勾股定理的探索方法及教法(最全)word资料

合集下载

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

探索勾股定理教案(第一课时).docx

探索勾股定理教案(第一课时).docx

探索勾股定理教案(第一课时)绍兴市袍江中学张清—、教材分析(一)教材所处的地位这节课是九年制义务教育浙教版课程标准教科书八年级第二章第六节探索勾股定理第一课时,勾股定理是几何屮几个重要定理之一,它揭示的是直角三角形屮三边的数量关系,把“形”的特征一一三角形屮一个角是直角,转化成数量关系一一三边之间满足/+沪二利用它可以解决直角三角形屮的许多计算问题,是解直角三角形的主要根据之一.它在数学的发展屮起过重要的作用,在现时世界屮也有着广泛的作用.学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解.(-)根据课程标准,制定本课的教学H标(1)知识与技能:掌握勾股定理,并能运用勾股定理解决一些实际问题.掌握用面积的方法来说明勾股定理的正确性.(2)过程与方法:经历探索勾股定理的过程,体验数学学习探究的方法.经历观察、归纳、猜想、概括等数学学习活动过程,发展合情推理能力,体会数形结合思想.(3)情感态度与价值观:进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识;通过追溯勾股定理的历史,增强学生的爱国情感.(三)本课教学重难点重点:勾股定理的发现及其简单应用.难点:勾般定理的探究采用面积法,这是学生从未体验过的,是本节教学的难点. 二、教法与学法教法分析:针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题.引导学生口主探索,合作交流,这种教学理念反映了吋代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:创设情境,引发思考一一自主探索,合作交流一一追溯历史,激发情感一一应用拓展,能力提升一一冋顾反思,提炼升华一一布置作业,课堂延伸六部分.学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取他识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.三、教学过程(一)、创设情境,引发思考故事引入:相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客.在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来•原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方. 主人看到毕达哥拉斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.原来,他发现了地砖上的三个正方形存在某种数学关系.图1 (黑白相间的地砖)教师与学生行为:教师给出一个历史小故事,设置悬念,引发学生思考.教学效果预估与对策:学生对故事中的问题很感兴趣,能够激发学生的探究欲望.设计意图:由毕达哥拉斯在朋友家做客的偶然发现入手,引入本节课的课题一一勾股定理,学生 接受起来更自然,贴切.(二)、自主探索,合作交流 探究活动1猜一猜问题1:你能发现图2屮三个正方形面积之间有怎样的关系?问题3:你能用等腰直角三角形的边长表示止方形的面积吗?由此猜想等腰直角三角 形三边有怎样的关系?教师与学生行为:对于问题(2)、(3)教师给学生足够的思考时间,然后让学生交流合作,得出 结论.问题(3)可让学生在自己准备好的小方格上画出,并计算A 、B 、C 三个正方形的面积,用字母 表示三个正方形面积Z 间的数量关系,进而发现了等腰肓角三角形三边的特殊关系.并在小组内交流, 教师适当引导,深入学生当屮,倾听他们的想法.教学效果预估与对策:对等腰直角三角形三边性质的探索,学生们探究欲望会很强烈,小组交流 想法也会达成共识,对于验证三个正方形面积Z 间的关系.同时辅Z 多媒体的动态演示,使教学效果 更肓观,利于学生接受,顺利突破难点.设计意图:通过设计问题串,让探索过稈由浅入深,循序渐进.经历观察、猜想、归纳这一数学 学习过稈,符合学生认知规律.探索血积证法的多样性,体现数学解决问题的灵活性,发展学生的合2:如图3屮的各红I 图形面积之问都有丄述的结果吗?情推理能力.探究活动2 做一做问题4;请分别计算出图4小正方形A 、B 、C 的面积,看看能得出什么结论?问题5:如图5, a, b, c 分别表示三个止方形的边长,三者之间的面积关系如何表示? 由三个正方形所搭成的直角三角形三边存在怎样的关系? 教师与学生行为:教师观察学生活动,指导与合作,让学生充分发表自己的见解,暴露他们的思 维过程•计算正方形C 的面积不易求出,教师及时点拨,同时借助多媒体动态演示.教学效果预估与对策:根据探索等腰直角三角形三边关系过稈,学生在对探讨一•般肓角三角形三 边性质有了一定基础.计算正方形C 的面积利用分割法和把它看作边长是整数的大正方形面积的一半很 容易想到,但拼凑法会有一定困难,教师利用多媒体动态演示,从而化难为易,得出頁角边为整数的 直角三角形三边的特殊关系.设计意图:此环节设计让学生动手做一做,算一算,充分利用计算血积的不同方法,进一步体会 数形结合思想,让学生经历从特殊到一般的过稈,体会事物由特殊到-•般的变化规律,发展学生的合情 推理能力.探究活动3量一量问题6:,在纸上画出三个直角三角形,使其两条直角边长分别为3c 加和4czn, 1. 5cm 和2cm , 0. 8c/77和1・5肋,分别测量这三个直角三角形斜边的长,根据所测得的结果填写 下表:a b c a 2+b 2c 2 3 41.5 20.81.5观察表屮后两列的数据・JL 面所猜想的数量关系还成立吗? 教师与学生行为:学生动手在纸上逊育角三角形,测量斜边的长度,讲行计算,教师及时点拨. 教学效果预估与对策:由于直角边长不是報数,计算起来难度大.测量斜边长度,由于存在误差, 预计学生会出现思维障碍,此时教师及时点拨,借助儿何I 出i 板演示岚角边为任意长的育角三角形三边W 2C < 1 1 ♦ 1 个 ] ] ( ] / C■pH * E 主 b ・ .・ — ■・ …■ .■ ・'・・・* ■ “ .B* + • + ] • ・ +1 B 1 1 ■卜■] 厶 ] 彳/ 二' + 寸 • 十 (A 的面积+1 '的面积二4 的面积) ・■ ■丄 」.八 厶■・ -.关系,得出一般直角三角形两直角边的平方和等于斜边的平方,从而发现了勾股定理.勾股定理:如果直角三角形两直角边分别为a、b ,斜边为c,那么r+bJc?设计意图:通过上述两种探究活动,学生已初步探究出直角边为整数的直角三角形三边关系.设计让学生动T-MS角边是小数的情形而脱离网格纸,将探究活动进一步深化,从而扩展到更一般的情况.使学生体会数学探究由特殊到一般,再到更一般的过稈.探究活动4 验一验问题7:直角三角形的两条直角边长分别为“、b (b>a),斜边长为c (如图7-1),将四个全等的直角三角形按如图7・2位置放置.如何用图7・2來说明勾股定理的正确性?DB图7-1 图7-2教师与学生行为:动手剪出四个全等的育角三角形,并按图要求拼好.教师提示学生用不同的方法求大正方形的面积并进行化简•指出这就是著名的赵爽证明来说明勾股定理的正确性.教学效果预估与对策:利用面积法来说明勾股定理的正确性,这是学生从未经历过的,学生较难形成思路,因此,一开始学生不知从何做起,此时教师进行启发:①大正方形面积肓接如何求?②若分开又如何求?③两者求出的面积有何关系?化简后你发现了什么?等一系列问题进行提示.设计意图:通过上述三种探究活动,学生已经得到一般肓角三角形的三边关系,肓角三角形两肓角边的平方和等于斜边的平方一勾股定理.但都是通过猜想、测量、计算等方法而得到,缺少几何严谨的说理过程,而探究活动4则弥补了它的缺陷,使学生更加确信勾股定理的正确性.同时也符合学生接受新知识的认知过程.探究活动5 议一议问题8:观察图8并计算,判断锐角三角形,钝角三角形三边的长度是否满足aSb2=c2教师与学生行为:学生观察计算,教师多媒体动态演示.教学效果预估与对策:此环节在前探究的基础上,预计学生能大多数独立解决,从而进一步验证了有且只有直角三角形才满足a2+b2=c2.设计意图:经历从特殊到一般的探索过稈,学生以初步认识到直角三角形的特有性质,但学生已有的认知基础会不断地向学生提示锐角、钝角三角形迅否也具有这样的性质?此坏节的设计符合学生的认知特点,通过与锐角三角形、钝角三角形的对比,进一步强调育角三角形三边关系的特征.(三)、追溯历史,激发情感介绍勾股定理的历史,列举了东西文化中对勾股定理的发现,介绍了一些著名的人物、著作和学派.如商高、《周髀算经》、毕达哥拉斯……这些知识足以激发他们的兴趣,让学生更深刻的体会勾股定理所蕴涵的文化价值.教师与学生行为:老师介绍有关勾股定理的历史,学生认真对比屮西方文化,增强对勾股定理的进一步了解.教学效果预估与对策:教师利用多媒体辅助演示,使知识更系统.设计意图:介绍有关勾股定理的历史,使学生对屮国乃至世界的数学史产生浓厚的兴趣,为下一节的验证打好基础.(四)、应用拓展,能力提升(1)对勾股定理的直接应用问题9:①已知在厶ABC ZC=RtZ, BC = a,AC =b,AB = c.⑴若a = \,b = 2,求c ;(2)若a = 15,c = 17 ,求b・②已知在AABC 屮,ZC=RtZ, BC = a,AC=b,AB = c・(1)如果a =彳,b = ?,求c ;(2)如果a = 12,c = 13,求b ;(3)如果c = 34,a : b = 8:15,求 a,b.(2)利用勾股定理解决实际应用问题问题10:①如图9是一个长方形零件图,根据所给的尺寸(单位:mm),求两孔屮心A, B之间的距离.②某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6. 5 米长的云梯,如果梯子的底部离墙基的距离是2. 5米,请问消防队员能否进入三楼灭火?(3) 面积法说明勾股定理正确性的再次认识问题11: (1876年美国总统Garfield 用面积法说明勾股定理的正确性)以"、b 为直角边,以c 为斜边作两个全等的直角三角形,把这两个直角三角形拼成 如图10所示形状,使A 、E 、B 三点在-•条直线上•利用面积法来说明勾般定理的正确性.图10教师与学生行为:教师出示问题,学生解决问题•对于个别有困惑的同学,教师及时点拨.教学效果预估与对策:对于问题9学生很容易独立完成.问题10都是要把实际问题转化为用勾股 定理来进行解决,学生可能难度比较大,教师在讲解时要多提示.问题11是面积法的再次应用,可在教师 的指导下共同完成.设计意图:设计了一个层层深入的问题串,引导学生由浅入深地思考问题,悟出一类问题的解题 规律.另外,由于学生对知识的理解程度有所差异,因此,习题的设置体现层次性.在新知运用过程 屮,也设计小组合作交流,鼓励学生主动参与学习活动,尝试用白己的方式去解决问题,发表白己的 看法.(五) 、回顾反思,提炼升华问题12:通过本节课的学习,你有哪些收获与感悟?教师与学生行为:教师引导学生从知识、过程、方法、情感态度等方面发表看法,学生积极进行 H 我总结,相互补充,巩固探究成果.r 等腰直角三角形[一般直角三角形 j 锐角、钝角三角场 ——肓角三角形两育角边的平方和等于斜边的平方一一定理的应用与拓展教学效果预估与对策:预计学生总结的是木课知识方面的收获与探索过程屮的经验和教训,以及 在与他人合作中得到的快乐.教师要加以引导,师生之间相互加以完善.设计意图:学生通过对本节知识的提炼,归纳岀有关知识与技能方面的一般结论以及在做数学活 动屮所遇到的困惑,感悟到古代数学家在探索新知的领域屮所付出的艰辛,做学问有乐趣亦有苦趣, 培养学生良好的个性和思维品质.(六) 、布置作业,课堂延伸A 类:继续强化勾股定理的计算与应用书本作业题1、3、5及作业本(2) 1,2, 4, 5, 6.B 类:进一•步加深对“勾股定理”的理解及对勾股定理的灵活应用书本Row 作业题4、6、7及作业本(2)3, 7.C 类:如图11,在厶ABC 中,AB=AC=2,在BC 边上有10个不同的点 P, P 2> …Pg,记 Mi 二APj+RB • RC (i=l, 2,…,10)・(1) 求%的值; B(2) 求 M.W-+M.0的值. 教师与学生行为:教师布置作业,学生记录作业.教学效果预估与对策:预计90%以上的同学可以独立完成A 层作业,B 层作业具有一定的开放性, 多数同学对此会很感兴趣.C 层作业比较难,主要是为哪些学有余力的同学准备.设计意图:作业布置上尽量体现层次性及开放性,面向全体•让学生进一步体会勾股定理在解决 直角三故事引入——探索勾股定理 观察、计算 猜想、归纳CA b E a BA 图II角形边的计算方面的重要作川,提高学生分析问题、解决问题的能力,感受勾股定理的现实意义.。

《探索勾股定理》word版 公开课一等奖教案 (8)

《探索勾股定理》word版 公开课一等奖教案 (8)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。

这些资料因为用的比较少,所以在全网范围内,都不易被找到。

您看到的资料,制作于2021年,是根据最新版课本编辑而成。

我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。

本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。

本作品为珍贵资源,如果您现在不用,请您收藏一下吧。

因为下次再搜索到我的机会不多哦!1.1 探索勾股定理一、依据新课标制定教学重点:学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.依据新课标制定教学难点::学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力。

二、教学任务分析1. 教学目标:掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题. 用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.2. 知识目标.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3. 能力目标:在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.三、教学过程本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升(四)例题讲解,初步应用;(五)追溯历史,激发情感;;(六)回顾反思,提炼升华;(七)布置作业,课堂延伸.第一环节:复习设疑,激趣引入内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:小组活动,拼图验证.内容:活动1:教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图1图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+) 从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a 2+b 2=c 22.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。

初中数学勾股定理教案 初中数学勾股定理教案优秀3篇

初中数学勾股定理教案 初中数学勾股定理教案优秀3篇

初中数学勾股定理教案初中数学勾股定理教案优秀3篇初中数学勾股定理教案优秀3篇由作者为您收集整理,希望可以在初中数学勾股定理教案方面对您有所帮助。

初中数学勾股定理教案篇一一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的形的特点,转化为三边之间的数的关系,它是数形结合的榜样。

它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。

本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。

教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。

2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。

3、培养学生学习数学的兴趣和爱国热情。

4、欣赏设计图形美。

二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。

老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。

三、教学流程:(一)引入同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。

初中探索勾股定理教案

初中探索勾股定理教案

初中探索勾股定理教案教学目标:1. 知识与技能目标:让学生掌握勾股定理的内容,理解其含义,并能够运用勾股定理进行计算和解决问题。

2. 过程与方法目标:通过观察、实验、推理等方法,培养学生探索和解决问题的能力,提高学生的逻辑思维能力。

3. 情感、态度与价值观目标:培养学生对数学的兴趣和热情,培养学生的团队合作意识,使学生感受到数学的奇妙和实用性。

教学重点:勾股定理的表述和运用。

教学难点:理解勾股定理的证明过程。

教学准备:直尺、三角板、幻灯片或视频播放设备。

教学过程:一、导入(5分钟)1. 引导学生回顾已学的三角形知识,如三角形的性质、分类等。

2. 提问:直角三角形有什么特殊的性质吗?二、探索勾股定理(15分钟)1. 让学生分组,每组用三角板和直尺构造一个直角三角形。

2. 让学生测量并记录直角三角形的两条直角边和斜边的长度。

3. 让学生计算两条直角边的平方和以及斜边的平方,并观察它们之间的关系。

4. 让学生发现并表述勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

三、证明勾股定理(15分钟)1. 让学生分组,每组尝试用已学的几何知识证明勾股定理。

2. 引导学生运用拼图的方法,将两个相同的直角三角形拼成一个正方形,从而证明勾股定理。

3. 让学生分享并讨论各自的证明方法,引导学生理解并掌握证明过程。

四、运用勾股定理(10分钟)1. 让学生解决一些实际问题,如计算直角三角形的边长等。

2. 让学生运用勾股定理解决一些几何问题,如证明两个三角形相似等。

五、总结与反思(5分钟)1. 让学生总结本节课的学习内容,回顾学习过程。

2. 提问:你认为勾股定理有什么实际意义和应用价值?教学评价:1. 课堂讲解的清晰度和连贯性。

2. 学生参与度和合作意识的培养。

3. 学生对勾股定理的理解和运用能力的提高。

教学反思:本节课通过引导学生探索、发现和证明勾股定理,培养了学生的探索精神和逻辑思维能力。

在教学过程中,要注意引导学生积极参与,鼓励学生提出问题和解决问题。

《探索勾股定理》第一课时说课稿(完整版)

《探索勾股定理》第一课时说课稿(完整版)

《探索勾股定理》第一课时说课稿相信勾股定理大家都很熟悉,但是让你说课你应该觉得很难。

下面是整理的《探索勾股定理》第一课时说课稿,请阅读,上,发现学习。

一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历观察猜想归纳验证的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是已知一直角三角形的两边,如何求第三边? 的问题。

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。

学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。

具体内容是运用勾股定理及其逆定理解决简单的实际问题。

当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。

三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。

2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。

四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。

2.课前准备教具:教材、电脑、多媒体课件。

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。

第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。

勾股定理证明方法大全

勾股定理证明方法大全

勾股定理证明方法大全勾股定理是数学中一个重要而古老的定理,它在几何学中有广泛的应用。

勾股定理的证明有很多种方法,本文将介绍一些较常见的证明方法,以帮助读者更好地理解和掌握这一定理。

一、几何证明法几何证明法是最传统和直观的证明方法之一。

根据勾股定理的内容,我们可以构造一个直角三角形,然后利用三角形的性质进行证明。

首先,我们假设三边长度分别为a、b、c,其中c是斜边,而a和b是两个直角边。

然后,我们通过画一条高到斜边上,将三角形分为两个直角三角形。

分别利用这两个直角三角形的面积进行推理,可以得到a² + b² = c²,即勾股定理成立。

二、代数证明法代数证明法利用平面直角坐标系和代数运算的原理来证明勾股定理。

我们可以将直角三角形的顶点放在坐标系的原点和两个轴上,然后根据三角形的性质,写出斜边的方程和直角边的方程。

通过代入数值计算,我们可以验证勾股定理的成立,例如,当a=3、b=4、c=5时,计算(3² + 4²) - 5² 的结果,应该等于0。

若结果为零,则证明了定理的正确性。

三、相似三角形证明法相似三角形证明法利用相似三角形的性质来证明勾股定理。

根据三角形的相似关系,我们可以得到两个直角三角形的对应边比例相等,进而利用比例关系计算出三角形的边长。

例如,我们将较小的直角三角形的直角边和斜边分别记为a/b/c,将较大的直角三角形的直角边和斜边分别记为ka/kb/kc(k为正实数)。

根据相似三角形的定义,我们可以得到a/b = ka/kb,从而得出ka² + kb² = kc²。

通过确认两个三角形相似真实成立,我们可以证明勾股定理的正确性。

四、向量证明法向量证明法是一种利用向量运算的证明方法。

我们可以考虑两个向量(a,b)和(c,0),这两个向量的内积等于它们的模的乘积。

根据向量的定义,我们可以得到a·c + b·0 = (a² + b²)·(c² +0²)^1/2。

勾股定理的证明方法(完整版)

勾股定理的证明方法(完整版)

勾股定理的证明方法勾股定理的证明方法第一篇:勾股定理的证明方法勾股定理的证明方法绪论勾股定理是世界上应用最广泛,历史最悠久,研究最深入的定理之一,是数学、几何中的重要且基本的工具。

而数千年来,许多民族、许多个人对于这个定理之证明数不胜数,达三百余种。

可见,勾股定理是人类利用代数思想、数学思想解决几何问题、生活实际问题的共同智慧之结晶,也是公理化证明体系的开端。

第一节勾股定理的基本内容文字表述:在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方。

数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为,那么a^2+b^2=^2 事实上,它是余弦定理之一种特殊形式。

第二节勾股定理的证明1欧洲在欧洲,相传最早证明勾股定理的是毕达哥拉斯,故在欧洲该定理得名毕达哥拉斯定理;又因毕达哥拉斯在证毕此定理后宰杀一百头牛庆祝,故亦称百牛定理。

欧洲最早记载这一定理之书籍,属欧几里得《几何原本》。

毕达哥拉斯的证明方法(相传):一说采用拼图法,一说采用定理法。

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为,再做三个边长分别为a、b、的正方形,把它们像左图那样拼成两个正方形。

从图上可以看到,这两个正方形的边长都是a + b,所以面积相等。

a2+b2+4×12ab = 2+4×12ab ,整理即可得到。

定理法就是几何原本当中的证法:设△ab为一直角三角形,其中a为直角。

从a点划一直线至对边,使其垂直于对边上的正方形。

此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。

(sas定理)三角形面积是任一同底同高之平行四边形面积的一半。

任意一个正方形的面积等于其二边长的乘积。

任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。

证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。

《勾股定理》说课稿(通用6篇)精选全文

《勾股定理》说课稿(通用6篇)精选全文

可编辑修改精选全文完整版《勾股定理》说课稿(通用6篇)《勾股定理》篇1尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。

今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。

一、教材分析:(一) 教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。

其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。

”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。

(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

八年级数学勾股定理教案范文3篇

八年级数学勾股定理教案范文3篇

八年级数学勾股定理教案范文3篇八年级数学勾股定理教案范文一一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2?b2?c2 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题八年级数学勾股定理教案范文二教学目标:1、知识目标:(1)掌握;(2)学会利用进行计算、证明与作图;(3)了解有关的历史.2、能力目标:(1)在定理的证明中培养学生的拼图能力;(2)通过问题的解决,提高学生的运算能力3、情感目标:(1)通过自主学习的发展体验获取数学知识的感受;(2)通过有关的历史讲解,对学生进行德育教育.教学重点:及其应用教学难点:通过有关的历史讲解,对学生进行德育教育教学用具:直尺,微机教学方法:以学生为主体的讨论探索法教学过程:1、新课背景知识复习(1)三角形的三边关系(2)问题:(投影显示)直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?2、定理的获得让学生用文字语言将上述问题表述出来.:直角三角形两直角边的平方和等于斜边的平方强调说明:(1)勾――最短的边、股――较长的直角边、弦――斜边(2)学生根据上述学习,提出自己的问题(待定)学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.3、定理的证明方法方法一:将四个全等的直角三角形拼成如图1所示的正方形.方法二:将四个全等的直角三角形拼成如图2所示的正方形,方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明4、定理与逆定理的应用例1 已知:如图,在△ABC中,ACB= ,AB=5cm,BC=3cm,CDAB于D,求CD 的长.解:∵△ABC是直角三角形,AB=5,BC=3,由有2=C又CD的长是2.4cm例2 如图,△ABC中,AB=AC,BAC= ,D是BC上任一点,求证:证法一:过点A作AEBC于E则在Rt△ADE中,又∵AB=AC,BAC=AE=BE=CE即证法二:过点D作DEAB于E, DFAC于F则DE∥AC,DF∥AB又∵AB=AC,BAC=EB=ED,FD=FC=AE在Rt△EBD和Rt△FDC中在Rt△AED中,例3 设求证:证明:构造一个边长的矩形ABCD,如图在Rt△ABE中在Rt△BCF中在Rt△DEF中在△BEF中,BE+EFBF即例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为AD+AB+BC=3,AB+BC+CD=3图3中,在Rt△DGF中同理图3中的路线长为图4中,延长EF交BC于H,则FHBC,BH=CH由FBH= 及得:EA=ED=FB=FC=EF=1-2FH=1-此图中总线路的长为4EA+EF=∵32.8282.732图4的连接线路最短,即图4的架设方案最省电线.5、课堂小结:(1)的内容(2)的作用已知直角三角形的两边求第三边已知直角三角形的一边,求另两边的关系6、布置作业:a、书面作业 P130#1、2、3b、上交作业 P132#1、3板书设计八年级数学勾股定理教案范文三教学目标:1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史.2、能力目标:(1)在定理的证明中培养学生的拼图能力;(2)通过问题的解决,提高学生的运算能力3、情感目标:(1)通过自主学习的发展体验获取数学知识的感受;(2)通过有关勾股定理的历史讲解,对学生进行德育教育.教学重点:勾股定理及其应用教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育教学用具:直尺,微机教学方法:以学生为主体的讨论探索法教学过程:1、新课背景知识复习(1)三角形的三边关系(2)问题:(投影显示)直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?2、定理的获得让学生用文字语言将上述问题表述出来.。

第1讲-探索勾股定理(教案)

第1讲-探索勾股定理(教案)
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的表达式:a² + b² = c²,其中a、b为直角边,c为斜边。
-学会通过具体实例和图形验证勾股定理的正确性。
-能够运用勾股定理解决实际计算问题,如计算直角三角形的未知边长。
-了解勾股定理在生活中的应用,体会数学与实际生活的紧密联系。
举例:讲解勾股定理时,教师需强调直角三角形三边关系,特别是斜边与两个直角边的关系。通过列举不同直角三角形的例子,让学生观察、计算并总结出勾股定理。
3.增强学生的数据分析能力:通过解决实际问题,让学生掌握运用勾股定理进行数据处理和计算的方法,提高数据分析能力。
4.培养学生的数学应用意识:使学生认识到勾股定理在现实生活中的广泛应用,激发他们将数学知识应用于实际问题的兴趣和意识。
5.培养学生的团队合作精神:在小组讨论和验证勾股定理的过程中,培养学生相互协作、共同探究的合作精神。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《探索勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”比如,我们在测量墙角或者搭建模型时,经常会遇到直角三角形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

探索勾股定理的证明方法——勾股定理教案

探索勾股定理的证明方法——勾股定理教案

探索勾股定理的证明方法——勾股定理教案。

一、几何方法几何方法是证明勾股定理的传统方法。

勾股定理是由古希腊数学家毕达哥拉斯所发现的,一种传统的几何证明方法即是毕达哥拉斯证明法。

毕达哥拉斯证明法分为五个步骤:第一步:作一直角三角形ABC,将直角边AC、BC上分别做三个正方形ACEF、BCJI、CHKI。

第二步:然后用大正方形AGBE补齐三个正方形,将四个正方形拼成一个边长为a+b的正方形。

第三步:如图,在正方形AGBE中,将三角形ABC旋转180度,得到三角形ABD。

那么三角形ABC的三个角与三角形ABD的三个角相等,即:∠BAC = ∠BAD,∠ABC = ∠ABD,∠ACB = ∠ADB第四步:连接AD,则由于AD垂直BC,所以∠BAD + ∠ACB=90度。

同样地,∠ABD + ∠ABC=90度。

因此∠BAD + ∠ABD + ∠ACB + ∠ABC=180度,即ABCD是一个矩形。

第五步:将矩形ABCD分成两个直角三角形(ABG和CDE),则:AG²=AB²+BG² 和CD²=BC²+BD²合并上述两个等式,则:AG²+CD²=AB²+BG²+BC²+BD²由于ABCD是一个矩形,所以AG=CD,即:a²+b²=c²这些步骤构成了传统的几何证明方法。

虽然这种证明方法过于复杂,但它具有很高的美感,体现了古希腊人严谨的思维方式,也展示了几何证明的魅力。

二、代数方法代数方法也可以证明勾股定理。

证明方法的主要思路是将勾股定理转化为代数问题,利用代数方法解决问题。

我们可以采用如下思路:1.假设有一个边长分别为a、b和c的三角形ABC,其中c是斜边,且c²=a²+b²。

2.用x和y分别表示矩形的长和宽,那么面积S可以表示为:S=x*y3.又因为矩形的对角线等于三角形的斜边c,所以:x²+y²=c²4.将x代入面积公式中,得:S=(c-y)*y5.对上式求导,得:dS/dy=c-2y6.将dS/dy=0代入上式,得:y=c/27.将y代入面积公式S=(c-y)*y中,得:S=c²/48.又由于三角形ABC的面积为:S=(1/2)*a*b9.将c²=a²+b²代入上式,得:S=(1/2)*a*b*(a²+b²)/c²S=(1/2)*a*b*(a²+b²)/(a²+b²)S=1/2*a*b也就是说,矩形的面积等于a、b两边的乘积的一半,同时,三角形的面积也等于a、b两边的乘积的一半。

勾股定理教案(精选3篇)

勾股定理教案(精选3篇)

勾股定理教案(精选3篇)勾股定理教案(精选3篇)作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

怎样写教案才更能起到其作用呢?以下是大熊猫壹号书店整理的勾股定理教案(精选3篇),仅供参考,大家一起来看看吧。

勾股定理教案1学习目标1、通过拼图,用面积的方法说明勾股定理的正确性。

2、探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

重点难点或学习建议学习重点:用面积的方法说明勾股定理的正确。

学习难点:勾股定理的应用。

学习过程教师二次备课栏自学准备与知识导学:这是1955年希腊为纪念一位数学家曾经发行的邮票。

邮票上的图案是根据一个著名的数学定理设计的。

学习交流与问题研讨:1、探索问题:分别以图中的直角三角形三边为边向三角形外作正方形,小方格的面积看做1,求这三个正方形的面积?S正方形BCED=S正方形ACFG=S正方形ABHI=发现:2、实验在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。

请完成下表:S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系1121454162091625发现:如何用直角三角形的三边长来表示这个结论?这个结论就是我们今天要学习的勾股定理:如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾练习检测与拓展延伸:练习1、求下列直角三角形中未知边的长练习2、下列各图中所示的线段的长度或正方形的面积为多少。

(注:下列各图中的三角形均为直角三角形)例1、如图,在四边形中,∠,∠,,求。

检测:1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S△ABC=________。

探索勾股定理 【完整版】

探索勾股定理 【完整版】

§探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,了解并掌握勾股定理的内容。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生在探索过程中发现问题、总结规律的意识和能力。

重点难点:重点:勾股定理的内容及探究。

难点:勾股定理的发现教学方法:讲练结合、合作交流。

教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1 章前的图文)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影第一节首电线杆拉线问题,出示课题。

二、做一做1、各学习小组在纸上画若干个直角三角形,分别测量它们的三条边的长,看看三边长的平方之间又怎样的关系小组内进行交流。

教师强调所画三角形尽量是任意三角形。

2、出示P2 书中的P2 图1—2)并回答:(1)观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

(2)你是怎样得出上面的结果的在学生交流回答的基础上教师直接发问:(3)图1—2中,A,B,C之间的面积之间有什么关系学生交流后形成共识,教师板书:A+B=C。

3、出示(书中P2图1—3)提问:(1)图1—3中,A,B,C之间有什么关系(2)从图1—2,1—3,中你发现什么学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

4、学生讨论:(1)图1—2、1—3中,你能用三角形的边长表示正方形的面积吗(2)你能发现直角三角形三边长度之间的关系吗在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

这就是著名的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c,a2+b2=c2,我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

推导勾股定理的方法

推导勾股定理的方法

推导勾股定理的方法勾股定理是数学中的重要定理,它被广泛应用于几何学和物理学等领域。

欧几里得在《几何原本》中首次提出了这个定理。

然而,欧几里得并没有详细说明推导这个定理的具体过程。

本文将介绍几种常见的推导勾股定理的方法。

方法一:几何证明法在几何证明法中,我们通过构造几何图形来推导勾股定理。

常见的构造方法有平方构造法和相似三角形构造法。

1. 平方构造法该方法的基本思想是,将直角三角形的两条直角边的平方和等于斜边的平方。

假设有一个直角三角形 ABC,其中∠C 是直角,边长分别为 a、b、c。

我们可以将三个边的平方分别表示为 a^2、b^2、c^2。

然后,我们需要根据几何图形的特点来构建平方等式。

首先,我们作图,将三角形 ABC 的三边平方分别绘制在一个正方形上。

正方形的边长为 c,将它分为一个个小正方形,并且适当标记边长。

接下来,我们删除三个小正方形,使它们组成另一个正方形。

我们可以很容易地看出,新形成的正方形的边长等于 a^2 + b^2。

同时,我们还可以看到,新形成的正方形可以由边长为 c 的正方形通过删除两个直角三角形得到。

因此,我们可以得到以下平方等式:c^2 = a^2 + b^2这就是勾股定理的几何证明。

2. 相似三角形构造法在相似三角形构造法中,我们利用相似三角形的特性来推导勾股定理。

这种方法更加直观,通过构造直角三角形的几何图形,我们就可以很容易地找到证明勾股定理的关键。

假设有一个直角三角形ABC,其中∠C 是直角,边长分别为a、b、c。

我们需要构造一个相似的直角三角形 ADE,其中∠D 也是直角,边长为 x、y、z。

我们要确保这两个三角形是相似的,因为相似三角形的对应边比例相等。

通过观察,我们可以发现,三个直角三角形 ADE、ABC 和 BDE 相似。

根据相似三角形的性质,我们有以下比例关系:a / x = c / z =b / y通过交叉相乘,我们可以得到以下等式:a^2 = xzb^2 = yzc^2 = x^2 + y^2通过整理等式,我们可以得到勾股定理:c^2 = a^2 + b^2方法二:代数证明法代数证明法是使用代数符号和运算来推导勾股定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的探索方法及教法(最全)word资料勾股定理的探索方法及教法岗子中学齐玲玲2020 年4月内容摘要:勾股定理的三种探索方法及教法,主要有以下三个方面:1.数格子,即在格子纸上建构直角三角形及相关正方形,通过数格子探索其面积关系与勾股定理的联系;2.拼图法的运用,通过补直角三角形和割直角三角形,表示其相关的面积关系导出勾股定理;3.无字证明,“青朱出入图”等面积填补法直观易懂的探索出勾股定理。

关键词:勾股定理、数格子、拼图法、补直角三角形、割直角三角形、青朱出入图、直观易懂。

勾股定理的悠久广远,它的发现与证明是古代人类智慧的鉴定和骄傲。

古巴比伦人和古代中国人看出了这一关系,古希腊的华达哥拉斯学派首先证明了这个关系,总结其法,趣味无穷,我主要从下面三种探索方法及教法谈起。

一、数格子。

即在格子纸上构造直角三角形,以它的勾、股、弦为三个边长分别建立相关正方形(尽量取易数的完整格子)通过学生数格子,得出以勾为边长形成的正方形的面积,加上以股为边长的正方形的面积之和,等于以弦为边长的正方形的面积。

(如图1)再适当引导:这三个正方形的面积与这个直角三角形的三边有什么关系?(每个方格为一个面积单位)学生发言说出结论: S A+S B=9+9=18=S cS A’+S B’=4+4=8=S C'讲解:它们各自的面积刚好就是这个直角三角形勾的平方,股的平方和弦的平方。

学生自己得出:直角三角形,两直角边的平方之和等于斜边的平方这一理论.令:勾--------a股--------b弦--------c则它们之间的关系又可以用怎样的表达式呢?学生说出:a2+b2=c2老师板书其内容。

这样就可以通过最直观形象的图形加上简单的理论证明,让学生观察、归纳、总结出勾股定理的由来。

二、拼图法的运用。

拼图法的运用又分为两个方案:第一种方案“补”;第二种方案“切割”.(一)“补”,即“作出RT△ABC,分别以它的勾、股、弦为正方形的边长,作出三个正方形,延长它的两条直角边a、b到以c为边长的正方形的外部,过以斜边c为边长的正方形上顶点,右顶点,在它的外部分别补作平行于a、b的线段作一个大的正方形。

也就是给以c为边长的正方形外补上三个全等于RT△ABC的直角三角形.如图2所示:我先让学生直观的理解补图全过程,再让学生在图中标出正方形的其余线段a、b、c的名称,然后引导学生思考:⑴最大的正方形的面积怎样表示?学生发言,并小结:a.看作以a+b为边长的正方形,则S大正方形=(a+b)2;b.看作以c为边长的正方形以及4个以a、b为两直角边的直角三角形五部分组成,则S大正方形=c2+(1/2)ab×4⑵这两种表达方式有什么关系?怎样表示它们的关系?(相同)即:(a+b)2=c2+(1/2)ab×4⑶这与我们所讲的勾股定理 a2+b2=c2又有什么联系呢?怎样推理?学生说出推理思路及过程,老师小结并板出:把(a+b)2=c2+(1/2)ab×4变形化简即:(a+b)2=c2+2aba2+2ab+b2=c2+2aba2+b2=c2(符合勾股定理)(二)“切割“即:以勾—a,股—b,弦—c分别为直角三角形的三边作一个直角三角形,再分别以它们各自为三个正方形的边长作三个正方形.延长a、b到以c为边长的正方形的上、右顶点,在它的内部作互相垂直的线段,把这个正方形切害成四个全等的直角三角形和中间一个小的正方形。

(如图3所示)(切割出的正方形内部组成的也就是我国数学家赵爽在《周髀算经》中提出的弦图)图3即《北师大版八年级数学》(上册)第8页的图1-6.先让学生看清切割方法及图的由来,指名说出图中其余线段的名称a、b、c,并标出切割图中线段的名称,引导学生:(1)中间小正方形的面积怎样表示?(也可以换个角度表示以C 为边长的正方形的面积)学生发言,教师小结并板书:a.看作以(b-a)为边长的小正方形的面积,则:S小正方形=(b-a)2b.看作以c为边长的正方形内部由4个全等的直角三角形和一个正方形组成,则:S小正方形=c2-(1/2)ab×4(2)两个表示式子有什么关系?(相等)即:(b-a)2=c2-(1/2)ab×4(3)它与勾股定理有什么联系?怎么样探索它们之间的关系?学生口述联系的探索方法及过程。

把c2-(1/2)ab×4=(b-a)2变形,即:(b-a)2=c2-(1/2)ab×4b2-2ab+a2=c2-2aba2+b2=c2—即勾股定理.这种方法主要是通过“补、切”拼图,再运用初一数学“字母表示数”的知识,正确表示有关图形的面积,建立等量关系,并将等式变形而得出的结论,从而探索出勾股定理。

三、无字的证明。

1.青朱出入图:(1)首先我向学生讲明并演示“青朱出入图”的成图过程。

以勾—a,股—b,弦—c作RT△ABC,再分别以a、b、c为正方形的边长作三个正方形,把以a为边长的正方形向右平移,使它最左的边与RT△ABC的勾—a重合,再把以c为边长的正方形向左下方平移,使它斜上方的边与RT△ABC的弦重合.(如图4)(即《北师大版八年级数学》(上册)(第十二页的图1-11)(2)再讲解各部分名称及缘由。

讲:以勾—a为边长的正方形叫朱方,以股—b为边长的正方形叫青方,以弦—c为边长的正方形叫弦方。

并在图中标明:朱方、青方、弦方。

讲:朱方在弦方以外的称朱出,青方在弦方以外的称青出,先标出朱出及两个青出,再在弦方以内找出与之对应的图形,与朱出对应的标为朱入,与青出相对应的标为青入。

(如图5)即《北师大版八年级数学》(上册)第十三页的图1-12.(图见下一页)这样,学生就对“青朱出入图”的成图过程有了整体认识。

(3)“无字证明”的引导。

问:“以盈补虚”,你明白是什么意思吗?学生发表理解。

小结:“以盈补虚”即把弦方以外的部分—朱出、青出补入弦方以内相对应的朱入、青入,刚好补成一个弦方,而刚好填补完了青方和朱方的总面积。

即:S朱方+S青方=S弦方a2+b2=c2不需要理论推导,只要图形的相关移动,填补便可得出勾股定理。

2.达·芬奇对勾股定理的研究:借助意大利文艺复兴时代的著名画家达·芬奇对勾股定理的研究进行探究引导。

其实验方法分为四个步骤。

(图6)(1)在一张长方形的纸板上画两个边长分别为a、b的正方形(即正方形ABOF和正方形COED),并连接BC、FE(如图①所示)(2)沿 ABCDEFA剪下,得到两个大小相同的纸板:I、II,如图②所示。

(3)将纸板II翻转后与I拼成如图③所示的图形。

(4)比较图①、图③中两个多边形ABCDEF和A′B′C′D′E′F′的面积,验证勾股定理。

⑴可以先让学生先动手根据步骤做一做,通过作图实践,全面认识成图过程,及图中的一些等量关系,得出:图③和图①中多边形ABCDEF和多边形A′B′C′D′E′F′的面积相等(因为图①和图③中原长方形纸板的面积没变。

)⑵引导学生:图①中和图③中的RT△BOC和RT△B′A′F′;RT△FOE和RT△E′D′C′的面积分别全等。

如果两图中互相抵消两对直角三角形的面积,则图①中剩下的空白部分面积,S正方形ABOF和S正方形COED的总面积等于图③中剩下的空白部分——S正方形B′C′E′F′.而图①中正方形ABOF的边长是以RT△BOC的直角边a为边长,正方形COED的边长是以RT△BOC的另一条直角边b为边长,图③中的正方形B′C′E′F′的边长是图①中RT△BOC的斜边BC(即:c)为边长.问:图①和图③中的空白部分面积关系共有哪几种表示形式?学生口答,老师小结:两种:①S正方形ABOF+S正方形COFD=S正方形B′C′E′F′②a2+b2=c2这样的证明,没有繁琐的公式推导,只是通过纸板变化前后面积不变,剪切图形的面积不变,再拼凑填补,列出面积等量关系而导出勾股定理。

3.正方形“填心”法:即:作RT△ABC,分别以勾—a,股—b,弦—c为边长作出三个正方形,过较大正方形(即以b为边长的正方形)的中心,作两条互相垂直的线段(水平方向和铅垂方向),将其分成4份,然后,将这四部分按顺时针方向围在四周,每部分顺时针旋转180°),把以勾—a为边长作的小正方形填在中间,恰好得到最大的正方形(即以c 为边长的正方形)。

(如图7所示)即《北师大版八年级数学》(上册)“联系拓广”的图。

(图见下一页)(1)作图之前先向学生讲明:正方形中心的确定方法。

问:怎么样确定正方形的中心?讲明:正方形的两条对角线的交点就是正方形的中心。

(2)让学生亲自作图并剪切拼图,为增加趣味还可让学生给分成的4个部分分别涂上不同的颜色。

在班级内展示优秀手工作业。

(3)让学生自己说出作图过程及得出的结论,以勾—a为边长,股—b为边长作的两个正方形的总面积,刚好填补完了以弦—c为边长的正方形的面积。

即:a2+b2=c2不需要公式的推导,学生便会通过实践轻而易举的证明勾股定理。

关于勾股定理的探索方法也可以让学生查询课本以外的书籍或在网络上查询其他的探索方法,通过学生实践、收集资料、整理资料,培养学生课外学习的兴趣,训练学生收集数学知识——整理数学知识——归纳数学知识的能力,为学生自主、深入的学习奠定良好的基础。

a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC 中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股4弦5”知AC=4cm,BC=3cm,AB>AC,∴AB=5cm.剖析:这种解法受“勾3股4弦5”思维定势的影响,见题中有BC=3,AC=4,就认为AB=5,而忘记了“勾3股4弦5”是在直角三角形的条件下才成立,而本题中没有指明是直角三角形,因此,只能用三角形三条边之间的关系来解。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

总之,在勾股定理探索的道路上,我们走向了数学殿堂。

勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为:勾股逆定理:如果直角三角形三边长 a 、 b 、 c 满足,那么这个三角形是三角形。

相关文档
最新文档