线性规划基础
第六章线性规划基础
12x1 3x2 4
s.t.
2 x1 3x1
3x2 15x2
2 36
x1 x2 1
x1 0, x2 0 max z' 3x1 2x2
12x1 3x2 x3
4
s.t.
2 x1 3x1
3x2 15x2
x4
2
x5 5
x1
x2
1
x1, x2 , x3, x4 , x5 0
x1 +2x2≤ 8
s.t.
x2≤ 3
x1≥0, x2 ≥0
线性规划的数学表达
即求一组变量x1 , x2 ,…, xn ,在满足约束条件: a11x1 + a12x2 + … +a1nxn≤b1 a21x1 + a22x2 + … +a2nxn≤b2 ……
am1x1 + am2x2 + … +amnxn≤bm x1 , x2 , … , xn ≥0 的情况下,使目标函数:
XB所含 分量个
数恰为 阶数m, XN含nm个0分 量
线性规划解的性质
• 性质1:LP问题的可行域R为一凸集 • 性质2:LP问题的一个基本可行解与可行域R的一
个极点互相对应 • 性质3:线性规划的基本定理:对于任何一个给定
的标准形LP问题M来说,若M有可行解,则必有基 本可行解;如M有最优解,则必有最优基本可行解。 • 性质4:若LP问题的可行域R≠Ф,则R至少有一极 点 • 性质5:LP问题可行域R的极点数量必为有限多个
基本解
可行解 基本可行解
约束矩阵A中
基的数目最多 为Cnm,因而 基本解的个数
最多也只能有 Cnm个,所以 基本可行解的
运 筹 学 课 件
12/3 4
z
1 2
x4
x5 42
x3
2 3
x4
1 3
x5
4
新典式
主元化 为1,主 元所在
x2
1 2
x4
6
列的其 余元素
x1
2 3
x4
1 3
x5
4
化为0
观察最后一个典式,所有检验数均为非负, 故其对应的基本可行解为最优解,即
X * 4,6,6,0,0T z* 42
去掉引入变量,得原问题的最优解为:
运筹学课件
目录
运筹学概论 第一章 线性规划基础 第二章 单纯形法 第三章 LP对偶理论 第四章 灵敏度分析 第五章 运输问题 第六章 整数规划 第七章 动态规划 第八章 网络分析
第二章 单纯形法
(SM-Simplex Method)
1947年,美国运筹学家Dantzig提出,原理是 代数迭代。
单纯形法中的单纯形的这个术语,与该方法毫 无关系,它源于求解方法的早期阶段所研究的一 个特殊问题,并延用下来。
CB B1b B1b
z
CB B1N CN X N X B B1NX N
CB B1b B1b
上述方程组的矩阵形式为
10
0 I
CB
B1N B1N
CN
z XB XN
CB B1b B1b
上式的系数增广阵称为对应于基B的单纯形表:
T(B)
CB B1b B1b
0 I
CB
B1N B1N
CN
形式的LP问题,必须解决三个问题: ⑴初始基本可行解的确定; ⑵解的最优性检验; ⑶基本可行解的转移规则。 这里先放一下⑴,研究⑵和⑶,为此,
线性规划基础
➢2.线性规划的图解法
12
线性规划问题的图解法
例题中的线性规划模型只有两个变量,可以采用 图解法求解。
根据约束条件,在二维平面上画出两个变量可行 区域。
判断目标函数在何处达到最优值,找到最优解。 求解步骤:
第一步,得到可行域。 第二步,在可行域中找到使目标函数最优的点。
13
图解法要点1—约束
线性规划基础
北京大学光华管理学院 蓝 颖杰
ylan@
1
内容摘要 ➢1.线性规划的概念 ➢2.线性规划的图解法 ➢3.线性规划的标准型 ➢4.线性规划的基本解 ➢5 .线性规划的单纯形法
2
➢1.线性规划的概念
3
线性规划的概念
线性规划-Linear Programming, 简称为LP
0.8x3 400 x3 250
x1 0,x2 0
5
线性规划的特点
线性规划是目前应用得最为广泛最为成 功的运筹学模型
由于线性函数的特殊性,线性规划问题 是大规模的运筹学问题中相对而言最容 易得到最优解的模型。
有些更复杂的模型可能借助线性规划求 解,或简化为线性规划模型。
6
线性函数的性质
线性函数:z=ax,x为自变量,a为参数。 当a>0时,z随着x的增加而增加。
当a>0时, 若没有约束条件,max z=ax 是不存在的,趋向于无穷大。
所以现实问题的模型应包括对自变量取 值的限制。
7
例1.1:生产问题
例题 1.1:某企业可以生产产品A和B。所需机 器、人工、资源总量及产品售价由下表给出。
X2
20
800X1+300X2=4500
101X0X1+1+5X5X2<2==110000
运筹学基础-线性规划(方法)
线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)
数学建模基础知识 线性规划-单纯形方法
线性规划为求最小化的标准型时,相应的结 果?
单纯形表:
T(B)= B-1b
B-1A
CB B-1b C-CB B-1A = B-1b I B-1N
CB B-1b 0 CN - CB B-1N
注意: A=(B,N)
检验数σ=C - CB B-1A= (0, CN - CB B-1N )
3.若存在检验数大于零,且对应的系数 列有大于零的分量,则需要换基迭代。
三.换基迭代
1.确定换入变量Xk,其中 max(σj> 0)= σk, xk为换入变量 j=1,2,…,m
x4 = 16- 4x1
(I)
x5 = 12 - 4x2
S = 0+ 2x1 +3x2
令非基变量 ( x1 , x2)T=(0,0) T 得基础可行解: x(1)=(0,0,8,16,12) T S1=0 经济含义:不生产产品甲乙,利润为零。
二、已知初始可行基求最优解
线性规划标准型的矩阵形式(3):
c1 … x1 … 1… 0… 0… 0…
0…
cm cm+1 … xm xm+1 … 0 a1,m+1 … 0 a2,m+1 … 0…… 1 am,m+1 …
0 cm+1 -∑ciai,m+1…
cn
xn
θi
a1,n
θ1
a2,n
θ2
……
am,n
θn
cn -∑ciai,n
m
j c j ciaij , j m 1,, n i 1
非基变量检验数σ= CN - CB B-1N
m
线性规划基础
知识详解1.线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x,y的约束条件,这组约束条件都是关于x,y的一次不等式,故又称线性约束条件.②线性目标函数:关于x,y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x,y的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.2.用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解3.解线性规划实际问题的步骤:(1)列出约束条件与目标函数;(2)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(3)验证.4. 主要的目标函数的几何意义:(1)-----直线的截距;(2)-----两点的距离或圆的半径;(3)-----直线的斜率一.二元一次不等式(组)表示的平面区域例1.不等式组⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )例2. (2020·汉中质检)不等式组⎩⎪⎨⎪⎧x +y -2≤0,x -y -1≥0,y ≥0所表示的平面区域的面积等于________.二.目标函数形如z=ax+by 型:例1(2008.全国Ⅱ)设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值是( )A .2-B .4-C .6-D .8-解:画出可行域(如图1),由y x z 3-=可得331z x y -=,所以3z -表示直线331zx y -=的纵截距,由图可知当直线过点A (-2,2)时,z 的最小值是-8,选D.三.目标函数形如ax by z --=型::画出可行域(如图2),yx表示可行域内的点(x,y=6,KOC =59,所以6≤,选A.1.已知变量满足约束条件,则的最大值为( )2. (2012年高考·辽宁卷 理8)设变量满足,则的最大值为4. A.⎣⎡C .6A .C .7. 8如果点P 在平面区域⎪⎩⎨≥-≤-+01202y y x 上,点O 在曲线的那么上||,1)2(22PQ y x=++最小值为____9.设,x y 满足约束条件3602000x y x y x y --≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数,(0,0)z ax by a b =+>>的最大值为6,则46a b +的最小值为_______、10.某糖果厂生产A 、B 两种糖果,A 种糖果每箱获利润40元,B 种糖果每箱获利润50元,其生产过程分为混,x y 241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩3z x y =+()A 12()B 11()C 3()D -1,x y -100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩2+3x y合、烹调、包装三道工序,下表为每箱糖果生产过程中所需平均时间(单位:分钟)每种糖果的生产过程中,混合的设备至多能用12机器小时,烹调的设备至多只能用机器30机器小时,包装的设备只能用机器15机器小时,试用每种糖果各生产多少箱可获得最大利润.11.某工厂利用两种燃料生产三种不同的产品A、B、C,每消耗一吨燃料与产品A、B、C有下列关系:现知每吨燃料甲与燃料乙的价格之比为3:2,现需要三种产品A、B、C各50吨、63吨、65吨.问如何使用两种燃料,才能使该厂成本最低?。
1-线性规划基本概念
aij x j y j = bi
=
yi 0是非负的松驰变量
若约束条件是“”不等式
n
aij x j z j = bi
=
zi 0是非负的松驰变量
3.若约束条件右面的某一常数项 bi<0; 这时只要在bi相对应的约束方程两边乘
上-1。
4.若变量 xj无非负限制
引进两个非负变量xj xj 0 令xj= xj- xj(可正可负)
x2=生产椅子的数量 2.确定目标函数:家具厂的目标是销售收入最大
max z=50x1+30x2 3.确定约束条件:
4x1+3x2120(木工工时限制) 2x1+x2 50 (油漆工工时限制) 4.变量取值限制: 一般情况,决策变量只取正值(非负值) x1 0, x2 0
数学模型
max z=50x1+30x2
桌子售价50元/个,椅子销售价格30元/个, 生产桌子和椅子要求需要木工和油漆工两种 工种。生产一个桌子需要木工4小时,油漆工 2小时。生产一个椅子需要木工3小时,油漆 工1小时。该厂每个月可用木工工时为120小 时,油漆工工时为50小时。问该厂如何组织 生产才能使每月的销售收入最大?
解:将一个实际问题转化为线性规划模型有以下几 个步骤: 1.确定决策变量:x1=生产桌子的数量
•确定性假定:线性规划问题中的所有参数都是确定 的参数。线性规划问题不包含随机因素。
练习
某公司通过市场调研,决定生产高中档新型拉杆箱。某分 销商决定买进该公司3个月内的全部产品。拉杆箱生产需经过 原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用7/10小 时剪裁、5/10小时缝合、1小时定型、1/10小时检验包装;生产 高档拉杆箱则需用1小时剪裁、5/6小时缝合、2/3小时定型、 1/4小时检验包装。由于公司生产能力有限,3月内各部的最大 生产时间为剪裁部630小时、缝合部600小时、定型部708小时、 检验包装部135小时。
线性规划基础
x4
x5
x6
1
x6
a
3
0
-14/3
0
1
1
0
x2
5
6
d
2
0
5/2
0
28
x4
0
0
e
f
1
0
0
Cj-Zj
b
c
0
0
-1
g
6.用单纯形法求解下列线性规划。
(1)min Z =-5x1-4x2(2)max Z =5x1+2x2+3x3-x4+x5
x1+2x2≤6 x1+2x2+2x3+x4=8
2x1-x2≤4 3x1+ 4x2+x3+x5=7
2.建立模型并求解。
(1)、某厂生产甲、乙、丙三种产品,已知有关数据如下表所示:
消耗产品
原料
甲
乙
丙
原料量
A
6
3
5
45
B
3
4
5
30
单件利润
4
1
5
求使该厂获利最大的生产计划。
(2)、从M1、M2、M3三种矿石中提炼A、B两种金属。已知每吨矿石中金属A、B的含量和各种矿石的价格如下表所示:
金属品种
矿石中金属含量(克/吨)
3.线性规划一般模型中的变量不一定是非负的。
4.用图解法求最优解时,只需求出可行域顶点对应的目标值,通过比较大小,就能找
出最优解。
5.一般情况下,松弛变量和多余变量的目标函数系数为零。
二.简答题
1.简述线性规划问题数学模型的组成部分及其特征。
2.简述建立线性规划问题数学模型的步骤。
线性规划的数学模型和基本性质
1.线性规划介绍
美国科学院院士DANTZIG(丹齐克),1948年在 研究美国空军资源的优化配置时提出线性规划及其通用 解法 “单纯形法”。被称为线性规划之父。
线性规划之父的Dantzig (丹齐克)。据说,一次上课,Dantzig迟到 了,仰头看去,黑板上留了几个几个题目,他就抄了一下,回家后埋头 苦做。几个星期之后,疲惫的去找老师说,这件事情真的对不起,作业 好像太难了,我所以现在才交,言下很是 惭愧。几天之后,他的老师 就把他召了过去,兴奋的告诉他说他太兴奋了。Dantzig很不解 , 后来 才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领 域的未解决的问题,他给出的那个解法也就是单纯形法。这个方法是上 个世纪前十位的算法。
s.t.
2.线性规划数学模型
线性规划问题应用 市场营销(广告预算和媒介选择,竞争性定价,新产品 开发,制定销售计划) 生产计划制定(合理下料,配料,“生产计划、库存、 劳力综合”) 库存管理(合理物资库存量,停车场大小,设备容量) 运输问题 财政、会计(预算,贷款,成本分析,投资,证券管理) 人事(人员分配,人才评价,工资和奖金的确定) 设备管理(维修计划,设备更新) 城市管理(供水,污水管理,服务系统设计、运用)
1.线性规划介绍
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
线性规划基本知识
线性规划基本知识线性规划是一种数学优化方法,用于在给定限制条件下最大或最小化线性目标函数。
它是现代数学、工程学和运筹学的基础之一,被广泛应用于制造业、金融、交通、物流等领域。
本文将介绍线性规划的基础知识,包括线性规划问题的表达方式、标准形式、单纯形法求解以及对偶理论等。
一、线性规划问题的表达方式线性规划问题的表达方式通常包含以下部分:1. 决策变量:表示求解问题时需要确定的变量,通常用x1、x2、......、xn表示。
2. 目标函数:表示优化的目标,通常是一个线性函数,用c1x1+c2x2+......+cnxn表示。
3. 约束条件:表示限制决策变量的取值范围,通常是线性等式或不等式,用a11x1+a12x2+......+a1nxn≤b1、a21x1+a22x2+......+a2nxn≤b2、......、am1x1+am2x2+......+amnxn≤bm 表示。
其中,决策变量x1、x2、......、xn的取值范围可以是非负实数集合、整数集合或者其他特定取值范围。
二、线性规划的标准形式通常情况下,线性规划问题都可以通过一些变换,转化为标准形式进行求解。
标准形式的线性规划问题包括以下三个部分:1. 最大化或最小化的目标函数2. 约束条件,所有约束条件都是小于等于号3. 决策变量的取值范围,所有决策变量都是非负实数三、单纯形法求解线性规划问题单纯形法是线性规划问题最常用的求解方法之一,它是一种迭代的过程,通过一系列基本变换(基本可行解、进入变量、离开变量、更新表格)逐步接近最优解。
单纯形法求解线性规划问题的步骤如下:1. 将线性规划问题转化为标准形式。
2. 确定一个初始可行解。
3. 计算第一行表格的系数,并找出最小的系数所在的列,作为进入变量。
4. 确定离开变量,通过将所有正数元素对应的值除以对应进入变量的系数,找到最小的元素所在的行,作为离开变量所在行。
5. 更新表格,完成一次迭代。
6. 重复第三至第五步,直至得到最优解或者确定问题无可行解或是无界问题。
运筹学基础-线性规划(2)
四、线性规划问题的标准形式
线性规划问题的数学; 约束条件有“≤”、“≥”和“=”三种情况; 决策变量一般有非负性要求,有的则没有。
为了求解方便,特规定一种线性规划的标准形式,非标
准型可以转化为标准型计算
(一)线性规划的标准形式
线性规划的标准形式为: 目标函数最大化 maxZ=c1x1+c2x2+…+cnxn a 约束条件为等式, 11x1+a12x2+…+a1nxn =b1 a21x1+a22x2+…+a2nxn =b2 …………… am1x1+am2x2+…+amnxn=bm 右端常数项 决策变量非负 bi≥0 x1,x2,…,xn ≥0
S.t.
(2)maxZ’= - 6 x1 -7 x2 + x’3- x’’3 +0 x4 + 0 x5 + 0 x6+ 0 x7
S.t.
五、线性规划解的概念
在讨论线性规划问题的求解之前,先要了解线性规划问 题的解的概念。由前面讨论可知线性规划问题的标准型为:
Max Z
j 1 n a ij x j b j (i 1,2, , m) j 1 x j 0 ( j 1,2, , n)
=- x1 + 8 求解 x4 = -2x2 + 12 x5= -3x1 -4 x2+ 36 令非基变量x1=x2=0,得到x3=8,x4=12,x5=36。 得基解 X=(0,0,8,12,36)T
(二)标准型的表达方式
线性规划标准型的表达方式有代数式、矩阵式两种:
1. 代数式 maxZ=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn =b1 a21x1+a22x2+…+a2nxn =b2 …………… am1x1+am2x2+…+amnxn=bm x1,x2,…,xn ≥0 maxZ=
2.1 线性规划的定义
目标函数值为:z=15
x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x6、x2、x3,非基变量x4、x5、x1
3x2 3x2 -x2
+x3 -x3 +x3
+x6
=15 =18 =3
基础解为 (x1,x2,x3,x4,x5,x6)=(0,11/2,-3/2,0,0,10) 是基础解但不是可行解。
x1 +3x2 +x3 2x1 +3x2 -x3 x1 -x2 +x3
+x4 +x5 +x6
=15 =18 =3
基变量x5、x2、x3,非基变量x1、x4、x6
3x2 3x2 -x2
+x3 -x3 +x3
+x5
=15 =18 =3
基础解为(x1,x2,x3,x4,x5,x6)=(0,3,6,0,15,0) 是基础可行解,表示可行域的一个极点。
B N
B 1b X 0
为基B下的基本解。
三、线性规划的基本概念
• 7、基本可行解:符合非负性要求的基本解, 称为基本可行解。 • 8、可行基:基本可行解对应的基,称为可行 基。 • 9、基本最优解:满足目标函数要求的基本解, 称为基本最优解。
三、线性规划的基本概念
max Z CB B 1b (CN CB B 1 N ) X N s.t. X B B 1b B 1 NX N (1.5) XB, X N 0
=
(1.4)
=
结论:
第一章:线性规划基础
表1.5 效率表
工作 A 人员 甲 乙 丙 丁 X11 0.6 X21 0.7 X31 0.8 X41 0.7 X42 0.7 X32 1.0 X43 0.5 X22 0.4 X33 0.7 X44 0.4 B X12 0.2 X23 0.3 X34 0.3
s.t.
C X13 0.3
D X14 0.1 X24 0.2
6
三、合理下料问题建模:寻求最佳下料方式, 使余料最少. 合理下料问题建模:寻求最佳下料方式, 使余料最少. 有一批长度为180公分的钢管,需截成70 52和35公分三种管料 180公分的钢管 70、 公分三种管料。 例 有一批长度为180公分的钢管,需截成70、52和35公分三种管料。它们的需求量应分别不少于 100、150和100个 问应如何下料才能使钢管的余料为最少? 100、150和100个。问应如何下料才能使钢管的余料为最少? 解:
s.t.
5
二、人员分派问题建模: 合理分派人员, 使总效率最大. 人员分派问题建模: 合理分派人员, 使总效率最大. 设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 例:设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少) 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少)。 表示各人对各项工作所具有的工作效率。 表1.5表示各人对各项工作所具有的工作效率。
⑤
k •
ο •h • ο a ④ ③ 3 ο ② X1 ⑤
四、L.P. 的一般形式
Max(Min) Z = c1 · x1 + c2 · x2 + --- + cn · xn a11 · x1 + a12 · x2 + --- + a1n · xn ≤(≥, =) b1 a21 · x1 + a22 · x2 + --- + a2n · xn ≤(≥, =) b2 s.t. ------------------------------------------ ---- --am1 · x1 + am2 · x2 + --- + amn · xn ≤(≥, =) bm xj ≥ 0 , j=1, ~, n
高中数学-线性规划复习基础知识分析-新人教A版必修5
线性规划 基础知识:一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=02. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<03. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>02.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
简单线性规划(基础版)
o
x=1
x
练习: 练习:
设Z=x+3y,式中变量x、y Z=x+3y x、y满足下列条件 +3 x、y 求z的最大值和最小值。 z
2x+3y≤24 x-y≤7 , y ≥0 y ≤6 x≥0
小结: 小结:
1.线性规划问题的有关概念; 2. 用图解法解线性规划问题的一般步骤;
x-4y≤-3 3x+5y≤25 + x≥1
(1)画出该不等式组表示的平面区域 (2)设z=2x+y,求z的最大值和最小值。 z z
y
o
x
线性规划的有关概念 x -4y≤ - 3
引例:画出不等式组 引例 画出不等式组
y
x=1
C
3x+5y≤ 25 表示的平面区域。 表示的平面区域。 x≥1
x-4y=-3
满足线性约束条件的解( , )。 可行解:满足线性约束条件的解(x,y)。 可行域: 可行域:所有可行解组成的集合。 最优解: 目标函数达到最大值或 最优解:使目标函数达到最大值或 最小值 的可 行 解。
y x=1
C
可行域 可行解 A 最优 解 最优 解
o
B
x
求线性目标函数在线性约束条件下的最大值或最小值的问题。 求线性目标函数在线性约束条件下的最大值或最小值的问题。
o
B
x
即Zmin =2×1+1 =3 × 当直线l过点 过点A(5,2)时,z最大 当直线 过点 时 z最大, 即Zmax=2×5+2=12 。 = × =
线性规划的有关概念
线性目标函数
问题:设z=2x+y,式中变量满足下列条件:
x − 4y ≤ −3 3x + 5y ≤ 25 x ≥ 1
线性规划1基础(最值,分式,平方类型)
线性规划1基础(最值,分式,平方类型)一.选择题(共33小题)1.设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣82.已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣33.若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.124.设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4 B.6 C.10 D.175.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1 B.2 C.3 D.46.变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于()A.﹣2 B.﹣1 C.1 D.27.若实数x,y满足不等式组目标函数t=x﹣2y的最大值为2,则实数a的值是()A.﹣2 B.0 C.1 D.28.已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.19.x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣110.已知x,y满足约束条件,则z=2x+y的最大值为()A.3 B.﹣3 C.1 D.11.设x,y满足约束条件,则z=2x﹣y的最大值为()A.10 B.8 C.3 D.212.设实数x,y满足,则xy的最大值为()A.B.C.12 D.1613.变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.514.已知x,y满足约束条件,则z=的范围是()A.[,2]B.B[﹣,]C.[,]D.[,]15.设变量x,y满足约束条件,则s=的取值范围是()A.[1,]B.[,1]C.[1,2]D.[,2]16.设变量x、y满足约束条件,则目标函数z=x2+y2的取值范围为()A.[2,8]B.[4,13]C.[2,13]D.17.已知变量x,y满足,则u=的值范围是()A.[,]B.[﹣,﹣]C.[﹣,]D.[﹣,]18.实数x,y满足不等式组,则ω=的取值范围是()A.[﹣,]B.[﹣1,]C.[﹣1,1)D.[﹣,1)19.已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49 B.37 C.29 D.520.设实数x,y满足:,则z=2x+4y的最小值是()A.B.C.1 D.821.设x,y满足不等式组,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为()A.[﹣1,2] B.[﹣2,1] C.[﹣3,﹣2]D.[﹣3,1]22.如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是()A.B.C.D.23.已知变量x,y满足,则的取值范围是()A. B.C.D.24.已知函数f(x)=ax2+bx﹣1(a,b∈R且a>0)有两个零点,其中一个零点在区间(1,2)内,则a﹣b的取值范围是()A.(﹣1,1)B.(﹣1,+∞)C.(﹣2,1)D.(﹣2,+∞)25.x,y满足约束条件,若z=y﹣2ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.1或﹣C.2或1 D.2或﹣126.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.2127.已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)28.设x,y满足条,若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为()A.1 B.C.D.29.已知,求z=的范围()A.[,]B.[,]C.[,]D.[,]30.设x,y满足约束条件,则目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.6 D.531.设x,y想,满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.432.若x,y满足约束条件,则的最大值为()A.2 B.C.3 D.133.已知x、y满足,则z=的取值范围是()A.[﹣2,1] B.(﹣∞,﹣2]∪[1,+∞)C.[﹣1,2] D.(﹣∞,﹣1]∪[2,+∞)线性规划1基础(最值,分式,平方类型)参考答案与试题解析一.选择题(共33小题)1.(2015•马鞍山一模)设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选D.2.(2015•山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=2,故选:B3.(2016•山东)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.【解答】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.4.(2016•天津)设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4 B.6 C.10 D.17【分析】作出不等式组表示的平面区域,作出直线l0:2x+5y=0,平移直线l0,可得经过点(3,0)时,z=2x+5y取得最小值6.【解答】解:作出不等式组表示的可行域,如右图中三角形的区域,作出直线l0:2x+5y=0,图中的虚线,平移直线l0,可得经过点(3,0)时,z=2x+5y取得最小值6.故选:B.5.(2016•九江一模)如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1 B.2 C.3 D.4【分析】首先作出其可行域,再由题意讨论目标函数在哪个点上取得最值,解出k.【解答】解:作出其平面区域如右图:A(1,2),B(1,﹣1),C(3,0),∵目标函数z=kx﹣y的最小值为0,∴目标函数z=kx﹣y的最小值可能在A或B时取得;∴①若在A上取得,则k﹣2=0,则k=2,此时,z=2x﹣y在C点有最大值,z=2×3﹣0=6,成立;②若在B上取得,则k+1=0,则k=﹣1,此时,z=﹣x﹣y,在B点取得的应是最大值,故不成立,故选B.6.(2015•福建)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于()A.﹣2 B.﹣1 C.1 D.2【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得m的值.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为,解得:m=1.故选:C.7.(2016•福州模拟)若实数x,y满足不等式组目标函数t=x﹣2y的最大值为2,则实数a的值是()A.﹣2 B.0 C.1 D.2【分析】画出约束条件表示的可行域,然后根据目标函数z=x﹣2y的最大值为2,确定约束条件中a的值即可.【解答】解:画出约束条件表示的可行域由⇒A(2,0)是最优解,直线x+2y﹣a=0,过点A(2,0),所以a=2,故选D8.(2015•安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1【分析】首先画出平面区域,z=﹣2x+y的最大值就是y=2x+z在y轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.9.(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D10.(2016•荆州一模)已知x,y满足约束条件,则z=2x+y的最大值为()A.3 B.﹣3 C.1 D.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:作图易知可行域为一个三角形,当直线z=2x+y过点A(2,﹣1)时,z最大是3,故选A.11.(2014•新课标II)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10 B.8 C.3 D.2【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.12.(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.16【分析】作出不等式组对应的平面区域,利用基本不等式进行求解即可.【解答】解:作出不等式组对应的平面区域如图;由图象知y≤10﹣2x,则xy≤x(10﹣2x)=2x(5﹣x))≤2()2=,当且仅当x=,y=5时,取等号,经检验(,5)在可行域内,故xy的最大值为,故选:A13.(2016•黔东南州模拟)变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.5【分析】作出不等式组对应的平面区域,设z=(x﹣2)2+y2,利用距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C(0,1),此时z=(x﹣2)2+y2=4+1=5,故选:D.14.(2016•莱芜一模)已知x,y满足约束条件,则z=的范围是()A.[,2]B.B[﹣,]C.[,]D.[,]【分析】画出满足条件的平面区域,求出角点的坐标,根据z=的几何意义求出z的范围即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(1,2),由,解得B(3,1),而z=的几何意义表示过平面区域内的点与(﹣1,﹣1)的直线的斜率,显然直线AC斜率最大,直线BC斜率最小,K AC==,K BC==,故选:C.15.(2015•鄂州三模)设变量x,y满足约束条件,则s=的取值范围是()A.[1,]B.[,1]C.[1,2]D.[,2]【分析】先根据已知中,变量x,y满足约束条件,画出满足约束条件的可行域,进而分析s=的几何意义,我们结合图象,利用角点法,即可求出答案.【解答】解:满足约束条件的可行域如下图所示:根据题意,s=可以看作是可行域中的一点与点(﹣1,﹣1)连线的斜率,由图分析易得:当x=1,y=O时,其斜率最小,即s=取最小值当x=0,y=1时,其斜率最大,即s=取最大值2故s=的取值范围是[,2]故选D16.(2015•开封模拟)设变量x、y满足约束条件,则目标函数z=x2+y2的取值范围为()A.[2,8]B.[4,13]C.[2,13]D.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可得到结论..【解答】解:作出不等式对应的平面区域,则z=x2+y2的几何意义为动点P(x,y)到原点的距离的平方,则当动点P位于A时,OA的距离最大,当直线x+y=2与圆x2+y2=z相切时,距离最小,即原点到直线x+y=2的距离d=,即z的最小值为z=d2=2,由,解得,即A(3,2),此时z=x2+y2=32+22=9+4=13,即z的最大值为13,即2≤z≤13,故选:C17.(2015•会宁县校级模拟)已知变量x,y满足,则u=的值范围是()A.[,]B.[﹣,﹣]C.[﹣,]D.[﹣,]【分析】化简得u=3+,其中k=表示P(x,y)、Q(﹣1,3)两点连线的斜率.画出如图可行域,得到如图所示的△ABC及其内部的区域,运动点P得到PQ斜率的最大、最小值,即可得到u=的值范围.【解答】解:∵u==3+,∴u=3+k,而k=表示直线P、Q连线的斜率,其中P(x,y),Q(﹣1,3).作出不等式组表示的平面区域,得到如图所示的△ABC及其内部的区域其中A(1,2),B(4,2),C(3,1)设P(x,y)为区域内的动点,运动点P,可得当P与A点重合时,k PQ=﹣达到最小值;当P与B点重合时,k PQ=﹣达到最大值∴u=3+k的最大值为﹣+3=;最小值为﹣+3=因此,u=的值范围是[,]故选:A18.(2014•东莞二模)实数x,y满足不等式组,则ω=的取值范围是()A.[﹣,]B.[﹣1,]C.[﹣1,1)D.[﹣,1)【分析】根据已知的约束条件,画出满足约束条件的可行域,分析表示的几何意义,结合图象即可给出的取值范围.【解答】解:约束条件对应的平面区域如下图示:表示可行域内的点(x,y)与点(﹣1,1)连线的斜率,由图可知的取值范围是,故选D.19.(2014•福建)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49 B.37 C.29 D.5【分析】作出不等式组对应的平面区域,利用圆C与x轴相切,得到b=1为定值,此时利用数形结合确定a的取值即可得到结论.【解答】解:作出不等式组对应的平面区域如图:圆心为(a,b),半径为1∵圆心C∈Ω,且圆C与x轴相切,∴b=1,则a2+b2=a2+1,∴要使a2+b2的取得最大值,则只需a最大即可,由图象可知当圆心C位于B点时,a取值最大,由,解得,即B(6,1),∴当a=6,b=1时,a2+b2=36+1=37,即最大值为37,故选:B20.(2016•江门模拟)设实数x,y满足:,则z=2x+4y的最小值是()A.B.C.1 D.8【分析】先根据约束条件画出可行域,设t=x+2y,把可行域内的角点代入目标函数t=x+2y 可求t的最小值,由z=2x+4y=2x+22y,可求z的最小值【解答】解:z=2x+4y=2x+22y,令t=x+2y先根据约束条件画出可行域,如图所示设z=2x+3y,将最大值转化为y轴上的截距,由可得A(﹣2,﹣1)由可得C(﹣2,3)由B(4,﹣3)把A,B,C的坐标代入分别可求t=﹣4,t=4,t=﹣2Z的最小值为故选B21.(2016•广东模拟)设x,y满足不等式组,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为()A.[﹣1,2] B.[﹣2,1] C.[﹣3,﹣2]D.[﹣3,1]【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.【解答】解:由z=ax+y得y=﹣ax+z,直线y=﹣ax+z是斜率为﹣a,y轴上的截距为z的直线,作出不等式组对应的平面区域如图:则A(1,1),B(2,4),∵z=ax+y的最大值为2a+4,最小值为a+1,∴直线z=ax+y过点B时,取得最大值为2a+4,经过点A时取得最小值为a+1,若a=0,则y=z,此时满足条件,若a>0,则目标函数斜率k=﹣a<0,要使目标函数在A处取得最小值,在B处取得最大值,则目标函数的斜率满足﹣a≥k BC=﹣1,即0<a≤1,若a<0,则目标函数斜率k=﹣a>0,要使目标函数在A处取得最小值,在B处取得最大值,则目标函数的斜率满足﹣a≤k AC=2,即﹣2≤a<0,综上﹣2≤a≤1,故选:B.22.(2015•青羊区校级模拟)如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是()A.B.C.D.【分析】表示圆上动点与原点O连线的斜率,画出满足等式(x﹣2)2+y2=3的图形,由数形结合,我们易求出的最大值.【解答】解:满足等式(x﹣2)2+y2=3的图形如图所示:表示圆上动点与原点O连线的斜率,由图可得动点与B重合时,此时OB与圆相切,取最大值,连接BC,在Rt△OBC中,BC=,OC=2易得∠BOC=60°此时=故选D23.(2016•衡阳二模)已知变量x,y满足,则的取值范围是()A. B.C.D.【分析】作出可行域,变形目标函数可得=1+表示可行域内的点与A(﹣2,﹣1)连线的斜率与1的和,数形结合可得.【解答】解:作出满足所对应的区域(如图阴影),变形目标函数可得==1+,表示可行域内的点与A(﹣2,﹣1)连线的斜率与1的和,由图象可知当直线经过点B(2,0)时,目标函数取最小值1+=;当直线经过点C(0,2)时,目标函数取最大值1+=;故答案为:[,].24.(2013•山东模拟)已知函数f(x)=ax2+bx﹣1(a,b∈R且a>0)有两个零点,其中一个零点在区间(1,2)内,则a﹣b的取值范围是()A.(﹣1,1)B.(﹣1,+∞)C.(﹣2,1)D.(﹣2,+∞)【分析】由题意知,一个根在区间(1,2)内,得关于a,b的等式,再利用线性规划的方法求出a﹣b的取值范围.【解答】解:设f(x)=ax2+bx﹣1=0,由题意得,f(1)•f(2)<0,∴(a+b﹣1)(4a+2b﹣1)<0.且a>0.即或,(不合题意舍去)视a,b为变量,作出可行域如图.令a﹣b=t,设z=a﹣b∴b=a﹣z,得到一簇斜率为1,截距为﹣z的平行线∴当直线b=a﹣z过a+b﹣1=0与y轴的交点时截距最大,z最小又∴a=0,b=1,∴a﹣b的最小值为:0﹣1=﹣1∴a﹣b的取值范围为:(﹣1,+∞)故选:B.25.(2015•万州区模拟)x,y满足约束条件,若z=y﹣2ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.1或﹣C.2或1 D.2或﹣1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=2ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣2ax得y=2ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=2ax+z的斜率k=2a>0,要使z=y﹣2ax取得最大值的最优解不唯一,则直线y=2ax+z与直线2x﹣y+2=0平行,此时2a=2,即a=1.若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣2ax取得最大值的最优解不唯一,则直线y=2ax+z与直线x+y﹣2=0,平行,此时2a=﹣1,解得a=﹣综上a=1或a=﹣,故选:B26.(2015•赤峰模拟)已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.21【分析】作出不等式组对应的平面区域,利用数形结合即可得到结论.【解答】解:设z=x2+y2,则z的几何意义为区域内的点到原点的距离的平方,作出不等式组对应的平面区域如图:由图象可知,则OC的距离最大,由,解得,即C(3,3),则z=x2+y2=9+9=18,故选:B27.(2016•重庆三模)已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)【分析】由约束条件作出可行域如图,令u=2x﹣2y﹣1,由线性规划知识求出u的最值,取绝对值求得z=|u|的取值范围.【解答】解:由约束条件作可行域如图,联立,解得,∴A(2,﹣1),联立,解得,∴.令u=2x﹣2y﹣1,则,由图可知,当经过点A(2,﹣1)时,直线在y轴上的截距最小,u最大,最大值为u=2×2﹣2×(﹣1)﹣1=5;当经过点时,直线在y轴上的截距最大,u最小,最小值为u=.∴,∴z=|u|∈[0,5).故选:C.28.(2016•滨州一模)设x,y满足条,若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为()A.1 B.C.D.【分析】作出不等式对应的平面区域,利用z的几何意义确定取得最小值的条件,然后利用基本不等式进行求则ab的最大值.【解答】解:由z=ax+by(a>0,b>0)得,∵a>0,b>0,∴直线的斜率,作出不等式对应的平面区域如图:平移直线得,由图象可知当直线经过点A时,直线的截距最小,此时z最小.由,解得,即A(2,3),此时目标函数z=ax+by(a>0,b>0)的最小值为2,即2a+3b=2,∴2=2a+3b,即ab≤,当且仅当2a=3b=1,即a=,b=时取等号.故ab的最大值为,故选:D.29.(2016•衡水校级二模)已知,求z=的范围()A.[,]B.[,]C.[,]D.[,]【分析】作出不等式对应的平面区域,利用线性规划的知识,利用目标函数的几何意义.【解答】解:z==2×,设k=,则k的几何意义是点(x,y)到定点D(﹣1,)的斜率,作出不等式组对应的平面区域如图:由图象可知AD的斜率最大,BD的斜率最小,由,解得,即A(1,3),此时k==,z最大为2k=2×=,由,解得,即B(3,1),此时k==,z最大为2k=2×=,故z=的范围是[,],故选:A30.(2015•湘西州校级模拟)设x,y满足约束条件,则目标函数z=ax+by (a>0,b>0)的最大值为12,则+的最小值为()A.B.C.6 D.5【分析】画出不等式组表示的平面区域,求出直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,观察当目标函数过(4,6)时,取得最大12,即4a+6b=12,即2a+3b=6,要求+的最小值,先用乘“1”法进而用基本不等式即可求得最小值.【解答】解:不等式组表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=()=+()≥=,当且仅当a=b=,取最小值.故选B.31.(2016•潮南区模拟)设x,y想,满足约束条件,若目标函数z=ax+by (a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.4【分析】作出不等式对应的平面区域,利用线性规划的知识先求出a,b的关系,然后利用基本不等式求+的最小值.【解答】解:由z=ax+by(a>0,b>0)得y=,作出可行域如图:∵a>0,b>0,∴直线y=的斜率为负,且截距最大时,z也最大.平移直线y=,由图象可知当y=经过点A时,直线的截距最大,此时z也最大.由,解得,即A(4,6).此时z=4a+6b=12,即=1,则+=(+)()=1+1++≥2+2=4,当且仅当=时取=号,故选:D32.(2016•长沙校级一模)若x,y满足约束条件,则的最大值为()A.2 B.C.3 D.1【分析】作出不等式组对应的平面区域,利用斜率的几何意义结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:的几何意义是区域内的点到点D(0,1)的斜率,由图象知AD的斜率最大,由,得,即A(1,3),此时的最大值为,故选:A.33.(2015春•唐山校级月考)已知x、y满足,则z=的取值范围是()A.[﹣2,1] B.(﹣∞,﹣2]∪[1,+∞)C.[﹣1,2] D.(﹣∞,﹣1]∪[2,+∞)【分析】先根据约束条件画出可行域,设z=,再利用z的几何意义求最值,只需求出区域内的点Q与点P(1,﹣2)连线的斜率的取值范围即可.【解答】解:先根据约束条件画出可行域,设z=,将z转化区域内的点Q与点P(1,﹣2)连线的斜率,当动点Q在点A时,z 的值为:,当动点Q在点O时,z 的值为:,数形结合,z=的取值范围是(﹣∞,﹣2]∪[1,+∞),故选B.第31页(共31页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5x1+2x2≤8 2x1+3x2≥6
x1,x2≥0 -x1+x2≤3
x1,x2≥0
(3)max Z = x1+2x2(4)min Z = x1+3x2
-x1+2x2≤4 x1+x2≤1
x1,x2≥0 x1+2x2≥4
x2≥0
4.给定线性规划问题
max Z =2x1+3x2
三.简答题
1.针对不同形式的约束(≥,=,≤)简述初始基本可行解的选取方法。
2.简述如何在单纯型表上判别问题是否具有唯一解、无穷多解、无界解或无可行解。
3.简述若标准型变为求目标函数最小,则用单纯形法计算时,如何判别问题已取得最优解。
四、解答题
1.找出下列线性规划问题的一组可行解和基本可行解。
(1)max Z = 40x1+45x2+24x3(2)min Z =x1-2x2+x3-3x4
1
0
0
0
CB
XB
b
x1
x2
x3
x4
x5
0
x3
8
0
a12
1
2
0
1
x1
2
1
a22
0
1
0
0
x5
9
0
a32
0
3
1
Zj
1
Z2
0
1
0
Cj-Zj
0
C2-Z2
0
-1
0
5.求出单纯形表中未知数的值,并判断解是否最优解。
(1)、目标函数为max Z =5x1+3x2,约束形式为“≤”,且x3,x4为松弛变量,表中的解代入目标函数中得Z=10,求出a~g的值。
Cj
5
3
0
0
CB
XB
b
x1
x2
x3
x4
0
x3
2
c
0
1
1/5
5
x1
a
d
e
0
1
Cj-Zj
b
-1
f
g
(2)、目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量,
表中的解代入目标函数中得Z=14,求出a~g的值,并判断是否最优解。
Cj
0
0
0
28
1
2
CB
XB
b
x1
x2
时间消耗
前道过程
后道过程
A
2
3
B
3
4
可利用时间
16
24
在不增加任何费用的情况下,每生产一个单位的B会产生2单位的副产品C;C可以出售赢利,其余只能加以销毁。出售每单位A能赢利4元,每单位B能赢利10元,每单位C赢利3元,若卖不出,每单位C的销毁费用是2元,预测表明,最多可以出售5个单位的副产品C。要求确定使总利润达到最大的A和B的产量,建立线性规划模型。
机车类型
机车台数
日产1号零件(千件/台)
日产2号零件(千件/台)
1
30
15
20
2
10
30
55
(3)、某化工厂生产宽度为60个单位长的标准玻璃纸,现需将这种玻璃纸截成宽度分别为28、20和15个单位长的三种规格的产品。已知它们的市场需求分别为30、60和80卷,问应以怎样的方法裁剪,可使消耗的标准玻璃纸最少而又能满足市场需要。
3x1+3x2+x3=3 3x1+4x2≥1.5
xj≥0 j=1,2,3 xj≥0 j=1,2
2.给定线性规划问题,判断下列向量是否能作为可行解。
min Z =4x1+5x2-2x3
x1+x2+x3=1
2x1+3x2=1
xj≥0 j=1,2,3
(1). X=(2,-1,0) (2). X=(0,1/3,2/3) (3). X=(1/2,0,1/2) (4). X=(5,-3,-1)
2.将下列线性规划模型化为标准型。
(1)min Z =2x1+x2-2x3(2)max Z=2x1+x2+3x3+x4
-x1+x2+x3=4 x1+ x2+ x3+ x4≤7
-x1+x2-x3≤6 2x1-3x2+5x3=-8
x1≤0,x2≥0, x3无约束x1-2x3+2x4≥1
x1,x3≥0,x2≤0,x4无约束
A1
A2
资
源
i
资源1
9
4
3600
资源2
4
5
2000
资源3
3
10
3000
利润Cj
70
120
(2)、某厂车间有B1、B2两个工段,可生产A1、A2和A3三种产品。各工段开工一天的产量和成本以及合同对三种产品的最低需求量由下表给出。建立求使成本最低并能满足需求的开工计划的模型。
生产定额(吨/天)
工段Bj
合同每周最低需
第一章线性规划基础
一.判断正误
1.线性规划问题的一般模型中不能出现等式约束。
2.在线性规划模型的标准型中,bj(j=1,2,…m)一定是非负的。
3.线性规划一般模型中的变量不一定是非负的。
4.用图解法求最优解时,只需求出可行域顶点对应的目标值,通过比较大小,就能找
出最优解。
5.一般情况下,松弛变量和多余变量的目标函数系数为零。
M1
M2
M3
A
300
200
60
B
200
240
320
矿石价格(元/吨)
60
48
56
如需金属A为48千克,B为56千克,问用各种矿石多少吨,可使总的费用最少。
第四章对偶问题及对偶单纯形法
一.填空:
1.对偶单纯形法与单纯形法的主要区别是每次迭代的基变量都满足最优检验但不完全满足约束。
二.简答题
1.简述本章范围内线性规划所能解决的实际问题的类型及建模方法。
三.解答题
1.建立下列应用问题的线性规划模型
(1)、某饲养厂饲养动物出售,设每头动物每天至少需700克蛋白质、30克矿物质和100毫克维生素,现有三种饲料可供选择,各饲料每公斤的营养成分和单价如下Hale Waihona Puke 所示:饲料蛋白质(克)
矿物质(克)
x3
x4
x5
x6
1
x6
a
3
0
-14/3
0
1
1
0
x2
5
6
d
2
0
5/2
0
28
x4
0
0
e
f
1
0
0
Cj-Zj
b
c
0
0
-1
g
6.用单纯形法求解下列线性规划。
(1)min Z =-5x1-4x2(2)max Z =5x1+2x2+3x3-x4+x5
x1+2x2≤6 x1+2x2+2x3+x4=8
2x1-x2≤4 3x1+ 4x2+x3+x5=7
5x1+3x2≤15 xj≥0,i=1,2,…5
x1,x2≥0
(3)min Z =3x1-x2(4)max Z =3x1+5x2
-x1+3x2≤3 x1≤4
-2x1-3x2≤6 2x2≤12
2x1+x2≤2 3x1+2x2≤18
x1,x2无约束x1,x2≥0
7.分别用大法和两阶段法求解下列线性规划。
求量(吨)
B1
B2
产
品
Ai
A1
1
1
5
A2
3
1
9
A3
1
3
9
成本(元/天)
1000
2000
(3)、假定市场上有i种食品,单位售价是ci,有m种营养成分。为达到营养平衡,每人每天必须摄取不少于bj个单位的第j种营养成分。第i种食品的每个单位含有aij个单位的第j种营养,建立确定最佳饮食水平的模型(i=1,2,…,m;j=1,2,…,n)。
二.简答题
1.简述线性规划问题数学模型的组成部分及其特征。
2.简述建立线性规划问题数学模型的步骤。
3.简述化一般线性规划模型为标准型的方法。
三.解答题
1.判断下列模型是否为线性规划模型(其中a,b,c均为常数)
(1)min Z = cjxj(2)max Z = cjxj
aijxj≤bi aijxj≤bi
(3)min Z =3x1-4x2+2x3-5x4
4x1-x2+2x3-x4≥2
x1+x2+3x3+4x4≤20 x1≤0,x2≥0,x3≥0,x4无约束
(4)max Z= cijxij
xij≤ai
xij= bjxij≥0,(i=1,2,…,m;j=1,2,…,n)
3.用图解法解下列线性规划问题。
(1)max Z =10x1+5x2(2)min Z =-x1+2x2
(4)、某工厂生产A、B两种产品,已知生产A每公斤要用煤9吨、电4度、劳动力3个;生产B每公斤要用煤4吨、电5度、劳动力10个。又知每公斤A、B的利润分别为7万元和12万元。现在该工厂只有煤360吨、电200度、劳动力300个。问在这种情况下,各生产A、B多少公斤,才能获最大利润,请建立模型。