上海新高考高三数学试卷(含答案)

合集下载

2022年上海市高考数学试卷和答案解析

2022年上海市高考数学试卷和答案解析

2022年上海市高考数学试卷和答案解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知z=1+i(其中i为虚数单位),则2=.2.(4分)双曲线﹣y2=1的实轴长为.3.(4分)函数f(x)=cos2x﹣sin2x+1的周期为.4.(4分)已知a∈R,行列式的值与行列式的值相等,则a =.5.(4分)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为.6.(4分)x﹣y≤0,x+y﹣1≥0,求z=x+2y的最小值.7.(5分)二项式(3+x)n的展开式中,x2项的系数是常数项的5倍,则n=.8.(5分)若函数f(x)=,为奇函数,求参数a的值为.9.(5分)为了检测学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的概率为.10.(5分)已知等差数列{a n}的公差不为零,S n为其前n项和,若S5=0,则S i(i=0,1,2,⋯,100)中不同的数值有个.11.(5分)若平面向量||=||=||=λ,且满足•=0,•=2,•=1,则λ=.12.(5分)设函数f(x)满足f(x)=f(),定义域为D=[0,+∞),值域为A,若集合{y|y=f(x),x∈[0,a]}可取得A中所有值,则参数a的取值范围为.二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项.13.(5分)若集合A=[﹣1,2),B=Z,则A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{﹣1,0}D.{﹣1}14.(5分)若实数a、b满足a>b>0,下列不等式中恒成立的是()A.a+b>2B.a+b<2C.+2b>2D.+2b<215.(5分)如图正方体ABCD﹣AB1C1D1中,P、Q、R、S分别为棱AB、BC、BB1、CD的中点,联结A1S,B1D.空间任意两点M、N,若线段MN上不存在点在线段A1S、B1D上,则称MN 两点可视,则下列选项中与点D1可视的为()A.点P B.点B C.点R D.点Q16.(5分)设集合Ω={(x,y)|(x﹣k)2+(y﹣k2)2=4|k|,k∈Z}①存在直线l,使得集合Ω中不存在点在l上,而存在点在l两侧;②存在直线l,使得集合Ω中存在无数点在l上;()A.①成立②成立B.①成立②不成立C.①不成立②成立D.①不成立②不成立三、参考答案题(本大题共有5题,满分76分).17.(14分)如图所示三棱锥,底面为等边△ABC,O为AC边中点,且PO⊥底面ABC,AP=AC=2.;(1)求三棱锥体积V P﹣ABC(2)若M为BC中点,求PM与面PAC所成角大小.18.(14分)f(x)=log3(a+x)+log3(6﹣x).(1)若将函数f(x)图像向下移m(m>0)后,图像经过(3,0),(5,0),求实数a,m的值.(2)若a>﹣3且a≠0,求解不等式f(x)≤f(6﹣x).19.(14分)在如图所示的五边形中,AD=BC=6,AB=20,O为AB中点,曲线CD上任一点到O距离相等,角∠DAB=∠ABC =120°,P,Q关于OM对称;(1)若点P与点C重合,求∠POB的大小;(2)P在何位置,求五边形面积S的最大值.20.(16分)设有椭圆方程Γ:+=1(a>b>0),直线l:x+y ﹣4=0,Γ下端点为A,M在l上,左、右焦点分别为F1(﹣,0)、F2(,0).(1)a=2,AM中点在x轴上,求点M的坐标;(2)直线l与y轴交于B,直线AM经过右焦点F2,在△ABM中有一内角余弦值为,求b;(3)在椭圆Γ上存在一点P到l距离为d,使|PF1|+|PF2|+d=6,随a的变化,求d的最小值.21.(18分)数列{a n}对任意n∈N*且n≥2,均存在正整数i∈[1,n﹣1],满足a n+1=2a n﹣a i,a1=1,a2=3.(1)求a4可能值;(2)命题p:若a1,a2,⋯,a8成等差数列,则a9<30,证明p为真,同时写出p逆命题q,并判断命题q是真是假,说明理由;(3)若a2m=3m,(m∈N*)成立,求数列{a n}的通项公式.参考答案与解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.【参考答案】解:z=1+i,则=1﹣i,所以2=2﹣2i.故答案为:2﹣2i.【解析】本题考查了共轭复数的概念,是基础题.2.【参考答案】解:由双曲线﹣y2=1,可知:a=3,所以双曲线的实轴长2a=6.故答案为:6.【解析】本题考查双曲线的性质,是基础题.3.【参考答案】解:f(x)=cos2x﹣sin2x+1=cos2x﹣sin2x+cos2x+sin2x=2cos2x=cos2x+1,T==π.故答案为:π.【解析】本题主要考查了三角函数的恒等变换,三角函数的周期性及其求法,倍角公式的应用,属于基础题.4.【参考答案】解:因为=2a﹣3,=a,所以2a﹣3=a,解得a=3.故答案为:3.【解析】本题考查了行列式表示的值,属于基础题.5.【参考答案】解:因为圆柱的底面积为9π,即πR2=9π,所以R=3,所以S侧=2πRh=24π.故答案为:24π.【解析】本题考查了圆柱的侧面积公式,属于基础题.6.【参考答案】解:如图所示:由x﹣y≤0,x+y﹣1≥0,可知行域为直线x﹣y=0的左上方和x+y ﹣1=0的右上方的公共部分,联立,可得,即图中点A(,),当目标函数z=x+2y沿着与正方向向量=(1,2)的相反向量平移时,离开区间时取最小值,即目标函数z=x+2y过点A(,)时,取最小值:+2×=.故答案为:.【解析】本题考查了线性规划知识,难点在于找到目标函数取最小值的位置,属于中档题.7.【参考答案】解:∵二项式(3+x)n的展开式中,x2项的系数是常数项的5倍,即×3n﹣2=5×3n,即=5×9,∴n=10,故答案为:10.【解析】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.8.【参考答案】解:∵函数f(x)=,为奇函数,∴f(﹣x)=﹣f(x),∴f(﹣1)=﹣f(1),∴﹣a2﹣1=﹣(a+1),即a(a﹣1)=0,求得a=0或a=1.当a=0时,f(x)=,不是奇函数,故a≠0;当a=1时,f(x)=,是奇函数,故满足条件,综上,a=1,故答案为:1.【解析】本题主要考查函数的奇偶性的定义和性质,属于中档题.9.【参考答案】解:从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的方法共有+种,而所有的抽取方法共有种,故每一类都被抽到的概率为==,故答案为:.【解析】本题主要考查古典概率及其计算公式的应用,属于基础题.10.【参考答案】解:∵等差数列{a n}的公差不为零,S n为其前n项和,S5=0,∴=0,解得a1=﹣2d,∴S n=na1+=﹣2nd+=(n2﹣5n),∵d≠0,∴S i(i=0,1,2⋯,100)中S0=S5=0,S2=S3=﹣3d,S1=S4=﹣2d,其余各项均不相等,∴S i(i=0,1,2⋯,100)中不同的数值有:101﹣3=98.故答案为:98.【解析】本题考查等差数列的前n项和公式、通项公式等基础知识,考查运算求解能力,是中档题.11.【参考答案】解:由题意,有•=0,则,设<>=θ,⇒则得,tanθ=,由同角三角函数的基本关系得:cosθ=,则=||||cosθ==2,λ2=,则.故答案为:.【解析】本题考查平面向量的数量积,考查学生的运算能力,属于中档题.12.【参考答案】解:令x=得,x=或x=(舍去);当x≥时,≤=,故对任意x≥,都存在x0∈[0,],=x0,故f(x)=f(x0),而当0≤x<时,>=,故A={y|y=f(x),x∈[0,]},故当A={y|y=f(x),x∈[0,a]}时,[0,]⊆[0,a],故参数a的最小值为,故参数a的取值范围为[,+∞),故答案为:[,+∞).【解析】本题考查了抽象函数的性质的应用,同时考查了集合的应用,属于中档题.二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项.13.【参考答案】解:∵A=[﹣1,2),B=Z,∴A∩B={﹣1,0,1},故选:B.【解析】本题考查了集合的交集的运算,是基础题.14.【参考答案】解:因为a>b>0,所以a+b≥2,当且仅当a =b时取等号,又a>b>0,所以a+b,故A正确,B错误,=2,当且仅当,即a=4b时取等号,故CD错误,故选:A.【解析】本题考查了基本不等式的应用,考查了学生的理解能力,属于基础题.15.【参考答案】解:线段MN上不存在点在线段A1S、B1D上,即直线MN与线段A1S、B1D不相交,因此所求与D1可视的点,即求哪条线段不与线段A1S、B1D相交,对A选项,如图,连接A1P、PS、D1S,因为P、S分别为AB、CD的中点,∴易证A1D1∥PS,故A1、D1、P、S四点共面,∴D1P与A1S相交,∴A错误;对B、C选项,如图,连接D1B、DB,易证D1、B1、B、D四点共面,故D1B、D1R都与B1D相交,∴B、C错误;对D选项,连接D1Q,由A选项分析知A1、D1、P、S四点共面记为平面A1D1PS,∵D1∈平面A1D1PS,Q∉平面A1D1PS,且A1S⊂平面A1D1PS,点D1∉A1S,∴D1Q与A1S为异面直线,同理由B,C选项的分析知D1、B1、B、D四点共面记为平面D1B1BD,∵D1∈平面D1B1BD,Q∉平面D1B1BD,且B1D⊂平面D1B1BD,点D1∉B1D,∴D1Q与B1D为异面直线,故D1Q与A1S,B1D都没有公共点,∴D选项正确.故选:D.【解析】本题考查新定义,共面定理的应用,异面直线的判定定理,属中档题.16.【参考答案】解:当k=0时,集合Ω={(x,y)|(x﹣k)2+(y ﹣k2)2=4|k|,k∈Z}={(0,0)},当k>0时,集合Ω={(x,y)|(x﹣k)2+(y﹣k2)2=4|k|,k∈Z},表示圆心为(k,k2),半径为r=2的圆,圆的圆心在直线y=x2上,半径r=f(k)=2单调递增,相邻两个圆的圆心距d==,相邻两个圆的半径之和为l=2+2,因为d>l有解,故相邻两个圆之间的位置关系可能相离,当k<0时,同k>0的情况,故存在直线l,使得集合Ω中不存在点在l上,而存在点在l两侧,故①正确,若直线l斜率不存在,显然不成立,设直线l:y=mx+n,若考虑直线l与圆(x﹣k)2+(y﹣k2)2=4|k|的焦点个数,d=,r=,给定m,n,当k足够大时,均有d>r,故直线l只与有限个圆相交,②错误.故选:B.【解析】本题考查了动点的轨迹、直线与圆的位置关系,属于中档题.三、参考答案题(本大题共有5题,满分76分).17.【参考答案】解:(1)在三棱锥P﹣ABC中,因为PO⊥底面ABC,所以PO⊥AC,又O为AC边中点,所以△PAC为等腰三角形,又AP=AC=2.所以△PAC是边长为2的为等边三角形,===∴PO=,三棱锥体积V P﹣ABC1,(2)以O为坐标原点,OB为x轴,OC为y轴,OP为z轴,建立空间直角坐标系,则P(0,0,),B(,0,0),C(0,1,0),M(,,0),=(,,﹣),平面PAC的法向量=(,0,0),设直线PM与平面PAC所成角为θ,则直线PM与平面PAC所成角的正弦值为sinθ=||==,所以PM与面PAC所成角大小为arcsin.【解析】本题考查线面垂直的证明,考查线面角的求法,考查空间中线线、线面间的位置关系等基础知识,考查运算求解能力,是中档题.18.【参考答案】解:(1)因为函数f(x)=log3(a+x)+log3(6﹣x),将函数f(x)图像向下移m(m>0)后,得y=f(x)﹣m=log3(a+x)+log3(6﹣x)﹣m的图像,由函数图像经过点(3,0)和(5,0),所以,解得a=﹣2,m=1.(2)a>﹣3且a≠0时,不等式f(x)≤f(6﹣x)可化为log3(a+x)+log3(6﹣x)≤log3(a+6﹣x)+log3x,等价于,解得,当﹣3<a<0时,0<﹣a<3,3<a+6<6,解不等式得﹣a<x≤3,当a>0时,﹣a<0,a+6>6,解不等式得3≤x<6;综上知,﹣3<a<0时,不等式f(x)≤f(6﹣x)的解集是(﹣a,3],a>0时,不等式f(x)≤f(6﹣x)的解集是[3,6).【解析】本题考查了函数的性质与应用问题,也考查了含有字母系数的不等式解法与应用问题,是中档题.19.【参考答案】解:(1)点P与点C重合,由题意可得OB=10,BC=6,∠ABC=120°,由余弦定理可得OP2=OB2+BC2﹣2OB•BCcos∠ABC=36+100﹣2×6×10×(﹣)=196,所以OP=14,在△OBP中,由正弦定理得=,所以=,解得sin∠POB=,所以∠POB的大小为arcsin;(2)如图,设CD与MO相交于点N,由题意知五边形CDQMP 关于MN对称,所以S五边形CDQMP=2S四边形CPMN=2(S四边形OCPM﹣S△ONC),设∠COM=θ,结合(1)可知cosθ=,所以sinθ=,且θ为锐角,因为OC=OP=OM=14,所以CM2=OC2+OM2﹣2OC•OM•cosθ=,故,显然,△CMP的底边CM为定值,则P在劣弧CM中点位置时,CM边上的高最大,此时OP⊥CM,故S四边形OCPM===,而S△ONC===,故S的最大值为=,同理,当P在劣弧DM中点时,S也取得相同的最大值,故P点在劣弧CM中点或劣弧DM的中点位置时,五边形CDQMP 的面积最大,且为.【解析】本题考查了扇形的性质、正、余弦定理和面积公式在解三角形问题中的应用,同时考查了学生的逻辑推理能力、运算能力等,属于中档题.20.【参考答案】解:(1)由题意可得,,∵AM的中点在x轴上,∴M的纵坐标为,代入得.(2)由直线方程可知,①若,则,即,∴,∴.②若,则,∵,∴,∴,∴tan∠BAM=7.即tan∠OAF2=7,∴,∴,综上或.(3)设P(acosθ,bsinθ),由点到直线距离公式可得,很明显椭圆在直线的左下方,则,即,∵a2=b2+2,∴,据此可得,,整理可得(a﹣1)(3a﹣5)≤0,即,从而.即d的最小值为.【解析】本题主要考查椭圆方程的求解,点到直线距离公式及其应用,椭圆中的最值与范围问题等知识,属于中等题.21.【参考答案】解:(1)a3=2a2﹣a1=5,a4=2a3﹣a2=7或a4=2a3﹣a1=9.(2)∵a1,a2,a3,a4,a5,a6,a7,a8为等差数列,∴,a9=2a8﹣a i=30﹣a i<30.逆命题q:若a9<30,则a1,a2,a3,a4,a5,a6,a7,a8为等差数列是假命题,举例:a1=1,a2=3,a3=5,a4=7,a5=9,a6=11,a7=13,a8=2a7﹣a5=17,a9=2a8﹣a7=21.(3)因为,∴,a2m+1=2a2m﹣a j(j≤2m﹣1),∴a2m+2=4a2m﹣2a j﹣a i,∴,以下用数学归纳法证明数列单调递增,即证明a n+1>a n恒成立:当n=1,a2>a1明显成立,假设n=k时命题成立,即a k>a k﹣1>a k﹣1⋯>>a2>a1>0,则a k+1﹣a k=2a k﹣a i﹣a k=a k﹣a i>0,则a k+1>a k,命题得证.回到原题,分类讨论求解数列的通项公式:1.若j=2 m﹣1,则a2m=2a j+a i=2a2m﹣1+a i>a2m﹣1﹣a i矛盾,2.若j=2 m﹣2,则,∴,∴i=2m﹣2,此时,∴,3.若j<2 m﹣2,则,∴,∴j=2m﹣1,∴a2m+2=2a2m+1﹣a2m﹣1(由(2)知对任意m成立),a6=2a5﹣a3,事实上:a6=2a5﹣a2矛盾.综上可得.【解析】本题主要考查数列中的递推关系式,数列中的推理问题,数列通项公式的求解等知识,属于难题.。

2024年高考数学上海卷 (含答案)

2024年高考数学上海卷 (含答案)

2024年普通高等学校招生全国统一考试数学(上海卷)一、 填空题本题共12小题,满分54分。

1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得0分。

1、 设全集{}U 1,2,3,4,5=,集合{}A 24=,,求A =_________________。

2、 已知()01, 0x f x x >=≤ ,()f x =______________。

3、 不等式2230x x −−<的解集为_________________。

4、 已知()3f x x a =+,且()f x 是奇函数,则a =___________________。

5、 已知()2,5a =,()6b k =,,//a b ,则k 的值为________________。

6、 在()1nx +的展开式中,若各项系数和为32,则展开式中2x 的系数为__________。

7、 已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为_______。

8、 某校举办科学竞技比赛,有A,B,C,3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题,小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,现他从所有的题中随机选一题,正确率是______。

9、 已知虚数z ,其实部为1,且()2z m m R z+=∈,则实数m 为____________。

10、设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,则集合中元素个数的最大值为____________。

11、海上有灯塔O,A,B,货船T,如图,已知A 在O 的正东方向,B 在O 的正北方向,O 到A,B的距离相等,165BTO ∠=°,37ATO ∠=°,则BOT ∠=____________。

高考数学试题上海题及答案

高考数学试题上海题及答案

高考数学试题上海题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的值域为[0, +∞),则该函数的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3可以写成f(x) = (x - 2)^2 - 1,其最小值为-1,因此值域为[-1, +∞)。

由于值域为[0, +∞),所以函数的零点个数为2。

2. 若复数z = a + bi(a, b ∈ R)满足|z| = √2,且z的实部与虚部的和为0,则a和b的值分别为:A. a = 1, b = -1B. a = -1, b = 1C. a = 1, b = 1D. a = -1, b = -1答案:A解析:由|z| = √2,得√(a^2 + b^2) = √2,即a^2 + b^2 = 2。

又因为z的实部与虚部的和为0,即a + b = 0。

解得a = 1, b = -1。

3. 若直线l的倾斜角为45°,则直线l的斜率为:A. 0B. 1D. √2答案:B解析:直线的倾斜角为45°,根据斜率的定义,斜率k = tan(45°) = 1。

4. 若向量a = (3, -2),向量b = (-1, 2),则向量a与向量b的数量积为:A. 1B. -1C. 3D. -3答案:D解析:向量a与向量b的数量积为a·b = 3*(-1) + (-2)*2 = -3 - 4 = -7。

5. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象是开口向上的抛物线,且f(1) = f(3),则该函数的对称轴为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:由于抛物线开口向上,且f(1) = f(3),根据抛物线的对称性,对称轴为x = (1 + 3) / 2 = 2。

6. 若等比数列{an}的前n项和为S_n,且S_3 = 7,S_6 = 28,则该数列的公比q为:B. 4C. 3D. 1/2答案:A解析:设等比数列的首项为a1,公比为q,则S_3 = a1(1 - q^3) / (1 - q) = 7,S_6 = a1(1 - q^6) / (1 - q) = 28。

高三数学试卷及答案新高考

高三数学试卷及答案新高考

一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = ax^2 + bx + c的图像开口向上,且过点(1,2),则以下哪个选项正确?A. a > 0, b > 0, c > 0B. a < 0, b < 0, c < 0C. a > 0, b < 0, c > 0D. a < 0, b > 0, c < 02. 在△ABC中,已知角A、B、C的对边分别为a、b、c,且a=3,b=4,c=5,则角C的余弦值是:A. 1/2B. 1/3C. 2/3D. 13. 已知等差数列{an}的首项为2,公差为3,则第10项与第15项的和为:A. 84B. 96C. 108D. 1204. 函数y = log2(x + 1)的图像与直线y = x相交于点(a,b),则a + b的值为:A. 2B. 1C. 0D. -15. 在复数平面内,复数z满足|z - 1| = |z + 1|,则复数z的实部是:A. 0B. 1C. -1D. 26. 已知函数y = (x - 1)^2 + k,若该函数的图像关于x轴对称,则k的值为:A. 0B. 1C. -1D. 27. 在平面直角坐标系中,点P的坐标为(2,3),点Q在直线y = x上,且PQ的中点坐标为(1,2),则点Q的坐标是:A. (1, 1)B. (1, 3)C. (3, 1)D. (3, 3)8. 函数f(x) = |x - 1| + |x + 1|在x = -1时的值为:A. 0B. 2C. 4D. 69. 已知数列{an}的前n项和为Sn,且S3 = 6,S5 = 15,则数列{an}的通项公式是:A. an = 3B. an = 2nC. an = 3n - 1D. an = 3n10. 在△ABC中,若角A、B、C的对边分别为a、b、c,且a^2 + b^2 = c^2,则△ABC是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 钝角三角形11. 函数y = x^3 - 3x在区间[0,2]上的最大值和最小值分别是:A. 最大值3,最小值-3B. 最大值-3,最小值3C. 最大值3,最小值0D. 最大值0,最小值-312. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像的对称轴是:A. x = 1B. x = 2C. x = -1D. x = -2二、填空题(本大题共6小题,每小题5分,共30分。

2024年上海高考真题数学(含解析)

2024年上海高考真题数学(含解析)

2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。

2021年上海市高考数学试卷真题+参考答案+详细解析

2021年上海市高考数学试卷真题+参考答案+详细解析

2021年上海市高考数学试卷一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分) 1.(4分)已知11z i =+,223z i =+,求12z z += . 2.(4分)已知{|21}A x x =,{1,0,1}B =-,则AB = .3.(4分)若22240x y x y +--=,求圆心坐标为 . 4.(4分)如图正方形ABCD 的边长为3,求AB AC ⋅= .5.(4分)已知3()2f x x=+,则1(1)f -= . 6.(4分)已知二项式5()x a +展开式中,2x 的系数为80,则a = . 7.(5分)已知3220380x x y x y ⎧⎪--⎨⎪+-⎩,z x y =-,则z 的最大值为 .8.(5分)已知{}n a 为无穷等比数列,13a =,n a 的各项和为9,2n n b a =,则数列{}n b 的各项和为 . 9.(5分)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .10.(5分)已知花博会有四个不同的场馆A ,B ,C ,D ,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为 .11.(5分)已知抛物线22(0)y px p =>,若第一象限的A ,B 在抛物线上,焦点为F ,||2AF =,||4BF =,||3AB =,求直线AB 的斜率为 .12.(5分)已知*(1i a N i ∈=,2,⋯,9)对任意的*(28)k N k ∈,11k k a a -=+或11k k a a +=-中有且仅有一个成立,16a =,99a =,则19a a +⋯+的最小值为 . 二、选择题(本大题共有4题,每题5分,满分20分) 13.(5分)以下哪个函数既是奇函数,又是减函数( ) A .3y x =-B .3y x =C .3log y x =D .3x y =14.(5分)已知参数方程323421x t ty t t⎧=-⎪⎨=-⎪⎩,[1,1]t ∈-,以下哪个图符合该方程( )A .B .C .D .15.(5分)已知()3sin 2f x x =+,对任意的1[0,]2x π∈,都存在2[0,]2x π∈,使得12()2()2f x f x θ=++成立,则下列选项中,θ可能的值是( ) A .35πB .45π C .65π D .75π 16.(5分)已知两两不相等的1x ,1y ,2x ,2y ,3x ,3y ,同时满足①11x y <,22x y <,33x y <;②112233x y x y x y +=+=+;③1133222x y x y x y +=,以下哪个选项恒成立( )A .2132x x x <+B .2132x x x >+C .2213x x x < D .2213x x x >三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =. (1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积; (2)求直线1AB 与平面11ACC A 的夹角大小.18.(14分)在ABC ∆中,已知3a =,2b c =. (1)若23A π=,求ABC S ∆. (2)若2sin sin 1B C -=,求ABC C ∆.19.(14分)已知一企业今年第一季度的营业额为1.1亿元,往后每个季度增加0.05亿元,第一季度的利润为0.16亿元,往后每一季度比前一季度增长4%.(1)求今年起的前20个季度的总营业额;(2)请问哪一季度的利润首次超过该季度营业额的18%?20.(16分)已知22:12x y Γ+=,1F ,2F 是其左、右焦点,直线l 过点(,0)(2)P m m -,交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,11||||BF PF =,求m 的值;(2)若1213F A F A ⋅=,且原点O 到直线l l 的方程;(3)证明:对于任意m <12//F A F B 的直线有且仅有一条.21.(18分)已知1x ,2x R ∈,若对任意的21x x S -∈,21()()f x f x S -∈,则有定义:()f x 是在S 关联的. (1)判断和证明()21f x x =-是否在[0,)+∞关联?是否有[0,1]关联?(2)若()f x 是在{3}关联的,()f x 在[0,3]x ∈时,2()2f x x x =-,求解不等式:2()3f x . (3)证明:()f x 是{1}关联的,且是在[0,)+∞关联的,当且仅当“()f x 在[1,2]是关联的”.2021年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分) 1.(4分)已知11z i =+,223z i =+,求12z z += 34i + .【解析】因为11z i =+,223z i =+,所以1234z z i +=+.故答案为:34i +. 【评注】本题考查了复数的加法运算,属基础题. 2.(4分)已知{|21}A x x =,{1,0,1}B =-,则A B = {1,0}- .【解析】因为1{|21}{|}2A x x x x==,{1,0,1}B =-,所以{1,0}A B =-.故答案为:{1,0}-.【评注】本题考查了交集及其运算,属基础题.3.(4分)若22240x y x y +--=,求圆心坐标为 (1,2) .【解析】由22240x y x y +--=,可得圆的标准方程为22(1)(2)5x y -+-=,所以圆心坐标为(1,2). 故答案为:(1,2).【评注】本题考查了圆的一般方程和标准方程,考查了转化思想,属于基础题. 4.(4分)如图正方形ABCD 的边长为3,求AB AC ⋅= 9 .【解析】由数量积的定义,可得cos AB AC AB AC BAC ⋅=⨯⨯∠,因为cos AB AC BAC =⨯∠,所以29AB AC AB ⋅==.故答案为:9.【评注】本题主要考查平面向量数量积的定义与计算,属于基础题. 5.(4分)已知3()2f x x=+,则1(1)f -= 3- . 【解析】因为3()2f x x =+,令()1f x =,即321x+=,解得3x =-,故1(1)3f -=-.故答案为:3-. 【评注】本题考查了反函数定义的理解和应用,解题的关键是掌握原函数的定义域即为反函数的值域,考查了运算能力,属于基础题.6.(4分)已知二项式5()x a +展开式中,2x 的系数为80,则a = 2 .【解析】5()x a +的展开式的通项公式为515r r r r T C x a -+=,所以2x 的系数为33580C a =,解得2a =.故答案为:2.【评注】本题主要考查二项式定理,二项展开式的通项公式,考查运算求解能力,属于基础题. 7.(5分)已知3220380x x y x y ⎧⎪--⎨⎪+-⎩,z x y =-,则z 的最大值为 4 .【解析】绘制不等式组表示的平面区域如图所示,目标函数即:y x z =-,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距的相反数, 据此结合目标函数的几何意义可知目标函数在点B 处取得最大值, 联立直线方程:3380x x y =⎧⎨+-=⎩,可得点的坐标为:(3,1)B -,据此可知目标函数的最大值为:3(1)4max z =--=.故答案为:4.【评注】本题主要考查线性规划的应用,利用线性规划求最值的方法等知识,属于中档题.8.(5分)已知{}n a 为无穷等比数列,13a =,n a 的各项和为9,2n n b a =,则数列{}n b 的各项和为185. 【解析】设{}n a 的公比为q ,由13a =,n a 的各项和为9,可得391q =-,解得23q =,所以123()3n n a -=⨯,21223()3n n n b a -==⨯,可得数列{}n b 是首项为2,公比为49的等比数列,则数列{}n b 的各项和为2184519=-. 故答案为:185. 【评注】本题考查等比数列的通项公式和无穷递缩等比数列的求和公式,考查方程思想和运算能力,属于基础题.9.(5分)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为.【解析】如图1,上底面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M ,则12ABC S AB CM ∆=⨯⨯,根据题意,AB 为定值2,所以ABC S ∆的大小随着CM 的长短变化而变化,如图2所示,当点M 与点O 重合时,CM OC ==ABC S ∆取得最大值为122⨯;如图3所示,当点M 与点B 重合,CM 取最小值2,此时ABC S ∆取得最小值为12222⨯⨯=.综上所述,ABC S ∆的取值范围为.故答案为:.【评注】本题考查了空间中的最值问题,将三角形面积的最值问题转化为求解线段CM 的最值问题进行求解是解题的关键,考查了空间想象能力与逻辑推理能力,属于中档题.10.(5分)已知花博会有四个不同的场馆A ,B ,C ,D ,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为23. 【解析】甲选2个去参观,有246C =种,乙选2个去参观,有246C =种,共有6636⨯=种, 若甲乙恰有一个馆相同,则选确定相同的馆有144C =种,然后从剩余3个馆种选2个进行排列,有236A =种,共有4624⨯=种,则对应概率242363P ==,故答案为:23. 【评注】本题主要考查概率的计算,利用古典概型的概率公式是解决本题的关键,是基础题.11.(5分)已知抛物线22(0)y px p =>,若第一象限的A ,B 在抛物线上,焦点为F ,||2AF =,||4BF =,||3AB =,求直线AB 的斜率为. 【解析】如图所示,设抛物线的准线为l ,作AC l ⊥于点C ,BD l ⊥于点D ,AE BD ⊥于点E ,由抛物线的定义,可得2AC AF ==,4BD BF ==,∴422,BE AE =-===∴直线AB 的斜率tan AB AE k ABE BE =∠==. 【评注】本题主要考查直线斜率的定义与计算,抛物线的定义等知识,属于基础题.12.(5分)已知*(1i a N i ∈=,2,⋯,9)对任意的*(28)k N k ∈,11k k a a -=+或11k k a a +=-中有且仅有一个成立,16a =,99a =,则19a a +⋯+的最小值为 31 . 【解析】设1k k k b a a +=-,由题意可得,k b ,1k b -恰有一个为1, 如果135791b b b b b =====,那么16a =,27a =,31a ,4312a a =+, 同样也有,51a ,6512a a =+,71a ,8712a a =+, 全部加起来至少是67121212931++++++++=; 如果24681b b b b ====,那么88a =,21a ,3212a a =+, 同样也有,41a ,52a ,61a ,72a ,全部加起来至少是61212128932++++++++=, 综上所述,最小应该是31.故答案为:31.【评注】本题考查了数列的概念的理解和应用,递推公式的应用,考查了逻辑推理能力与运算能力,属于中档题.二、选择题(本大题共有4题,每题5分,满分20分) 13.(5分)以下哪个函数既是奇函数,又是减函数( ) A .3y x =-B .3y x =C .3log y x =D .3x y =【解析】3y x =-在R 上单调递减且为奇函数,A 符合题意;因为3y x =在R 上是增函数,B 不符合题意;3log y x =,3x y =为非奇非偶函数,C 不符合题意;故选:A .【评注】本题主要考查了基本初等函数的单调性及奇偶性的判断,属于基础题.14.(5分)已知参数方程3342x t ty ⎧=-⎪⎨=⎪⎩,[1,1]t ∈-,以下哪个图符合该方程( )A .B .C .D .【解析】利用特殊值法进行排除,当0y =时,0t =,1,1-, 当0t =时,0x =, 当1t =时,1x =-, 当1t =-时,1x =,故当0y =时,0x =或1或1-,即图象经过(1,0)-,(0,0),(1,0)三个点, 对照四个选项中的图象,只有选项B 符合要求.故选:B .【评注】本题考查了函数图象的识别问题,解题的关键是掌握识别图象的方法:可以从定义域、值域、函数值的正负、特殊点、特殊值、函数的性质等方面进行判断,考查了直观想象能力与逻辑推理能力,属于中档题.15.(5分)已知()3sin 2f x x =+,对任意的1[0,]2x π∈,都存在2[0,]2x π∈,使得12()2()2f x f x θ=++成立,则下列选项中,θ可能的值是( ) A .35πB .45π C .65π D .75π 【解析】1[0,]2x π∈,1sin [0,1]x ∴∈,1()[2,5]f x ∴∈,都存在2[0,]2x π∈,使得12()2()2f x f x θ=++成立,2()0min f x θ∴+,23()2maxf x θ+, ()3sin 2f x x =+,∴22sin()3min x θ+-,21sin()6max x θ+-,sin y x =在3[,]22x ππ∈上单调递减,当35πθ=时,2311[,]510x ππθ+∈,∴21171sin()sin sin 1062x ππθ+=>=-,故A 选项错误, 当45πθ=时,2413[,]510x ππθ+∈,∴21352sin()sinsin 1043min x ππθ+=<=-, 24sin()sin 05max x πθ+=>,故B 选项正确,当65πθ=时,2617[,]510x ππθ+∈,26131sin()sinsin 5126max x ππθ+=<<-,故C 选项错误, 当75πθ=时,2719[,]510x ππθ+∈,219231sin()sinsin 10126max x ππθ+=<=<-,故D 选项错误. 故选:B .【评注】本题考查了三角函数的单调性,以及恒成立问题,需要学生有较综合的知识,属于中档题. 16.(5分)已知两两不相等的1x ,1y ,2x ,2y ,3x ,3y ,同时满足①11x y <,22x y <,33x y <;②112233x y x y x y +=+=+;③1133222x y x y x y +=,以下哪个选项恒成立( )A .2132x x x <+B .2132x x x >+C .2213x x x < D .2213x x x > 【解析】设1122332x y x y x y m +=+=+=,11x m a y m a =-⎧⎨=+⎩,22x m b y m b =-⎧⎨=+⎩,33x m cy m c =-⎧⎨=+⎩,根据题意,应该有,,0a b c a b c ≠≠⎧⎨>⎩,且2222222()0m a m c m b -+-=->,则有222222a c b m b ⎧+=⎨>⎩, 则1322()()2()2()x x x m a m c m b b a c +-=-+---=-+,因为22222(2)()2()()0b a c a c a c -+=+-+>,所以13222()0x x x b a c +-=-+>,所以A 项正确,B 错误.2222132()()()()(2)(2)2a c x x x m a m c mb b ac m ac b b a c m --=----=--+-=---,而上面已证(2)0b a c -->,因为不知道m 的正负,所以该式子的正负无法恒定.故选:A .【评注】本题主要考查不等关系与不等式的应用,考查了方程思想和转化思想,属于中档题. 三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =. (1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A 的夹角大小.【解析】(1)如图,在长方体1111ABCD A B C D -中,1112322332C PAD PAD C PAD V S h -∆-⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭平面;(2)连接1111AC B D O =,AB BC =,∴四边形1111A B C D 为正方形,则11OB OA ⊥,又11AA OB ⊥,111OA AA A =,1OB ∴⊥平面11ACC A ,∴直线1AB 与平面11ACC A 所成的角为1OAB ∠,∴111sin OB OAB AB ∠===.∴直线1AB 与平面11ACC A所成的角为.【评注】本题考查三棱锥体积的求法,考查线面角的求解,考查推理能力及运算能力,属于中档题. 18.(14分)在ABC ∆中,已知3a =,2b c =. (1)若23A π=,求ABC S ∆. (2)若2sin sin 1B C -=,求ABC C ∆.【解析】(1)由余弦定理得22222159cos 224b c a c A bc c +--=-==,解得297c =,21sin 22ABC S bc A c ∆∴==; (2)2b c =,∴由正弦定理得sin 2sin B C =,又2sin sin 1B C -=,1sin 3C ∴=,2sin 3B =,sin sin C B ∴<,C B ∴<,C ∴为锐角,cos C ∴=. 由余弦定理得:2222cos c a b ab C =+-,又3a =,2b c =,2294c c ∴=+-,得:2390c -+=,解得:c =当c =时,b =3ABC C ∆=+;当c =时,b =3ABC C ∆=+. 【评注】本题考查余正、弦定理应用、三角形面积求法,考查数学运算能力,属于中档题.19.(14分)已知一企业今年第一季度的营业额为1.1亿元,往后每个季度增加0.05亿元,第一季度的利润为0.16亿元,往后每一季度比前一季度增长4%. (1)求今年起的前20个季度的总营业额;(2)请问哪一季度的利润首次超过该季度营业额的18%?【解析】(1)由题意可知,可将每个季度的营业额看作等差数列,则首项1 1.1a =,公差0.05d =, 20120(201)2020 1.110190.0531.52S a d -∴=+=⨯+⨯⨯=,即营业额前20季度的和为31.5亿元. (2)法一:假设今年第一季度往后的第*()n n N ∈季度的利润首次超过该季度营业额的18%, 则0.16(14%)(1.10.05)18%n n ⨯+>+⋅,令()0.16(14%)(1.10.05)18%n f n n =⨯+-+⋅,*()n N ∈,即要解()0f n >, 则当2n 时,1()(1)0.0064(14%)0.009n f n f n ---=⋅+-, 令()(1)0f n f n -->,解得:10n ,即当19n 时,()f n 递减;当10n 时,()f n 递增, 由于(1)0f <,因此()0f n >的解只能在10n 时取得, 经检验,(24)0f <,(25)0f >,所以今年第一季度往后的第25个季度的利润首次超过该季度营业额的18%. 法二:设今年第一季度往后的第*()n n N ∈季度的利润与该季度营业额的比为n a , 则1 1.04(1.050.05) 1.04261.0410.04(1)1.10.052222n n a n a n n n++==-=+-+++, ∴数列{}n a 满足1234567a a a a a a a >>>=<<<⋯⋯,注意到,250.178a =⋯,260.181a =⋯,∴今年第一季度往后的第25个季度利润首次超过该季度营业额的18%.【评注】本题主要考查了函数的实际应用,考查了等差数列的实际应用,同时考查了学生的计算能力,是中档题.20.(16分)已知22:12x y Γ+=,1F ,2F 是其左、右焦点,直线l 过点(,0)(2)P m m -,交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,11||||BF PF =,求m 的值;(2)若1213F A F A ⋅=,且原点O 到直线ll 的方程;(3)证明:对于任意m <12//F A F B 的直线有且仅有一条.【解析】(1)因为Γ的方程:2212x y +=,所以22a =,21b =,所以2221c a b =-=,所以1(1,0)F -,2(1,0)F ,若B 为Γ的上顶点,则(0,1)B ,所以1||BF ==1||1PF m =--,又11||||BF PF =,所以1m =- (2)设点,sin )A θθ,则222121(21)sin 2cos 1sin 3F A F Aθθθθθ⋅=+-+=-+=,因为A 在线段BP 上,横坐标小于0,解得cos θ=,故(A , 设直线l的方程为0)y kx k =+>,由原点O 到直线l则d +==,化简可得231030k k -+=,解得3k =或13k =,故直线l的方程为13y x =3y x =(舍去,无法满足m <,所以直线l 的方程为13y x =+(3)联立方程组2212y kx km x y =-⎧⎪⎨+=⎪⎩,可得22222(12)4220k x k mx k m +-+-=, 设11(),A x y ,22(),B x y ,则222121222422,1212k m k m x x x x k k -+==++, 因为12//F A F B ,所以2112(1)(1)x y x y-=+,又y kxkm =-,故化简为122212x x k-=-+, 又1222||||12x x k -===-+, 两边同时平方可得,2224210k k m -+=,整理可得22142k m =--,当m <221042k m=->-, 因为点A ,B 在x 轴上方,所以k 有且仅有一个解, 故对于任意m <12//F A F B 的直线有且仅有一条.【评注】本题考查了平面向量与圆锥曲线的综合应用,直线与椭圆位置关系的应用,在解决直线与圆锥曲线位置关系的问题时,一般会联立直线与圆锥曲线的方程,利用韦达定理和“设而不求”的方法进行研究,属于难题.21.(18分)已知1x ,2x R ∈,若对任意的21x x S -∈,21()()f x f x S -∈,则有定义:()f x 是在S 关联的. (1)判断和证明()21f x x =-是否在[0,)+∞关联?是否有[0,1]关联?(2)若()f x 是在{3}关联的,()f x 在[0,3]x ∈时,2()2f x x x =-,求解不等式:2()3f x . (3)证明:()f x 是{1}关联的,且是在[0,)+∞关联的,当且仅当“()f x 在[1,2]是关联的”. 【解析】(1)()f x 在[0,)+∞关联,在[0,1]不关联,任取12[0,)x x -∈+∞,则1212()()2()[0,)f x f x x x -=-∈+∞,()f x ∴在[0,)+∞关联; 取11x =,20x =,则121[0,1]x x -=∈,1212()()2()2[0,1]f x f x x x -=-=∉,()f x ∴在[0,1]不关联;(2)()f x 在{3}关联,∴对于任意123x x -=,都有12()()3f x f x -=,∴对任意x ,都有(3)()3f x f x +-=,由[0,3)x ∈时,2()2f x x x =-,得()f x 在[0,3)x ∈的值域为[1,3)-,()f x ∴在[3,6)x ∈的值域为[2,6), 2()3f x ∴仅在[0,3)x ∈或[3,6)x ∈上有解,[0,3)x ∈时,2()2f x x x =-,令2223x x -13x <,[3,6)x ∈时,2()(3)3818f x f x x x =-+=-+,令228183x x -+,解得35x ,∴不等式2()3f x 的解为1,5],(3)证明:①先证明:()f x 是在{1}关联的,且是在[0,)+∞关联的()f x ⇒在[1,2]是关联的, 由已知条件可得,(1)()1f x f x +=+,()()f x n f x n ∴+=+,n Z ∈, 又()f x 是在[0,)+∞关联的,∴任意21x x >,21()()f x f x >成立,若2112x x -,12112x x x ∴++,121(1)()(2)f x f x f x ∴++,即121()1()()2f x f x f x ++, 211()()2f x f x ∴-,()f x ∴是[1,2]关联,②再证明:()f x 在[1,2]是关联的()f x ⇒是在{1}关联的,且是在[0,)+∞关联的, ()f x 在[1,2]是关联的,∴任取12[1,2]x x -∈,都有12()()[1,2]f x f x -∈成立,即满足1212x x -,都有121()()2f x f x -, 下面用反证法证明(1)()1f x f x +-=,若(1)()1f x f x +->,则(2)()(2)(1)(1)()2f x f x f x f x f x f x +-=+-+++->,与()f x 在[1,2]是关联的矛盾,若(1)()1f x f x +-<,而()f x 在[1,2]是关联的,则(1)()1f x f x +-,矛盾, (1)()1f x f x ∴+-=成立,即()f x 是在{1}关联的,再证明()f x 是在[0,)+∞关联的,任取12[,)()x x n n N -∈+∞∈,则存在n N ∈,使得任取12[,1]()x x n n n N -∈+∈, 121(1)2x n x ---,1212[(1)]()()(1)()[1,2]f x n f x f x n f x ∴---=---∈, 12()()[,1][0,)f x f x n n ∴-⊆+⊆+∞,()f x ∴是在[0,)+∞关联的;综上所述,()f x 是{1}关联的,且是在[0,)+∞关联的,当且仅当“()f x 在[1,2]是关联的”,故得证. 【评注】该题考查了函数求解析式,解不等式,函数恒成立的知识,对学生逻辑推理能力提出了很高的要求,属于难题.。

2021年上海市高考数学真题及详细解析(解析版,学生版,精校版)

2021年上海市高考数学真题及详细解析(解析版,学生版,精校版)

2021年上海市高考数学真题及详细解析(解析版,学生版,精校版)2021年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B= . 2.(4分)若排列数3.(4分)不等式=6×5×4,则m= .>1的解集为.4.(4分)已知球的体积为36π,则该球主视图的面积等于. 5.(4分)已知复数z满足z+=0,则|z|= . 6.(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|= .7.(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若则的坐标是.的坐标为(4,3,2),8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为.9.(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为. 10.(5分)已知数列{an}和{bn},其中an=n2,n∈N*,{bn}的项是互不相等的正整数,若对于任意n∈N*,{bn}的第an项等于{an}的第bn项,则1= .11.(5分)设a1、a2∈R,且小值等于.12.(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线lP,使得不在lP上的“▲”的点分布在lP的两侧.用D1(lP)和D2(lP)分别表示lP一侧和另一侧的“▲”的点到lP的距离之和.若过P的直线lP中有且只有一条满足D1(lP)=D2(lP),则Ω中所有这样的P 为.,则|10π﹣a1﹣a2|的最二、选择题(本大题共4题,每题5分,共20分) 13.(5分)关于x、y 的二元一次方程组A.的系数行列式D为()C.B.D.an()14.(5分)在数列{an}中,an=(﹣)n,n∈N*,则A.等于B.等于0 C.等于 D.不存在15.(5分)已知a、b、c为实常数,数列{xn}的通项xn=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是() A.a≥0B.b≤0C.c=0D.a﹣2b+c=0 =1和C2:x2+=1.P16.(5分)在平面直角坐标系xOy中,已知椭圆C1:为C1上的动点,Q为C2上的动点,w是在C1上,Q在C2上,且的最大值.记Ω={(P,Q)|P=w},则Ω中元素个数为()2A.2个B.4个 C.8个 D.无穷个三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.18.(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f (x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a==0,求△ABC的面积.,角B所对边b=5,若f(A)319.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为an和bn(单位:辆),其中an=,bn=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量Sn=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=(2)设P(坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且AQ的方程.,,求直线,求P的坐标;),若以A、P、M为顶点的三角形是直角三角形,求M的横421.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M 是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.5。

2020年上海卷数学高考真题(解析版)

2020年上海卷数学高考真题(解析版)

2020年普通高等学校招生全国统一考试数学卷(上海卷)一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合{}1,2,4A =,{}2,3,4B =,求A B =_______【答案】{}2,42. 1lim31n n n →∞+=-________【答案】133. 已知复数z 满足12z i =-(i 为虚数单位),则z =_______4. 已知行列式126300a cd b =,则行列式a cd b=_______【答案】25. 已知()3f x x =,则()1f x -=_______【答案】()13xx R ∈6.已知a 、b 、1、2的中位数为3,平均数为4,则ab= 【答案】367.已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩,则2z y x =-的最大值为【答案】-18.已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【答案】2789.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有种排法。

【答案】18010.椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为 【答案】10x y +-=11、设a R ∈,若存在定义域R 的函数()f x 既满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”又满足“关于x 的方程()f x a =无实数解”,则α的取值范围为【答案】()()(),00,11,-∞⋃⋃+∞【解析】题目转换为是否为实数a ,使得存在函数()f x满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”,又满足“关于的方程()f x a =无实数解”构造函数;()2,,x x af x x x a ≠⎧=⎨=⎩,则方程()f x a =只有0,1两个实数解。

2024年上海市高考数学试卷

2024年上海市高考数学试卷

2024年上海市高考数学试卷(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000道题,C题库有3000道题.小申已完成所有题,他A题库的正确率是0.92,B题库的正确率是答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],a n a n q n -1a n a n +1a 1q n -1a 1q nA.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n +1a n a 2a 1q n -1a 21q n -21q n -2(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:AA.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )D.存在f(x)在x=-1处取到极小值答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,√2所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√A -A P 2O 2V圆锥131332√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;x 2y 2b2(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.2√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,√3√2√3√33解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A 1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b2Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2m 210b2m 210b 210310310√3√33(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n a n q n -1a n a n +1a 1q n -1a 1q n a n +1a n a 2a 1q n -1a 21q n -21q n -2A.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:A解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412A.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数D.存在f(x)在x=-1处取到极小值(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,√2√A -A P 2O 2V圆锥131332因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.x 2y 2b22√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,].√3√2√3√3√303解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b24m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,m 210b2m 210b 210310310√3√33(2024•上海)对于一个函数f(x)和一个点M(a,b),定义s(x)=(x-a)2+(f(x)-b)2,若存在P(x 0,f(x 0)),使s(x 0)是s(x)的最小值,则称点P是函数f(x)到点M的“最近点”.(1)对于f (x )=(x>0),求证:对于点M(0,0),存在点P,使得点P是f(x)到点M的“最近点”;(2)对于f(x)=e x ,M(1,0),请判断是否存在一个点P,它是f(x)到点M的“最近点”,且直线MP与f(x)在点P处的切线垂直;(3)已知f(x)存在导函数f′(x),函数g(x)恒大于零,对于点M 1(t-1,f(t)-g(t)),点M 2(t+1,f(t)+g(t)),若对任意t∈R,存在点P同时是f(x)到点M 1与点M 2的“最近点”,试判断f(x)的单调性.1x答案:(1)证明过程见解析;(2)存在,P(0,1);(3)f(x)严格单调递减.解析:(1)代入M(0,0),利用基本不等式即可;(2)由题得s(x)=(x-1)2+e 2x ,利用导函数得到其最小值,则得到P,再证明直线MP与切线垂直即可;(3)根据题意得到s 1'(x 0)=s 2'(x 0)=0,对两等式化简得f ′()=-,再利用“最近点”的定义得到不等式组,即可证明x 0=t,最后得到函数单调性.x 01g (t )解答:解:(1)当M(0,0)时,s (x )=(x -0+(-0=+≥22,当且仅当=即x=1时取等号,故对于点M(0,0),存在点P(1,1),使得该点是M(0,0)在f(x)的“最近点”;(2)由题设可得s(x)=(x-1)2+(e x -0)2=(x-1)2+e 2x ,则s'(x)=2(x-1)+2e 2x ,因为y=2(x-1),y=2e 2x 均为R上单调递增函数,则s'(x)=2(x-1)+2e 2x 在R上为严格增函数,而s'(0)=0,故当x<0时,s'(x)<0,当x>0时,s'(x)>0,故s(x)min =s(0)=2,此时P(0,1),而f'(x)=e x ,k=f'(0)=1,故f(x)在点P处的切线方程为y=x+1,而==-1,故k MP •k=-1,故直线MP与y=f(x)在点P处的切线垂直.(3)设(x )=(x -t +1+(f (x )-f (t )+g (t ),(x )=(x -t -1+(f (x )-f (t )-g (t ),而s 1'(x)=2(x-t+1)+2(f(x)-f(t)+g(t))f'(x),s 2'(x)=2(x-t-1)+2(f(x)-f(t)-g(t))f'(x),若对任意的t∈R,存在点P同时是M 1,M 2在f(x)的“最近点”,设P(x 0,y 0),则x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,因为两函数的定义域均为R,则x 0也是两函数的极小值点,则存在x 0,使得s 1'(x 0)=s 2'(x 0)=0,即s 1'(x 0)=2(x 0-t+1)+2f′(x 0)[f(x 0)-f(t)+g(t)]=0,①s 2'(x 0)=2(x 0-t-1)+2f′(x 0)[f(x 0)-f(t)-g(t)]=0,②由①②相等得4+4g(t)•f'(x 0)=0,即1+f'(x 0)g(t)=0,即f ′()=-,又因为函数g(x)在定义域R上恒正,则f ′()=-<0恒成立,接下来证明x 0=t,因为x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,则s 1(x 0)≤s(t),s 2(x 0)≤s(t),即 (-t +1+(f ()-f (t )+g (t )≤1+(g (t ),③(-t -1+(f ()-f (t )-g (t )≤1+(g (t ),④③+④得2(-t +2+2[f ()-f (t )+2(t )≤2+2(t ),即(-t +(f ()-f (t )≤0,因为(-t ≥0,(f ()-f (t )≥0)21x )2x 21x 2x 21x 2k MP 0-11-0s 1)2)2s 2)2)2x 01g (t )x 01g (t )x 0)2x 0)2)2x 0)2x 0)2)2x 0)2x 0]2g 2g 2x 0)2x 0)2x 0)2x 0)2则,解得x 0=t,则f ′(t )=-<0恒成立,因为t的任意性,则f(x)严格单调递减.{-t =0f ()-f (t )=0x 0x 01g (t )。

2023年上海市高考数学试卷含答案解析

2023年上海市高考数学试卷含答案解析

绝密★启用前2023年上海市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、单选题:本题共4小题,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A. {1}B. {2}C. {3}D. {1,2,3}2.根据所示的散点图,下列说法正确的是( )A. 身高越大,体重越大B. 身高越大,体重越小C. 身高和体重成正相关D. 身高和体重成负相关3.已知a∈R,记y=sinx在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A. s a>0,t a>0B. s a<0,t a<0C. s a>0,t a<0D. s a<0,t a>04.已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q使得|MP|⋅|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A. ①成立,②成立B. ①成立,②不成立C. ①不成立,②成立D. ①不成立,②不成立第II卷(非选择题)二、填空题:本题共12小题,共54分。

5.不等式|x −2|<1的解集为______ .6.已知向量a ⃗=(−2,3),b ⃗⃗=(1,2),则a ⃗⋅b⃗⃗= ______ . 7.已知首项为3,公比为2的等比数列,设等比数列的前n 项和为S n ,则S 6= ______ .8.已知tanα=3,则tan2α= ______ .9.已知函数f(x)={1,x ≤0,2x ,x >0,则函数f(x)的值域为______ . 10.已知复数z =1−i(i 为虚数单位),则|1+iz|= ______ .11.已知圆x 2+y 2−4x −m =0的面积为π,则m = ______ .12.已知△ABC 中,角A ,B ,C 所对的边a =4,b =5,c =6,则sinA = ______ .13.现有某地一年四个季度的GDP(亿元),第一季度GDP 为232(亿元),第四季度GDP 为241(亿元),四个季度的GDP 逐季度增长,且中位数与平均数相同,则该地一年的GDP 为______ .14.已知(1+2023x)100+(2023−x)100=a 0+a 1x +a 2x 2+⋯+a 99x 99+a 100x 100,若存在k ∈{0,1,2,⋯,100}使得a k <0,则k 的最大值为______ .15.某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m 消耗的体力为(1.025−cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= ______ .16.空间中有三个点A 、B 、C ,且AB =BC =CA =1,在空间中任取2个不同的点,使得它们与A 、B 、C 恰好成为一个正四棱锥的五个顶点,则不同的取法有______ 种.三、解答题:本题共5小题,共78分。

2020年高考数学上海卷附答案解析版

2020年高考数学上海卷附答案解析版

.
x 2 y 3≤0
a a a

8.已知an是公差不为零的等差数列,且 a 1 a10 a ,9 则 1
2
a10
9
.
9.从 6 人中挑选 4 人去值班,每人值班 1 天,第一天需要 1 人,第二天需要 1 人,第三
天需要 2 人,则有
种排法.

10.椭圆 x2 y2 1 ,过右焦点F 作直线 l 交椭圆于P 、 Q 两点, P 在第二象限已知 43
性质 p . (1)判断数列 3,2,5,1 和 4,3,2,5,1 是否具有性质 p ,请说明理由. (2)若 a1 1 ,公比为q 的等比数列,项数为 10,具有性质 p ,求 q 的取值范围.
(3)若 an 是 1,2,…, m 的一个排列m≥4, bk ak1 k 1, 2 m 1 ,an, bn,都具有性质 p ,求所有满足条件的an .
PF1 8 ,求∠F1PF2 ;
(3)过点 S
0, 2
b2 2
且斜率为
b的直线l 2
交曲线 于 M
、N
两点,用 b
的代数式
表示OM ON,并求出OM ON的取值范围。
21.有限数列an,若满足 a1 a2 ≤ a1 a3 ≤≤ a1 an , m 是项数,则称an满足
数学试卷 第 3 页(共 4 页)
2 /6
18.【答案】(1)
1, 2
x
x∣x
3
4k或x
5
3
4k
,
k
Z;
(2)
1 2
,
0
19.【答案】(1)
x
0,
80 3

(2)
x

2021 年上海市高考数学试卷(后附答案解析)

2021 年上海市高考数学试卷(后附答案解析)

2021年上海市高考数学试卷一.填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知11i z =+,223i z =+,则12z z +=2.已知{|21}A x x =≤,{1,0,1}B =-,则A B = 3.已知圆22240x y x y +--=,则该圆的圆心坐标为4.如图,正方形ABCD 的边长为3,则AB AC ⋅=5.已知3()2f x x=+,则1(1)f -=6.已知二项式5()x a +展开式中,2x 项的系数为80,则a =7.已知实数x 、y 满足2203803x x x y y ⎧⎪--≥≥≤⎨⎪+-⎩,则z x y =-的最大值为8.已知无穷等比数列{}n a 和{}n b ,满足13a =,2n n b a =,n a 的各项和为9,则数列{}n b 的各项和为9.已知圆柱的底面半径为1,高为2,AB 为上底面圆的一条直径,C 为下底面圆周上的一个动点,则ABC 的面积的取值范围为10.已知花博会有四个不同的场馆A 、B 、C 、D ,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个场馆相同的概率为11.已知抛物线:22y px =(0)p >,若第一象限的A 、B 两点在抛物线上,焦点为F ,||2AF =,||4BF =,||3AB =,则直线AB 的斜率为12.已知*i a ∈N (1,2,,9)i =⋯,对任意的*k ∈N (28)k ≤≤,11k k a a -=+或11k k a a +=-中有且仅有一个成立,且16a =,99a =,则91a a ++ 的最小值为二.选择题(本大题共4题,每题5分,共20分)13.下列函数中,既是奇函数又是减函数的是()A.3y x=- B.3y x = C.3log xy = D.3xy =14.已知参数方程3342x t ty ⎧=-⎪⎨=⎪⎩[1,1]t ∈-,下列选项的图中,符合该方程的是()A. B. C.D.15.已知()3sin 2f x x =+,对任意的1[0,]2x π∈,都存在2[0,2x π∈,使得12()2()3f x f x θ++=成立,则下列选项中,θ可能的值为()A.35π B.45π C.65π D.75π16.已知实数1x 、1y 、2x 、2y 、3x 、3y 同时满足:①11x y <,22x y <,33x y <;②112233x y x y x y +=+=+;③11332220x y x y x y +>=,则下列选项中恒成立的是()A.2132x x x <+ B.2132x x x >+ C.2213x x x < D.2213x x x >三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =.(1)若点P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A 的夹角大小.18.已知在ABC 中,A 、B 、C 所对边分别为a 、b 、c ,且3a =,2b c =.(1)若23A π=,求ABC 的面积;(2)若2sin sin 1B C -=,求ABC 的周长.19.已知某企业今年(2021年)第一季度的营业额为1.1亿元,以后每个季度的营业额比上个季度增加0.05亿元,该企业第一季度的利润为0.16亿,以后每季度比前一季度增长4%.(1)求2021年起前20季度营业额的总和;(2)请问哪一季度的利润首次超过该季度营业额的18%?20.已知椭圆22:12x y Γ+=,1F 、2F 是其左右焦点,直线l 过点(,0)P m (m <交椭圆Γ于A 、B 两点,且A 、B 在x 轴上方,点A 在线段BP 上.(1)若B 是上顶点,11||||BF PF =,求m 的值;(2)若1213F A F A ⋅= ,且原点O 到直线l 的距离为15,求直线l 的方程;(3)对于任意点P ,是否存在唯一直线l ,使得12F A F B∥成立,若存在,求出直线l 的斜率,若不存在,请说明理由.21.已知()f x 是定义在R 上的函数,若对任意的1x 、2x ∈R ,21x S x -∈,均有12(())f f x S x -∈,则称()f x 是S 关联.(1)判断和证明()21f x x =+是否是[0,)+∞关联?是否是[0,1]关联?(2)若()f x 是{3}关联,当[0,3)x ∈时,2()2f x x x =-,解不等式2()3f x ≤≤;(3)证明:“()f x 是{1}关联,且是[0,)+∞关联”的充要条件是“()f x 是[1,2]关联”.2021年上海市高考数学试卷答案一.填空题1.已知11i z =+,223i z =+,则12z z +=【解析】34i +,121i 23i 34i z z +=+++=+2.已知{|21}A x x =≤,{1,0,1}B =-,则A B =【解析】{1,0}-,1(,]2A =-∞,{1,0,1}B =-,∴A B = {1,0}-3.已知圆22240x y x y +--=,则该圆的圆心坐标为【解析】(1,2),2222240(1)(2)5x y x y x y +--=⇒-+-=,故圆心为(1,2)4.如图,正方形ABCD 的边长为3,则AB AC ⋅=【解析】9,由数量积几何意义,29AB AC AB ⋅== 5.已知3()2f x x=+,则1(1)f -=【解析】3-,3()213f x x x=+=⇒=-,∴1(3)1(1)3f f --=⇒=-6.已知二项式5()x a +展开式中,2x 项的系数为80,则a =【解析】2,32325802C x a x a =⇒=7.已知实数x 、y 满足2203803x x x y y ⎧⎪--≥≥≤⎨⎪+-⎩,则z x y =-的最大值为【解析】4,可行域的三个顶点为(3,4)、(2,2)、(3,1)-,可知max 3(1)4z =--=8.已知无穷等比数列{}n a 和{}n b ,满足13a =,2n n b a =,n a 的各项和为9,则数列{}n b 的各项和为【解析】185,1232lim()913n n a a a q q →∞++⋅⋅⋅+==⇒=-,212a a q ==,∴2242218lim()51n n a a a a q →∞++⋅⋅⋅+==-9.已知圆柱的底面半径为1,高为2,AB 为上底面圆的一条直径,C 为下底面圆周上的一个动点,则ABC 的面积的取值范围为【解析】,12ABC S AB h h =⋅=,∵h ∈,∴ABC S ∈ 10.已知花博会有四个不同的场馆A 、B 、C 、D ,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个场馆相同的概率为【解析】23,1243224423C P C C =11.已知抛物线:22y px =(0)p >,若第一象限的A 、B 两点在抛物线上,焦点为F ,||2AF =,||4BF =,||3AB =,则直线AB 的斜率为【解析】52,设11(,)A x y 、22(,)B x y ,1||22p AF x =+=,2||42pBF x =+=,∴12||2x x -=,由12|||3AB x x =-=,且0k >,∴2k =法二:12AA =,14BB =,由11132AA AP AB BB =⇒==∴1114cos tan 62BB ABB ABB BP ∠==⇒∠=,即:52AB k =12.已知*i a ∈N (1,2,,9)i =⋯,对任意的*k ∈N (28)k ≤≤,11k k a a -=+或11k k a a +=-中有且仅有一个成立,且16a =,99a =,则91a a ++ 的最小值为【解析】31,令k k k a a b -=+1,则依题意:k b 和1+k b 中,仅有1个为1(即只能隔项为1)若17531====b b b b ,则:61=a ,72=a ,13≥a ,24≥a ,15≥a ,26≥a ,17≥a ,28≥a ,99=a ;此时:91a a ++ 最小值为31.若18642====b b b b ,则:12≥a ,23≥a ,14≥a ,25≥a ,16≥a ,27≥a ,88=a ,99=a ;此时:91a a ++ 最小值为32.综上:91a a ++ 最小值为31.二.选择题(本大题共4题,每题5分,共20分)13.下列函数中,既是奇函数又是减函数的是()A.3y x=- B.3y x = C.3log xy = D.3xy =【解析】选A ,选项B 、C 、D 均为增函数14.已知参数方程3342x t ty ⎧=-⎪⎨=⎪⎩[1,1]t ∈-,下列选项的图中,符合该方程的是()A. B. C.D.【解析】选B ,特殊值法,当0y =时,0t =、1、1-,对应0x =、1-、115.已知()3sin 2f x x =+,对任意的1[0,]2x π∈,都存在2[0,]2x π∈,使得12()2()3f x f x θ++=成立,则下列选项中,θ可能的值为()A.35πB.45π C.65π D.75π【解析】选D ,设1()f x 范围为A ,232()f x θ-+范围为B ,由题意,A B ⊆,∵1()[2,5]f x ∈,且2232()16sin()f x x θθ-+=--+,当75πθ=时,2719[,]510x ππθ+∈,21916sin()[16sin,5]10x πθ--+∈--,1916sin 0.85210π--≈<,符合题意16.已知实数1x 、1y 、2x 、2y 、3x 、3y 同时满足:①11x y <,22x y <,33x y <;②112233x y x y x y +=+=+;③11332220x y x y x y +>=,则下列选项中恒成立的是()A.2132x x x <+ B.2132x x x >+ C.2213x x x < D.2213x x x >【解析】选A ,令1122332x y x y x a y ++=+==,由①可知,1x a <,2x a <,3x a <,由③得,132132(2)(2)(2)2x x x x a x a a x ---+=,构造函数()(2)f x x a x =-,∴132()()2()f x f x f x +=,如图所示,()f x 为上凸函数,满足13132()()()()22x x f x f x f f x ++>=,∵()f x 在(,)a -∞上严格增,∴1322x x x +>三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =.(1)若点P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A 的夹角大小.【解析】(1)1123233P ADC ADC V S h -=⋅⋅=⨯⨯=△(2)1111112B ACC A B C A d d --==,113AB =,∴226sin 1313θ==,即所求角为26arcsin 1318.已知在ABC 中,A 、B 、C 所对边分别为a 、b 、c ,且3a =,2b c =.(1)若23A π=,求ABC 的面积;(2)若2sin sin 1B C -=,求ABC 的周长.【解析】(1)22222214937cos 2274b c a c c A c bc c +-+-=⇒-=⇒=,119sin 2227214ABC S bc A ==⨯⨯⨯=(2)依题意,正弦定理:sin 2sin sin sin b cB C B C=⇒=,∴代入计算:14sin sin 1sin 3C C C -=⇒=,则2sin 3B =当B 为锐角时,22251425sin sin()sin cos cos sin 33339A B C B C B C =+=+=⨯⨯=3sin sin sin 3c a b c A B C b ⎧=⎪⎪==⇒⎨-⎪=⎪⎩,∴3ABC C =+△当B为钝角时,21sin sin()sin cos cos sin 33339A B C B C B C =+=+=⨯⨯=,3sin sin sin 3c a b c A B C b ⎧=⎪⎪==⇒⎨+⎪=⎪⎩,∴3△=++ABC C综上:3△=+ABC C或319.已知某企业今年(2021年)第一季度的营业额为1.1亿元,以后每个季度的营业额比上个季度增加0.05亿元,该企业第一季度的利润为0.16亿,以后每季度比前一季度增长4%.(1)求2021年起前20季度营业额的总和;(2)请问哪一季度的利润首次超过该季度营业额的18%?【解析】(1)依题意:营业额是首项为1.1,公差为0.05的等差数列;∴前20季度营业额之和为:20201920 1.10.0531.52S ⨯=⨯+⨯=(亿)(2)设2021年起第n 季度(n *∈N )满足条件,依题意:第n 季度的营业额为: 1.1(1)0.050.05 1.05n a n n =+-⨯=+,第n 季度的利润为:10.16(14%)n -⋅+,依题意:%18)05.105.0(%)41(16.01⨯+≥+⋅-n n ,解得:26≥n 即今年起第26个季度(2027年第二季度)时满足条件.20.已知椭圆22:12x y Γ+=,1F 、2F 是其左右焦点,直线l 过点(,0)Pm (m <交椭圆Γ于A 、B 两点,且A 、B 在x 轴上方,点A 在线段BP 上.(1)若B 是上顶点,11||||BF PF =,求m 的值;(2)若1213F A F A ⋅= ,且原点O 到直线l的距离为15,求直线l 的方程;(3)对于任意点P ,是否存在唯一直线l ,使得12F A F B∥成立,若存在,求出直线l 的斜率,若不存在,请说明理由.【解析】(1)依题意:11||||BF PF a ===,∴1||1OP PF c =+=+,此时:1m =-;(2)设直线l 方程:()y k x m =-(k 必存在),11(,)A x y 22212111111(1)(1)13⋅=+-+=-+= F A F A x x y x y ,又222211111122x x y y +=⇒=-,代入:222211211111111233⋅=+-=+--=⇒=-x F A F A x y x x,13=y 即直线l:()33k m =⋅--①又点到直线距离:15d ==②联立①②:313m k ⎧=-⎪⎪⎨⎪=⎪⎩,即l 方程为:1()33y x =+.(3)设直线l 方程:()y k x m =-,),(11y x A ,),(22y x B 则111(1,)=+ F A x y ,222(1,)=- F B x y ,121221(1)(1)∥⇒+⋅=-⋅F A F B x y x y 消元:1221(1)()(1)()+⋅-=-⋅-x k x m x k x m ,化简:1221()20x x m x x m ++--=联立:2222222()(12)442022y k x m k x mk x k m x y =-⎧⎪⇒+-+-=⎨+=⎪⎩韦达:2122221224124212mk x x k k m x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩代入:221212242()201212mk m x x m x x k k+--=⇒-=++,又:22221121222()()4(12x x x x x x k -=+-=+,代入化简:222221421024k m k m k m m-+=⇒=-,对于任意m <,都有唯一的k =,即直线有且仅有一条.21.已知()f x 是定义在R 上的函数,若对任意的1x 、2x ∈R ,21x S x -∈,均有12(())f f x S x -∈,则称()f x 是S 关联.(1)判断和证明()21f x x =+是否是[0,)+∞关联?是否是[0,1]关联?(2)若()f x 是{3}关联,当[0,3)x ∈时,2()2f x x x =-,解不等式2()3f x ≤≤;(3)证明:“()f x 是{1}关联,且是[0,)+∞关联”的充要条件是“()f x 是[1,2]关联”.【解析】(1)任取21,x x R ∈,若21[0,)x x -∈+∞,则:1212()()2()[0,)f x f x x x -=-∈+∞,∴()f x 是[0,)+∞关联;若21[0,1]x x -∈,则1212()()2()[0,2]f x f x x x -=-∈,∴()f x 不是[0,1]关联;(2)依题意:当213x x -=时,21(3)()f f x x -=,即满足:(3)()3+-=f x f x ,数形结合:求出(1A ,(5,3)B ,∴原不等式的解集为:[1x ∈+.(3)必要性:证明:根据条件可以得到(1)()1f x f x +=+,∴()()f x n f x n +=+,n ∈Z ,21x x ≥,21()()f x f x ≥,若2112x x ≤-≤,∴12112x x x +≤≤+,∴121(1)()(2)f x f x f x +≤≤+∴121()1()()2f x f x f x +≤≤+,∴211()()2f x f x ≤-≤,∴()f x 是[1,2]关联;充分性:2112x x ≤-≤时,211()()2f x f x ≤-≤,1(2)(1)2f x f x ≤+-+≤,1(1)()2f x f x ≤+-≤,∴2(2)()4f x f x ≤+-≤,又1(2)2x x ≤+-≤,∴1(2)()2f x f x ≤+-≤,∴(2)()2f x f x +-=,∴(2)(1)1f x f x +-+=,(1)()1f x f x +-=,∴()()f x n f x n +=+,n ∈Z ,∴()f x 是{1}关联;若21[,1]x x n n -∈+,n ∈N ,21[(1)][1,2]x x n -+-∈,1n -∈Z ,∴21()[(1)][1,2]f x f x n -+-∈,21()()(1)[1,2]f x f x n ---∈,∴21()()[,1][0,)f x f x n n -∈+⊆+∞,而[0,)[0,1][1,2][,1]n n +∞=⋅⋅⋅+⋅⋅⋅ ,∴21[0,)x x -∈+∞,∴存在n 使21[,1]x x n n -∈+,21()()[,1][0,)f x f x n n -∈+⊆+∞∴21()()[0,)f x f x -∈+∞,故()f x 是[0,)+∞关联;证毕.。

(2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷 新课标Ⅰ卷(含部分解析)

(2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷 新课标Ⅰ卷(含部分解析)

2024年普通高等学校招生全国统一考试 新课标Ⅰ卷数学试卷养成良好的答题习惯,是决定成败的决定性因素之一。

做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。

1.已知集合{}355A x x =-<<∣,{3,1,0,2,3}B =--,则A B =( ).A.{1,0}-B.{2,3}C.{3,1,0}--D.{1,0,2}- 2.若1i 1z z =+-,则z =( ). A.1i -- B.1i -+ C.1i - D.1i +3.已知向量(0,1)a =,(2,)b x =,若(4)b b a ⊥-,则x =( ).A.-2B.-1C.1D.24.已知cos()m αβ+=,tan tan 2αβ=,则cos()αβ-=( ).A.3m -B.3m -C.3mD.3m5.( ).A. B. C. D.6.已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ). A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2π]x ∈时,曲线sin y x =与π2sin 36y x ⎛⎫=- ⎪⎝⎭的交点个数为( ). A.3 B.4 C.6 D.88.已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时,()f x x =,则下列结论中一定正确的是( ).A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1X =,样本方差20.01S =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设失去出口后的亩收入Y 服从正态分布()2,N X S ,则( ).(若随机变量Z 服从正态分布()2,N μσ,则()0.8413P Z μμ<+≈)A.(2)0.2P X >>B.()0.5P X Z ><C.()0.5P Y Z >>D.()0.8P Y Z ><10.设函数2()(1)(4)f x x x =--,则( ).A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x <C.当12x <<时,4(21)0f x -<-<D.当110x -<<时,(2)()f x f x -> 11.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( ).A.2a =-B.点0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+ 12.设双曲线2222:1x y C a b-=(0a >,0b >)的左右焦点分別为1F ,2F ,过2F 作平行于y 轴的直线交C 于A ,B 两点,若113F A =,||10AB =,则C 的离心率为_________.13.若曲线e x y x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =_________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己持有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛比赛后,甲的总得分小于2的概率为_________.15.记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=.(1)求B ;(2)若ABC △的面积为3+,求c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b +=>>上两点. (1)求C 的率心率;(2)若过P 的直线l 交C 于另一点B ,且ABP △的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA PC ==,1BC =,AB =(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD . 18.已知函数3()ln (1)2x f x ax b x x =++--.(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-,当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1a ,2a ,…,42m a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1a ,2a ,…,42m a +是(,)i j ——可分数列.(1)写出所有的(,)i j ,16i j ≤<≤,使数列1a ,2a ,…,6a 是(,)i j ——可分数列;(2)当3m ≥时,证明:数列1a ,2a ,…,42m a +足(2,13)——可分数列;(3)从1,2,…,42m +中一次任取两个数i 和()j i j <,记数列1a ,2a ,…,42m a +足(,)i j ——可分数列的概率为m P ,证明:18m P >.参考答案1.A解析:{1,0}A B =-,选A.2.C解析:3.D解析:4(2,4)b a x -=-,(4)b b a ⊥-,(4)0b b a ∴-=,4(4)0x x ∴+-=,2x ∴=,选D.4.A 解析:cos cos sin sin sin sin 2cos cos m αβαβαβαβ-=⎧⎪⎨=⎪⎩,sin sin 2cos cos m m αβαβ=-⎧∴⎨=-⎩,cos()cos cos sin sin 23m m m αβαβαβ-=+=--=-,选A.5.B解析:设它们底面半径为r ,圆锥母线l,2ππrl ∴=,l ∴==,3r ∴=,1π93V =⋅⋅=,选B.6.B解析:()f x 在R 上↗,00e ln1a a -≥⎧⎨-≤+⎩,10a ∴-≤≤,选B. 7.C解析:6个交点,选C.8.B解析:(1)1f =,(2)2f =,(3)(2)(1)3f f f >+=,(4)(3)(2)5f f f >+>,(5)(4)(3)8f f f >+>,(6)(5)(4)13f f f >+>,(7)(6)(5)21f f f >+>,(8)(7)(6)34f f f >+>,(9)(8)(7)55f f f >+>,(10)(9)(8)89f f f >+>,(11)(10)(9)144f f f >+>,(12)(11)(10)233f f f >+>,(13)(12)(11)377f f f >+>,(14)(13)(12)610f f f >+>,(15)(14)(13)987f f f >+>,(16)1000f >,(20)1000f ∴>,选B.9.BC解析:()2~ 1.8,0.1X N ,()2~ 2.1,0.1Y N ,2 1.820.12μσ=+⨯=+,(2)(2)()10.84130.1587P X P X P X μσμσ>=>+<>+=-=,A 错.(2)( 1.8)0.5P X P X ><>=,B 对.2 2.10.1μσ=-=-,(2)( 2.1)0.5P Y P Y >>>=,C 对.(2)()()0.84130.8P Y P Y P Y μσμσ>=>-=<+=>,D 错,所以选BC.10.ACD解析:A 对,因为()3(1)(3)f x x x '=--;B 错,因为当01x <<时()0f x '>且201x x <<<,所以()2()f x f x <;C 对,因为2(21)4(1)(25)0f x x x -=--<,2(21)44(2)(21)0f x x x -+=-->,2223(2)()(1)(2)(1)(4)(1)(22)2(1)f x f x x x x x x x x --=------=--+=--,11x -<<时,(2)()0f x f x -->,(2)()f x f x ->,D 对.11.ABD解析:A 对,因为O 在曲线上,所以O 到x a =的距离为a -,而2OF =,所以有242a a -⋅=⇒=-,那么曲线的方程为(4x +=.B对,因为代入0)知满足方程;C 错,因为2224(2)()2y x f x x ⎛⎫=--= ⎪+⎝⎭,求导得332()2(2)(2)f x x x '=---+,那么有(2)1f =,1(2)02f '=-<,于是在2x =的左侧必存在一小区间(2,2)ε-上满足()1f x >,因此最大值一定大于1; D 对,因为()22220000004442222y x y x x x ⎛⎫⎛⎫=--≤⇒≤ ⎪ ⎪+++⎝⎭⎝⎭. 12.32解析:由||10AB =知25F A =,即2225b c a a a-==,而121F F F A ⊥,所以1212F F =,即6c =,代回去解得4a =,所以32e =. 13.ln 2解析: 14.12 解析:甲出1一定输,所以最多3分,要得3分,就只有一种组合18-、32-、54-、76-.得2分有三类,分别列举如下:(1)出3和出5的赢,其余输:16-,32-,54-,78-(2)出3和出7的赢,其余输:14-,32-,58-,76-;18-,32-,56-,74-,16-,32-,58-,74-(3)出5和出7的赢,其余输:12-,38-,54-,76-;14-,38-,52-,76-;18-,34-,52-,76-;16-,38-,52-,74-;18-,36-,52-,74-;16-,38-,54-,72-;18-,36-,54-,72-共12种组合满足要求,而所有组合为24,所以甲得分不小于2的概率为1215.(1)π3B = (2)c =解析:(1)已知222a b c +-=,根据余弦定理222cos 2a b c C ab +-=,可得:cos 22C ab ==. 因为(0,π)C ∈,所以π4C =.又因为sin C B =,即πsin4B =,2B =,解得1cos 2B =. 因为(0,π)B ∈,所以π3B =. (2)由(1)知π3B =,π4C =,则ππ5πππ3412A B C =--=--=. 已知ABC △的面积为3+,且1sin 2ABC S ab C =△,则1πsin 324ab =1322ab ⨯=,2(3ab =+. 又由正弦定理sin sin sin a b c A B C ==,可得sin sin sin sin a C b C c A B==. 则π5πsin sin 412c a =,5πsin 12πsin 4c a =,同理πsin 3πsin 4c b =.所以2225ππsin sin 1232(3π1sin 42c c ab ⎝⎭===+解得c =16.(1)12(2)见解析解析:(1)将(0,3)A 、33,2P ⎛⎫ ⎪⎝⎭代入椭圆22220919941a b a b⎧+=⎪⎪⎨⎪+=⎪⎩,则22129a b ⎧=⎨=⎩c =12c e a ∴===.(2)①当L 的斜率不存在时,:3L x =,33,2B ⎛⎫- ⎪⎝⎭,3PB =,A 到PB 距离3d =, 此时1933922ABP S =⨯⨯=≠△不满足条件. ②当L 的斜率存在时,设3:(3)2PB y k x -=-,令()11,P x y 、()22,B x y , 223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--= 2122212224124336362743k k x x k k k x x k ⎧-+=⎪⎪+⎨--⎪=⎪+⎩,PB = 17.(1)证明见解析(2)AD =解析:(1)PA ⊥面ABCD ,AD ⊂平面ABCD ,PA AD ∴⊥又AD PB ⊥,PB PA P =,,PB PA ⊂平面P ABAD ∴⊥面PAB ,AB ∴⊂平面PAB ,AD AB ∴⊥ABC △中,222AB BC AC +=,AB BC ∴⊥ A ,B ,C ,D 四点共面,//AD BC ∴又BC ⊂平面PBC ,AD ⊄平面PBC//AD ∴平面PBC .(2)以DA ,DC 为x ,y 轴过D 作与平面ABCD 垂直的线为z 轴建立如图所示空间直角坐标系D xyz -令AD t =,则(,0,0)A t ,(,0,2)P t ,(0,0,0)D,DC =()C设平面ACP 的法向量()1111,,n x y z =不妨设1x =1y t =,10z =,()14,0n t =- 设平面CPD 的法向量为()2222,,n x y z =2200n DP n DC ⎧⋅=⎪⎨⋅=⎪⎩222200tx z +=⎧⎪∴=不妨设2z t =,则22x =-,20y =,2(2,0,)n t =-二面角A CP D --的正弦值7,则余弦值为7 1212122cos ,2n nn n n n t ⋅===t ∴=AD ∴=.18.(1)-2(2)证明见解析(3)23b ≥-解析:(1)0b =时,()ln 2x f x ax x =+-,11()02f x a x x'=++≥-对02x ∀<<恒成立 而11222(2)a a a x x x x ++=+≥+--, 当且仅当1x =时取“=”,故只需202a a +≥⇒≥-,即a 的最小值为-2.(2)方法一:(0,2)x ∈,(2)()f x f x -+332ln (2)(1)ln (1)22x x a x b x ax b x a x x-=+-+-+++-=- ()f x ∴关于(1,)a 中心对称.方法二:将()f x 向左平移一个单位31(1)ln(1)1x f x a x bx x +⇒+=+++-关于(0,)a 中心对称平移回去()f x ⇒关于(1,)a 中心对称.(3)()2f x >-当且仅当12x <<,(1)22f a ∴=-⇒=-3()ln 2(1)22x f x x b x x∴=-+->--对12x ∀<<恒成立 222112(1)2()23(1)3(1)(1)32(2)(2)x f x b x b x x b x x x x x x ⎡⎤-'=+-+-=+-=-+⎢⎥---⎣⎦令2()3(2)g x b x x =+-,∴必有2(1)2303g b b =+≥⇒≥-(必要性) 当23b ≥-时,对(1,2)x ∀∈,32()ln 2(1)()23x f x x x h x x ≥---=- 2222(1)1()2(1)2(1)10(2)(2)x h x x x x x x x ⎡⎤-'=--=-->⎢⎥--⎣⎦对(1,2)x ∀∈恒成立,()(1)2h x h ∴>=-符合条件, 综上:23b ≥-. 19.(1)(1,2),(1,6),(5,6)(2)证明见解析(3)证明见解析解析:(1)以下(,)i j 满足:(1,2),(1,6),(5,6)(2)易知:p a ,q a ,r a ,s a 等差,,,p q r s ⇔等差故只需证明:1,3,4,5,6,7,8,9,10,11,12,14可分分组为(1,4,7,10),(3,6,9,12),(5,8,11,14)即可其余k a ,1542k m ≤≤+,按连续4个为一组即可(3)由第(2)问易发现:1a ,2a ,…,42m a +是(,)i j 可分的1,2,42m ⇔+是(,)i j 可分的.易知:1,2,…,42m +是(41,42)k r ++可分的(0)k r m ≤≤≤因为可分为(1,2,3,4),…,(43,42,41,4)k k k k ---与(4(1)1,4(1),4(1)1,4(1)2)r r r r +-+++++,…,(41,4,41,42)m m m m -++ 此时共211C (1)(1)(2)2m m m m +++=++种 再证:1,2,…,42m +是(42,41)k r ++可分的(0)k r m ≤<≤易知1~4k 与42~42r m ++是可分的只需考虑41k +,43k +,44k +,…,41r -,4r ,42r +记*N p r k =-∈,只需证:1,3,5,…,41p -,4p ,42p +可分1~42p +去掉2与41p +观察:1p =时,1,3,4,6无法做到;2p =时,1,3,4,5,6,7,8,10,可以做到;3p =时,1,3,4,5,6,7,8,9,10,11,12,144p =时,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18(1,5,9,13),(3,7,11,15),(4,8,12,16),(6,10,14,18)满足故2p ∀≥,可划分为:(1,1,21,31)p p p +++,(3,3,23,33)p p p +++,(4,4,24,34)p p p +++,(5,5,25,35)p p p +++,…,(,2,3,4)p p p p ,(2,22,32,42)p p p p ++++,共p 组事实上,就是(,,2,3)i p i p i p i +++,1,2,3,,i p =,且把2换成42p +此时(,)k k p +,2p ≥均可行,共211C (1)2m m m m +-=-组 (0,1),(1,2),…,(1,)m m -不可行 综上,可行的(42,41)k r ++与(41,42)k r ++至少11(1)(1)(2)22m m m m -+++组 故()222224212221112C (21)(41)8618m m m m m m m m P m m m m +++++++≥==>++++,得证!。

新高考高三数学专题试卷

新高考高三数学专题试卷

一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c的图象开口向上,且对称轴为x = -1,则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 02. 已知等差数列{an}的前n项和为Sn,若S5 = 50,S9 = 90,则第10项a10的值为()A. 10B. 15C. 20D. 253. 若复数z满足|z - 3| = |z + 1|,则复数z对应的点在()A. x轴上B. y轴上C. 第一象限D. 第二象限4. 函数f(x) = log2(x - 1) + 3x - 2的值域为()A. (2, +∞)B. (-∞, 2]C. (-∞, +∞)D. [2, +∞)5. 若直线y = kx + b与圆(x - 1)^2 + (y - 2)^2 = 1相切,则k和b的关系是()A. k^2 + b^2 = 1B. k^2 + b^2 = 2C. k^2 + b^2 = 3D. k^2 + b^2 = 46. 若函数g(x) = |x - 2| + |x + 3|,则g(x)的最小值为()A. 1B. 2C. 3D. 47. 已知函数f(x) = x^3 - 3x^2 + 4x - 6在区间[1, 2]上单调递增,则f(x)在区间[0, 1]上的单调性是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增8. 若等比数列{an}的首项a1 = 1,公比q = 2,则数列的前n项和Sn = ()A. 2n - 1B. 2^n - 1C. 2n - 2D. 2^n - 29. 若函数h(x) = x^2 - 4x + 4在区间[0, 2]上的图像关于x = 1对称,则h(x)在区间[0, 2]上的最大值为()A. 0B. 2C. 4D. 610. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在()A. x轴上B. y轴上C. 第一象限D. 第二象限二、填空题(本大题共5小题,每小题5分,共25分)11. 若函数f(x) = ax^2 + bx + c的图象开口向下,且顶点坐标为(1, -2),则a = ,b = ,c = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022学年第一学期期中质量检测高三数学答案及评分细则一、填空题(本大题满分54分)本大题共有12题,1-6题每题4分,7-12题每题5分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.注:填写等价即可得分 1.已知复数iiz +-=324,则._____=z 2 2.如果两个球的体积之比为8:27,则这两个球的表面积之比为______.4:9 3.集合{}222,(1),33A a a a =+++,且1A ∈,则实数a 的值 .01-或 4. 若321324,24==-y x,则._____32=-y x 3-5.海上有,A B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60︒的视角,从B 岛望C 岛和A 岛成75︒的视角,那么B 岛和C 岛间的距离是___6. 已知向量b a m b m m a ⊥-+=-=且,),2,2()3,3(,则实数._____=m 16或- 7. 曲线x y =在点()2,4处的切线方程是__________.044=+-y x 8.将两颗质地均匀的骰子同时抛掷一次,则向上的点数之和为5的概率是___91___.9.若012233444)12(a x a x a x a x a x ++++=-,则420a a a ++=____41__.10. 已知a 是常数且10<<α,若R 53log 在xay ⎪⎭⎫⎝⎛=上是严格增函数,则实数a 的取值范围是_______.153<<a11. 函数()R 1cos 4cos 2∈+-=x x x y 的最大值是___6___. 12.某位学生在研究函数)R (1)(∈+=x xxx f 时得出下列一些结论: ① 0)()(=+-x f x f 对任意R ∈x 恒成立; ② 函数)(x f 的值域为)1,1(-; ③ 若21x x ≠,则一定有)()(21x f x f ≠; ④ 函数x x f x g -=)()(有3个零点. 其中正确的序号是__①②③____.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 设c b a 、、是实数,则下列命题成立的是( D )A. 如果b a >,那么22bc ac >;B. 如果ac ab >,那么c b >;C. 如果c ab >,那么bca >; D. 如果22bc ac >,那么b a >. 14.已知βα、是两个不同的平面,“βα//”的一个充分非必要条件是( D )A.α内有无数条直线平行于βB. 存在平面γ,γβγα⊥⊥,C. 存在平面γ,n m n m //,且,==γβγαD.对任意直线l ,l l ⊥⊥βα,15. 函数⎪⎭⎫ ⎝⎛+-=4sin 212πx y 是( C )A. )(x f 是偶函数B. 函数)(x f 的最小正周期是π2C. 曲线)(x f y =关于4π-=x 对称 D. )2()1(f f >16. 整数集Z 中,被5除所得余数为 k 的所有整数组成一个“类”,记为[]k ,即[]{}Z 5∈+=n k n k ,其中{}4,3,2,1,0∈k .以下判断错误的是( B )A. []22022∈;B. []22∈-;C. [][][][][]43210Z =D. 若[]0∈-b a ,则整数b a 、属于同一“类”.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.注:此处仅给了一种解法,其他解法相应得分17.(本题满分14分)已知R ∈b a 、,集合{}24A <-=x x ,{}0B 2<++=b ax x x ,φ≠B A ,⎭⎬⎫⎩⎨⎧--==27lg B A x x y x ,求b a +的取值范围.【解答】)(6,2=A , …………………………………………4分)7,2(=B A …………………………………………8分由φ≠B A ,得)7,(B m =,其中26m ≤<.……10分 于是m b m a 7,7=--=.……………………………12分[)675,29a b m +=-∈………………………………14分18.(本题满分14分,第1小题满7分,第2小题满7分)某企业因排污比较严重,决定着手整治,一个月时污染度为60,整治后前四个月的污染度如下表;污染度 60 31 13 0 ……当污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式: ()204(1)f x x x =-≥, 220()(4)(1)3g x x x =-≥, 2()30log 2(1)h x x x =-≥, 其中x 表示月数,()f x 、)()(x h x g 和分别表示污染度. (1)问选用哪个函数模拟比较合理,并说明理由;(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过60. 【解答】(1)计算各函数对应各月份污染度得下表:月数(x ) 1 2 3 4 …… 污染度60 31 13 0 …… )(x f 60 40 20 0 )(x g60 26.7 6.7 0 )(x h603012.45从上表可知,函数)(x h 模拟比较合理,故选择)(x h 作为模拟函数. ………7分(2)602log 302≤-x ……………………………………………………………10分解得161≤≤x , …………………………………………………………13分所以,整治后16个月的污染度不超过60. ………………………………14分 19.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF ⊥DE,F 是垂足. (1)求证:AF ⊥BD ;(2)若圆柱与三棱锥D-ABE 的体积之比等于3π,求直线DE 与平面ABD 所成的角的大小.【解答】(1)∵点E 在底面的圆周上∴AE ┴BE ……1分 又∵AD ┴平面ABE ,∴AD ┴BE …………………………2分 ∴BE ┴平面ADE ,………………………………………4分 ∴AF ⊥BD.……………………………………………6分 (2)设圆柱底面圆的圆心为点O ,半径为r ,则它的高为2r ,∴圆柱的体积r r V 22⋅=π圆柱,r S V ABE ABE D 231⋅=∆-由π3=-ABED V V 圆柱,得2r S ABE =∆, …………………8分 ∴ABE ∆边AB 上的高为r, ……………………9分 ∴点E 在圆弧AB 的中点,∴AB OE ⊥. ………10分 ∴∠EDO 就是直线DE 与平面ABD 所成的角.……11分 又OE=r,r OD 5=,………………………………12分 ∴555tan ==∠rr EDO …………………………13分 ∴∠EDO=55arctan.………………………………14分 20.(本题满分16分,第1小题满分6分,第2小题满分4分,第3小题满分6分)已知函数236sin 3sin cos 3)(2-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=ππx x x x f .(1)求)(x f 的最大值及相应的x 的取值; (2)求)(x f 的单调递增区间及零点;(3)若61)(=αf ,且⎪⎭⎫⎝⎛∈3,12ππα,求α2cos 的值.【解答】 (1))(x f =⎪⎭⎫⎝⎛+32sin 21πx .……………………………………………4分所以当22,Z 32x k k πππ+=+∈,即,Z 12x k k ππ=+∈时,…………………………………………………………5分)(x f 取最大值为12,……………………………………………………………6分 (2)由Z ,223222∈+≤+≤-k k x k πππππ. ………………………………………7分解得Z ,12125∈+≤≤-k k x k ππππ, 即)(x f 的单调递增区间是()Z 12125∈⎥⎦⎤⎢⎣⎡+-k k k ππππ,……………………8分由Z ,32∈=+k k x ππ得Z ,62∈-=k k x ππ,…………………………………9分 所以)(x f 的零点为.Z ,62∈-=k k x ππ………………………………………10分 (3)由61)(=αf 得3132sin =⎪⎭⎫ ⎝⎛+πα,……………………………………………11分因为⎪⎭⎫ ⎝⎛∈3,12ππα,所以⎪⎭⎫⎝⎛∈+πππα,232,………………………………12分所以⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛+32sin 132cos 2παπα……………………………………13分=3223112-=⎪⎭⎫⎝⎛--. ……………………………………………………14分所以⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=332cos 2cos ππαα =3sin 32sin 3cos 32cos ππαππα⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+ …………………………………15分=6223233121322-=⋅+⋅-. …………………………………………16分 21.(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题满分6分)已知44()ln (0)f x ax x bx c x =+->在1x =处取得极值3c --,其中a ,b ,c 为常数.(1) 试确定实数a ,b 的值; (2) 求函数()f x 的单调区间;(3) 若对任意0x >,不等式2()2f x c ≥-恒成立,求实数c 的取值范围. 【解答】 (1) 由题意,得b -c =-3-c ,则b =-3. ………………………2分)4ln 4(4ln 4)(3333b a x a x bx ax x ax x f ++=++=', ………………………4分则04)1(=+='b a f ,解得a =12. …………………………………………6分 故实数a ,b 的值分别为12,-3. ………………………………………(6分) (2) 由(1),得44()12ln 3(0)f x x x x c x =-->,所以)0(ln 48)(3>='x x x x f .………………………………………………7分 令0)(='x f ,解得1=x . …………………………………………………8分 当10<<x 时,0)(<'x f ,此时)(x f 为单调减函数;……………………10分 当1>x 时,0)(>'x f ,此时)(x f 为单调增函数;………………………11分故函数)(x f 的单调增区间为)1(∞+,,单调减区间为)1,0(.……………12分 (3) 根据(2)的结论,所以c f x f --==3)1()(min .…………………………14分 因为22)(c x f -≥恒成立,所以-3-c ≥-2c 2,…………………………16分 解得c ≥32或c ≤-1,故实数c 的取值范围为(]⎪⎭⎫⎢⎣⎡+∞-∞-,231, . …………18分。

相关文档
最新文档