生物信息学实验
生物信息学实验报告3(三)蛋白质序列分析
⽣物信息学实验报告3(三)蛋⽩质序列分析(三)蛋⽩质序列分析实验⽬的:掌握蛋⽩质序列检索的操作⽅法,熟悉蛋⽩质基本性质分析,了解蛋⽩质结构分析和预测。
实验内容:1、检索SOX-21蛋⽩质序列,利⽤ProParam⼯具进⾏蛋⽩质的氨基酸组成、分⼦质量、等电点、氨基酸组成、原⼦总数及疏⽔性(ProtScale⼯具)等理化性质的分析。
2、利⽤PredictProtein、PROF、HNN等软件预测分析蛋⽩质的⼆级结构;利⽤Scan Prosite软件对蛋⽩质进⾏结构域分析。
3、利⽤TMHMM、TMPRED、SOSUI等⼯具对蛋⽩质进⾏跨膜分析;采⽤PredictNLS进⾏核定位信号分析;利⽤PSORT进⾏蛋⽩质的亚细胞定位预测;利⽤CBS(http://www.cbs.dtu.dk/services/ProtFun/)⽹站⼯具预测蛋⽩的功能,将序列⽤Blocks、SMART、InterProScan、PFSCAN等搜索其保守序列的特征,进⾏motif 的结构分析。
4、利⽤Swiss-Model数据库软件预测该蛋⽩的三级结构,结果⽤蛋⽩质三维图象软件Jmol查看。
CPHmodels 也是利⽤神经⽹络进⾏同源模建预测蛋⽩质结构的⽅法和⽹络服务器I-TASSER预测所选蛋⽩质的空间结构。
5、分析蛋⽩质的翻译后修饰:分析信号肽及其剪切位点: SignalIP http://www.cbs.dtu.dk/services/SignalP/;分析糖链连接点:分析O-连接糖蛋⽩,NetOGlyc,http://www.cbs.dtu.dk/services/NetOGlyc/;分析N-连接糖蛋⽩,NetNGlyc,http://www.cbs.dtu.dk/services/NetNGlyc/。
6、利⽤检索的序列,进⾏同源⽐对,获得并分析⽐对结果。
实验步骤(⼀)1、在NCBI 蛋⽩质数据库中查找SOX-21蛋⽩质序列分别选择⽖蟾(Xenopus laevis)、⼩家⿏[Mus musculus]、猕猴[Macaca mulatt a]的SOX-21蛋⽩质序列,并保存其FASTA格式。
生物信息学大实验_实验指导
实验1基因组序列组装(软件CAP3的使用)一、实验目的1.了解基因组测序原理和主要策略;2.掌握CAP3序列组装软件的使用方法。
二、实验原理基因组测序常用的两种策略是克隆法(clone-based strategy)和全基因组鸟枪法(whole genome shotgun method)。
克隆法先将基因组DNA打成大的片段,连到载体上,构建DNA文库;再对每一个大片段(克隆)打碎测序。
序列组装时先组装成克隆,再组装成染色体。
克隆测序法的好处在于序列组装时可以利用已经定位的大片段克隆, 所以序列组装起来较容易, 但是需要前期建立基因组物理图谱, 耗资大, 测序周期长。
全基因组鸟枪法测序无需构建各类复杂的物理图谱和遗传图谱,采用最经济有效的实验设计方案,直接将整个基因组打成不同大小的DNA片段构建Shotgun文库,再用传统Sanger测序法或Solexa等新一代测序技术对文库进行随机测序。
最后运用生物信息学方法将测序片段拼接成全基因组序列。
该方法具有高通量、低成本优势。
序列组装时,先把把单条序列(read)组装成叠连群(contig)、再把叠连群组装成“支架”(scaffold),最后组装成染色体。
本实验将练习在Linux环境下用CAP3软件组装流感病毒基因组。
1.CAP3序列组装程序简介Huang Xiaoqiu. 和 Madan,A. 开发的一套用于序列拼接的软件,此软件适用于小的数据集或 EST 拼接,它有如下特征:1. 应用正反向信息更正拼接错误、连接contigs。
2. 在序列拼接中应用 reads 的质量信息。
3. 自动截去 reads5`端、3`端的低质量区。
4. 产生 Consed 程序可读的ace 格式拼接结果文件。
5. CAP3 能用于Staden软件包的中的GAP4 软件。
2.下载此软件可以免费下载,下载地址:http:///download.html。
填写基本信息表格,即可下载。
生物信息学的实验研究
生物信息学的实验研究近年来,随着基因测序和生物信息学技术的飞速发展,生物信息学已经成为生命科学领域中不可或缺的重要分支之一。
生物信息学的主要研究内容包括:基因组学、转录组学、代谢组学、蛋白质组学等方面,其中涉及生物大数据的处理和解读等重要研究内容。
因此,越来越多的生命科学研究者开始涉足生物信息学领域,不断开展有关生物信息学的实验研究。
随着生物信息学技术的发展,生物信息学实验研究的方法和手段也越来越多样化。
其中,最常见的实验方法包括:RNA测序、蛋白质组学、基因组学等。
其中,RNA测序是一种比较常用的生物信息学实验方法,它可以通过测定细胞或组织中的RNA分子来获取有关基因功能的信息。
RNA测序技术已经在多个研究领域中得到了广泛应用,例如:诊断疾病、寻找药物靶点、发现新的基因等。
以肿瘤研究为例,RNA测序技术可以用于研究肿瘤细胞中的基因表达变化,进而推断肿瘤相关的信号途径和调控机制。
蛋白质组学是另一种重要的生物信息学实验研究方法,它可以通过分析细胞或组织中的蛋白质来获取有关细胞功能和代谢途径的信息。
蛋白质组学技术通过分离、纯化、鉴定、定量、结构和功能分析、互作网络分析等手段,来研究细胞内蛋白质组成及其变化情况。
在癌症研究中,蛋白质组学技术可以用于鉴定肿瘤标志物、发现新的肿瘤治疗靶点、分析药物作用机制等。
除了RNA测序和蛋白质组学外,基因组学是另一个重要的生物信息学实验研究方法。
基因组学主要研究基因组的序列、特征、功能和进化等问题。
基因组学技术包括:基因鉴定、功能分析、基因进化等方面,并且在生命科学研究领域中得到广泛的应用。
在深度研究人类基因组序列的过程中,人体基因组计划已经开始,其目标是:通过测序人类所有染色体的序列,解析和研究基因的功能和调控机制,这一计划为生物信息学实验研究提供了更多的研究对象和内容。
总之,生物信息学实验研究方法的不断发展,为生命科学领域的研究和应用提供了更多的可能性。
随着技术的不断更新和优化,生物信息学实验研究将进一步加强其在生命科学领域中的地位和作用,为人类的健康和幸福不断做出更大的贡献。
生物信息学实验指导
生物信息学实验讲义广东药学院生命科学与生物制药学院二○一一年三月目录实验1. 生物信息学数据库与软件搜索 (1)实验2.核酸序列的检索 (2)实验3. 核酸序列分析 (3)实验4.多重序列比对及系统发生树的构建 (5)实验5. PCR 引物设计及评价 (7)实验6.蛋白质序列分析和结构预测 (9)实验一生物信息学数据库和软件的搜索【实验目的】熟练掌握上网搜索生物信息学数据库和软件的方法及技能。
【实验内容】1、搜索生物信息学数据库或者软件数据库是生物信息学的主要内容,各种数据库几乎覆盖了生命科学的各个领域。
核酸序列数据库有GenBank, EMBL, DDB等,蛋白质序列数据库有SWISS-PROT, PIR, OWL, NRL3D, TrEMBL等,蛋白质片段数据库有PROSITE, BLOCKS, PRINTS等,三维结构数据库有PDB, NDB, BioMagResBank, CCSD等,与蛋白质结构有关的数据库还有SCOP, CATH, FSSP, 3D-ALI, DSSP等,与基因组有关的数据库还有ESTdb, OMIM, GDB, GSDB等,文献数据库有Medline, Uncover等。
另外一些公司还开发了商业数据库,如MDL等。
生物信息学数据库覆盖面广,分布分散且格式不统一, 因此一些生物计算中心将多个数据库整合在一起提供综合服务,如EBI的SRS(Sequence Retrieval System)包含了核酸序列库、蛋白质序列库,三维结构库等30多个数据库及CLUSTALW、PROSITESEARCH等强有力的搜索工具,用户可以进行多个数据库的多种查询。
2、搜索生物信息学软件生物信息学软件的主要功能有:分析和处理实验数据和公共数据,加快研究进度,缩短科研时间;提示、指导、替代实验操作,利用对实验数据的分析所得的结论设计下一阶段的实验;寻找、预测新基因及预测其结构、功能;蛋白高级结构预测。
生物信息学教学实践总结(3篇)
第1篇随着生命科学的快速发展,生物信息学作为一门新兴的交叉学科,逐渐成为生物科学研究的重要工具。
生物信息学教学旨在培养学生的生物信息学知识、技能和创新能力。
本文将对生物信息学教学实践进行总结,分析教学过程中的亮点、不足及改进措施。
一、教学实践概述生物信息学教学实践主要包括理论教学和实践教学两部分。
理论教学主要介绍生物信息学的基本概念、研究方法、常用工具和数据库等;实践教学则侧重于培养学生运用生物信息学工具解决实际问题的能力。
二、教学实践亮点1. 注重基础知识与前沿技术的结合:在理论教学中,我们不仅注重基础知识的传授,还结合当前生物信息学领域的最新研究成果和前沿技术,如人工智能、大数据分析等,使学生能够紧跟学科发展。
2. 实践教学与科研相结合:实践教学环节中,我们鼓励学生参与科研项目,将所学知识应用于实际研究中,提高学生的科研能力和创新能力。
3. 多元化的教学方法:采用讲授、讨论、案例分析、实验操作等多种教学方法,激发学生的学习兴趣,提高教学效果。
4. 注重培养学生的团队合作精神:在实践教学过程中,引导学生进行团队合作,培养学生的沟通能力、协作能力和团队精神。
5. 关注学生个性化发展:针对不同学生的学习特点和需求,开展个性化教学,使每位学生都能在生物信息学领域取得优异成绩。
三、教学实践不足1. 理论与实践脱节:部分学生在理论学习过程中,对实际应用缺乏兴趣,导致理论与实践脱节。
2. 教学资源不足:生物信息学涉及众多软件和数据库,而教学资源有限,难以满足学生实践需求。
3. 师资力量不足:生物信息学师资力量相对薄弱,难以满足日益增长的教学需求。
4. 课程设置不够完善:部分课程设置与实际应用脱节,导致学生所学知识难以应用于实际问题解决。
四、改进措施1. 加强实践教学环节:增加实验课时,引入更多实际案例,提高学生的实践能力和创新意识。
2. 丰富教学资源:利用网络资源、数据库等,为学生提供丰富的学习资料和实践平台。
生物信息学实验
实验一生物信息学资源的利用—Genebank核苷酸序列的查找一、实验目的:了解生物信息学的各大门户网站以及其中的主要资源,并以NCBI提供的Genebank为例,学习核苷酸序列的分类学检索方法和使用技巧。
二、实验器材:计算机,NCBI、EMBL等生物信息学网络资源。
三、实验原理:根据Genebank 提供的数据资源,应用分类学方法进行核苷酸序列的查找。
四、实验内容:查找下列不同物种的不同基因组的核苷酸序列。
表1:不同物种的不同基因组的核苷酸序列表五、实验步骤:1、打开NCBI网站的主页,然后点击Genebank,进入到Genebank 的界面,然后点击网页上端Search后面的基本检索输入框选择所要查询的数据库,然后在后面一个方框中输入所查询的核苷酸序列的相关的关键词,点击检索按钮。
2、进入对应的核苷酸序列子库界面,点击目标核苷酸序列子库。
3、根据子库中提供的各条序列的注释及各自的GenBank收录号,寻找自己查找的目标序列,点击目标序列的GenBank收录号,进入目标核苷酸序列界面。
4、点击所需要的目标核苷酸序列的GenBank收录号就可以得到我们想要的核苷酸序列,然后将它们拷贝下来。
六、实验要求:每个人必须至少查找3个种,5条核苷酸序列。
必须写明查找到的核苷酸序列以及各条核苷酸序列的GenBank收录号-LOCUS,基因注释-DEFINITION,文章的作者AUTHORS,文章题目-TITLE,文章所发表的期刊-JOURNAL。
七、实验结果:查找的核苷酸序列基本情况表1LOCUS JN054403 894 bp DNA linear PLN01-NOV-2011DEFINITION Phytophthora melonis strain NN-1 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28Sribosomal RNA gene, partial sequence.AUTHORS Wu,Y.G., Huang,S.L., Fu,G., Hu,C.J. and Lu,S.F.TITLE Identification of the causal agent of wax gourd blight in South ChinaJOURNAL UnpublishedORIGIN1 tgggattccc accctagaac tttccacgtg aaccgtatca acaagtagtt gggggcctgc 61 tctgtgtggc tagctgtcga tgtcaaagtc ggcgactggc tgctatgtgg cgggctctat 121 catggcgatt ggtttgggtc ctcctcgtgg ggaactggat catgagccca ccttttaaac 181 ccattcttga ttactgaata tactgtgggg acgaaagtct ctgcttttaa ctagatagca 241 actttcagca gtggatgtct aggctcgcac atcgatgaag aacgctgcga actgcgatac 301 gtaatgcgaa ttgcaggatt cagtgagtca tcgaaatttt gaacgcatat tgcacttccg 361 ggttagtcct gggagtatgc ctgtatcagt gtccgtacat caaacttggc tctcttcctt 421 ccgtgtagtc ggtggatgga gacgccagac gtgaggtgtc ttgcggcgcg gccttcgggc481 tgcctgcgag tcccttgaaa tgtactgaac tgtacttctc tttgctcgaa aagcgtgacg 541 ttgttggttg tggaggctgc ctgtatggcc agtcggcgac cagtttgtct gctgcggcgt 601 ttaatggagg agtgttcgat tcgcggtatg gttggcttcg gctgaacaat gcgcttattg 661 gatgcttttc ctgctgtggt ggtatgggct ggtgaaccgt agttgtgcga ggcttggctt 721 ttgaaccggc ggtgttgtag cgaagtagag tggcggcttc ggctgtcgag ggtcgatcca 781 tttgggaact ctgtgttgtc tctgcggctt gctgtggagg tagcatctca attggacctg 841 atatcaggca agattacccg ctgaacttaa gcatatcata aacgcggagg act2LOCUS HM596011 530 bp DNA linear PLN01-JUL-2011DEFINITION Ophiocordyceps sinensis culture-collection ARSEF:6282 clone C 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2,complete sequence; and 28S ribosomal RNA gene, partial sequence. AUTHORS Chan,W.H.TITLE Direct SubmissionJOURNAL Submitted (28-JUN-2010) Depatment of Biology, The ChineseUniversity of Hong Kong, Shatin, Hong Kong 852, ChinaORIGIN1 tctccgttgg tgaaccagcg gagggatcat tatcgagtca ccactcccaa accccctgcg 61 aacaccacag cagttgcctc ggcgggaccg ccccggcgcc ccagggcccg gaccagggcg 121 cccgccggag gacccccaga ccctcctgtc gcagtggcat ctctcagtca agaagcaagc 181 aaatgaatca aaactttcaa caacggatct cttggttctg gcatcgatga agaacgcagc 241 gaaatgcgat aagtaatgtg aatcgcagaa ttcagtgaac catcgaatct ttgaacgcac 301 attgcgcccg ccagcactct ggcgggcatg cctgtccgag cgtcatctca accctcgagc 361 cccccgcctc gcggcggcgg ggcccggcct tgggggtcac ggccccgcgc cgccccctaa 421 acgcagtggc gaccccgccg cggctcccct gcgcagtagc tcgctgagaa cctcgcaccg 481 ggagcgcgga ggcggtcacg ccgtgaaacc accacaccct ccagttgacc3LOCUS HQ114254 711 bp DNA linear PLN31-AUG-2011DEFINITION Dendrobium densiflorum voucher PS2528MT01 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence.AUTHORS Yao,H., Gao,T. and Chen,S.-L.TITLE Direct SubmissionJOURNAL Submitted (10-AUG-2010) Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193,ChinaORIGIN1 tttccgtagg tgaacctgcg gaaggatcat tgtcgagacc aaaataaatc gagcgatttg61 gagaaccggt caaaataagc ggtgattatt atttccgtga tgaacgccat cccagtcgtt121 acctcatccc cttagggtcg aggatgcgag taaggatgga tgaacactca agccggcgca181 gcatcgcgcc aagggaaata tcgaaacatg agcccttaaa tgggtttggt ggaatggggt241 gctgttgcac gccatatgga ttgacatgac tctcggcaat ggatatctcg gctcacgcat301 cgatgaagag cgcagcgaaa tgcgatacgt ggtgcgaatt gcagaatccc gcgaaccatc361 gagtctttga acgcaagttg cgcccgaggc caactggcca agggcacgtt tgcctgggcg421 tcaagcgtta tgtcgcttcg tgtcaactcc atcccgtcga tgtatgggct ggcgaaggct481 cggatgtgca gagtggctca tcgtgcccct cggtgcggtg agctgaagag cgggtcatca541 tctcgttggc tgcgaacgat aaggggtgga ttaaagcgag gcctatgtta ttgtgtcgtg601 tatgcccgag agaagattat acatactcag gagatcccaa atcatgcgtc gatcaaagga661 tggcgcttgg aatgcgaccc caggatgggc gaggccaccc gctgagttta a4LOCUS AJ966733 585 bp DNA linear PLN11-APR-2008DEFINITION Saccharomyces sp. CECT 11011 mitochondrial partial COII gene forcytochrome c oxidase, subunit II.AUTHORS Gonzalez,S.S., Barrio,E. and Querol,A.TITLE Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewingJOURNAL Appl. Environ. Microbiol. 74 (8), 2314-2320 (2008)ORIGIN1 aatattatgt tttatttatt agttatttta ggtttagtat cttgaatgtt atatactatt61 gtaataacat attcaaaaaa ccctattgct tataaatata ttaaacatgg acaaactatt121 gaagttattt gaacaatttt cccagcagta gtattattaa ttattgcttt cccatcattt181 attttattat atttatgtga tgaagttatt tcaccagcta taactattaa agctattgga241 tatcaatgat attgaaaata tgaatattct gattttatta atgatagtgg tgaaactgtt301 gaatttgaat catatgttat tcctgatgaa ttattagaag aaggtcaatt aagattatta361 gatactgata cttctatagt tgtacctgta gatacacata ttagatttgt tgtaacagct421 gctgatgtta ttcatgattt cgctatccca agtttaggta ttaaagttga tgctactcct481 ggtagattaa atcaagtttc tgctttaatt caaagagaag gtgttttcta tgggcaatgc541 tcagagttgt gcgggctggg acatgccaac ataccaatta aaatt5LOCUS Y09069 459 bp mRNA linear INV18-APR-2005DEFINITION D.melanogaster mRNA for NADH-ubiquinone oxidoreductase acyl-carrier subunit, splice variant.AUTHORS Ragone,G., Caizzi,R., Moschetti,R., Barsanti,P., De Pinto,V. and Caggese,C.TITLE The Drosophila melanogaster gene for the NADH:ubiquinoneoxidoreductase acyl carrier protein: developmental expressionanalysis and evidence for alternatively spliced formsJOURNAL Mol. Gen. Genet. 261 (4-5), 690-697 (1999)ORIGIN1 atgtcgttca cacagatcgc gcgcagctgc agtcgactgg cggccacttt ggccccaagg61 agggtcgcct ccggcattct catccaatca caggcctcca ggatgatgca caggatcgcc121 gtgccatcga tgaccagcca gttgagccaa gagtgccgtg gtcgctggca aacgcaattg181 gtgcgcaaat actcggcgaa accgccgctc tcgctgaagc tgatcaatga gcgcgtcttg241 cttgtgctca agctctacga caagatcgat cccagcaagc tcaacgttga gtcgcacttc301 atcaacgact tgggactgga ttccttggac cacgtggagg tcatcatggc catggaggac361 gagttcggtt tcgagatccc cgactctgat gccgagaagc tgcttaaacc tgccgacatt421 attaagtacg tcgccgacaa ggaggatgtg tacgagtaa实验二序列相似性搜索软件—BLAST的使用一、实验目的:掌握序列相似性查询工具—BLAST使用方法和技巧,理解与序列相似性查询相关的几个基本概念。
生物信息学实验一
生物信息学实验一简介:生物信息学实验一是生物信息学实验课程的第一部分,旨在介绍生物信息学的基本概念、工具和技术,以及生物信息学在生物学研究中的应用。
本实验将引导学生通过实际操作,学习并掌握生物信息学的基本原理和操作技巧。
实验设备和材料:- 计算机或笔记本电脑- 生物信息学软件(例如NCBI BLAST、UCSC Genome Browser等)- 相关数据库和工具(例如GenBank、KEGG等)实验目的:1. 了解生物信息学的基本概念和应用领域;2. 学习生物信息学的常用工具和技术;3. 掌握生物序列分析、基因注释和比对等基本操作;4. 学会使用生物信息学软件和数据库进行数据查询和分析;5. 培养科学研究的数据处理和解读能力。
实验步骤:1. 确定研究对象:选择一个感兴趣的生物学问题或基因序列进行研究。
2. 数据获取:使用生物信息学工具和数据库,获取与研究对象相关的生物序列数据。
3. 序列分析:使用生物信息学软件对序列数据进行分析,包括碱基组成、氨基酸序列、启动子分析等。
4. 基因注释:通过比对算法和数据库,对序列进行基因功能注释,确定基因的命名、结构和功能信息。
5. 比对分析:使用比对工具进行序列比对,比较两个或多个序列之间的相似性和差异性。
6. 数据解读:根据分析结果,结合相关文献和知识,对实验数据进行解读和分析,得出科学结论。
实验注意事项:1. 在进行实验前,先了解所要使用的工具和软件的基本操作方法和原理;2. 实验过程中注意数据安全和保密,不得将数据泄露或用于非科研目的;3. 在进行数据分析和解读时,务必准确、客观地进行,不得造假或歪曲实验结果;4. 注意数据的备份和存储,以防止数据丢失或损坏;5. 尊重他人的研究成果和知识产权,合理引用和参考相关文献。
实验结果与讨论:本实验所得的结果可以根据具体的研究对象和实验数据来展开讨论和分析。
例如,如果研究对象是某个基因序列,可以讨论其结构和功能,与其他基因的关联性,以及在哪些生物过程中有重要作用等。
生物信息学实验报告
生物信息学实验报告班级::学号:日期:实验一核酸和蛋白质序列数据的使用实验目的了解常用的序列数据库,掌握基本的序列数据信息的查询方法。
教学基本要求了解和熟悉NCBI 核酸和蛋白质序列数据库,可以使用BLAST进行序列搜索,解读BLAST 搜索结果,可以利用PHI-BLAST 等工具进行蛋白质序列的结构域搜索,解读蛋白质序列信息,可以在蛋白质三维数据库中查询相关结构信息并进行显示。
实验容提要在序列数据库中查找某条基因序列(BRCA1),通过相关一系列数据库的搜索、比对与结果解释,回答以下问题:1. 该基因的基本功能?2. 编码的蛋白质序列是怎样的?3. 该蛋白质有没有保守的功能结构域 (NCBI CD-search)?4. 该蛋白质的功能是怎样的?5. 该蛋白质的三级结构是什么?如果没有的话,和它最相似的同源物的结构是什么样子的?给出示意图。
实验结果及结论1. 该基因的基本功能?This gene encodes a nuclear phosphoprotein that plays a role in maintaining genomic stability, and it also acts as a tumor suppressor. The encoded protein combines with other tumor suppressors, DNA damagesensors, and signal transducers to form a large multi-subunit protein complex known as the BRCA1-associated genome surveillance complex (BASC). This gene product associates with RNA polymerase II, and through the C-terminal domain, also interacts with histone deacetylase complexes. This protein thus plays a role in transcription, DNA repair of double-stranded breaks, and recombination. Mutations in this gene are responsible for approximately 40% of inherited breast cancers and more than 80% of inherited breast and ovarian cancers. Alternative splicing plays a role in modulating the subcellular localization and physiological function of this gene. Many alternatively spliced transcript variants, some of which are disease-associated mutations, have been described for this gene, but the full-length natures of only some of these variants has been described. A related pseudogene, which is also located on chromosome 17, has been identified. [provided by RefSeq, May 2009]2. 编码的蛋白质序列是怎样的?[Homo sapiens]1 mdlsalrvee vqnvinamqk ilecpiclel ikepvstkcd hifckfcmlk llnqkkgpsq61 cplcknditk rslqestrfs qlveellkii cafqldtgle yansynfakk ennspehlkd121 evsiiqsmgy rnrakrllqs epenpslqet slsvqlsnlg tvrtlrtkqr iqpqktsvyi181 elgsdssedt vnkatycsvg dqellqitpq gtrdeislds akkaacefse tdvtntehhq241 psnndlntte kraaerhpek yqgssvsnlh vepcgtntha sslqhenssl lltkdrmnve301 kaefcnkskq pglarsqhnr wagsketcnd rrtpstekkv dlnadplcer kewnkqklpc361 senprdtedv pwitlnssiq kvnewfsrsd ellgsddshd gesesnakva dvldvlnevd421 eysgssekid llasdpheal ickservhsk svesniedki fgktyrkkas lpnlshvten481 liigafvtep qiiqerpltn klkrkrrpts glhpedfikk adlavqktpe minqgtnqte541 qngqvmnitn sghenktkgd siqneknpnp ieslekesaf ktkaepisss isnmelelni601 hnskapkknr lrrksstrhi halelvvsrn lsppnctelq idscssseei kkkkynqmpv661 rhsrnlqlme gkepatgakk snkpneqtsk rhdsdtfpel kltnapgsft kcsntselke721 fvnpslpree keekletvkv snnaedpkdl mlsgervlqt ersvesssis lvpgtdygtq781 esisllevst lgkaktepnk cvsqcaafen pkglihgcsk dnrndtegfk yplghevnhs 841 retsiemees eldaqylqnt fkvskrqsfa pfsnpgnaee ecatfsahsg slkkqspkvt 901 feceqkeenq gknesnikpv qtvnitagfp vvgqkdkpvd nakcsikggs rfclssqfrg 961 netglitpnk hgllqnpyri pplfpiksfv ktkckknlle enfeehsmsp eremgnenip 1021 stvstisrnn irenvfkeas ssninevgss tnevgssine igssdeniqa elgrnrgpkl 1081 namlrlgvlq pevykqslpg snckhpeikk qeyeevvqtv ntdfspylis dnleqpmgss 1141 hasqvcsetp ddllddgeik edtsfaendi kessavfsks vqkgelsrsp spfththlaq 1201 gyrrgakkle sseenlssed eelpcfqhll fgkvnnipsq strhstvate clsknteenl 1261 lslknslndc snqvilakas qehhlseetk csaslfssqc seledltant ntqdpfligs 1321 skqmrhqses qgvglsdkel vsddeergtg leennqeeqs mdsnlgeaas gcesetsvse 1381 dcsglssqsd ilttqqrdtm qhnliklqqe maeleavleq hgsqpsnsyp siisdssale 1441 dlrnpeqsts ekavltsqks seypisqnpe glsadkfevs adsstsknke pgversspsk 1501 cpslddrwym hscsgslqnr nypsqeelik vvdveeqqle esgphdltet sylprqdleg 1561 tpylesgisl fsddpesdps edrapesarv gnipsstsal kvpqlkvaes aqspaaahtt 1621 dtagynamee svsrekpelt astervnkrm smvvsgltpe efmlvykfar khhitltnli 1681 teetthvvmk tdaefvcert lkyflgiagg kwvvsyfwvt qsikerkmln ehdfevrgdv 1741 vngrnhqgpk raresqdrki frgleiccyg pftnmptdql ewmvqlcgas vvkelssftl 1801 gtgvhpivvv qpdawtedng fhaigqmcea pvvtrewvld svalyqcqel dtylipqiph 1861 shy3. 该蛋白质有没有保守的功能结构域 (NCBI CD-search)?有保守的供能结构域。
生物信息学分析实践
1. PCR的基本原理:PCR技术又称聚合酶链式反应(polymerase chain reaction),是通过模拟体内DNA 复制的方式,在体外选择性地将DNA 某个特殊区域扩增出来的技术。
PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR由变性--退火--延伸三个基本反应步骤构成:(1)模板DNA的变性:模板DNA经加热至96℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;(2)模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至68℃左右,引物与模板DNA单链的互补序列配对结合;(3)引物的延伸:在72℃条件时,DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。
重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
到达平台期所需循环次数取决于样品中模板的拷贝。
(平台效应:PCR扩增过程后期出现的产物的积累按减弱的指数速率增长的现象。
)2. 引物设计的基本原则和方法1、引物设计的基本原则:引物设计有3个基本原则:首先,引物与模板的序列要紧密互补;其次,引物与引物之间避免形成稳定的二聚体或发夹结构;再次,引物不能在模板的非目的的位点引发DNA聚合反应(错配)。
实现这3个基本原则要考虑的诸多因素:(1)引物的长度:一般为15-30bp,常用的是18-27bp,但不能大于38 bp,因为过长会导致其延伸温度大于74℃,即Taq酶的最适温度(2)引物的特异性:引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,容易发生错配。
生物信息学实验一
生物信息学实验一生物信息学实验一: DNA序列比对一、引言DNA序列比对是生物信息学中的基础操作之一。
DNA序列比对可以通过比较两个或多个DNA序列之间的相似性和差异性,进而揭示序列之间的进化关系、基因功能以及潜在的生物学意义。
本实验旨在介绍DNA序列比对的基本原理、常见比对工具以及实验操作步骤。
二、实验原理1. 基本原理DNA序列比对是指将两个或多个DNA序列在相同参考框架下进行对比,以确定序列之间的相似性和差异性。
基于比对结果,可以推断序列中的保守区域、突变位点、插入缺失等信息。
2. 比对方法常见的DNA序列比对方法包括全局比对和局部比对。
全局比对适用于两个序列长度相似且整体结构相似的情况,例如比对同一基因的两个亚型。
而局部比对适用于两个序列之间存在较大差异的情况,例如比对基因组中的编码区域。
3. 比对工具生物信息学领域中有许多常用的DNA序列比对工具,如BLAST (Basic Local Alignment Search Tool)、ClustalW和MUSCLE等。
每个工具都有其独特的优势和适用范围,根据具体的研究目的和样本特点选择合适的比对工具。
三、实验步骤1. 收集序列数据在进行DNA序列比对实验前,首先需要收集待比对的DNA序列数据。
可以从公共数据库(如GenBank)或实验室已有的数据中获取所需序列,并保存为FASTA格式。
2. 选择比对工具根据比对的目的和序列特点,选择合适的比对工具。
例如,对于全局比对,可以选用BLAST工具;对于局部比对,可以选择ClustalW或MUSCLE工具。
3. 导入序列数据将收集到的DNA序列导入所选择的比对工具中。
一般来说,比对工具能够接受FASTA格式的输入。
确保正确导入所有待比对的序列,并设置比对参数。
4. 进行比对运行选定的比对工具,开始进行DNA序列比对。
比对过程可能需要花费一定的时间,具体时间取决于比对工具的算法和序列的长度。
5. 分析比对结果比对完成后,可以获取比对结果。
生物信息学实验报告1(一)生物信息学数据库
(一)生物信息学数据库实验目的:了解生物信息学的各大门户网站,了解数据库的内容及结构,理解各数据库注释的含义。
1、分别读取人CDK4的核酸序列及蛋白质序列,保存FASTA格式序列,熟悉数据库记录的flatfile格式,看懂其中的注释。
在NCBI数据库中读取人CDK4的核酸序列,步骤入下:(1)选择核酸(Nucleotide)将CDK4输入搜索栏中,点击Search。
(2)在Top Organisms中选择人(Homo sapients)(3)在数据库出现的数据中选择合适的核酸序列,选择FASTA可以使序列以FASTA 的格式显示出来。
GenBank形式则显示该序列的详细信息。
(4)保存的FASTA格式序列如下>gi|345525417|ref|NM_000075.3| Homo sapiens cyclin-dependent kinase 4 (CDK4), mRNACACCTCCTGTCCGCCCCTCAGCGCATGGGTGGCGGTCACGTGCCCAGAACGTCCGGCGTTCGCCCCG CCCTCCCAGTTTCCGCGCGCCTCTTTGGCAGCTGGTCACATGGTGAGGGTGGGGGTGAGGGGGCCTCTCTAG CTTGCGGCCTGTGTCTATGGTCGGGCCCTCTGCGTCCAGCTGCTCCGGACCGAGCTCGGGTGTATGGG(5) 在NCBI数据库中读取人CDK4的蛋白质序列,步骤入下:选择蛋白质(Protein)将CDK4输入搜索栏中,点击Search。
选择CDK4[Homo sapiens]的FASTA格式2、2BXI练习使用Jmol浏览蛋白质的三维结构。
()先进入PDB,再查看。
无法访问此网站3、练习使用Pubmed文献数据库(1)Pubmed检索运算符逻辑与:AND;逻辑或:OR;逻辑非:NOT。
注:当当一个检索表达式中同时含有三个运算符时,运算顺序从左至右,括号可以改变运算顺序。
生物信息学实验大纲
生物信息学实验大纲一、实验目的1.掌握基本的生物信息学知识和技能,包括生物数据库的利用、序列分析、基因组分析等。
2.学习并运用常用的生物信息学工具和软件,如BLAST、CLUSTAL、Phylogenetic等。
3.培养学生的科学思维和实验操作能力,提高数据分析和解释的能力。
4.通过实验培养学生的团队合作和沟通能力。
二、实验内容1.生物数据库的利用a.学习如何进行基因、蛋白质和基因组数据的检索和下载。
b.学习如何利用数据库进行序列比对、同源物种搜索等分析。
2.序列分析a.学习和掌握常用的序列比对软件(如CLUSTAL)和序列比对方法。
b.进行序列比对的实验操作,分析序列间的相似性和差异。
3.基因组分析a.学习并掌握基因组数据的下载和处理方法。
b.进行基因组数据分析的实验操作,如基因注释、富集分析等。
4.蛋白质结构预测a.学习并掌握蛋白质结构预测方法和软件。
b.进行蛋白质结构预测的实验操作,分析蛋白质结构的二级结构、三维结构等。
5.基因表达谱分析a.学习并掌握基因表达谱数据的获取和处理方法。
b.进行基因表达谱分析的实验操作,如差异表达基因的筛选和功能分析等。
6.进化分析a.学习进化分析的基本理论和方法。
b.进行进化分析的实验操作,如构建进化树、计算进化距离等。
三、实验要求1.实验组织形式:小组合作进行实验,每个小组由3-5名学生组成,共同完成实验设计、操作和数据分析。
2.实验前阅读实验指导书和相关科研论文,了解实验背景和基本原理。
3.每个小组在实验后撰写实验报告,并进行实验结果的展示和讨论。
4.每个学生需参与实验操作和数据分析,能够独立思考和解释实验结果。
四、实验设备和材料1.计算机及互联网连接设备。
2.生物信息学工具和软件,如BLAST、CLUSTAL、Phylogenetic等。
3.数据库访问权限或相关数据库的下载工具。
4.相关的生物序列和基因组数据。
五、实验评分指标1.独立思考和解释实验结果的能力。
生物信息学实验报告
丁大鹏等通过对不同杂交体系下芯片探针的荧光信号强度的比对得出,普通基因芯片杂 交过程中,样品是滴加到了打印好的阵列表面,然后覆盖了与阵列大小对应的盖玻片,由于 液体表面张力的存在,会造成样品液滴在阵列表面呈现不均匀的分布,常常在液滴的边缘样 品浓度要超过旁边的浓度,从而在杂交后常常出现边缘效应,导致影响对芯片杂交图像的分 析。相反,如Agilent和Gene Machine 的杂交体系建立都是在消除边缘效应的研究目的下, 在这两种体系下的样品都是在一种流动的状态下与芯片阵列表面进行接触来进行与探针的 杂交,因此保证了液-固相杂交反应是在均匀随机的过程中完成,并且由于不受液体表面张 力的影响,单位体积内的样品与单位面积的阵列反应的概率相同,杂交后的数据更科学。
4.2.5 基因芯片存在的局限
(1)大量的已知序列的基因或基因片段是制备基因芯片的材料,虽然这个资源库还不够丰 富,但是随着基因组测序计划的继续进行,各个物种的序列片段将会极大的丰富起来。 (2)我们应进一步简化基因芯片的制作过程,制作高密度探针的芯片,并降低成本,使基 因芯片从实验室研究走向实际应用。 (3)对基因芯片技术的一些基本问题,如探针对杂交体的稳定性影响,靶分子浓度、探针 浓度、杂交双方的序列组成、盐浓度及温度等对杂交的动力学影响分子原理研究还不够深入。 这都需要进一步研究掌握其生物物理学和生物化学的性质。
4.2.3 显色方法的局限性
基因芯片显色和分析测定方法主要为荧光法,其重复性较好,不足的是灵敏度仍较低。 目前正在发展的方法有质谱法、化学发光法、光导纤维法等。以荧光法为例,当前主要的检 测手段是激光共聚焦显微扫描技术,以便于对高密度探针阵列每个位点的荧光强度进行定量 分析。因为探针与样品完全正常配对时所产生的荧光信号强度是具有单个或两个错配碱基探 针的 5-35 倍,所以对荧光信号强度精确测定是实现检测特异性的基础。但荧光法存在的问 题是,只要标记的样品结合到探针阵列上后就会发出阳性信号,这种结合是否为正常配对, 或正常配对与错配兼而有之,该方法本身并不能提供足够的信息进行分辨。
生物信息学实验
生物信息学实验实验一生物信息数据库的检索一.实验目的:1.了解生物信息学的各大门户网站以及其中的主要资源。
2.了解主要数据库的内容及结构,理解各数据库注释的含义。
3.以PubMed为例,学会文献数据库的基本查询检索方法。
二.实验内容:(1)国际与国内的生物信息中心国际NCBI、EBI、ExPASy,EMBL、SIB、TIGR以及国内CBI、BioSino网站的熟悉及内容的了解。
核酸序列数据库:genbank/EMBL-bank/DDBJNCBI网址:/EBI网址:/EMBL网址:/embl蛋白质序列数据库:Swiss Prot 、ExPASy网址:/Uniprot网址:/蛋白质结构数据库:PDB网址:/pdb/(2)数据库内容、结构与注释的浏览分别读取The spike protein of SARS-Corona Virus在NCBI中的核酸序列、SWISS-PROT蛋白质序列以及PDB蛋白质结构序列,熟悉数据库记录的结构,学会看懂其中的注释。
核酸序列:SWISS-PROT蛋白质序列:PDB蛋白质结构序列:其PDB文件见附件SARS-Corona Virus.PDB文件分别读取Heamagglutinin Genes of H9N2 Subtype Influenza A Viruses(禽流感H9N2亚型HA基因)在NCBI中的核酸序列、SWISS-PROT蛋白质序列以及PDB蛋白质结构序列,熟悉数据库记录的结构,学会看懂其中的注释。
核酸序列:SWISS-PROT蛋白质序列PDB蛋白质结构序列其PDB文件见附件H9N2.PDB文件(3)文献信息的查找与管理有效地使用NCBI PubMed提供的各种主要功能,查询并下载相关课题或研究方向的论文文摘与文献全文。
查询Influenza A Viruses分子进化研究方向的文章。
三.实验要求:(1)以其中的一个信息中心网站为例,列举其中的主要资源(数据库、网上分析、生物计算、数据下载等)。
生物信息学实验
生物信息学实验实验一生物信息数据库的使用一、实验目的了解NCBI、EMBL、SWISS-PROT、PDB数据库的结构掌握NCBI、EMBL数据库检索系统ENTREZ、SRS、CN3D的操作方法,掌握文献、序列的快速高效检索方法FASTA的操作方法一、实验目的掌握GenBank数据库序列格式及其主要字段的含义了解EBML数据库序列格式及其主要字段的含义掌握GenBank数据库序列格式的FASTA序列格式显示与保存二、实验内容及操作步骤内容一:登陆NCBI、EMBL、SWISS-PROT、PDB数据库主页,打开数据库的SITE MAP页面,了解各网站的结构网址:NCBI: EMBL: SWISS-PROT: /sprot/PDB: /pdb/FASTA3 :/fasta33/index.html二、实验内容及操作步骤内容二:使用Entrez信息查询系统检索与禽流感相关的文献,并阅读感兴趣文献的摘要或全文调用Internet浏览器并在其地址栏输入Entrez网址(/Entrez)进入Entrez 主页选择pubmed文献数据库→在输入栏内输入关键词“Avian Influenza”→点击go查询练习使用AND OR BUT逻辑词来限定关键词,如Avian Influenza AND human infect等查询人感染禽流感的相关记录,比较查询结果二、实验内容及操作步骤内容三:使用Entrez信息查询系统检索与禽流感相关的核酸序列,链接提取其中一条感兴趣的序列内容,阅读序列格式的解释,理解其含义二、实验内容及操作步骤进入Entrez Home页面→选择Nucleotide数据库→在Search后的输入栏中选择Nucleotide→在输入栏内输入关键词Avian Influenza→点击go查询选择一条感兴趣的核酸序列,点击该序列与数据库的超链接,阅读序列格式的解释,理解其含义,如LOCUS、DEFINITION、ACCESSION等二、实验内容及操作步骤3. 在NCBI上找苯丙氨酸解氨酶基因序列1,打开NCBI,选择核苷酸(Nucleotide)数据库,填上Phenylalanine ammonia-lyase,点击GO,搜索二、实验内容及操作步骤2、我们来看结果,总共有1022个,结果太多二、实验内容及操作步骤3、这个时候我们可以再想办法缩少范围,比方你要找的是豆科的,我们来大豆(soybean)来作例子。
生物信息学实验教程
生物信息学实验教程实验一、基因、蛋白质序列分析【实验目的】1、掌握基因、蛋白质序列检索的操作方法;2、熟悉蛋白质基本性质分析及其电子表达谱3、蛋白基因的引物设计【实验内容】1、使用Entrez或SRS信息查询系统检索人脂联素(adiponectin)蛋白质序列;2、使用网站对上述蛋白质序列进行分子质量、氨基酸组成、和疏水性等基本性质分析;3、蛋白基因的引物设计【实验方法】1、人脂联素基因、蛋白质序列的检索:(1)调用Internet浏览器并在其地址栏输入Entrez网址(/Entrez);(2)在Search后的选择栏中选择nucleartide\protein;(3)在输入栏输入homo sapiens adiponectin;(4)点击go后显示序列接受号及序列名称;(5)点击序列接受号NP_004788 (adiponectin precursor; adipose most abundant genetranscript 1 [Homo sapiens])后显示序列详细信息;(6)将序列转为FASTA格式保存(参考上述步骤使用SRS信息查询系统检索人脂联素蛋白质序列);(7)进入UNIGENE数据库分析其电子表达谱2、进入网站对人脂联素蛋白质序列进行分子质量、氨基酸组成和疏水性等基本性质分析:3、利用prime prime5.0设计此基因PCR引物4、独立完成NYGGF4、LYRM1两个基因的上述操作。
【作业】1、提交使用上述软件对人脂联素、NYGGF4、LYRM1蛋白质序列进行基本性质分析及其电子表达谱蛋白质实验二、序列结构预测【实验目的】1、熟悉基于序列同源性分析的蛋白质功能预测,了解基于motif、结构位点、结构功能域数据库的蛋白质功能预测;2、了解蛋白质结构预测。
【实验内容】1、对人脂联素蛋白质序列进行基于NCBI/Blast软件的蛋白质同源性分析;2、对人脂联素蛋白质序列进行motif结构分析;3、对人脂联素蛋白质序列进行二级结构和三维结构预测。
中南大学《生物信息学》实验报告
实验报告
实验课程:生物信息学
学号:
姓名:
专业班级:
指导老师:
实验四蛋白质结构与功能预测
[实验目的]
掌握蛋白质一级、二级和三级结构分析的一些工具,了解与蛋白质功能分析相关的数据库,如:SwissProt蛋白质序列数据库、PDB结构数据库等。
[实验原理]
现有的蛋白质功能分析工具和平台都是根据已知的蛋白质结构进行诠释分析、总结结构规律建立参考数据库,并以此作为预测未知蛋白质结构和功能的依据。
[实验内容]
1、熟悉与蛋白质分析相关的数据库资源,如SwissProt蛋白质序列数据库、PDB
结构数据库、PROSITE
2、利用PredictProtein对蛋白质序列进行分析
3、利用swiss-model对蛋白质序列进行三维结构预测
[实验步骤]
1、首先我们选取几段蛋白质序列
序列的格式为FASTA格式,FASTA是一种基于文本用于表示核苷酸序列或氨基酸序列的格式。
在这种格式中碱基对或氨基酸用单个字母来编码,且允许在序列前添加序列名及注释,如下图所示。
然后我们将准备好的氨基酸序列复制到https:///
点击predictprotein等待几分钟即可得到相应的结果
下图为蛋白质的二级结构预测图
下图是关于这个蛋白质的基础组成和基本的蛋白质概述
然后我们将氨基酸序列复制到
/interactive
点击build model即可得到三维结构
三维结构为。
生物实验室生物信息学实验守则
生物实验室生物信息学实验守则生物信息学是一门综合性学科,通过运用计算机和数学等工具来解析生物系统中的大数据。
在生物实验室进行生物信息学实验时,有必要遵守一定的实验守则以确保实验的可靠性和安全性。
本文将介绍生物实验室生物信息学实验的守则,以期为实验人员提供指导。
一、实验前准备在进行生物信息学实验之前,必须做好充分的准备工作。
首先,要确保实验室设备和软件的正常运行。
所有的仪器和计算机软件应该经过检查和校准,以确保它们的准确性和可靠性。
其次,实验人员需要熟悉所用软件的操作方法,并掌握相关的实验流程和参数设置。
最后,实验人员应该熟悉实验的操作规程和安全事项,了解实验过程中可能出现的问题和对应的解决方法。
二、实验操作1. 数据处理在进行生物信息学实验时,必须保证数据的准确性和完整性。
实验人员应该在每一步操作之后及时保存和备份数据,以防止数据丢失或损坏。
在处理数据的过程中,要注意记录每一个步骤的操作和参数,并进行相应的数据标注,以便后续的数据分析和验证。
2. 数据分析生物信息学实验的核心是数据分析。
在进行数据分析时,实验人员应该遵循科学的分析方法和数据统计原则,确保实验结果的可靠性和可重复性。
同时,需要注意选择合适的数据分析工具和算法,并进行相应的参数设置。
在数据分析的过程中,实验人员应该仔细检查和验证分析结果,确保其准确性和合理性。
3. 结果解读进行生物信息学实验后,实验人员需要对实验结果进行解读和讨论。
解读结果时,要基于实验目的和相关背景知识,进行合理的分析和推理。
实验人员应该注意做好结果的可视化展示,以便于他人理解和评估。
在解读结果时,实验人员应该客观、准确地表达自己的观点和结论,并在必要时进行进一步的实验验证。
三、实验安全在进行生物信息学实验时,实验人员应该高度重视实验安全。
首先,要确保实验室环境的卫生和整洁,避免异物对实验操作的干扰。
其次,实验人员应该正确佩戴实验室用品,如实验手套和口罩,以防止实验样品的污染和人员的意外伤害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物信息学实验生物信息学实验Bioinformatics Experiment【课程编号】1411010【课程类别】专业方向课【学分数】1学分【适用专业】生物技术、生物科学【学时数】32学时【编写日期】2007年6月一、教学目标本课程旨在使学生了解生物信息学基本知识,掌握生物信息学的基本思路与方法。
把最基本的生物信息学计算技术进行联机学习,突出基础性和实用性,让每个同学通过实际操作来体验复杂的生物学数据及其相关的分析手段。
通过本课程的学习,可以深化学生理解和使用由高通量技术所产生的大量生物信息的生物学背景及其分析方法;同时本课程与专业的需求紧密结合,通过学习,使学生能够快速检索网上信息,从而了解本学科的前言知识;通过学习使学生能够与生物信息大型数据库建立连接,取得已有的数据,从而为自己的研究服务。
二、教学内容和学时分配实验一、Genomic Databases4学时基础性主要内容:UCSC Genome, BrowserNCBI Map, ViewerEnsembl教学要求:了解当前全球三个主要的基因组数据库:UCSC、NCBI和Ensembl。
了解三个数据库共有的特点,以及在可视化、提供的信息、所用到的序列比对工具等方面的不同之处。
以人类胰岛素基因Insulin为例,理解三个数据库是如何注释gene duplication、EST、SNP等基因组信息的。
结合三个数据库的各自特点,掌握如何从数据库中获取与基因相关的序列、三维结构、功能、遗传变异等信息。
重点、难点:三个数据库都涵盖了几乎所有的基因组信息,因此从众多信息中如何获得自己所感兴趣的是本次试验课的重点,也是难点。
其它教学环节:实验课刚开始,授课老师结合ppt,以人类胰岛素基因Insulin为例,讲授本次实验课的主要内容,并布置本次实验作业。
在实验过程中,授课老师提议同一个小组的学生一起讨论,有问题向授课老师或助教提问。
同时,学生可以在论坛中(专门为生物信息学试验课设计的)发表自己的见解、交流学习心得。
实验二、NCBI PubMed4学时基础性主要内容:NCBI PubMed:综合的文献检索数据库,包含了>1600万篇生物化学文章的引文,这些文章来源于MEDLINE和其他生命科学学领域的期刊。
教学要求:了解NCBI的Entrenz系统,一个集成了PubMed、核酸序列、蛋白质序列、三维结构等信息的搜索系统。
了解PubMed 数据库的基本内容。
理解PubMed文献搜索的格式。
三掌握如何在PubMed中按照主题词、作者名、出版年份、研究机构等关键字进行文献搜索。
重点:按照几种主要的关键字进行文献检索难点:按照主题词进行文献搜索。
其它教学环节:实验课刚开始,授课老师结合ppt,讲授本次实验课的主要内容,并布置本次实验作业。
在实验过程中,授课老师提议同一个小组的学生一起讨论,有问题向授课老师或助教提问。
同时,学生可以在论坛中(专门为生物信息学试验课设计的)发表自己的见解、交流学习心得。
实验三、Browsers and Tools for Genetic Variants Analysis4学时基础性主要内容:HapMap Generic Genome Browser, NCBI dbSNPs, Haploview教学要求:了解三者的主要内容,及主要功能。
HapMap phaseI,phaseII是全面的有关人类遗传变异数据库,NCBI dbSNP存储了所有的人类SNP数据,Haploview是通用的LD分析软件。
理解dbSNP所存储的所有人类SNP数据,质量并不是都很可靠的,因此dbSNP为每一个SNP专门设置了“Validation Status”信息。
掌握从HapMap和dbSNP中获取一段染色体片断相关的遗传变异信息。
重点:掌握从HapMap和dbSNP中获取一段染色体片断相关的遗传变异信息。
难点:如何使用Haploview工具进行LD分析。
其它教学环节:实验课刚开始,授课老师结合ppt,以人类BRCA2基因为例,讲授本次实验课的主要内容,并布置本次实验作业。
在实验过程中,授课老师提议同一个小组的学生一起讨论,有问题向授课老师或助教提问。
同时,学生可以在论坛中(专门为生物信息学试验课设计的)发表自己的见解、交流学习心得。
实验四、Genome Databases,Literature Databaseand Genomic Variation Databases4学时综合性主要内容:充分运用所学的各种生命科学知识,各小组独立选题、设计、构思一个以数据库检索为主的训练项目。
教学要求:要求该项目至少使用到人类基因组数据库(和GenBank)、dbSNP和HapMap数据库、文献数据库PubMed、蛋白数据库UniProt等在以前课时中已介绍过的数据库。
所用到的数据(内容实体)必须是有内在联系的生物学研究对象。
了解该项目的生物学研究对象。
理解各个数据库的内容。
掌握该项目中各个数据库之间的联系。
重点:围绕着一个自己感兴趣的生物学研究对象,如蛋白质家族,综合运用核酸、蛋白质、遗传变异、文献各个方面的数据库进行信息检索。
难点:如何解释各数据库的查询结果。
其它教学环节:实验课刚开始,授课老师结合ppt,对之前三次实验课内容作大概的回顾和总结,并布置本次实验作业。
在实验过程中,授课老师提议同一个小组的学生一起讨论,有问题向授课老师或助教提问。
同时,学生可以在论坛中(专门为生物信息学试验课设计的)发表自己的见解、交流学习心得。
实验五、Gene Ontology and SPIDer4学时基础性主要内容:GO(Gene Ontology), SPIDer(Saccharomyces Protein-protein Interaction Database)教学要求:了解(1)GO从生物过程、分子功能和细胞组分三个方面对基因和基因产物进行注释,并以DAG的架构进行组织。
(2)SPIDer是我们小组开发的一个芽殖酵母蛋白质-蛋白质相互作用及可视化检索系统。
理解GO有什么用,它一方面为各个生物学数据库注释基因产物提供了统一化的词汇、结构,另一方面对生物信息学大规模计算、机器学习等提供了统一的基因注释平台。
掌握GO和SPIDer两个数据库的检索,如对于一个感兴趣的蛋白质复合体,在SPIDer中检索这个复合体内部成员之间的相互作用,还可以在GO中检索这个复合体各个成员的注释,并看两者之间是否存在联系。
重点:GO知识架构的组织方式,和GO数据库的检索。
难点:要完成本次实验课的作业,需要将GO和SPIDer这两个分别代表基因注释和蛋白质相互作用的数据库结合起来。
其它教学环节:实验课刚开始,授课老师结合ppt,讲授本次实验课的主要内容,并布置本次实验作业。
在实验过程中,授课老师提议同一个小组的学生一起讨论,有问题向授课老师或助教提问。
同时,学生可以在论坛中(专门为生物信息学试验课设计的)发表自己的见解、交流学习心得。
实验六、BLAST4学时基础性主要内容:BLAST (Basic Local Alignment Search Tool)教学要求:了解什么是BLAST,它有哪些应用,几种常用的BLAST程序包。
理解为什么会有BLAST程序包。
掌握如何在NCBI网站上进行BLAST搜索、如何获取BLAST帮助。
重点:分析、理解BLAST的输出结果和评分标准,如Bit Scores, E-values。
难点:理解BLAST不同参数的含义,以及如何调整和适用情况。
其它教学环节:实验课刚开始,授课老师结合ppt,讲授本次实验课的主要内容,并布置本次实验作业。
在实验过程中,授课老师提议同一个小组的学生一起讨论,有问题向授课老师或助教提问。
同时,学生可以在论坛中(专门为生物信息学试验课设计的)发表自己的见解、交流学习心得。
实验七、Multiple Sequence Alignment and ClustalW/X4学时基础性主要内容:MSA(Multiple Sequence Alignment), ClustalW/X教学要求:了解为什么要MSA(多序列比对),什么是ClustalW,从哪里可以在线使用ClustalW,或下载ClustalX 程序以本地使用。
理解ClustalW的结果可以用于哪些分析。
掌握如何使用ClustalW/X软件,包括输入、主要参数的设定、输出结果分析。
重点:学会ClustalW/X的使用。
难点:分析ClustalW/X的结果,并理解构建出来的系统发育树。
其它教学环节:实验课刚开始,授课老师结合ppt,以16S rRNA 的10条序列为例,讲授本次实验课的主要内容,并布置本次实验作业。
在实验过程中,授课老师提议同一个小组的学生一起讨论,有问题向授课老师或助教提问。
同时,学生可以在论坛中(专门为生物信息学试验课设计的)发表自己的见解、交流学习心得。
实验八、PSI-BLAST And HMMER4学时基础性主要内容:PSI-BLAST(Position-Specific Iterated BLAST),HMMER(Biosequence analysisi using profile hidden markov models),Pfam教学要求:了解什么是PSI-BLAST,HMMER,都分别有哪些应用。
理解(1)PSI-BLAST程序运行的流程,PSSM与iteration的联系。
(2)与BLAST相比,PSI-BLAST有哪些特点。
(3)HMMER与Pfam的联系。
掌握(1)PSI-BLAST 的在线使用,包括输入,结果分析。
(2)Pfam数据库的检索,包括获取蛋白质结构域架构、获取已知蛋白质的三维结构和点击到其他数据库的链接。
重点:学会PSI-BLAST的在线使用,和Pfam数据库的检索。
难点:PSI-BLAST程序的实现过程。
其它教学环节:实验课刚开始,授课老师结合ppt,讲授本次实验课的主要内容,并布置本次实验作业。
在实验过程中,授课老师提议同一个小组的学生一起讨论,有问题向授课老师或助教提问。
同时,学生可以在论坛中(专门为生物信息学试验课设计的)发表自己的见解、交流学习心得。
三、教材与学习资源教材:[1]Bioinformatics-A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition》,AndreasD.Baxevanis (Editor), B.F.Francis Ouellette (Editor). John Wiley & Sons, Inc., Publication. 2004[2]Bioinformatics: Sequence and Genome Analysis》. D. W. Mount. Cold Spring Harbor Laboratory Press. 2001网上公共资源:[1]NCBI (Human) 网站:[2]UCSC (Human) 网站:[3]Ensembl (Human) 网站:[4]PubMed网站:[6]InterPro网站:[7]Gene Ontology网站:本地化数据库资源:[1]Ensembl 本地化数据库:[2]SPIDer本地化数据库:教学课件:[1]Bioinformatics_Experiment_01_Genomic Databases.ppt[2]Bioinformatics_Experiment_02_PubMed.ppt[3]Bioinformatics_Experiment_03_Genetic Variants.ppt[4]Bioinformatics_Experiment_04.ppt[5]Bioinformatics_Experiment_05_GO_SPIDer.ppt[6]Bioinformatics_Experiment_06_Blast.ppt,[7]Bioinformatics_Experiment_07_ClustalW.ppt[8]Bioinformatics_Experiment_08_PSI-blast_HMM.ppt四、先修课要求及教学策略与方法建议先修课要求:计算机基本操作、生物化学或分子生物学(对基因组知识有一定的了解)。