.关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,则m的取值范围是()A.m<32B.m>3C.m≤3D.m<3【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之即可得出m的取值范围,对照四个选项即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4×1×(m﹣2)=12﹣4m>0,解得:m<3.故选:D.【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.3.(2023•滨州)一元二次方程x2+3x﹣2=0根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定【分析】利用一元二次方程根的判别式求解即可.【解答】解:由题意得,Δ=32﹣4×1×(﹣2)=17>0,∴方程有两个不相等的实数根.故选:A.【点评】本题主要考查了一元二次方程根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2﹣4ac>0,则方程有两个不相等的实数根,若Δ=b2﹣4ac=0,则方程有两个相等的实数根,若Δ=b2﹣4ac<0,则方程没有实数根.4.(2023•天津)若x1,x2是方程x2﹣6x﹣7=0的两个根,则()A.x1+x2=6B.x1+x2=﹣6C.x1x2=76D.x1x2=7【分析】根据一元二次方程根与系数的关系进行判断即可.【解答】解:∵x1,x2是方程x2﹣6x﹣7=0的两个根,∴x1+x2=6,x1x2=﹣7,故选:A.【点评】本题考查了一元二次方程根与系数的关系,应掌握:设x1,x2是一元二次方程y=ax2+bx+c(a≠0)的两个实数根,则x1+x2=−ba,x1x2=ca.5.(2023•永州)某市2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是()A.2.7(1+x)2=2.36B.2.36(1+x)2=2.7C.2.7(1﹣x)2=2.36D.2.36(1﹣x)2=2.7【分析】利用2022年间每年人均可支配收入=2020年间每年人均可支配收入×(1+每年人均可支配收入的增长率)2,即可得出关于x的一元二次方程,此题得解.【解答】解:根据题意得2.36(1+x)2=2.7.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.(2023•乐山)若关于x的一元二次方程x2﹣8x+m=0两根为x1、x2,且x1=3x2,则m的值为()A.4B.8C.12D.16【分析】首先根据根与系数的关系得出x1+x2=8,再根据x1=3x2,求得x1,x2,进一步得出x1x2=m求得答案即可.【解答】解:∵一元二次方程x2﹣8x+m=0的两根为x1,x2,∴x1+x2=8,∵x1=3x2,解得x1=6,x2=2,∴m=x1x2=6×2=12.故选:C.【点评】本题考查了根与系数的关系.二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.7.(2023•内江)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如:3⊗2=22﹣3×2=﹣2,则关于x 的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】根据运算“⊗”的定义将方程(k﹣3)⊗x=k﹣1转化为一般式,由根的判别式Δ=(k﹣1)2+4>0,即可得出该方程有两个不相等的实数根.【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式和实数的运算,牢记“当Δ>0时,方程有两个不相等的实数根”是解决问题的关键.8.已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】先利用第四象限点的坐标特征得到ac<0,则判断Δ>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第四象限,∴a>0,c<0,∴ac<0,∴方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax 2+bx +c =0有两个不相等的实数根.故选:A .【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.9.关于x 的一元二次方程x 2+2ax +a 2﹣1=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关【分析】先计算一元二次方程根的判别式,根据根的判别式得结论.【解答】解:∵Δ=(2a )2﹣4×1×(a 2﹣1)=4a 2﹣4a 2+4=4>0.∴关于x 的一元二次方程x 2+2ax +a 2﹣1=0有两个不相等的实数根.故选:C .【点评】本题主要考查了一元二次方程根的判别式,掌握“根的判别式与方程的解的关系”是解决本题的关键.10.(2023•泸州)若一个菱形的两条对角线长分别是关于x 的一元二次方程x 2﹣10x +m =0的两个实数根,且其面积为11,则该菱形的边长为( )A .√3B .2√3C .√14D .2√14【分析】先设出菱形两条对角线的长,利用根与系数的关系及对角线与菱形面积的关系得等式,再根据菱形的边长与对角线的关系求出菱形的边长.【解答】解:设菱形的两条对角线长分别为a 、b ,由题意,得{a +b =10ab =22. ∴菱形的边长=√(a 2)2+(b 2)2=12√a 2+b 2=12√(a +b)2−2ab=12√100−44=12√56=√14.故选:C.【点评】本题主要考查了根与系数的关系及菱形的性质,掌握菱形对角线与菱形的面积、边长间的关系,根与系数的关系及等式的变形是解决本题的关键.11.(2023•台湾)利用公式解可得一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,求a值为何()A.−11+√1096B.−11+√1336C.11+√1096D.11+√1336【分析】利用公式法即可求解.【解答】解:3x2﹣11x﹣1=0,这里a=3,b=﹣11,c=﹣1,∴Δ=(﹣11)2﹣4×3×(﹣1)=133>0,∴x=11±√1332×3=11±√1336,∵一元二次方程式3x2﹣11x﹣1=0 的两解为a、b,且a>b,∴a的值为11+√1336.故选:D.【点评】本题考查了解一元二次方程﹣公式法,能熟练运用公式法解答方程是解此题的关键.12.(2022•淮安)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的值可以是()A.﹣2B.﹣1C.0D.1【分析】根据根的判别式列出不等式求出k的范围即可求出答案.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴Δ=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k<﹣1,故选:A.【点评】本题考查了根的判别式,牢记“当Δ<0时,方程无实数根”是解题的关键.13.(2022•攀枝花)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A.m<14B.m≤14C.m≥−14D.m>−14【分析】根据判别式的意义得到Δ=1+4m≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣x﹣m=0有实数根,∴Δ=(﹣1)2﹣4(﹣m)=1+4m≥0,解得m≥−1 4,故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.14.(2022•内蒙古)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如3⊗2=22﹣3×2=﹣2,则关于x的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】根据运算“⊗”的定义将方程(k﹣3)⊗x=k﹣1转化为一般式,由根的判别式Δ=(k﹣1)2+4>0,即可得出该方程有两个不相等的实数根.【解答】解:∵(k﹣3)⊗x=k﹣1,∴x2﹣(k﹣3)x=k﹣1,∴x2﹣(k﹣3)x﹣k+1=0,∴Δ=[﹣(k﹣3)]2﹣4×1×(﹣k+1)=(k﹣1)2+4>0,∴关于x的方程(k﹣3)⊗x=k﹣1有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式和实数的运算,牢记“当Δ>0时,方程有两个不相等的实数根”是解决问题的关键.15.(2022•巴中)对于实数a,b定义新运算:a※b=ab2﹣b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围()A.k>−14B.k<−14C.k>−14且k≠0D.k≥−14且k≠0【分析】根据新定义运算法则列方程,然后根据一元二次方程的概念和一元二次方程的根的判别式列不等式求解即可.【解答】解:根据定义新运算,得x2﹣x=k,即x2﹣x﹣k=0,∵关于x的方程1※x=k有两个不相等的实数根,∴Δ=(﹣1)2﹣4×(﹣k)>0,解得:k>−1 4,故选:A.【点评】本题考查一元二次方程的根的判别式,新定义等,熟练掌握根的判别式Δ=b2﹣4ac与根的情况的关系是解题的关键.16.(2022•安顺)定义新运算a*b:对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(3﹣2)﹣1=5﹣1=4.若x*k=2x(k为实数)是关于x的方程,则它的根的情况是()A.有一个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【分析】已知等式利用题中的新定义化简,计算出根的判别式的值,判断即可.【解答】解:根据题中的新定义化简得:(x+k)(x﹣k)﹣1=2x,整理得:x2﹣2x﹣1﹣k2=0,∵Δ=4﹣4(﹣1﹣k2)=4k2+8>0,∴方程有两个不相等的实数根.故选:B.【点评】此题考查了根的判别式,方程的定义,以及实数的运算,弄清题中的新定义是解本题的关键.17.(2022•鄂尔多斯)下列说法正确的是()①若二次根式√1−x有意义,则x的取值范围是x≥1.②7<√65<8.③若一个多边形的内角和是540°,则它的边数是5.④√16的平方根是±4.⑤一元二次方程x2﹣x﹣4=0有两个不相等的实数根.A.①③⑤B.③⑤C.③④⑤D.①②④【分析】根据二次根式有意义的条件、估算无理数的大小、算术平方根、平方根和多边形的内角和定理,根的判别式判断即可.【解答】解:①若二次根式√1−x有意义,则1﹣x≥0,解得x≤1.故x的取值范围是x≤1,题干的说法是错误的.②8<√65<9,故题干的说法是错误的.③若一个多边形的内角和是540°,则它的边数是5是正确的.④√16=4的平方根是±2,故题干的说法是错误的.⑤∵Δ=(﹣1)2﹣4×1×(﹣4)=17>0,∴一元二次方程x2﹣x﹣4=0有两个不相等的实数根,故题干的说法是正确的.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了二次根式有意义的条件、估算无理数的大小、算术平方根、平方根和多边形.18.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为()A.﹣4B.−14C.14D.4【分析】根据根的判别式的意义得到12﹣4m=0,然后解一次方程即可.【解答】解:根据题意得Δ=12﹣4m=0,解得m=1 4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.19.(2022•呼和浩特)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.1【分析】把x=x1代入方程表示出x12﹣2022=x1,代入原式利用完全平方公式化简,再根据根与系数的关系求出所求即可.【解答】解:把x=x1代入方程得:x12﹣x1﹣2022=0,即x12﹣2022=x1,∵x1,x2是方程x2﹣x﹣2022=0的两个实数根,∴x1+x2=1,x1x2=﹣2022,则原式=x1(x12﹣2022)+x22=x12+x22=(x1+x2)2﹣2x1x2=1+4044=4045.故选:A.【点评】此题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解本题的关键.20.(2021•遵义)在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是()A.x2+2x﹣3=0B.x2+2x﹣20=0C.x2﹣2x﹣20=0D.x2﹣2x﹣3=0【分析】先设这个方程的两根是α、β,根据两个根是﹣3,1和两个根是5,﹣4,得出α+β=﹣p=﹣2,αβ=q=﹣20,从而得出符合题意的方程.【解答】解:设此方程的两个根是α、β,根据题意得:α+β=﹣p=﹣2,αβ=q=﹣20,则以α、β为根的一元二次方程是x2+2x﹣20=0.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−b a ,x1•x2=ca.二.填空题(共20小题)21.(2023•随州)已知关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,则x1+x2﹣x1x2的值为.【分析】直接利用根于系数的关系x1+x2=−ba=3,x1x2=ca=1,再代入计算即可求解.【解答】解:∵关于x的一元二次方程x2﹣3x+1=0的两个实数根分别为x1和x2,∴x1+x2=−−31=3,x1x2=11=1,∴x1+x2﹣x1x2=3﹣1=2.故答案为:2.【点评】本题主要考查根与系数的关系,熟记根与系数的关系时解题关键.根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.22.(2023•岳阳)已知关于x的方程x2+mx﹣20=0的一个根是﹣4,则它的另一个根是.【分析】设方程的另一个解为t,则利用根与系数的关系得﹣4t=﹣20,然后解一次方程即可.【解答】解:设方程的另一个解为t,根据根与系数的关系得﹣4t=﹣20,解得t=5,即方程的另一个根为5.故答案为:5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=−ba,x1x2=ca.23.(2023•内江)已知a、b是方程x2+3x﹣4=0的两根,则a2+4a+b﹣3=.【分析】根据一元二次方程的解的定义得到a2+3a﹣4=0,a2=﹣3a+4,再根据根与系数的关系得到a+b =﹣3,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2+3x﹣4=0的根,∴a2+3a﹣4=0,∴a2=﹣3a+4,∵a,b是方程x2+3x﹣4=0的两根,∴a+b=﹣3,∴a2+4a+b﹣3=﹣3a+4+4a+b﹣3=a+b+1=﹣3+1=﹣2.故答案为:﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=−ba ,x1•x2=ca,也考查了一元二次方程的解.24.(2023•岳阳)已知关于x的一元二次方程x2+2mx+m2﹣m+2=0有两个不相等的实数根x1、x2,且x1+x2+x1•x2=2,则实数m=.【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之可得出m的取值范围,由根与系数的关系,可得出x1+x2=﹣2m,x1•x2=m2﹣m+2,结合x1+x2+x1•x2=2,可得出关于m的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:∵原方程有两个不相等的实数根,∴Δ=(2m)2﹣4×1×(m2﹣m+2)>0,∴m>2.∵x1,x2是关于x的一元二次方程x2+2mx+m2﹣m+2=0的两个实数根,∴x1+x2=﹣2m,x1•x2=m2﹣m+2,∵x1+x2+x1•x2=2,∴﹣2m+m2﹣m+2=2,解得:m1=0(不符合题意,舍去),m2=3,∴实数m的值为3.故答案为:3.【点评】本题考查了根的判别式以及根与系数的关系,由根与系数的关系结合x1+x2+x1•x2=2,找出关于m的一元二次方程是解题的关键.25.(2023•上海)已知关于x的一元二次方程ax2+6x+1=0没有实数根,那么a的取值范围是.【分析】由方程根的情况,根据判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程ax2+6x+1=0没有实数根,∴Δ<0,即62﹣4a<0,解得:a>9,故答案为:a>9.【点评】本题主要考查根的判别式,掌握方程根的情况和根的判别式的关系是解题的关键.26.(2023•上海)已知关于x的方程√x−14=2,则x=.【分析】方程两边平方得出x﹣14=4,求出方程的解,再进行检验即可.【解答】解:√x−14=2,方程两边平方得:x﹣14=4,解得:x=18,经检验x=18是原方程的解.故答案为:18.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键,注意:解无理方程一定要进行检验.27.(2023•枣庄)若x=3是关于x的方程ax2﹣bx=6的解,则2023﹣6a+2b的值为.【分析】把x=3代入方程求出3a﹣b的值,代入原式计算即可求出值.【解答】解:把x=3代入方程得:9a﹣3b=6,即3a﹣b=2,则原式=2023﹣2(3a﹣b)=2023﹣4=2019.故答案为:2019.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.28.(2023•金昌)关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,则c=(写出一个满足条件的值).【分析】根据方程的系数结合根的判别式,即可得出Δ=4﹣16c>0,解之即可得出c的取值范围,任取其内的一个数即可.【解答】解:∵方程x2+2x+4c=0有两个不相等的实数根,∴Δ=22﹣16c>0,解得:c<1 4.故答案为:0(答案不唯一).【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.29.(2023•怀化)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为,另一个根为.【分析】将x=﹣1代入原方程,可得出关于m的一元一次方程,解之即可得出m的值,再结合两根之积等于﹣2,即可求出方程的另一个根.【解答】解:将x=﹣1代入原方程可得1﹣m﹣2=0,解得:m=﹣1,∵方程的两根之积为ca=−2,∴方程的另一个根为﹣2÷(﹣1)=2.故答案为:﹣1,2.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于−ba,两根之积等于ca”是解题的关键.30.(2023•连云港)若W=5x2﹣4xy+y2﹣2y+8x+3(x、y为实数),则W的最小值为.【分析】将原式进行配方,然后根据偶次幂的非负性即可求得答案.【解答】解:W=5x2﹣4xy+y2﹣2y+8x+3=x2+4x2﹣4xy+y2﹣2y+8x+3=4x2﹣4xy+y2﹣2y+x2+8x+3=(4x2﹣4xy+y2)﹣2y+x2+8x+3=(2x﹣y)2﹣2y+x2+4x+4x+3=(2x﹣y)2+4x﹣2y+x2+4x+3=(2x﹣y)2+2(2x﹣y)+1﹣1+x2+4x+4﹣4+3=[(2x﹣y)2+2(2x﹣y)+1]+(x2+4x+4)﹣2=(2x﹣y+1)2+(x+2)2﹣2,∵x,y均为实数,∴(2x﹣y+1)2≥0,(x+2)2≥0,∴原式W≥﹣2,即原式的W的最小值为:﹣2,解法二:由题意5x2+(8﹣4y)x+(y2﹣2y+3﹣W)=0,∵x为实数,∴(8﹣4y)2﹣20(y2﹣2y+3﹣W)≥0,即5W≥(y+3)2﹣10≥﹣10,∴W≥﹣2,∴W的最小值为:﹣2,故答案为:﹣2.【点评】本题考查配方法的应用及偶次幂的非负性,利用配方法把原式整理为“平方+常数”的形式是解题的关键.31.已知方程x2﹣3x﹣4=0的根为x1,x2,则(x1+2)•(x2+2)的值为.【分析】直接利用根与系数的关系作答.【解答】解:∵方程x2﹣3x﹣4=0的根为x1,x2,∴x1+x2=3,x1•x2=﹣4,∴(x1+2)•(x2+2)=x1•x2+2x1+2x2+4=﹣4+2×3+4=6.故答案为:6.【点评】本题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=−ba,x1•x2=ca.32.(2023•重庆)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程.【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.33.(2023•重庆)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.【分析】根据今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,列一元二次方程即可.【解答】解:根据题意,得1501(1+x)2=1815,故答案为:1501(1+x)2=1815.【点评】本题考查了一元二次方程的应用,理解题意并根据题意建立等量关系是解题的关键.34.(2023•达州)已知x1,x2是方程2x2+kx﹣2=0的两个实数根,且(x1﹣2)(x2﹣2)=10,则k的值.【分析】先求出(x1+x2),x1x2的值,然后把(x1﹣2)(x2﹣2)=10的左边展开,将其代入该关于k的方程,通过解方程来求k的值.【解答】解:∵x1,x2是方程2x2+kx﹣2=0的两个实数根,∴x1+x2=−k2,x1•x2=﹣1,∴(x1﹣2)(x2﹣2)=x1•x2﹣2(x1+x2)+4=﹣1﹣2×(−k2)+4=10,解得k=7.故答案为:7.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个根为x1,x2,则x1+x2=−ba ,x1x2=ca,也考查了代数式的变形能力.35.(2023•扬州)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则实数k的取值范围为.【分析】根据方程有两个不相等的实数根结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+2x+k=0有两个不相等的实数根,∴Δ=b2﹣4ac=22﹣4k=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式,根据方程有两个不相等的实数根结合根的判别式得出4﹣4k>0是解题的关键.36.(2023•连云港)关于x的一元二次方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.【分析】根据根的判别式得到Δ=4﹣4a>0,然后解不等式即可.【解答】解:根据题意得Δ=4﹣4a>0,解得a<1.故答案为a<1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.37.(2022•巴中)α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为.【分析】α2﹣2α﹣β=α2﹣α﹣(α+β)=4,然后根据方程的解的定义以及一元二次方程根与系数的关系,得到关于k的一元一次方程,即可解得答案.【解答】解:∵α、β是方程x2﹣x+k﹣1=0的根,∴α2﹣α+k﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k+1﹣1=﹣k=4,∴k=﹣4,故答案是:﹣4.【点评】本题考查了一元二次方程的解以及根与系数的关系,掌握根与系数的关系是解题的关键.38.(2022•鄂州)若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则1a+1b的值为.【分析】由实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,知a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,据此可得a+b=4,ab=3,将其代入到原式=a+bab即可得出答案.【解答】解:∵实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,∴a、b可看作方程x2﹣4x+3=0的两个不相等的实数根,则a+b=4,ab=3,则原式=a+bab=43,故答案为:4 3.【点评】本题主要考查根与系数的关系,解题的关键是根据方程的特点得出a、b可看作方程x2﹣4x+3=0的两个不相等的实数根及韦达定理.39.(2021•南通)若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则m3+m2n3m−1的值为.【分析】先根据一元二次方程的解的定义得到m2+3m﹣1=0,再根据根与系数的关系得到m+n=﹣3,再将其代入所求式子即可求解.【解答】解:m,n是一元二次方程x2+3x﹣1=0的两个实数根,∴m2+3m﹣1=0,∴3m﹣1=﹣m2,∴m+n=﹣3,∴m3+m2n3m−1=m2(m+n)3m−1=−3m2−m2=3,故答案为3.【点评】本题考查了根与系数的关系,熟练掌握一元二次方程的解与方程的关系得到3m﹣1=﹣m2是解题的关键.40.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为.【分析】根据一元二次方程的定义解决问题即可,注意答案不唯一.【解答】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,∴满足条件的方程可以为:x2﹣2=0(答案不唯一),故答案为:x2﹣2=0(答案不唯一).【点评】本题考查一元二次方程的定义,解题的关键是理解题意,灵活运用所学知识解决问题.三.解答题(共20小题)41.(2023•南充)已知关于x 的一元二次方程x 2﹣(2m ﹣1)x ﹣3m 2+m =0.(1)求证:无论m 为何值,方程总有实数根;(2)若x 1,x 2是方程的两个实数根,且x 2x 1+x 1x 2=−52,求m 的值. 【分析】(1)由判别式Δ=(4m ﹣1)2≥0,可得答案;(2)根据根与系数的关系知x 1+x 2=2m ﹣1,x 1x 2=﹣3m 2+m ,由x 2x 1+x 1x 2=−52进行变形直接代入得到5m 2﹣7m +2=0,求解可得.【解答】(1)证明:∵Δ=[﹣(2m ﹣1)]2﹣4×1×(﹣3m 2+m )=4m 2﹣4m +1+12m 2﹣4m=16m 2﹣8m +1=(4m ﹣1)2≥0,∴方程总有实数根;(2)解:由题意知,x 1+x 2=2m ﹣1,x 1x 2=﹣3m 2+m ,∵x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2x 1x 2−2=−52, ∴(2m−1)2−3m 2+m −2=−52,整理得5m 2﹣7m +2=0, 解得m =1或m =25.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a .也考查了根的判别式.42.(2023•遂宁)我们规定:对于任意实数a 、b 、c 、d 有[a ,b ]*[c ,d ]=ac ﹣bd ,其中等式右边是通常的乘法和减法运算,如:[3,2]*[5,1]=3×5﹣2×1=13.(1)求[﹣4,3]*[2,﹣6]的值;(2)已知关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,求m 的取值范围.【分析】(1)用新定义运算法则列式计算;(1)先根据新定义得到x (mx +1)﹣m (2x ﹣1)=0,再把方程化为一般式,接着根据题意得到Δ=(1﹣2m )2﹣4m •m ≥0且m ≠0,解不等式即可.【解答】解:(1)[﹣4,3]*[2,﹣6]=﹣4×2﹣3×(﹣6)=10;(2)根据题意得x (mx +1)﹣m (2x ﹣1)=0,整理得mx 2+(1﹣2m )x +m =0,∵关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,∴Δ=(1﹣2m )2﹣4m •m ≥0且m ≠0,解得m ≤14且m ≠0.【点评】本题属于新定义题型,考查一元二次方程根的判别式,解一元一次不等式,根据题意得到关于m 的不等式是解题的关键.43.(1)解方程:x 2﹣2x ﹣1=0;(2)解不等式组:{2x −1≥11+x 3<x −1. 【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)方程移项得:x 2﹣2x =1,配方得:x 2﹣2x +1=2,即(x ﹣1)2=2,开方得:x ﹣1=±√2,解得:x 1=1+√2,x 2=1−√2;(2){2x −1≥1①1+x 3<x −1②, 由①得:x ≥1,由②得:x >2,则不等式组的解集为x >2.【点评】此题考查了解一元一次不等式组,以及解一元二次方程﹣配方法,熟练掌握不等式组的解法及方程的解法是解本题的关键.44.如图,某小区矩形绿地的长宽分别为35m ,15m .现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m ,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【分析】(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据扩充后的矩形绿地面积为800m,即可得出关于x的一元二次方程,解之即可得出x的值,将其正值分别代入(35+x)及(15+x)中,即可得出结论;(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据实地测量发现新的矩形绿地的长宽之比为5:3,即可得出关于y的一元一次方程,解之即可得出y值,再利用矩形的面积计算公式,即可求出新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.【点评】本题考查了一元二次方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)找准等量关系,正确列出一元一次方程.45.(2022•广州)已知T=(a+3b)2+(2a+3b)(2a﹣3b)+a2.(1)化简T;(2)若关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,求T的值.【分析】(1)根据完全平方公式和平方差公式化简T;(2)根据根的判别式可求a2+ab,再代入计算可求T的值.【解答】解:(1)T=(a+3b)2+(2a+3b)(2a﹣3b)+a2=a2+6ab+9b2+4a2﹣9b2+a2=6a2+6ab;(2)∵关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,∴Δ=(2a)2﹣4(﹣ab+1)=0,∴a2+ab=1,∴T=6×1=6.【点评】本题考查了整式的混合运算,根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.46.(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;它们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.【分析】(1)先根据数轴确定a、b的正负,再利用乘法法则确定ab;(2)根据方程的系数特点,选择配方法、公式法或因式分解法.【解答】解:(1)由数轴上点的坐标知:a<0<b,∴a<b,ab<0.故答案为:<,<.(2)①利用公式法:x2+2x﹣1=0,Δ=22﹣4×1×(﹣1)=4+4=8,∴x=−2±√b2−4ac2=−2±√82=−2±2√22=﹣1±√2.∴x1=﹣1+√2,x2=﹣1−√2;②利用因式分解法:x2﹣3x=0,∴x(x﹣3)=0.∴x1=0,x2=3;③利用配方法:x2﹣4x=4,两边都加上4,得x2﹣4x+4=8,∴(x﹣2)2=8.∴x﹣2=±2√2.∴x1=2+2√2,x2=2﹣2√2;④利用因式分解法:x2﹣4=0,∴(x+2)(x﹣2)=0.∴x1=﹣2,x2=2.【点评】本题考查了数轴、一元二次方程的解法,掌握数轴的意义、一元二次方程的解法是解决本题的关键.47.(2022•齐齐哈尔)解方程:(2x+3)2=(3x+2)2.【分析】方程开方转化为一元一次方程,求出解即可.【解答】解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=﹣3x﹣2,解得:x1=1,x2=﹣1.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握方程的解法是解本题的关键.48.(2022•泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?【分析】要求路宽,就要设路宽应为x米,根据题意可知:矩形地面﹣所修路面积=草坪面积,利用平移更简单,依此列出等量关系解方程即可.【解答】解:设路宽应为x米。

中考《一元二次方程》经典例题及解析

中考《一元二次方程》经典例题及解析

一元二次方程一、一元二次方程的概念1.一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一般形式:20ax bx c ++=(其中,,a b c 为常数,0a ≠),其中2,,ax bx c 分别叫做二次项、一次项和常数项,,a b 分别称为二次项系数和一次项系数.注意:(1)在一元二次方程的一般形式中要注意0a ≠,因为当0a =时,不含有二次项,即不是一元二次方程;(2)一元二次方程必须具备三个条件:①必须是整式方程;②必须只含有一个未知数;③所含未知数的最高次数是2.二、一元二次方程的解法1.直接开平方法:适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程.2.配方法:(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项; (3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式; (5)运用直接开平方法解方程.3.公式法:(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入x =即可. 4.因式分解法:基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=. 三、一元二次方程根的判别式及根与系数关系1.根的判别式:一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根; (2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根; (3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系:对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=. 四、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.1.增长率等量关系(1)增长率=增长量÷基础量.(2)设为原当m 为平均下降率时,则有(1n a m -2.利润等量关系:(1)利润=售价-成本3.面积问题(1)类型1:如图1所示的矩形ABCD ()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD (3)类型3:如图3所示的矩形ABCD 为()()a x b x --.图1 4. 碰面问题(循环问题)(1)重叠类型(双循环):n 支球队互相之∵1支球队要和剩下的(n -1)支球队比赛∵存在n 支这样的球队,∴比赛场次为:∵A 与B 比赛和B 与A 比赛是同一场比赛∴m =( −1)(2)不重叠类型(单循环):n 支球队,∵1支球队要和剩下的(n -1)支球队比赛∵存在n 支这样的球队,∴比赛场次为:∵A 与B 比赛在A 的主场,B 与A ∴m = ( −1)经典1.若关于x 的方程220x ax +-=有一个【答案】1【分析】根据一元二次方程的解的定义,【解析】解:把x=1代入方程2x ax +=a 为原来量,m 为平均增长率,n 为增长次数,b 为增长)b =.成本.(2)利润率=利润成本×100%. BCD 长为a ,宽为b ,空白“回形”道路的宽为x ,CD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的BCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空 图2 图互相之间都要打一场比赛,总共比赛场次为m 。

中考数学真题分类汇编及解析(十一) 根的判别式及根与系数关系

中考数学真题分类汇编及解析(十一) 根的判别式及根与系数关系
(2022•黄冈中考)若一元二次方程x2﹣4x+3=0的两个根是x1,x2,则x1•x2的值是3.
【解析】∵x1,x2是一元二次方程x2﹣4x+3=0的两个根,∴x1•x2=3.
答案:3
1102
(2022•宿迁中考)若关于x的一元二次方程x2﹣2x+k=0有实数根,则实数k的取值范围是k≤1.
【解析】∵Δ=(﹣2)2﹣4×1×k=4﹣4k.
A.a≠0 B.a>﹣1且a≠0 C.a≥﹣1且a≠0 D.a>﹣1
【解析】选B.由题意可得: ,∴a>﹣1且a≠0.
1101
(2022•宜宾中考)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为( )
A.0 B.﹣10 C.3 D.10
【解析】选A.∵m、n是一元二次方程x2+2x﹣5=0的两个根,∴m+n=﹣2,mn=﹣5,
∴Δ>0,即22﹣4×1×t>0,解得t<1.
答案:t<1.
1102
(2022•内江中考)已知x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,且 x12+2x2﹣1,则k的值为2.
【解析】∵x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,
∴x1+x2=2,x1•x2=k﹣1,x12﹣2x1+k﹣1=0,
∴Δ=(﹣4)2﹣4×1×k<0,
解得:k>4.
1101
(2022•乐山中考)关于x的一元二次方程3x2﹣2x+m=0有两根,其中一根为x=1,则这两根之积为( )
A. B. C.1D.
【解析】选D.∵方程的其中一个根是1,
∴3﹣2+m=0,解得m=﹣1,

中考数学专题讲练04 一元二次方程根的判别式的参数问题(原卷版)

中考数学专题讲练04 一元二次方程根的判别式的参数问题(原卷版)

查补易混易错04 一元二次方程根的判别式的参数问题一元二次方程根的判别式不仅是《一元二次方程》章节中的重要考点,也是二次函数求交点个数问题的重要方法。

中考数学中对该考点的考察中,一个特别重要的题型就是引入参数,由一元二次方程解的情况,求解方程中参数的取值范围;逆向考察亦可。

中考五星高频考点,在全国各地中考试卷中基本都有考察,难度中等偏上。

易错01:一元二次方程02=++c bx ax 根的判别式的几种情况:①042>ac b - 2个不相等的实数根;②042=-ac b 2个相等的实数根③042<ac b - 方程无实数根易错02:1.一元二次方程解的情况无论是什么,都必须先满足 0≠a ;2. 如果题目中出现方程02=++c bx ax 有实数根,则可以是一元一次方程,即不要求0≠a ;3. 有些一元二次方程根的判别式问题会和韦达定理一起考,出现方程的解为21x x 、时,注意联系韦达定理。

【中考真题练】1.(2022•淮安)若关于x 的一元二次方程x 2﹣2x ﹣k =0没有实数根,则k 的值可以是( )A .﹣2B .﹣1C .0D .12.(2022•内蒙古)对于实数a ,b 定义运算“⊗”为a ⊗b =b 2﹣ab ,例如3⊗2=22﹣3×2=﹣2,则关于x 的方程(k ﹣3)⊗x =k ﹣1的根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定3.(2022•巴中)对于实数a ,b 定义新运算:a ※b =ab 2﹣b ,若关于x 的方程1※x =k 有两个不相等的实数根,则k 的取值范围( )A.k>﹣B.k<﹣C.k>﹣且k≠0D.k≥﹣且k≠0 4.(2022•西藏)已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.(2022•营口)关于x的一元二次方程x2+4x﹣m=0有两个实数根,则实数m的取值范围为()A.m<4B.m>﹣4C.m≤4D.m≥﹣4 6.(2022•辽宁)下列一元二次方程无实数根的是()A.x2+x﹣2=0B.x2﹣2x=0C.x2+x+5=0D.x2﹣2x+1=0 7.(2022•包头)若x1,x2是方程x2﹣2x﹣3=0的两个实数根,则x1•x22的值为()A.3或﹣9B.﹣3或9C.3或﹣6D.﹣3或6 8.(2022•东营)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是.9.(2022•扬州)请填写一个常数,使得关于x的方程x2﹣2x+=0有两个不相等的实数根.10.(2022•十堰)已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.【中考模拟练】1.(2023•佛冈县校级二模)关于x的一元二次方程2x2+4x+a=0没有实数根,则实数a的取值范围是()A.B.a<0C.a>2D.a≥4 2.(2023•嘉定区二模)下列关于x的方程一定有实数解的是()A.x2+1=0B.x2﹣x+1=0C.x2﹣bx+1=0(b为常数)D.x2﹣bx﹣1=0(b为常数)3.(2023•北京一模)若关于x的一元二次方程x2+2x+m=0有实数根,则m的值不可能是()A.2B.1C.﹣1D.﹣2 4.(2023•东城区校级一模)关于x的一元二次方程x2﹣(k+3)x+2k+1=0根的情况是()A.无实根B.有实根C.有两个不相等实根D.有两个相等实根5.(2023•文山市一模)关于x的一元二次方程kx2﹣4x+2=0有两个实数根,则k的取值范围是()A.k>4B.k≤2C.k<4且k≠0D.k≤2且k≠0 6.(2023•西城区一模)若关于x的方程mx2+3x﹣1=0有两个不相等的实数根,则实数m 的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠0 7.(2023•临朐县一模)若关于x的方程x2﹣x=k有两个不相等的实数根,则k的取值范围是.8.(2023•房山区一模)关于x的一元二次方程ax2+4x+c=0有两个相等的实数根,写出一组满足条件的实数a,c的值:a=,c=.9.(2023•工业园区一模)已知关于x的一元二次方程x2﹣2mx+2m﹣1=0.(1)若该方程有一个根是x=2,求m的值;(2)求证:无论m取什么值,该方程总有两个实数根.10.(2023•鼓楼区校级模拟)已知关于x的一元二次方程x2﹣(2k+2)x+2k+1=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根大于3,求k的取值范围.。

河北省中考数学一轮复习(湘教版)专题19 一元二次方程根的判别式

河北省中考数学一轮复习(湘教版)专题19 一元二次方程根的判别式

河北省中考数学一轮复习(湘教版)专题19 一元二次方程根的判别式姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)关于x的一元二次方程x2+(k2-4)x+k+1=0的两实数根互为相反数,则k的值()A . -1B . ±2C . 2D . -22. (2分)已知关于的一元二次方程有两个实数根和,当时,的值为()A . 2B . 或C .D .3. (2分)关于的一元二次方程有实数根,则整数的最大值是()A . 2B . 1C . 0D . -14. (2分)(2017·安阳模拟) 关于x的一元二次方程ax2﹣3x+3=0有两个不等实根,则a的取值范围是()A . a<且a≠0B . a>﹣且a≠0C . a>﹣D . a<5. (2分)已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 有两个实数根6. (2分) (2020九上·五莲期末) 若关于的一元二次方程有实数根,则的取值范围()A .B .C . 且D . 且7. (2分)下列方程中有两个相等的实数根的是()A . x2=1B . (x+1)2=0C . x2+1=0D . 2(x+1)=08. (2分) (2021八下·重庆开学考) 关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A .B .C .D .9. (2分)已知一元二次方程ax2+bx+c=0(a≠0)中,其中真命题有()①若a+b+c=0,则b2-4ac≥0;②若方程ax2+bx+c=0两根为-1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根A . 1B . 2C . 3D . 010. (2分) (2020九上·息县期末) 不解方程,则一元二次方程的根的情况是()A . 有两个相等的实数根B . 没有实数根C . 有两个不相等的实数根D . 以上都不对二、填空题 (共6题;共6分)11. (1分)(2020·无锡模拟) 已知方程x2﹣3x+k=0有两个相等的实数根,则k=.12. (1分)已知关于x的方程(m-2)x2-2(m-1)x+m+1=0.(1)当方程有两个不相等的实数根时,m的取值范围为;(2)当方程有两个相等的实数根时,m=;(3)当m=1时,方程的根的情况是;(4)当方程有实数根时,m的取值范围为;13. (1分) (2020八下·柯桥期末) 若关于x的方程2x(x﹣1)+mx=0有两个相等的实数根,则实数m的值为.14. (1分)已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于.15. (1分)已知关于x的一元二次方程有两个相等实数根,则m的值为.16. (1分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是三、解答题 (共4题;共20分)17. (5分) (2019九上·绿园期末) 小明同学说自己发现了判断一类方程有无实数根的一种简易方法:若一元二次方程a 的系数a、c异号(即两数为一正一负),那么这个方程一定有两个不相等的实数根.他的发现正确吗?请你先举实例验证一下是否正确,若你认为他的发现是一般规律,请加以证明.18. (5分) (2018九上·云安期中) 方程x2+5x-m=0的一个根是2,求m及另一个根的值.19. (5分)若0是关于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的解,则求出m的值,并讨论方程根的情况.20. (5分)关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0.求证:方程有两个不相等的实数根;四、综合题 (共7题;共75分)21. (10分) (2019九上·江岸月考) 已知关于x的一元二次方程 .(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为,,且,求m的值.22. (10分)(2017·黄冈) 已知关于x的一元二次方程x2+(2x+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1 , x2 ,当k=1时,求x12+x22的值.23. (10分) (2017九上·台州期中) 已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24. (10分) (2020九上·无棣期末)(1)已知关于x的一元二次方程x2+(a+3)x+a+1=0.求证:无论a取何值,原方程总有两个不相等的实数根:(2)已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:x…﹣10123…y…30﹣10m…观察上表可求得m的值为;(3)试求出这个二次函数的解析式.25. (10分) (2021九上·北京开学考) 已知一元二次方程﹣x2+(2a﹣2)x﹣a2+2a=0.(1)求证:方程有两个不等的实数根;(2)若方程只有一个实数根小于1,求a的取值范围.26. (10分) (2019九上·博白期中) 已知是一元二次方程的两个实数根. (1)求实数m的取值范围;(2)如果满足不等式,且m为整数,求m的值。

中考专题一元二次方程根的判别式及根与系数的关系

中考专题一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系【重点、难点、考点】重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。

②掌握根与系数的关系及应用难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。

考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。

【经典范例引路】例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( )A.m<43B.m ≤43C.m>43且m ≠2D.m ≥43且m ≠2(20XX 年山西省中考试题)【解题技巧点拨】 解 C①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形解题原理:对方程ax 2+bx +c =0 (a ≠0)方程有两实根Δ方程有两相等实根Δ方程有两不等实根Δ⇔≥⎭⎬⎫⇔=⇔>000Δ<0⇔方程没有实根注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。

例2 先阅读下列第(1)题的解答过程(1)已知αβ是方程x2+2x-7=0的两个实数根。

求α2+3β2+4β的值。

解法1 ∵α、β是方程x2+2x-7=0的两实数根∴α2+2α-7=0 β2+2β-7=0 且α+β=-2∴α2=7-2αβ2=7-2β∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2×(-2)=32解法2 由求根公式得α=-1+22β=-1-22∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22)=9-42+3(9+42-4-82)=32解法3 由已知得:α+β=-2 αβ=-7∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2+4α=B∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ①A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ②①+②得:2A=64 ∴A=32请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题(2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。

解一元二次方程-根的判别式 (1)

解一元二次方程-根的判别式 (1)

解一元二次方程-根的判别式考试范围:xxx;考试时间:100分钟;命题人:xxx一.填空题(共21小题)1.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是.2.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是.3.若一元二次方程x2﹣2x+a=0有两个相等的实数根,则a的值是.4.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是.5.如果关于x的方程x2﹣3x+m=0没有实数根,那么m的取值范围是.6.在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为.7.方程(x﹣5)(2x﹣1)=3的根的判别式b2﹣4ac=.8.关于x的方程x2﹣3x﹣k=0有两个不相等的实数根,则k的取值范围是.9.若关于x的一元二次方程x2+4x﹣m=0有实数根,则m的取值范围是.10.已知关于x的方程mx2+x+1=0没有实数根,则m的值是.11.关于x的方程mx2﹣4x+1=0有实数根,则m的取值范围是.12.方程x2﹣3x+1=0的根的判别式△=.13.关于x的方程x2﹣2x﹣1=0有两个不等实根,则k的取值范围是.14.方程kx2+1=x﹣x2无实根,则k.15.关于x的方程k2x2+(2k﹣1)x+1=0有实数根,则k的取值范围是.16.若方程x2﹣3x+m=0有两个相等的实数根,则m=,两个根分别为.17.若实数a,b满足,则a的取值范围是.18.关于x的方程ax2﹣3x﹣1=0有实数根,则a的取值范围是.19.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是.20.关于x的一元二次方程x2﹣3x﹣m=0有两个不相等的实数根,则m的取值范围.21.在一元二次方程x2+bx+c=0中,若系数b和c可在1,2,3,4,5,6中取值,则其中有实数解的方程的个数是个.二.解答题(共29小题)22.已知方程x2﹣2x﹣8=0.解决以下问题:(1)不解方程试判断此方程的根的情况.(2)请按要求分别解这个方程:①配方法;②因式分解法.(3)①这些方法都是将解方程转化为解方程,以达到将方程降次的目的;②尝试解方程:x3+2x2﹣3x=0.23.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.24.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.25.已知关于x的方程x2﹣(k+2)x+2k=0.①小明同学说:无论k取何实数,方程总有实数根,你认为他说的有道理吗?②若等腰三角形的一边a=1,另两边b、c恰好是这个方程的两个根,求△ABC 的周长和面积.26.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.27.已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.28.若关于x的一元二次方程x2+4x+2k=0有两个实数根,求k的取值范围及k 的非负整数值.29.关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为4,求m的值.30.已知关于x的一元二次方程x2+(m+3)x+m+1=0.求证:无论m取何值,原方程总有两个不相等的实数根.31.关于x的一元二次方程(k﹣3)x2﹣3x+2=0有两个不相等的实数根.(1)求k的取值范围.(2)求当k取何正整数时,方程的两根均为整数.32.已知关于x的一元二次方程(m﹣2)x2﹣(m﹣1)x+m=0.(其中m为实数)(1)若此方程的一个非零实数根为k,①当k=m时,求m的值;②若记为y,求y与m的关系式;(2)当<m<2时,判断此方程的实数根的个数并说明理由.33.(1)实数﹣4、﹣3、﹣2、﹣1、0、1、2中,哪些数是方程x2﹣x﹣12=0的根?这个方程是否还有其它根,若有,请求出来.(2)已知关于x的一元二次方程ax2+ax+1=0(a≠0)有两个相等的实数根,求a 的值.34.若一元二次方程(k+2)x2+4x﹣2=0有实数根,求k的最小整数值.35.关于x的方程kx2﹣(2k﹣1)x+k+3=0有两个实数根,求k的取值范围.36.已知关于x的方程x2﹣2(m+1)x+m2=0.(1)当m取什么值时,原方程有两个相等的实数根.(2)求出方程的根.37.已知关于x的方程(k﹣1)x2﹣4x+5=0有两个实数根,求k的取值范围.38.阅读:对于二次三项式ax2+bx+c(a≠0),当b2﹣4ac≥0时,ax2+bx+c在实数范围内可以分解因式.例:对于2x2﹣5x+1,因为:(﹣5)2﹣4×2×1>0,所以:2x2﹣5x+1在实数范围内可以分解因式.问题:当m取什么值的时候,2x2﹣6x+(1﹣m)在实数范围内可以分解因式.39.已知:关于x方程x2+(x+)k﹣(x+1)=0(1)写成关于x的一元二次方程的一般形式:(2)算出根的判别式△,判断方程根的情况并说明理由.40.已知关于x的一元二次方程x2+4x﹣2k=0有两个实数根,求k的取值范围及k的负整数值.41.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.42.(1)解方程:(2)当m为何值时,关于x的方程(m﹣2)x2﹣(2m﹣1)x+m=0有两个实数根.43.已知关于x的一元二次方程x2﹣2x+k=0(1)方程有两个不相等的实数根时,求k的取值范围;(2)在(1)中当k取最大整数时,求所得方程的实数根.44.已知关于x的方程x2﹣(2k﹣1)x+k2﹣2=0.(1)k取何值时,方程有两个不相等的实数根;(2)在(1)的条件下,请你取一个自己喜爱的k值,并求出此时方程的解.45.已知关于x的一元二次方程有两个实数根,若m为正整数,求此方程的根.46.m为何值时,关于x的一元二次方程2(m+3)x2+4mx+2m﹣2=0没有实数根?47.如图是长方形鸡场的平面示意图,一边靠墙,另外三边用竹篱笆围成,且竹篱笆的总长为35米.①若所围的面积为150m2,试求长方形鸡场的长和宽;②如果墙长为18m,则①中长方形鸡场的长和宽分别是多少?③能围成面积为160m2的长方形鸡场吗?请说明理由.48.已知关于x的一元二次方程有解,则k的取值范围是.49.已知关于x的方程x2﹣2x﹣2n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n<5,且方程的两个实数根都是整数,求n的值.50.当t取什么值时,关于x的一元二次方程2x2+tx+2=0有两个相等的实数根?解一元二次方程-根的判别式参考答案与试题解析一.填空题(共21小题)1.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是k≤1且k≠0.【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.【解答】解:∵关于x的一元二次方程kx2﹣2x+1=0有实数根,∴△=b2﹣4ac≥0,即:4﹣4k≥0,解得:k≤1,∵关于x的一元二次方程kx2﹣2x+1=0中k≠0,故答案为:k≤1且k≠0.2.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是a<2,且a≠1.【分析】本题是根的判别式的应用,因为关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,所以△=b2﹣4ac>0,从而可以列出关于a的不等式,求解即可,还要考虑二次项的系数不能为0.【解答】解:∵关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,∴△=b2﹣4ac>0,即4﹣4×(a﹣1)×1>0,解这个不等式得,a<2,又∵二次项系数是(a﹣1),∴a≠1.故a的取值范围是a<2且a≠1.3.若一元二次方程x2﹣2x+a=0有两个相等的实数根,则a的值是1.【分析】根据已知条件“一元二次方程x2﹣2x+a=0有两个相等的实数根”可知根的判别式△=b2﹣4ac=0,据此可以求得a的值.【解答】解:∵一元二次方程x2﹣2x+a=0的二次项系数a=1,一次项系数b=﹣2,常数项c=a,且一元二次方程x2﹣2x+a=0有两个相等的实数根,∴△=b2﹣4ac=0,即△=(﹣2)2﹣4×1×a=0,解得a=1.故答案是:1.4.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是a≥1且a≠5.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac≥0.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=16+4(a﹣5)≥0,解之得a≥1.∵a﹣5≠0∴a≠5∴实数a的取值范围是a≥1且a≠5故答案为a≥1且a≠5.5.如果关于x的方程x2﹣3x+m=0没有实数根,那么m的取值范围是.【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2﹣3x+m=0没有实数根,∴b2﹣4ac=(﹣3)2﹣4×1×m<0,解得:m>,故答案为:m>.6.在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为10.【分析】首先判断出方程的根的判别式非负;然后根据△ABC是等腰三角形,分两种情况讨论:(1)△=0时,方程有两个相同的实根,此时b=c;(2)△>0时,方程有两个不同的实根,方程其中的一个实根是4,据此求出b、c的长度各是多少;最后根据三角形的周长公式的求法,把三条边的长度求和,求出△ABC的周长为多少即可.【解答】解:方程的根的判别式:∴△==4k2+4k+1﹣16k+8=4k2﹣12k+9=4(1)当k=时,△=0,方程有两个相同的实根,∴b=c==2,∵b+c=2+2=4=a,与三角形任意两边的和大于第三边矛盾;∴b=c=2不满足题意;(2)当k>时,△>0,方程有两个不同的实根,∵x=4是方程的一个实根,∴,∴k=2.5,∴x2﹣6x+8=0,解得x=2或x=4,∴△ABC的周长为:4+2+4=10.故答案为:10.7.方程(x﹣5)(2x﹣1)=3的根的判别式b2﹣4ac=105.【分析】先把方程(x﹣5)(2x﹣1)=3化为一元二次方程的一般形式,再求出根的判别式即可.【解答】解:方程(x﹣5)(2x﹣1)=3化为一元二次方程的一般形式为:2x2﹣11x+2=0,故△=b2﹣4ac=(﹣11)2﹣4×2×2=105.故答案为:105.8.关于x的方程x2﹣3x﹣k=0有两个不相等的实数根,则k的取值范围是﹣.【分析】由方程根的情况可得方程根的判别式△>0,得到关于k的不等式,解不等式即可求得k的范围.【解答】解:∵关于x的方程x2﹣3x﹣k=0有两个不相等的实数根,∴△>0,即(﹣3)2+4k>0,解得k>﹣,故答案为:﹣.9.若关于x的一元二次方程x2+4x﹣m=0有实数根,则m的取值范围是m≥﹣4.【分析】根据关于x的一元二次方程x2+4x﹣m=0有实数根,可得△≥0,从而可求得m的取值范围.【解答】解:∵关于x的一元二次方程x2+4x﹣m=0有实数根,∴△=42﹣4×1×(﹣m)≥0,解得,m≥﹣4,故答案为:m≥﹣4.10.已知关于x的方程mx2+x+1=0没有实数根,则m的值是m.【分析】根据关于x的方程mx2+x+1=0没有实数根,可知△<0,从而可以得到m的值,本题得以解决.【解答】解:∵关于x的方程mx2+x+1=0没有实数根,∴△=12﹣4×m×1<0,解得,m,故答案为:m.11.关于x的方程mx2﹣4x+1=0有实数根,则m的取值范围是m≤4.【分析】根据一元二次方程判别式的意义得到△=(﹣4)2﹣4m•1≥0,然后求出不等式的解即可.【解答】解:根据题意得△=(﹣4)2﹣4m•1≥0,解得m≤4.故答案为m≤4.12.方程x2﹣3x+1=0的根的判别式△=5.【分析】根据方程x2﹣3x+1=0,可以求得根的判别式,从而可以解答本题.【解答】解:∵方程x2﹣3x+1=0,∴△=b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5.故答案为:5.13.关于x的方程x2﹣2x﹣1=0有两个不等实根,则k的取值范围是k≥1.【分析】一元二次方程两个不等实根,即△>0,从而得出关于k的不等式,通过解不等式求得k的取值范围即可.【解答】解:∵关于x的方程有两个不等实根,∴(﹣2)2﹣4×1×(﹣1)>0,即4(k﹣1)+4>0,且k﹣1≥0,解得k≥1.故答案是:k≥1.14.方程kx2+1=x﹣x2无实根,则k>﹣.【分析】首先将方程整理成一元二次方程的一般形式,然后根据其无实根△<0求得k的取值范围即可;【解答】解:原方程整理为:(k+1)x2﹣x+1=0,(1)k=﹣1时,为一元一次方程,有解,不合题意;(2)k≠﹣1时:∵原方程无实根,∴△=(﹣1)2﹣4(k+1)<0,解得:k>﹣,综上所述:k>﹣,故答案为:>﹣15.关于x的方程k2x2+(2k﹣1)x+1=0有实数根,则k的取值范围是k≤.【分析】由于关于x的方程k2x2﹣(2k+1)x+1=0有实数根,①当k=0时,方程为一元一次方程,此时一定有实数根;②当k≠0时,方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此即可求出k的取值范围.【解答】解:∵关于x的方程k2x2+(2k﹣1)x+1=0有实数根,∴①当k=0时,方程为一元一次方程,此时一定有实数根;②当k≠0时,方程为一元二次方程,如果方程有实数根,那么其判别式△=b2﹣4ac≥0,即(2k﹣1)2﹣4k2≥0,∴k≤,∴当k≤,关于x的方程k2x2+(2k﹣1)x+1=0有实数根.故答案为k≤.16.若方程x2﹣3x+m=0有两个相等的实数根,则m=,两个根分别为x1=x2=,.【分析】若一元二次方程有两等根,则根的判别式△=b2﹣4ac=0,建立关于m的方程,求出m的取值.代入原方程后求解即可得到方程的根.【解答】解:∵方程x2﹣3x+m=0有两个相等实数根,∴△=b2﹣4ac=9﹣4m=0,解之得:m=.∴原方程为:x2﹣3x+=0解得:x1=x2=.故答案为:,x1=x2=.17.若实数a,b满足,则a的取值范围是a≤﹣2或a≥4..【分析】根据题意得到其根的判别式为非负数,据此求得a的取值范围即可.【解答】解:因为b是实数,所以关于b的一元二次方程,≥0,解得a≤﹣2或a≥4.故答案为a≤﹣2或a≥4.18.关于x的方程ax2﹣3x﹣1=0有实数根,则a的取值范围是a≥.【分析】由于关于x的方程ax2﹣3x﹣1=0有实数根,所以分两种情况:(1)当a ≠0时,方程为一元二次方程,那么它的判别式的值是一个非负数,由此即可求出a的取值范围;(2)当a=0时,方程为﹣3x﹣1=0,此时一定有解.【解答】解:(1)当a=0时,方程为﹣3x﹣1=0,此时一定有解;(2)当a≠0时,方程为一元二次方程,∴△=b2﹣4ac=9+4a≥0,∴a≥﹣.所以根据两种情况得a的取值范围是a≥﹣.故填空答案:a≥﹣.19.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是无解.【分析】△=(2c)2﹣4(a+b)(a+b)=4c2﹣4(a+b)2只要说明这个式子的值的符号,问题可求解.根据三角形的三边关系即可判断.【解答】解:△=(2c)2﹣4(a+b)(a+b)=4c2﹣4(a+b)2=4(c+a+b)(c﹣a﹣b)∵a,b,c分别是三角形的三边,∴a+b>c.∴c+a+b>0,c﹣a﹣b<0∴△<0,则方程没有实数根.20.关于x的一元二次方程x2﹣3x﹣m=0有两个不相等的实数根,则m的取值范围m>﹣.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.【解答】解:∵方程有两个不相等的实数根,a=1,b=﹣3,c=﹣m∴△=b2﹣4ac=(﹣3)2﹣4×1×(﹣m)>0,解得m>﹣,故答案为:m>﹣.21.在一元二次方程x2+bx+c=0中,若系数b和c可在1,2,3,4,5,6中取值,则其中有实数解的方程的个数是19个.【分析】一元二次方程没有实数根,即△<0;有两个不相等的实数根,即△>0;有两个相等的实数根,即△=0.【解答】解:根据题意得,判别式△≥0,即b2﹣4c≥0,将bc的取值一一代入判别式,当b=1时,c等于任何值都不符合;当b=2时,c可以取1;当b=3时,c可以取1、2;当b=4时,c可以取1、2、3、4;当b=5时,c可以取1、2、3、4、5、6;当b=6时,c可以取1、2、3、4、5、6.共19个.故答案为19.二.解答题(共29小题)22.已知方程x2﹣2x﹣8=0.解决以下问题:(1)不解方程试判断此方程的根的情况.(2)请按要求分别解这个方程:①配方法;②因式分解法.(3)①这些方法都是将解一元二次方程转化为解一元一次方程,以达到将方程降次的目的;②尝试解方程:x3+2x2﹣3x=0.【分析】(1)由根的判别式△=b2﹣4ac=36,可判断出此方程有两个不相等的实数根;(2)①按照配方法解方程的步骤一步步解方程;②按照分解因式法解方程的步骤一步步解方程;(3)①解方程的方法都是达到降次的目的,故可出结论;②利用分解因式解方程的方法一步步解决方程.【解答】解:(1)∵a=1,b=﹣2,c=﹣8,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣8)=36>0,∴此方程有两个不相等的实数根.(2)①配方法:x2﹣2x﹣8=0,配方,得(x﹣1)2=9,方程两边开方,得x﹣1=±3,解得:x1=4,x2=﹣2;②因式分解法:x2﹣2x﹣8=0,分解因式,得(x﹣4)(x+2)=0,解得::x1=4,x2=﹣2.(3)①这些方法都是将解一元二次方程转化为解一元一次方程,以达到将方程降次的目的.故答案为:一元二次;一元一次.②x3+2x2﹣3x=0,提取公因式x,得x(x2+2x﹣3)=0,分解因式,得x(x+3)(x﹣1)=0,解得:x1=0,x2=﹣3,x3=1.23.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.【分析】(1)化成一般形式,求根的判别式,当△>0时,方程总有两个不相等的实数根;(2)根据根与系的关系求出两根和与两根积,再把变形,化成和与乘积的形式,代入计算,得到一个关于p的一元二次方程,解方程.【解答】证明:(1)(x﹣3)(x﹣2)﹣p2=0,x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=25﹣24+4p2=1+4p2,∵无论p取何值时,总有4p2≥0,∴1+4p2>0,∴无论p取何值时,方程总有两个不相等的实数根;(2)x1+x2=5,x1x2=6﹣p2,∵x12+x22=3x1x2,∴(x1+x2)2﹣2x1x2=3x1x2,∴52=5(6﹣p2),∴p=±1.24.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.【分析】(1)求出根的判别式,利用偶次方的非负性证明;(2)分△ABC的底边长为2、△ABC的一腰长为2两种情况解答.【解答】(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当△ABC的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故△ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故△ABC的周长为:2+2+3=7.25.已知关于x的方程x2﹣(k+2)x+2k=0.①小明同学说:无论k取何实数,方程总有实数根,你认为他说的有道理吗?②若等腰三角形的一边a=1,另两边b、c恰好是这个方程的两个根,求△ABC 的周长和面积.【分析】(1)计算方程的根的判别式即可说明其根的情况;(2)已知a=1,则a可能是底,也可能是腰,分两种情况求得b,c的值后,再求出△ABC的周长.注意两种情况都要用三角形三边关系定理进行检验.【解答】解:(1)∵△=(k+2)2﹣4×1×2k=k2+4k+4﹣8k=k2﹣4k+4=(k﹣2)2≥0,∴方程无论k取何值,总有实数根,∴小明同学的说法合理;(2)①当b=c时,则△=0,即(k﹣2)2=0,∴k=2,方程可化为x2﹣4x+4=0,∴x1=x2=2,而b=c=2,∴C△ABC =5,S△ABC=;②当b=a=1,∵x2﹣(k+2)x+2k=0.∴(x﹣2)(x﹣k)=0,∴x=2或x=k,∵另两边b、c恰好是这个方程的两个根,∴k=1,∴c=2,∵a+b=c,∴不满足三角形三边的关系,舍去;综上所述,△ABC的周长为5.26.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.【解答】(1)证明:△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.27.已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.【分析】先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m的方程,解方程求出m的值即可.【解答】解:∵x2+(2m﹣1)x+4=0有两个相等的实数根,∴△=(2m﹣1)2﹣4×4=0,解得m=﹣或m=.28.若关于x的一元二次方程x2+4x+2k=0有两个实数根,求k的取值范围及k 的非负整数值.【分析】若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于k 的不等式,求出k的取值范围后,再求非负整数值.【解答】解:∵关于x的一元二次方程x2+4x+2k=0有两个实数根,∴△=42﹣4×1×2k=16﹣8k≥0,解得k≤2.∴k的非负整数值为0,1,2.29.关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为4,求m的值.【分析】首先把原方程整理成一般形式,再根据判别式的定义得到△=(3m﹣1)2﹣4m(2m﹣1)=4,解方程求出m的值即可.【解答】解:一元二次方程mx2﹣(3m﹣1)x=1﹣2m的一般形式是mx2﹣(3m ﹣1)x+2m﹣1=0,∵根的判别式的值为4,∴△=(3m﹣1)2﹣4m(2m﹣1)=4,整理得:m2﹣2m﹣3=0,解得:m=3,或m=﹣1.即m的值为3或﹣1.30.已知关于x的一元二次方程x2+(m+3)x+m+1=0.求证:无论m取何值,原方程总有两个不相等的实数根.【分析】表示出根的判别式,配方后得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;【解答】证明:△=(m+3)2﹣4(m+1)=m2+6m+9﹣4m﹣4=m2+2m+5=(m+1)2+4,∵(m+1)2≥0,∴(m+1)2+4>0,则无论m取何实数时,原方程总有两个不相等的实数根;31.关于x的一元二次方程(k﹣3)x2﹣3x+2=0有两个不相等的实数根.(1)求k的取值范围.(2)求当k取何正整数时,方程的两根均为整数.【分析】(1)一元二次方程有两个不相等的实数根,则k﹣3≠0,△>0,公共部分就是k的取值范围.(2)通过(1)中k的取值范围确定出k的值,依次代入求出一元二次方程的解,满足两根都是整数就可以.【解答】解:(1)∵方程有两个不相等的实数根,∴解得,.(2)k的正整数值为1、2、4如果k=1,原方程为﹣2x2﹣3x+2=0.解得x1=﹣2,,不符合题意舍去.如果k=2,原方程为﹣x2﹣3x+2=0,解得,不符合题意,舍去.如果k=4,原方程为x2﹣3x+2=0,解得x1=1,x2=2,符合题意.∴k=4.32.已知关于x的一元二次方程(m﹣2)x2﹣(m﹣1)x+m=0.(其中m为实数)(1)若此方程的一个非零实数根为k,①当k=m时,求m的值;②若记为y,求y与m的关系式;(2)当<m<2时,判断此方程的实数根的个数并说明理由.【分析】(1)由于k为此方程的一个实数根,故把k代入原方程,即可得到关于k的一元二次方程,①把k=m代入关于k的方程,即可求出m的值;②由于k为原方程的非零实数根,故把方程两边同时除以k,便可得到关于y与m的关系式;(2)先求出根的判别式,再根据m的取值范围讨论△的取值即可.【解答】解:(1)∵k为(m﹣2)x2﹣(m﹣1)x+m=0的实数根,∴(m﹣2)k2﹣(m﹣1)k+m=0.+①当k=m时,∵k为非零实数根,∴m≠0,方程两边都除以m,得(m﹣2)m﹣(m﹣1)+1=0.整理,得m2﹣3m+2=0.解得m1=1,m2=2.∵(m﹣2)x2﹣(m﹣1)x+m=0是关于x的一元二次方程,∴m≠2.∴m=1.②∵k为原方程的非零实数根,∴将方程两边都除以k,得.整理,得.∴.(2)解法一:△=[﹣(m﹣1)]2﹣4m(m﹣2)=﹣3m2+6m+1=﹣3m(m﹣2)+1.当<m<2时,m>0,m﹣2<0.∴﹣3m(m﹣2)>0,﹣3m(m﹣2)+1>1>0,△>0.∴当<m<2时,此方程有两个不相等的实数根.解法二:直接分析<m<2时,函数y=(m﹣2)x2﹣(m﹣1)x+m的图象,∵该函数的图象为抛物线,开口向下,与y轴正半轴相交,∴该抛物线必与x轴有两个不同交点.∴当<m<2时,此方程有两个不相等的实数根.解法三:△=[﹣(m﹣1)]2﹣4m(m﹣2)=﹣3m2+6m+1=﹣3(m﹣1)2+4.结合△=﹣3(m﹣1)2+4关于m的图象可知,(如图)当<m≤1时,<△≤4;当1<m<2时,1<△<4.∴当<m<2时,△>0.∴当<m<2时,此方程有两个不相等的实数根.33.(1)实数﹣4、﹣3、﹣2、﹣1、0、1、2中,哪些数是方程x2﹣x﹣12=0的根?这个方程是否还有其它根,若有,请求出来.(2)已知关于x的一元二次方程ax2+ax+1=0(a≠0)有两个相等的实数根,求a 的值.【分析】(1)由原方程得(x+3)(x﹣4)=0,从而解得方程的根为:x1=﹣3,x2=4;(2)因为关于x的一元二次方程ax2+ax+1=0(a≠0)有两个相等的实数根,所以根的判别式△=a2﹣4a=0(a≠0)然后解关于a的一元二次方程即可.【解答】解:(1)﹣3是方程x2﹣x﹣12=0的根;这个方程还有其他根.由原方程,得(x+3)(x﹣4)=0,解得x1=﹣3,x2=4∴方程x2﹣x﹣12=0的另一根是x=4.(2)∵ax2+ax+1=0(a≠0)有两个相等的实数根,∴△=a2﹣4a=0即a(a﹣4)=0∵a≠0∴a=4.34.若一元二次方程(k+2)x2+4x﹣2=0有实数根,求k的最小整数值.【分析】根据方程有实数根其判别式大于或等于0,且二次项的系数不等于0可知到关于k的不等式组,求其最小整数解即可.【解答】解:方程的判断式为△=42﹣4(k+2)×(﹣2)=32+8k,根据题意可知:即,解得k≥﹣4且k≠﹣2,所以其最小整数为﹣4即k的最小整数值为﹣4.35.关于x的方程kx2﹣(2k﹣1)x+k+3=0有两个实数根,求k的取值范围.【分析】根据方程有两个实数根利用根的判别式可得到关于k的不等式,且方程为一元二次方程,可求得k的取值范围.【解答】解:∵关于x的方程kx2﹣(2k﹣1)x+k+3=0有两个实数根,∴△≥0,且k≠0,即(2k﹣1)2﹣4k(k+3)≥0且k≠0,解得k≤且k≠0.36.已知关于x的方程x2﹣2(m+1)x+m2=0.(1)当m取什么值时,原方程有两个相等的实数根.(2)求出方程的根.【分析】(1)方程有两个相等的实数根,则其判断式为0,计算出判断式令其为0可求得m的值;(2)把求出的m值代入方程求其两根即可.【解答】解:该方程的判断式为:△=4(m+1)2﹣4m2=8m+4,(1)当方程有两个相等的实数根时△=0,即8m+4=0,解得m=﹣,即当m=﹣时,原方程有两个相等的实数根;(2)当m=﹣时,原方程为x2﹣x+=0,可变形为:,所以x1=x2=.37.已知关于x的方程(k﹣1)x2﹣4x+5=0有两个实数根,求k的取值范围.【分析】根据一元二次方程的定义和△的意义得到k﹣1≠0,即k≠1,且△≥0,然后求出这两个不等式解的公共部分即为k的取值范围.【解答】解:∵关于x的方程(k﹣1)x2﹣4x+5=0有两个实数根,∴k﹣1≠0,即k≠1,且△≥0,即42﹣4(k﹣1)×5≥0,解得k≤,∴k的取值范围为k≤且k≠1.38.阅读:对于二次三项式ax2+bx+c(a≠0),当b2﹣4ac≥0时,ax2+bx+c在实数范围内可以分解因式.例:对于2x2﹣5x+1,因为:(﹣5)2﹣4×2×1>0,所以:2x2﹣5x+1在实数范围内可以分解因式.问题:当m取什么值的时候,2x2﹣6x+(1﹣m)在实数范围内可以分解因式.【分析】根据例题可知,当b2﹣4ac≥0时,二次三项式可以在实数范围内分解因式.【解答】解:∵2x2﹣6x+(1﹣m)的二次项系数a=2,一次项系数b=﹣6,常数项是c=1﹣m,∴b2﹣4ac=(﹣6)2﹣4×2•(1﹣m)=8m+28,由已知得:8m+28≥0,解得,m≥﹣;∴当m≥﹣时,2x2﹣6x+(1﹣m)在实数范围内可以分解因式.39.已知:关于x方程x2+(x+)k﹣(x+1)=0(1)写成关于x的一元二次方程的一般形式:x2+(k﹣1)x+k﹣1=0(2)算出根的判别式△,判断方程根的情况并说明理由.【分析】(1)整理成ax2+bx+c=0的形式即可;(2)计算△=b2﹣4ac=(k﹣1)2﹣4(k﹣1)=k2+4>0,从而说明方程根的情况;【解答】解:(1)x2+(x+)k﹣(x+1)=0x2+xk+k﹣x﹣1=0∴x2+(k﹣1)x+k﹣1=0(2)△=b2﹣4ac=(k﹣1)2﹣4(k﹣1)=k2+4>0,∴方程有两个不相等的实数根;40.已知关于x的一元二次方程x2+4x﹣2k=0有两个实数根,求k的取值范围及k的负整数值.【分析】首先根据一元二次方程的一般形式求得b2﹣4ac的值,再进一步根据关于x的一元二次方程x2﹣4x+m=0有两个实数根,即△≥0进行求解.【解答】解:由题意可得△≥0,即:42﹣4×(﹣2k)≥0整理得16+8k≥0解得:k≥﹣2,其中k的负整数值为﹣2、﹣1.41.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【分析】(1)根据关于x的方程x2﹣(m+2)x+(2m﹣1)=0的根的判别式的符号来证明结论;(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,由勾股定理得斜边的长度为:;②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理得该直角三角形的另一直角边为;再根据三角形的周长公式进行计算.【解答】(1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2.42.(1)解方程:(2)当m为何值时,关于x的方程(m﹣2)x2﹣(2m﹣1)x+m=0有两个实数根.【分析】(1)先把分式方程去分母后变成整式方程,求出整式方程的解,再代入2x﹣1进行检验即可;(2)根据方程有两个实数解得出[﹣(2m﹣1)]2﹣4(m﹣2)m≥0,且m﹣2≠0,求出即可.【解答】(1)解:方程两边都乘以2x﹣1得:2﹣5=2x﹣1,解这个方程得:2x=﹣2,x=﹣1,检验:∵把x=﹣1代入2x﹣1≠0,∴x=﹣1是原方程的解;(2)解:要使方程有两个实数根,必须[﹣(2m﹣1)]2﹣4(m﹣2)m≥0,且m﹣2≠0,解得:m≥﹣且m≠2,答:当m≥﹣且m≠2,时,关于x的方程(m﹣2)x2﹣(2m﹣1)x+m=0有两个实数根.43.已知关于x的一元二次方程x2﹣2x+k=0(1)方程有两个不相等的实数根时,求k的取值范围;(2)在(1)中当k取最大整数时,求所得方程的实数根.【分析】(1)根据一元二次方程x2﹣2x+k=0有两个不相等的实数根,知△=b2﹣4ac>0,然后据此列出关于k的方程,解方程即可.(2)将求得的最大整数代入得到方程求解即可.【解答】解:(1)∵x2﹣2x+k=0有两个不相等的实数根,∴△=4﹣4k>0,解得,k<1;(2)在k<1中,k的最大整数是k=0,则原方程就是x2﹣2x=0,得:x(x﹣2)=0解得:x=0或x=2.44.已知关于x的方程x2﹣(2k﹣1)x+k2﹣2=0.(1)k取何值时,方程有两个不相等的实数根;(2)在(1)的条件下,请你取一个自己喜爱的k值,并求出此时方程的解.【分析】(1)根据方程有两个不相等的实数根可以得到方程根的判别式大于零,从而得到不等式求解即可.(2)从求得的k值中找到一个代入求解方程即可.【解答】解:(1)由题意知:(2k﹣1)2﹣4(k2﹣2)>0∴。

专题08 一元二次方程根的判别式及根与系数的关系(解析版)

专题08 一元二次方程根的判别式及根与系数的关系(解析版)

九年级数学全册北师大版版链接教材精准变式练专题08 一元二次方程根的判别式及根与系数的关系【典例1】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:⎩⎨⎧-=•-=+212111a x x , 解得:⎩⎨⎧-=-=311x a ,则a 的值是﹣1,该方程的另一根为﹣3.【总结】熟练掌握一元二次方程根的判别式与根之间的对应关系.【典例2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k ≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0,典例解读解得:k <2且k ≠1. 故答案为:k <2且k ≠1.【总结】不能忽略二次项系数不为0这一条件.【典例3】已知关于x 的一元二次方程2(1)10m x x -++=有实数根,则m 的取值范围是________ 【答案】54m ≤且m ≠1 【解析】因为方程2(1)10m x x -++=有实数根,所以214(1)450m m =--=-+≥△,解得54m ≤, 同时要特别注意一元二次方程的二次项系数不为0,即(1)0m -≠, ∴ m 的取值范围是54m ≤且m ≠1. 【总结】注意一元二次方程的二次项系数不为0,即(1)0m -≠,m ≠1. 【典例4】已知方程2560x kx +-=的一个根是2,求另一个根及k 的值.【点拨】根据方程解的意义,将x =2代入原方程,可求k 的值,再由根与系数的关系求出方程的另外一个根. 【解析】方法一:设方程另外一个根为x 1,则由一元二次方程根与系数的关系,得125k x +=-,1625x =-,从而解得:135x =-,k =-7. 方法二:将x =2代入方程,得5×22+2k-6=0,从而k =-7.设另外一根为x 1,则由一元二次方程根与系数的关系,得1725x +=,从而135x =-, 故方程的另一根为35-,k 的值为-7.【总结】根据一元二次方程根与系数的关系12bx x a+=-,12cx x a=易得另一根及k 的值. 【典例5】关于x 的一元二次方程x 2+2x+2m=0有两个不相等的实数根. (1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x+2m=0的两个根,且x 12+x 22=8,求m 的值.【点拨】(1)根据方程根的个数结合根的判别式,可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x 1+x 2=﹣2,x 1•x 2=2m ,再结合完全平方公式可得出x 12+x 22=()221x x +﹣2x 1•x 2,代入数据即可得出关于关于m 的一元一次方程,解方程即可求出m 的值,经验值m=﹣1符合题意,此题得解. 【解析】解:(1)∵一元二次方程x 2+2x+2m=0有两个不相等的实数根, ∴△=22﹣4×1×2m=4﹣8m >0, 解得:m <21. ∴m 的取值范围为m <21. (2)∵x 1,x 2是一元二次方程x 2+2x+2m=0的两个根, ∴x 1+x 2=﹣2,x 1•x 2=2m ,∴x 12+x 22=()221x x +﹣2x 1•x 2=4﹣4m=8,解得:m=﹣1.当m=﹣1时,△=4﹣8m=12>0.∴m 的值为﹣1.【总结】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m >0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.【典例6】求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数. 【解析】设方程25230x x +-=的两根分别为x 1、x 2,由一元二次方程根与系数的关系, 得1225x x +=-,1235x x =-.设所求方程为20y py q ++=,它的两根为y 1、y 2, 由一元二次方程根与系数的关系得111y x =-,221y x =-,从而12121212122111125()335x x p y y x x x x x x -⎛⎫+=-+=---=+=== ⎪⎝⎭-,12121211153q y y x x x x ⎛⎫⎛⎫==--==- ⎪ ⎪⎝⎭⎝⎭.故所求作的方程为225033y y +-=,即23250y y +-=. 【总结】所求作的方程中的未知数与已知方程中的未知数要用不同的字母加以区别.同时“以两个数x 1、x 2为根的一元二次方程是()021212=++-x x x x x x .”可以用这种语言形式记忆“2x -和x +积=0”,或“减和加积”,此处的一次项系数最容易出现符号上的错误.【教材知识必背】一、一元二次方程根的判别式 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定c b a .,的值;③计算ac b 42-的值;④根据ac b 42-的符号判定方程根的情况. 2. 一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,(1)方程有两个不相等的实数根⇒ac b 42-﹥0;(2)方程有两个相等的实数根⇒ac b 42-=0;教材知识链接(3)方程没有实数根⇒ac b 42-﹤0.诠释:(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件; (2)若一元二次方程有两个实数根则 ac b 42-≥0. 二、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k xx k =+++; ⑦12||x x -==;⑧22212121222222121212()211()x x x x x x x x x x x x ++-+==;⑨2212121212()()4x x x x x x x x -=±-=±+-; ⑩22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+.(4)已知方程的两根,求作一个一元二次方程; 以两个数2\1x x 为根的一元二次方程是()021212=++-x x x x x x .(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围; (6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则 ①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数; 当△≥0且120x x >,120x x +<时,两根同为负数. ②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a b +,则必有一根a b -(a ,b 为有理数).【变式1】下列一元二次方程没有实数根的是( ) A .x 2+2x+1=0 B .x 2+x+2=0 C .x 2﹣1=0 D .x 2﹣2x ﹣1=0【点拨】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断. 【答案】B . 【解析】精准变式题解:A 、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误; B 、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C 、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D 、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误; 故选:B .【总结】本题主要考查一元二次方程根的情况,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.【变式2】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( )A. 1B. 0,1C. 1,2D. 1,2,3 【答案】A.提示:根据题意得:△=16﹣12k ≥0,且k ≠0,解得:k ≤34,且k ≠0. 则k 的非负整数值为1.【变式3】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根【变式4】已知:关于x 的方程2(1)04kkxk x +++=有两个不相等的实数根,求k 的取值范围. 【答案】102k k ≠>-且.【变式5】已知方程220x x c -+=的一个根是3,求它的另一根及c 的值.【答案】另一根为-1;c 的值为-3.【变式6】不解方程,求方程22310x x +-=的两个根的(1)平方和;(2)倒数和.【答案】(1)134; (2)3.1. 关于x 的方程2210mx x ++=无实数根,则m 的取值范围为( ). A .m ≠0 B .m >1 C .m <1且m ≠0 D .m >-1综合提升变式练【答案】B ;【解析】当m =0时,原方程的解是12x =-;当m ≠0时,由题意知△=22-4·m ×1<0,所以m >1. 2.若1x 、2x 是一元二次方程2210x x +-=的两根,则1211x x +的值为( ). A .-1 B .0 C .1 D .2 【答案】C ;【解析】由一元二次方程根与系数的关系知:1212x x +=-,1212x x =-,从而121212111x x x x x x ++==. 3. 一元二次方程x 2﹣4x+4=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】B.【解析】在方程x 2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.4.一元二次方程20(0)ax bc c a ++=≠有两个不相等的实数根,则24b ac -满足的条件是( )A .240b ac -=B .240b ac ->C .240b ac -<D .240b ac -≥ 【答案】B ;【解析】20ax bx c ++=(a ≠0)有两个不相等实数根240b ac ⇔->.5.若关于x 的一元二次方程(a ﹣1)x 2﹣2x+2=0有实数根,则整数a 的最大值为( )A .﹣1B .0 C.1 D.2 【答案】B ;【解析】∵关于x 的一元二次方程(a ﹣1)x 2﹣2x+2=0有实数根,∴△=(﹣2)2﹣8(a ﹣1)=12﹣8a ≥0且a ﹣1≠0, ∴a ≤且a ≠1,∴整数a 的最大值为0.故选:B .6.关于方程2230x x ++=的两根12,x x 的说法正确的是( )A. 122x x +=B.123x x +=-C. 122x x +=-D.无实数根 【答案】D ;【解析】求得Δ=b 2-4ac=-8<0,此无实数根,故选D .7.关于x 的一元二次方程x 2+4x+k=0有实数解,则k 的取值范围是( )A.k ≥4B.k ≤4C.k >4D.k=4【答案】B ;【解析】∵关于x 的一元二次方程x 2+4x+k=0有实数解,∴b 2﹣4ac=42﹣4×1×k ≥0, 解得:k ≤4,故选B .8.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为( ). A .3 B .6 C .18 D .24 【答案】A ;【解析】由一元二次方程根与系数的关系得:3αβ+=,32αβ=, 因此22()()4963αβαβαβ-=+-=-=9.等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2﹣6x+n ﹣1=0的两根,则n 的值为( ).A .9B .10C .9或10D .8或10 【答案】B ;【解析】∵三角形是等腰直角三角形,∴①a=2,或b=2,②a=b 两种情况, ①当a=2,或b=2时,∵a ,b 是关于x 的一元二次方程x 2﹣6x+n ﹣1=0的两根, ∴x=2,把x=2代入x 2﹣6x+n ﹣1=0得,22﹣6×2+n ﹣1=0, 解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形, 故n=9不合题意,②当a=b 时,方程x 2﹣6x+n ﹣1=0有两个相等的实数根, ∴△=(﹣6)2﹣4(n ﹣1)=0 解得:n=10, 故选B .10.设a ,b 是方程220130x x +-=的两个实数根,则22a a b ++的值为( ). A .2010 B .2011 C .2012 D .2013 【答案】C ;【解析】依题意有22013a a +=,1a b +=-,∴222()()201312012a a b a a a b ++=+++=-=.11.若ab ≠1,且有25201290a a ++=,及29201250b b ++=,则ab的值是( ). A .95 B .59 C .20125- D .20129- 【答案】A ;【解析】因为25201290a a ++=及29201250b b ++=,于是有25201290a a ++=及2115()201290bb+•+=, 又因为1ab ≠,所以1a b ≠,故a 和1b可看成方程25201290x x ++=的两根, 再运用根与系数的关系得195a b •=,即95a b =.12.已知关于x 的方程221(3)04x m x m --+=有两个不相等的实数根,那么m 的最大整数值是________.【答案】1;【解析】由题意知△=221[(3)]404m m ---⨯⨯>,所以32m <,因此m 的最大整数值是1. 13.关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,则m 的取值范围是__ ___. 【答案】54m <-; 【解析】因为关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,所以22(21)4(1)(1)0m m +-⨯--<,解得54m <-. 14.关于x 的方程kx 2﹣4x ﹣=0有实数根,则k 的取值范围是 . 【答案】k ≥﹣6; 【解析】当k=0时,﹣4x ﹣=0,解得x=﹣,当k ≠0时,方程kx 2﹣4x ﹣=0是一元二次方程,根据题意可得:△=16﹣4k ×(﹣)≥0, 解得k ≥﹣6,k ≠0,综上k ≥﹣6.15.已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两根,则+= .【答案】-2.【解析】∵一元二次方程x 2﹣2x ﹣1=0的两根为x 1、x 2,x 1+x 2=2,x 1•x 2=﹣1,∴+= =﹣2.故答案是:﹣2. 16.若方程的两根是x 1、x 2,则代数式的值是 。

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

2021年中考专题复习一元二次方程根的判别式和根与系数的关系回忆与思考1.一元二次方程ax2+bx+c = 0(a≠0)的根的情况可由△=b2-4ac来判定:(1)当b2–4ac>0时,方程有实数根,即x1=,x2=.当b2–4ac=0时,方程有实数根,即x1=x2=.当b2–4ac<0时,方程实数根.我们把b2-4ac叫做一元二次方程ax2+bx+c = 0(a≠0)的根的判别式.(2)一元二次方程根的判别式的应用:①不解方程,判别根的情况,特别是判别含有字母系数的一元二次方程根的情况,可通过配方法把b2–4ac变形为±(m±h)2+k的形式,由此得出结论,无论m为何值,b2–4ac≥0或b2–4ac<0,从而判定一元二次方程根的情况.一般步骤是:先计算△,再用配方法将△恒等变形,然后判断△的符号,最后得出结论.②根据方程的根的情况,求待定系数的取值范围;③进展有关的证明.(3)关于根的判别式的应用:①对于数字系数方程,可直接计算其判别式的值,然后判断根的情况;②对于字母系数的一元二次方程,假设知道方程根的情况,可以确定判别式大于零、等于零还是小于零,从而确定字母的取值范围;③运用配方法,并根据一元二次方程根的判别式可以证明字母系数的一元二次方程的根的有关问题.(4)应用根的判别式须注意以下几点:①要用△,要特别注意二次项系数a≠0这一条件.②认真审题,严格区分条件和结论,譬如是△>0,△≥0还是要证明△<0.③要证明△≥0或△<0,需用配方法将△恒等变形为±(m±h)2+k的形式,从而得到判断.2.一元二次方程的根与系数的关系(1)如果方程ax2+bx+c = 0(a≠0)的根是x1和x2,那么x1+x2=,x1x2=.特别低,如果方程x2+px+q = 0的根是x1和x2,那么x1+x2=,x1x2=.(2)一元二次方程根与系数关系的应用.①验根.验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:一要先把一元二次方程化成标准型,二不要漏除二次项系数a≠0;三还要注意–ba中的符号.②方程一根,求另一根.③不解方程,求与根有关的代数式的值.一般步骤:先求出x1+x2,x1x2的值,再将所求代数式用x1+x2,x1x2的代数式表示,然后将x1+x2,x1x2的值代入求值.④两个数,求作以这两个数为根的一元二次方程:以x1,x2为根的一元二次方程可写成x2-(x1+x2)x+x1x2=0.(3)应用一元二次方程根与系数的关系时,应注意:①根的判别式b2–4ac≥0;②二次项系数a≠0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.(4)求方程两根所组成的代数式的值,关键在于把所求代数式变形为两根的和与两根的积的形式.(5) 常见的形式:3.二次三项式的因式分解:ax2+bx+c=a(x-x1)(x-x2).其中x1,x2是关于x的方程ax2+bx+c=0的两个实数根.【例1】不解方程,判定关于x的方程根的情况(1)2x2–9x+8=0 (2)9x2+6x+1=0 (3) 16x2+8x=–3 (4)x2=7x+18(5)2x2–(4k+1)x+2k2–1=0 (6)x2+(2t+1)x+(t–2)2=0【例2】(1)关于x的一元二次方程kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.(2)假设关于x的一元二次方程(a–2)x2–2ax+a+1=0没有实数解,求ax+3>0的解集〔用含a 的式子表示〕.【例3】(1)关于x的方程x2–mx+m–2=0,求证:方程有两个不相等的实数根(2)求证:方程(m2+1)x2–2mx+(m2+4)=0没有实数根.【例4】(1)方程x2–5x–6=0的根是x1和x2,求以下式子的值:①(x1–3)(x2–3) ②x12+x22+x1x2③x1x2+x2x1(2)利用根与系数的关系,求一个一元二次方程,①使它的根分别是方程3x2–x–10=0各根的3倍;②使它的根分别是方程3x2–x–10=0各根的负倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程及根的判别式
一、选择题
1.下列方程中,有实数解的方程是( ).
(A )022=+x (B )023=+x (C )0222=++y x (D )02=+x
2.用配方法解方程0142=+-x x 时,配方后所得的方程是
(A )1)2(2=-x ; (B )1)2(2-=-x ; (C )3)2(2=-x ; (D )3)2(2=+x .
3.已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( )
A .该方程有两个相等的实数根
B .该方程有两个不相等的实数根
C .该方程无实数根
D .该方程根的情况不确定
4.下列一元二次方程没有实数解的是……………………………………………( )
A 、0122=--x x
B 、0)3)(1(=--x x
C 、022=-x
D 、 012=++x x
5.k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是 ( ) (A)有两个不相等的实数根; (B)有两个相等的实数根;
(C)没有实数根; (D)无法确定.
6.一元二次方程x 2+2x +1=0根的情况是
(A )有两个不相等的实数根; (B )有两个相等的实数根;
(C )有一个实数根; (D )无实数根.
7.下列方程中,有两个不相等实数根的是………………………………( )
A .2440x x -+= ;
B .2310x x +-=;
C .210x x ++=;
D .2230x x -+=.
8.若一元二次方程1x 3x 42=+的两个根分别为1x 、2x ,则下列结论正确的是
(A )43x x 21-
=+,41x x 21-=⋅; (B )3x x 21-=+,1x x 21-=⋅; (C )43x x 21=+,41x x 21=⋅; (D )3x x 21=+,1x x 21=⋅. 二、填空题:
1. 某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米。

如果每年绿化面积的增加率相同,那么计算增长率的方程是_____________
2. 如果关于x 的方程220x x m -+=(m 为常数)有两个相等的实数根,则
m =___________
3.关于x 的方程01mx mx 2=++有两个相等的实数根,那么m= .
4.如果关于x 的方程02=+-m x x 没有实数根,那么m 的取值范围是 .
5.如果关于x 的一元二次方程0122=+-x kx 有两个不相等的实数根,那么实数k 的取值
范围是 .
6.一元二次方程0322=+-x x 的根的判别式的值是 ______ .
7. 将二元二次方程169622=+-y xy x 化为二个二元一次方程为___________ .
8.用配方法解方程2
61x x -=时,方程的两边应该同加上 ,才能使得方程左边 配成一个完全平方式.
9. 一元二次方程20(0)ax bx c a ++=≠有一根为零的条件是 .
10. 若方程2210x x --=的两个实数根为1x ,2x ,则12x x += . 11. 方程2
340x x +-=的两个实数根为x 1、x 2,则x 1·x 2=__________
12. 方程04324=--x x 的根是 .
三、计算题 1. 解方程组:⎩⎨⎧+=-=+)
(25222y x y x y x 2. 解方程组:222,230
x y x xy y -=⎧⎨--=⎩
3. 解方程组:21220y x x xy -=⎧⎨--=⎩,
.
4. 解方程组:2
30
10x y x y --=⎧⎨++=⎩ 5.解方程组:⎪⎩
⎪⎨⎧=-=+-12114422y x y xy x 6. 解方程组:⎪⎩⎪⎨⎧=++=--4
440322222y xy x y xy x 7. 解方程组:22113y x x y -=⎧⎨+=⎩。

相关文档
最新文档