2016届新课标高三数学(文)一轮复习习题 §6.4数列求和、数列的综合应用 2年模拟
高三数学考点-数列求和及应用
6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。
2016届高考数学一轮总复习5.5数列的综合应用练习
第五节 数列的综合应用时间:45分钟 分值:100分基 础 必 做一、选择题1.各项都是正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 4+a 5a 3+a 4的值为( )A.5-12 B.5+12C.1-52D.5-12或5+12解析 设{a n }的公比为q (q >0),由a 3=a 2+a 1,得q 2-q -1=0,解得q =1+52.而a 4+a 5a 3+a 4=q =1+52.答案 B2.据科学计算,运载“神舟”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…a n 则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式有na 1+n n -d2=240,即2n +n (n -1)=240,解得n =15.答案 C3.已知各项不为0的等差数列{a n }满足2a 2-a 26+2a 10=0,首项为18的等比数列{b n }的前n 项和为S n ,若b 6=a 6,则S 6=( )A .16 B.318 C.638D.6316解析 由2a 2-a 26+2a 10=0,∴4a 6=a 26. ∵a 6≠0,∴a 6=4.∴b 6=4. 又∵{b n }的首项b 1=18,∴q 5=b 6b 1=32.∴q =2. ∴S 6=18-4×21-2=638.答案 C4.(2014·湖北八校二联)对于函数y =f (x ),部分x 与y 的对应关系如下表:数列{x n }1n n +1的图象上,则x 1+x 2+x 3+x 4+…+x 2 013+x 2 014的值为( )A .7 549B .7 545C .7 539D .7 535解析 由已知表格列出点(x n ,x n +1),(1,3),(3,5),(5,6),(6,1),(1,3),…,即x 1=1,x 2=3,x 3=5,x 4=6,x 5=1,…,数列{x n }是周期数列,周期为4,2 014=4×503+2,所以x 1+x 2+…+x 2 014=503×(1+3+5+6)+1+3=7 549.答案 A5.已知函数f (x )是定义在(0,+∞)上的单调函数,且对任意的正数x ,y 都有f (x ·y )=f (x )+f (y ),若数列{a n }的前n 项和为S n ,且满足f (S n +2)-f (a n )=f (3)(n ∈N *),则a n 为( )A .2n -1B .nC .2n -1D.⎝ ⎛⎭⎪⎫32n -1解析 由题意知f (S n +2)=f (a n )+f (3)(n ∈N *),∴S n +2=3a n ,S n -1+2=3a n -1(n ≥2), 两式相减得,2a n =3a n -1(n ≥2),又n =1时,S 1+2=3a 1=a 1+2, ∴a 1=1,∴数列{a n }是首项为1,公比为32的等比数列,∴a n =⎝ ⎛⎭⎪⎫32n -1.答案 D6.将石子摆成如图的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 012项与5的差即a 2 012-5=( )A .2 018×2 012B .2 018×2 011C .1 009×2 012D .1 009×2 011解析 结合图形可知,该数列的第n 项a n =2+3+4+…+n +2.所以a 2 012-5=4+5+…+2 014=4×2 011+2 011×2 0102=2 011×1 009.故选D.答案 D 二、填空题7.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为________.解析 由于a 1=1,a 2=-2,a n +2=-1a n,所以a 3=-1,a 4=12,a 5=1,a 6=-2,…,所以{a n }是周期为4的数列,故S 26=6×⎝ ⎛⎭⎪⎫1-2-1+12+1-2=-10. 答案 -108.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.解析 当放在最左侧坑时,路程和为2×(0+10+20+…+190);当放在左侧第2个坑时,路程和为2×(10+0+10+20+…+180)(减少了360米);当放在左侧第3个坑时,路程和为2×(20+10+0+10+20+…+170)(减少了680米);依次进行,显然当放在中间的第10、11个坑时,路程和最小,为2×(90+80+…+0+10+20+…+100)=2 000米.答案 2 0009.(2014·上海六校二模)已知数列{a n }的通项公式为a n =25-n,数列{b n }的通项公式为b n =n +k ,设c n =⎩⎪⎨⎪⎧b n ,a n ≤b n ,a n ,a n >b n ,若在数列{c n }中,c 5≤c n 对任意n ∈N *恒成立,则实数k 的取值范围是________.解析 数列c n 是取a n 和b n 中的最大值,据题意c 5是数列{c n }的最小项,由于函数y =25-n是减函数,函数y =n +k 是增函数,所以b 5≤a 5≤b 6或a 5≤b 5≤a 4,即5+k ≤25-5≤6+k或25-5≤5+k ≤25-4,解得-5≤k ≤-4或-4≤k ≤-3,所以-5≤k ≤-3.答案 [-5,-3] 三、解答题10.(2014·济南高考模拟考试)数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1(n ∈N *),等差数列{b n }满足b 3=3,b 5=9.(1)分别求数列{a n },{b n }的通项公式; (2)设c n =b n +2a n +2(n ∈N *),求证:c n +1<c n ≤13. 解 (1)由a n +1=2S n +1,① 得a n =2S n -1+1(n ≥2,n ∈N *),② ①-②得a n +1-a n =2(S n -S n -1), ∴a n +1=3a n (n ≥2,n ∈N *), 又a 2=2S 1+1=3,∴a 2=3a 1,∴a n =3n -1.∵b 5-b 3=2d =6,∴d =3,∴b n =3n -6. (2)证明:∵a n +2=3n +1,b n +2=3n ,∴c n =3n 3n +1=n 3n ,∴c n +1-c n =1-2n3n +1<0,∴c n +1<c n <…<c 1=13,即c n +1<c n ≤13.11.已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n .令c n =(-1)nS n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)dn -2+2n -1,a ∈R .(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围. 解 (1)设等差数列{a n }的公差为d , 因为c n =(-1)nS n ,所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330,则a 2+a 4+a 6+…+a 20=330, 即10(3+d )+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n . (2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n =2(a -2)3n -1+2n -[2(a -2)3n -2+2n -1]=4(a -2)3n -2+2n -1=4·3n -2⎣⎢⎡⎦⎥⎤a -2+12⎝ ⎛⎭⎪⎫23n -2.由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,因为2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2取得最小值54.所以a ≤54.培 优 演 练1.已知点(1,13)是函数f (x )=a x(a >0,且a ≠1)的图象上一点,等比数列{a n }的前n项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2).(1)求数列{a n }和{b n }的通项公式; (2)若数列{1b n b n +1}的前n 项和为T n ,问满足T n >1 0002 009的最小正整数n 是多少? 解 (1)因为f (1)=a =13,所以f (x )=⎝ ⎛⎭⎪⎫13x.a 1=f (1)-c =13-c ,a 2=[f (2)-c ]-[f (1)-c ]=f (2)-f (1)=⎝ ⎛⎭⎪⎫132-13=-29,a 3=[f (3)-c ]-[f (2)-c ]=f (3)-f (2)=⎝ ⎛⎭⎪⎫133-⎝ ⎛⎭⎪⎫132=-227.又数列{a n }是等比数列,设其公比为q ,所以a 1=a 22a 3=481-227=-23=13-c ,所以c =1.又公比q =a 2a 1=13,所以a n =-23⎝ ⎛⎭⎪⎫13n -1=-2⎝ ⎛⎭⎪⎫13n (n ∈N *).因为S n -S n -1=(S n -S n -1)(S n +S n -1)=S n +S n -1(n ≥2), 又b n >0,S n >0,所以S n -S n -1=1.所以数列{S n }构成一个首项为1,公差为1的等差数列,S n =1+(n -1)×1=n ,故S n =n 2.当n ≥2时,b n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1时,b 1=1也适合此通项公式,所以b n =2n -1(n ∈N *). (2)T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+1n -n +=12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+12⎝ ⎛⎭⎪⎫15-17+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n =n 2n +1>1 0002 009,得n >1 0009,所以满足T n >1 0002 009的最小正整数n 为112. 2.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)证明:数列{b n }是等差数列;(2)若S n =(a 1-1)·(a 2-1)+(a 2-1)·(a 3-1)+…+(a n -1)·(a n +1-1),是否存在a ,b ∈Z ,使得a ≤S n ≤b 恒成立?若存在,求出a 的最大值与b 的最小值;若不存在,请说明理由.解 (1)由题意,知当n ≥2时,b n -1=1a n -1-1,b n =1a n -1=12-1a n -1-1=a n -1a n -1-1, 所以b n -b n -1=a n -1a n -1-1-1a n -1-1=1(n ∈N *,n ≥2).所以{b n }是首项为b 1=1a 1-1=-52,公差为1的等差数列. (2)由(1),知b n =n -72.依题意,有S n =(a 1-1)·(a 2-1)+(a 2-1)·(a 3-1)+…+(a n-1)·(a n +1-1)=1b 1·1b 2+1b 2·1b 3+…+1b n ·1b n +1=1b 1-1b n +1=-25-1n +-72.设函数y =1x -72,当x >72时,y >0,y ′<0,则函数在⎝ ⎛⎭⎪⎫72,+∞上为减函数,故当n =3时,S n =-25-1n +-72取最小值-125. 而函数y =1x -72在x <72时,y <0, y ′=-1⎝ ⎛⎭⎪⎫x -722<0,函数在⎝ ⎛⎭⎪⎫-∞,72上也为减函数, 故当n =2时,S n 取得最大值85.故a 的最大值为-3,b 的最小值为2.。
(五年高考真题)2016届高考数学复习 第六章 第四节 数列求和、数列的综合应用 理(全国通用)
第四节 数列求和、数列的综合应用考点一 数列求和1.(2013·新课标全国Ⅱ,3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13B .-13C.19D .-19解析 设公比为q ,则由S 3=a 2+10a 1,得a 1+a 2+a 3-a 2=10a 1,故a 3=9a 1,所以q 2=9.由a 5=9,得a 1=19.答案 C2.(2012·大纲全国,5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ) A.100101B.99101C.99100D.101100解析 由S 5=5a 3及S 5=15得a 3=3, ∴d =a 5-a 35-3=1,a 1=1,∴a n =n ,1a n a n +1=1n (n +1)=1n -1n +1,所以数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和T 100=1-12+12-13+…+1100-1101=1-1101=100101,故选A.答案 A3.(2011·天津,4)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( ) A .-110B .-90C .90D .110解析 由题意得a 27=a 3·a 9,又公差d =-2, ∴(a 3-8)2=a 3(a 3-12),∴a 3=16.∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=5(a 3+a 3+5d )=5×(16+16-10)=110,故选D.答案 D4.(2013·辽宁,14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析 因为x 2-5x +4=0的两根为1和4, 又数列{a n }是递增数列, 所以a 1=1,a 3=4,所以q =2.所以S 6=1·(1-26)1-2=63.答案 635.(2015·新课标全国Ⅱ,16)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________.解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,所以S n ≠0,所以S n +1-S n S n S n +1=1,即1S n +1-1S n =-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n =-1-(n -1)=-n ,所以S n =-1n.答案 -1n6.(2012·新课标,16)数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________. 解析 当n =2k 时,a 2k +1+a 2k =4k -1,当n =2k -1时,a 2k -a 2k -1=4k -3,∴a 2k +1+a 2k -1=2,∴a 2k +3+a 2k +1=2,∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(2×60-1)=30×(3+119)2=30×61=1 830. 答案 1 8307.(2015·山东,18)设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解 (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n >1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n >1时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n >1时,T n =b 1+b 2+b 3+…+b n =13+(1×3-1+2×3-2+…+(n -1)×31-n),所以3T n =1+(1×30+2×3-1+…+(n -1)×32-n),两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n ,所以T n =1312-6n +34×3n , 经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n .8.(2015·天津,18)已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.解 (1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4), 即a 4-a 2=a 5-a 3,所以a 2(q -1)=a 3(q -1),又因为q ≠1, 故a 3=a 2=2,由a 3=a 1q ,得q =2. 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12;当n =2k (k ∈N *)时,a n =a 2k =2k=2n2.所以,{a n }的通项公式为a n =1222,2,n n n n -⎧⎪⎨⎪⎩为奇数为偶数(2)由(1)得b n =log 2a 2n a 2n -1=n2n -1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n -1)×12n -2+n ×12n -1,12S n =1×121+2×122+3×123+…+(n -1)×12n -1+n ×12n . 上述两式相减得:12S n =1+12+122+…+12n -1-n2n =1-12n1-12-n 2n=2-22n -n 2n ,整理得,S n =4-n +22n -1,n ∈N *.所以,数列{b n }的前n 项和为4-n +22n -1,n ∈N *.9.(2014·山东,19)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2, S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12), 解得a 1=1,所以a n =2n -1. (2)b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n =⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n =2n +1+(-1)n -12n +110.(2013·天津,19)已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3.于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n . (2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *, 总有-712≤S n -1S n ≤56.所以数列{T n }最大项的值为56,最小项的值为-712.考点二 数列的综合问题1.(2015·福建,8)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A .6B .7C .8D .9解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2; -2,a ,b ;-2,b ,a ;成等比数列的情况有:a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2解之得:⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4. ∴p =5,q =4,∴p +q =9,故选D. 答案 D2.(2015·浙江,3)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0解析 ∵a 3,a 4,a 8成等比数列,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),整理得a 1=-53d ,∴a 1d=-53d 2<0,又S 4=4a 1+4×32d =-2d 3,∴dS 4=-2d 23<0,故选B.答案 B3.(2015·广东,21)数列{a n }满足:a 1+2a 2+…+na n =4-n +22n -1,n ∈N *.(1)求a 3的值;(2)求数列{a n }前n 项和T n ; (3)令b 1=a 1,b n =T n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n (n ≥2),证明:数列{b n }的前n 项和S n 满足S n <2+2ln n .(1)解 a 1=1,a 1+2a 2=2,a 2=12,a 1+2a 2+3a 3=4-54,a 3=14.(2)解 n ≥2时,a 1+2a 2+…+(n -1)a n -1=4-n +12n -2,与原式相减,得na n =n 2n -1,a n =12n -1,n =1也符合,T n =1-12n1-12=2-12n -1.(3)证明 n ≥2时,b n =T n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n =a 1+a 2+…+a n -1n +⎝ ⎛⎭⎪⎫1+12+13+…+1n a n故S n =∑i =1nb i =a 1+a 12+⎝ ⎛⎭⎪⎫1+12a 2+a 1+a 23+⎝ ⎛⎭⎪⎫1+12+13a 3+…+a 1+a 2+…+a n -1n +⎝ ⎛⎭⎪⎫1+12+…+1n a n=⎝ ⎛⎭⎪⎪⎫∑i =1n 1i a 1+⎝ ⎛⎭⎪⎪⎫∑i =1n 1i a 2+⎝ ⎛⎭⎪⎪⎫∑i =1n 1i a 3+…+⎝ ⎛⎭⎪⎪⎫∑i =1n 1i a n =⎝ ⎛⎭⎪⎪⎫∑i =1n 1i T n =⎝ ⎛⎭⎪⎫1+12+…+1n ⎝ ⎛⎭⎪⎫2-12n -1<2⎝ ⎛⎭⎪⎫1+12+…+1n ,只需证明2⎝ ⎛⎭⎪⎫1+12+…+1n <2+2ln n ,n ∈N *.对于任意自然数k ∈N ,令x =-1k +1∈(-1,0)时,ln ⎝ ⎛⎭⎪⎫-1k +1+1+1k +1<0, 即1k +1<ln(k +1)-ln k . ∴k =1时,12<ln 2-ln 1,k =2时,13<ln 3<ln 2.…k =n -1时,1n<ln 2-ln(n -1).∴1+12+13+…+1n <1+(ln 2-ln 1)+(ln 3-ln 2)+…+[ln n -ln(n -1)],即1+12+13+…+1n<1+ln n ,所以n ≥2时,2⎝ ⎛⎭⎪⎫1+12+13+…+1n <2+2ln n ,综上n ∈N +时,S n <2+2ln n .4.(2015·浙江,20)已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *).(1) 证明:1≤a n a n +1≤2(n ∈N *); (2)设数列{a 2n }的前n 项和为S n ,证明:12(n +2)≤S n n ≤12(n +1)(n ∈N *).证明 (1)由题意得a n +1-a n =-a 2n ≤0, 即a n +1≤a n ,故a n ≤12.由a n =(1-a n -1)a n -1得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0.由0<a n ≤12得a n a n +1=a n a n -a 2n =11-a n∈[1,2], 即1≤a na n +1≤2 (2`)由题意得a 2n =a n -a n +1,所以S n =a 1-a n +1①由1a n +1-1a n =a n a n +1和1≤a na n +1≤2得1≤1a n +1-1a n≤2,所以n ≤1a n +1-1a 1≤2n ,因此12(n +1)≤a n +1≤1n +2(n ∈N *).②由①②得12(n +2)≤S n n ≤12(n +1)(n ∈N *).5.(2014·江西,17)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a nb n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .解 (1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *), 所以a n +1b n +1-a nb n=2,即c n +1-c n =2. 所以数列{c n }是以1为首项,2为公差的等差数列,故c n =2n -1. (2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)·3n,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n=-2-(2n -2)3n,所以S n =(n -1)3n+1.6.(2014·四川,19)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n .解 (1)由已知得,b 7=72a,b 8=82a=4b 7,有82a=4×2a 7=722a +.解得d =a 8-a 7=2. 所以,S n =na 1+n (n -1)2d=-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x在(a 2,b 2)处的切线方程为y -2a 2=(22aln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意得,a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1. 从而a n =n ,b n =2n.所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n.所以,T n =2n +1-n -22n. 7.(2014·湖北,18)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.解 (1)设数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2, 从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n . 显然2n <60n +800,此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.8.(2013·北京,20)已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项a n +1,a n +2,…的最小值记为B n ,d n =A n -B n .(1)若{a n }为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n ∈N *,a n+4=a n ),写出d 1,d 2,d 3,d 4的值;(2)设d 是非负整数,证明:d n =-d (n =1,2,3,…)的充分必要条件为{a n }是公差为d 的等差数列;(3)证明:若a 1=2,d n =1(n =1,2,3,…),则{a n }的项只能是1或者2,且有无穷多项为1.(1)解 d 1=d 2=1,d 3=d 4=3.(2)证明 (充分性)因为{a n }是公差为d 的等差数列,且d ≥0, 所以a 1≤a 2≤…≤a n ≤….因此A n =a n ,B n =a n +1,d n =a n -a n +1=-d (n =1,2,3,…). (必要性)因为d n =-d ≤0(n =1,2,3,…),所以A n =B n +d n ≤B n . 又因为a n ≤A n ,a n +1≥B n ,所以a n ≤a n +1. 于是,A n =a n ,B n =a n +1, 因此a n +1-a n =B n -A n =-d =d , 即{a n }是公差为d 的等差数列. (3)证明 因为a 1=2,d 1=1, 所以A 1=a 1=2,B 1=A 1-d 1=1. 故对任意n ≥1,a n ≥B 1=1. 假设{a n }(n ≥2)中存在大于2的项. 设m 为满足a m >2的最小正整数, 则m ≥2,并且对任意1≤k <m ,a k ≤2. 又因为a 1=2,所以A m -1=2,且A m =a m >2.于是,B m =A m -d m >2-1=1,B m -1=min{a m ,B m }≥2. 故d m -1=A m -1-B m -1≤2-2=0,与d m -1=1矛盾.所以对于任意n ≥1,有a n ≤2,即非负整数列{a n }的各项只能为1或2. 因为对任意n ≥1,a n ≤2=a 1,所以A n =2. 故B n =A n -d n =2-1=1.因此对于任意正整数n ,存在m 满足m >n ,且a m =1,即数列{a n }有无穷多项为1.9.(2012·四川,20)已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③ (ⅰ)若a 2=0,由①知a 1=0, (ⅱ)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.(2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2. 当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1,所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2),所以a n =a 1(2)n -1=(2+1)·(2)n -1.令b n =lg 10a 1a n, 则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1, 所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。
高三数学一轮总结复习目录
高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。
6.4特殊数列的求和
科 目数学 年级 高三 备课人 高三数学组 第 课时 6.4特殊数列的求和考纲定位 熟练掌握等差、等比数列求和公式;熟练掌握数列求和的几种方法,如:倒序相加、错位相减、裂项相消以及分组求和等.【考点整合】1、等差数列前n 项和公式: ;等比数列前n 项和公式: .2、其他常用求和公式:(1)2222123...n ++++= ;(2)3333123...n ++++= .【典型例题】一、分组求和例1、在等比数列{}n a 中,11,2a q ==,若数列{}n b 满足2log n n n b a a =+,求数列{}n b 的前n 项和n S .变式训练:1、数列{}n a 的前n 项和为n S ,已知11234...(1)n n S n -=-+-++-∙,则15S =( )A.9B.8C.16D.152、数列{}n a 的前n 项和为n S ,已知(1)(21)n n a n =--,则2014S = .3、(2012 福建)数列{}n a 的通项公式sin12n n a n π=+,前n 项和为n S ,则2012S = .小结:形如:(1)()n n a f n =-类型,常采用两项合并求和.此外如果数列{}n a 为周期函数时,也用分组求和.二、裂项相消求和例2、已知数列{}n a 的通项公式为3(21)(21)n a n n =+-,求数列{}n a 的前n 项和n S .变式训练:1、已知数列{}n a 的前n 项和为n S ,且1(1)(2)n a n n =++,则8S =( ) A.25 B.130 C.730 D.562、1111 (21321)n n +++++++-=( ) A.1n - B.11n -- C.n D.11n +-小结:常见的拆项公式有:(1)1(1)n n += ; (2)1(21)(21)n n -+= ; (3)1(1)(2)n n n ++= ; (4)1a b+= ; (5)!(1)!!n n n n ∙=+-三、错位相减求和例3、已知n S 为数列{}n a 的前n 项和,且通项公式为=2n n a n ∙,求n S .小结:推广:已知数列{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列,设数列{}n c 满足n n n c a b =∙,求数列{}n c 的前n 项和n S .变式训练:1、已知数列{}n a 是各项都是正数的等比数列,且134,64a a ==,若2log n n n b a a =,求数列{}n b 前n 项和n S .【上本作业】(2013 四川)已知函数R x x x x f ∈-++=),43cos()47sin()(ππ (1)求)(x f 的最小正周期和最小值;(2)已知54)cos(,54)cos(-=+=-αβαβ,20πβα≤<<.求证:2)]([2=βf .【课后反思】6.4特殊数列的求和 参考答案【考点整合】1、略;2、(1)(1)(21)6n n n ++; (2)22(1)4n n +【典型例题】例1、略变式训练:1、B ; 2、2014; 3、3018;例2、略变式训练:1、A ; 2、C ;小结:(1)111(1)1n n n n =-++;(2)1111()(21)(21)22121n n n n =--+-+ (3)1111()(1)(2)2(1)(1)(2)n n n n n n n =-+++++;(4)11()a b a b a b =--+例3、略变式训练:略【上本作业】解析:(1))4cos()4sin()43cos()47sin()(ππππ+--=-++=x x x x x f 4sin sin 4cos cos 4sin cos 4cossin ππππx x x x +--= )4sin(2cos 2sin 2π-=-=x x x 2)(,2min min -==∴x f T π(2)由54)cos(,54)cos(-=+=-αβαβ得: 54s i n s i n c o s c o s =+αβαβ,54sin sin cos cos -=-αβαβ,两式相加得: 0c o s c o s=αβ,又20πβα≤<<,所以0cos =β,2πβ=∴ 24s i n 2)42s i n (2)2()(==-==∴ππππβf f ,2)]([2=∴βf 。
高三数学一轮复习备考数列的求和说课
高三数学一轮复习备考数列的求和说课高三数学一轮复习备考中,数列的求和是一个重要的考点。
在本文中,我将对数列的求和进行深入解析,包括常见的等差数列和等比数列的求和公式,以及一些应用题的解题方法。
首先,让我们来回顾一下数列的概念。
数列是由一系列按照一定规律排列的数所组成的集合。
数列的每一项称为数列的项,用ai表示,其中i表示项的位置。
数列中的规律可以用一个通项公式来表示。
对于等差数列来说,通项公式为an=a1+(n-1)d,其中a1为首项,d为公差;而对于等比数列来说,通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。
接下来,我们来看一下等差数列的求和公式。
对于等差数列来说,其求和公式是非常有用的。
设等差数列的首项为a1,公差为d,前n项和为Sn。
那么等差数列的求和公式可以表示为Sn=n/2*(a1+an),其中an表示等差数列的第n项。
在使用等差数列的求和公式时,需要明确几个关键的概念。
首先,当n为奇数时,a1和an为等差数列中间的一项;当n为偶数时,a1和an分别为等差数列的相邻两项,此时中间没有项。
其次,等差数列的前n项和与等差数列的倒序前n项和相等。
例如,对于等差数列1,3,5,7,9来说,其首项为1,公差为2。
我们可以使用等差数列的求和公式来计算前3项的和。
根据公式,n=3,所以Sn=3/2*(1+5)=9。
除了等差数列外,我们还有等比数列的求和公式。
对于等比数列来说,其求和公式也是非常重要的。
设等比数列的首项为a1,公比为r,前n项和为Sn。
等比数列的求和公式可以表示为Sn=a1*(1-r^n)/(1-r),其中r不等于1。
在使用等比数列的求和公式时,需要注意一些特殊情况。
当公比|r|小于1时,等比数列的前n项和随着n的增加而趋近于一个常数,即Sn的极限存在;当公比|r|大于1时,等比数列的前n项和随着n的增加呈无穷趋近于正无穷或负无穷;当公比|r|等于1时,等比数列不存在有限的前n项和,但存在极限。
2016届山东省济宁市高考数学理讲练练习第2讲数列求和及数列的综合应用(新人教A版)
第二讲 数列求和及数列的综合应用一、公式法与分组求和法 1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.二、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法.三、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常用的拆项方法(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k (2)1n +k +n =1k(n +k -n )(3)1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1(4)1n n +n +=12⎝ ⎛⎭⎪⎫1n n +-1n +n + 四、倒序相加法和并项求和法 1.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.2.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.基础自测1.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100【解析】 ∵S n =n +2n +2=n (n +2),∴S nn=n +2.∴数列⎩⎨⎧⎭⎬⎫S n n 前10项的和为:(1+2+…+10)+20=75.【答案】 C2.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( )A .9B .9 9C .10D .100【解析】 ∵a n =1n +n +1=n +1-n ,又a 1+a 2+…+a n=-(1-2+2-3+…+n -n +1) =n +1-1=9, ∴n =99. 【答案】 B3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15【解析】 ∵a n =(-1)n(3n -2),∴a 1+a 2+…+a 10=(-1+4)+(-7+10)+…+(-25+28)=3×5=15. 【答案】 A4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ) A.100101 B.99101 C.99100 D.101100【解析】 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15, ∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+-2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n n +=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.【答案】 A考点一 分组转化求和例 (2014山东) 在等差数列中,已知公差,是与的等比中项. (I)求数列的通项公式; (II )设,记,求.【解析】: (Ⅰ)由题意知:为等差数列,设,为与的等比中项 且,即, 解得: .(Ⅱ)由 (Ⅰ)知:,①当n 为偶数时:②当n 为奇数时:综上:跟踪练习 [2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2an +(-1)na n ,求数列{b n }的前2n 项和. 解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 方法与技巧 分组转化法求和的常见类型若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.考点二 错位相减求和例 (2013山东)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .解:本题主要考查等差数列的通项公式、错位相减法等知识,考查方程思想、转化思想和运算能力、推理论证能力.(1)设等差数列{a n }的首项为a 1,公差为d . 由S 4=4S 2,a 2n =2a n +1得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+n -d =2a 1+n -d +1,解得a 1=1,d =2. 因此a n =2n -1,n ∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -⎝ ⎛⎭⎪⎫1-12n -1=12n ,所以b n a n =12n ,n ∈N *.由(1)知a n =2n -1,n ∈N *, 所以b n =2n -12n ,n ∈N *.又T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1, 两式相减得12T n =12+⎝ ⎛⎭⎪⎫222+223+…+22n -2n -12n +1=32-12n -1-2n -12n +1, 所以T n =3-2n +32n .方法与技巧:1.错位相减只是实现求和的途径,其本质是相减后利用等比数列求和公式求和.在构造方程时,S n 的左右两边同乘以等比数列的公比.2.错位相减法的难点在于运算,为力求运算准确,要注意两式相减时幂指数相同的项要对齐,同时注意剩余的项.3.当{a n }为等差数列,{b n }为等比数列时,求数列{a n b n }的前n 项和,可用错位相减法. 跟踪练习 (2012·江西高考)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .【解】 (1)当n =k ∈N +时,S n =-12n 2+kn 取最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4,从而a n =S n -S n -1=92-n (n ≥2).又a 1=S 1=72,所以a n =92-n .(2)因为b n =9-2a n 2n =n2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1.考点三 裂项相消求和例 (2013·课标全国卷Ⅰ)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和. 【思路点拨】 (1)结合等差数列的求和公式列出关于首项和公差的方程组求解;(2)裂项求和,但要注意裂项后的系数.【尝试解答】 (1)设{a n }的公差为d ,则S n =na 1+n n -2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5.解得⎩⎪⎨⎪⎧a 1=1 ,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知1a 2n -1a 2n +1=1-2n -2n=12⎝ ⎛⎭⎪⎫12n -3-12n -1,从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为 12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n1-2n.,方法与技巧 1.本例第(2)问在求解时,常因“裂项”错误,导致计算失误. 2.利用裂项相消法求和应注意以下两点(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.跟踪练习 (2010山东)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(1)求a n 及S n ; (2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2. 由于a n =a 1+(n -1)d ,S n =n a 1+a n2,所以a n =2n +1,S n =n (n +2).(2)因为a n =2n +1, 所以a 2n -1=4n (n +1), 因此b n =14nn +=14(1n -1n +1). 故T n =b 1+b 2+…+b n=14(1-12+12-13+…+1n -1n +1) =14(1-1n +1) =n n +,所以数列{b n }的前n 项和T n =n n +.考点四 数列与不等式的综合应用例 (2014·潍坊模拟)已知公比为q 的等比数列{a n }是递减数列,且满足a 1+a 2+a 3=139,a 1a 2a 3=127.(1)求数列{a n }的通项公式;(2)求数列{(2n -1)·a n }的前n 项和为T n ;(3)若b n =n 3n -1·a n +32(n ∈N *),证明:1b 1b 2+1b 2b 3+…+1b n b n +1≥435.【规范解答】 (1)由a 1a 2a 3=127及等比数列性质得a 32=127,即a 2=13,1分由a 1+a 2+a 3=139得a 1+a 3=109.由⎩⎪⎨⎪⎧a 2=13a 1+a 3=109得⎩⎪⎨⎪⎧a 1q =13a 1+a 1q 2=109,所以1+q 2q =103,即3q 2-10q +3=0,解得q =3,或q =13.3分因为{a n }是递减数列,故q =3舍去,∴q =13,由a 2=13,得a 1=1,故数列{a n }的通项公式为a n =13n -1(n ∈N *).4分(2)由(1)知(2n -1)·a n =2n -13n -1,所以T n =1+33+532+…+2n -13n -1,①13T n =13+332+533+…+2n -33n -1+2n -13n ②5分 ①-②得:23T n =1+23+232+233+…+23n -1-2n -13n=1+2⎝ ⎛⎭⎪⎫13+132+133+…+13n -1-2n -13n=1+2·13⎝ ⎛⎭⎪⎫1-13n -11-13-2n -13n =2-13n -1-2n -13n所以T n =3-n +13n -18分(3)因为b n =n 3n -1·a n +32(n ∈N *)=n +32=2n +32,9分所以1b 1b 2+1b 2b 3+…+1b n b n +1=25·27+27·29+…+22n +3·22n +5 =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫15-17+⎝ ⎛⎭⎪⎫17-19+…+⎝ ⎛⎭⎪⎫12n +3-12n +5 =2⎝ ⎛⎭⎪⎫15-12n +5,11分 因为n ≥1,15-12n +5≥15-17=235,所以1b 1b 2+1b 2b 3+…+1b n b n +1≥435.12分【名师寄语】 1.正确应用等差数列和等比数列基本量的关系解题是处理此类问题的关键.2.明确“错位相减法”及“裂项相消法”的适用条件,准确计算,确保不失分.3.数列的单调性类同于函数的单调性,其是处理数列不等式的有效工具.跟踪练习 [2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.。
6.4数列求和课件高三数学一轮复习
例1 已知等差数列{an}的前n项和为Sn,且关于x的不等式a1x2-S2x+2<0的解 集为(1,2). (1)求数列{an}的通项公式; 解 设等差数列{an}的公差为d, 因为关于x的不等式a1x2-S2x+2<0的解集为(1,2), 所以Sa12=1+2=3. 又S2=2a1+d,所以a1=d, 易知a21=2,所以 a1=1,d=1. 所以数列{an}的通项公式为an=n.
即23Tn=3111--3131n-3nn+1
=121-31n-3nn+1,
整理得 Tn=34-24n×+33n,
则 2Tn-Sn=234-24n×+33n -231-31n=-3nn<0,故 Tn<S2n.
训练 3 在①Sn=2an+1;②a1=-1,log2(anan+1)=2n-1;③a2n+1=anan+2,S2= -3,a3=-4 这三个条件中任选一个,补充在下面问题的横线上,并解答. 问题:已知单调数列{an}的前 n 项和为 Sn,且满足________. (1)求{an}的通项公式;
即aann+-11=4,
所以{a2k-1}(k∈N*)为等比数列,其中首项为a1=-1,公比为4, 所以a2k-1=-1×4k-1=-2(2k-1)-1; 由a1=-1,log2(a1a2)=1,得a2=-2,
同理可得,a2k=-2×4k-1 =-22k-1(k∈N*). 综上,an=-2n-1.
数列中的奇偶项问题
数列中的奇、偶项问题是对一个数列分成两个新数列进行单独研究,利用新数 列的特征(等差、等比数列或其他特征)求解原数列. (1)数列中的奇、偶项问题的常见题型 ①数列中连续两项和或积的问题(an+an+1=f(n)或an·an+1=f(n)); ②含有(-1)n的类型; ③含有{a2n},{a2n-1}的类型; ④已知条件明确奇偶项问题. (2)对于通项公式分奇、偶不同的数列{an}求Sn时,我们可以分别求出奇数项的 和与偶数项的和,也可以把a2k-1+a2k看作一项,求出S2k,再求S2k-1=S2k-a2k.
高考数学一轮复习 第六章 数列 6.4 数列求和、数列的综合应用课件
(1)设{an}的公比为q,
由题意知:a1(1+q)=6, a12 q=a1q2, 又an>0,解得a1=2,q=2,所以an=2n.
=12 (1 2n ) -4-(6n-2)×2n+1
1 2
=-(3n-4)2n+2-16. 得Tn=(3n-4)2n+2+16. 所以,数列{a2nbn}的前n项和为(3n-4)2n+2+16.
方法总结 (1)等差数列与等比数列中分别有五个量,a1,n,d(或q),an,Sn,一般可以“知三求二”,通 过列方程(组)求关键量a1和d(或q),问题可迎刃而解. (2)数列{anbn},其中{an}是公差为d的等差数列,{bn}是公比q≠1的等比数列,求{anbn}的前n项和应 采用错位相减法.
5.(2017山东文,19,12分)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3. (1)求数列{an}的通项公式;
(2){bn}为各项非零的等差数列,其前n项和为Sn.已知S2n+1=bnbn+1,求数列
bn an
的前n项和Tn.
解析 本题考查等比数列与数列求和.
答案 A 本题考查了等比数列求和、不等式以及逻辑推理能力. 不妨设1+(1+2)+…+(1+2+…+2n-1)+(1+2+…+2t)=2m(其中m、n、t∈N,0≤t≤n), 则有N= n(n 1) +t+1,因为N>100,所以n≥13.
2
由等比数列的前n项和公式可得2n+1-n-2+2t+1-1=2m. 因为n≥13,所以2n>n+2, 所以2n+1>2n+n+2,即2n+1-n-2>2n, 因为2t+1-1>0, 所以2m>2n+1-n-2>2n,故m≥n+1, 因为2t+1-1≤2n+1-1,所以2m≤2n+2-n-3,故m≤n+1. 所以m=n+1,从而有n=2t+1-3,因为n≥13,所以t≥3. 当t=3时,N=95,不合题意; 当t=4时,N=440,满足题意,故所求N的最小值为440.
江苏版高考数学一轮复习:专题6.4数列求和练习题附答案.doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】专题6.4 数列求和【基础巩固】一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.【答案】n 2+1-12n【解析】该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.(2017·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 017项和为________. 【答案】2 0172 0183.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.【答案】-200【解析】S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.(2017·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 【答案】7【解析】根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.5.(2017·泰州模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________. 【答案】6【解析】由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.6.(2017·南通、扬州、泰州三市调研)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1 (a k a k +1)的值为________. 【答案】1001017.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 【答案】60【解析】由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.8.(2017·镇江期末)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.【答案】4n-1【解析】由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.二、解答题9.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.10.(2017·苏北四市调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足:a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *). (1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解 (1)令n =1,a 1S 2-a 2S 1+a 1-a 2=λa 1a 2,解得a 2=21+λ. 令n =2,a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,解得a 3=2λ+4λ+12λ+1.由a 22=a 1a 3得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=n +32a n ,①当n ≥2时,S n -1+1=n +22a n -1,②由①-②得a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列,所以a n =13(n +2). 代入①得S n =n +32a n -1=n 2+5n 6.【能力提升】11.(2017·长治联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 【答案】92【解析】a n =1+(n -1)=n ,S n =n 1+n2,∴S n +8a n=n 1+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时,取等号. ∴S n +8a n 的最小值是92. 12.(2017·盐城中学模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和为________. 【答案】7813.(2017·南京、盐城模拟)已知函数f (x )=⎩⎨⎧1-x -12,0≤x <2,f x -2,x ≥2,若对于正数k n (n∈N*),直线y=k n x与函数y=f(x)的图象恰有(2n+1)个不同交点,则数列{k2n}的前n项和为________.【答案】n4n+4【解析】函数f(x)的图象是一系列半径为1的半圆,因为直线y=k n x与f(x)的图象恰有(2n+1)个不同交点,所以直线y=k n x与第(n+1)个半圆相切,则2n+1k n1+k2n=1,化简得k2n=14n n+1=14⎝⎛⎭⎪⎫1n-1n+1,则k21+k22+…+k2n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4n+4.14.(2017·苏、锡、常、镇四市调研)正项数列a1,a2,…,a m(m≥4,m∈N*),满足a1,a2,a3,…,a k-1,a k(k<m,k∈N*)是公差为d的等差数列,a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列.(1)若a1=d=2,k=8,求数列a1,a2,…,a m的所有项的和S m;(2)若a1=d=2,m<2 016,求m的最大值;(3)是否存在正整数k,满足a1+a2+…+a k-1+a k=3(a k+1+a k+2+…+a m-1+a m)?若存在,求出k的值;若不存在,请说明理由.又a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列,则a k=a1·2m+1-k,故a1+(k-1)d=a1·2m+1-k,即(k-1)d=a1(2m+1-k-1).又a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m ),a m =2a 1, 则ka 1+12k (k -1)d =3×2a 1×1-2m -k1-2,即ka 1+12ka 1(2m +1-k -1)=3×2a 1(2m -k-1),则12k ·2m +1-k +12k =6(2m -k -1), 即k ·2m +1-k+k =6×2m +1-k-12,显然k ≠6,则2m +1-k=k +126-k =-1+186-k,高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin=, cos = , tg = , ctg = , sec = , csc = 。
2016届高考数学理科一轮复习(北师大版)题库第6章第4讲数列求和
第4讲 数列求和一、选择题1.设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( )A.n [(-1)n -1]2B.(-1)n -1+12C.(-1)n +12D.(-1)n -12解析 ∵数列{(-1)n }是首项与公比均为-1的等比数列, ∴S n =(-1)-(-1)n ×(-1)1-(-1)=(-1)n -12.答案 D2.已知数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|=( )A .66B .65C .61D .56解析 当n =1时,a 1=S 1=-1,当n ≥2时,a n =S n -S n -1=n 2-4n +2-[(n -1)2-4(n -1)+2]=2n -5.∴a 2=-1,a 3=1,a 4=3,…,a 10=15,∴|a 1|+|a 2|+…+|a 10|=1+1 +8(1+15)2=2+64=66.答案 A3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0132 014,则项数n 为( ).A .2 011B .2 012C .2 013D .2 014解析 ∵a n =1n (n +1)=1n -1n +1,∴S n =1-1n +1=n n +1=2 0132 014,解得n =2 013.答案 C4.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690B .3 660C .1 845D .1 830解析 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3, ∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2,∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30×(3+119)2=30×61=1 830.答案 D5.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则 1~100这100个数中,能称为“和平数”的所有数的和是( ) A .130 B .325 C .676D .1 300解析 设两个连续偶数为2k +2和2k (k ∈N +),则(2k +2)2-(2k )2=4(2k +1),故和平数 是4的倍数,但不是8的倍数,故在1~100之间,能称为和平数的有 4×1,4×3,4×5,4×7,…,4×25,共计13个,其和为4×1+252×13=676. 答案 C6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21= ( ). A.212B .6C .10D .11解析 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项、偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6,故选B. 答案 B 二、填空题7.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12. 答案 -2 2n -1-128.数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),则S 100=________.解析 由a n +2-a n =1+(-1)n ,知a 2k +2-a 2k =2,a 2k +1-a 2k -1=0,∴a 1=a 3=a 5=…=a 2n -1=1,数列{a 2k }是等差数列,a 2k =2k . ∴S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100)=50+(2+4+6+…+100)=50+(100+2)×502=2 600.答案 2 6009.等差数列{a n }中有两项a m 和a k (m ≠k ),满足a m =1k ,a k =1m ,则该数列前mk 项之和是S mk =________.解析 设数列{a n }的首项为a 1,公差为d .则有 ⎩⎪⎨⎪⎧a m =a 1+(m -1)d =1k ,a k =a 1+(k -1)d =1m ,解得⎩⎪⎨⎪⎧a 1=1mk ,d =1mk ,所以S mk =mk ·1mk +mk (mk -1)2·1mk =mk +12. 答案mk +1210.把公差d =2的等差数列{a n }的各项依次插入等比数列{b n }中,将{b n }按原 顺序分成1项,2项,4项,…,2n -1项的各组,得到数列{c n }:b 1,a 1,b 2,b 3,a 2, b 4,b 5,b 6,b 7,a 3,…,数列{c n }的前n 项和为S n .若c 1=1,c 2=2,S 3=134.则数列{c n } 的前100项之和S 100=________. 解析:由已知得b 1=1,a 1=2,b 2=14, 令T n =1+2+22+…+2n -1=2n -1, 则T 6=63,T 7=127,∴数列{c n }的前100项中含有数列{a n }的前6项,含有数列{b n }的前94项,故S 100=(b 1 +b 2+…+b 94)+(a 1+a 2+…+a 6)=1-⎝ ⎛⎭⎪⎫14941-14+6×2+6×52×2=13⎣⎢⎡⎦⎥⎤130-⎝ ⎛⎭⎪⎫12186. 答案 13⎣⎢⎡⎦⎥⎤130-⎝ ⎛⎭⎪⎫12186三、解答题11.已知公差为d (d >1)的等差数列{a n }和公比为q (q >1)的等比数列{b n },满足集合{a 3,a 4,a 5}∪{b 3,b 4,b 5}={1,2,3,4,5}, (1)求通项a n ,b n ;(2)求数列{a n ·b n }的前n 项和S n .解 (1)∵1,2,3,4,5这5个数中成公差大于1的等差数列的三个数只能是1,3,5;成公比大于1的等比数列的三个数只能是1,2,4. 而{a 3,a 4,a 5}∪{b 3,b 4,b 5}={1,2,3,4,5}, ∴a 3=1,a 4=3,a 5=5,b 3=1,b 4=2,b 5=4, ∴a 1=-3,d =2,b 1=14,q =2,∴a n =a 1+(n -1)d =2n -5,b n =b 1×q n -1=2n -3. (2)∵a n b n =(2n -5)×2n -3,∴S n =(-3)×2-2+(-1)×2-1+1×20+…+(2n -5)×2n -3, 2S n =-3×2-1+(-1)×20+…+(2n -7)×2n -3+(2n -5)×2n -2, 两式相减得-S n =(-3)×2-2+2×2-1+2×20+…+2×2n -3-(2n -5)×2n -2=-34-1+2n -1-(2n -5)×2n -2∴S n =74+(2n -7)×2n -2.12.已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…). (1)求数列{a n }的通项公式;(2)设b n =log 32(3a n +1)时,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .解(1)由已知得⎩⎪⎨⎪⎧a n +1=12S n ,a n =12S n -1(n ≥2),得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列. 又a 2=12S 1=12a 1=12,∴a n =a 2×⎝ ⎛⎭⎪⎫32n -2=12⎝ ⎛⎭⎪⎫32n -2(n ≥2).又a 1=1不适合上式,∴a n =⎩⎪⎨⎪⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2.(2)b n =log 32(3a n +1)=log 32⎣⎢⎡⎦⎥⎤32·⎝ ⎛⎭⎪⎫32n -1=n . ∴1b n b n +1=1n (1+n )=1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -11+n=1-11+n =nn +1. 13.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *. (1)求数列{a n }的通项;(2)设b n =na n ,求数列{b n }的前n 项和S n .解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n . (2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n , ③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+…+3n ), 即2S n =n ·3n +1-3(1-3n )1-3,∴S n =(2n -1)3n +14+34.14.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 …已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=10.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1. ①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围.解 (1)设等差数列{b n }的公差为d , 则⎩⎨⎧ b 1+d =4,b 1+4d =10,解得⎩⎨⎧b 1=2,d =2, 所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且32<13<42,a 10=b 4=8,所以a 13=a 10q 3=8q 3,又a 13=1,所以解得q =12.由已知可得c n =b n qn -1,因此c n =2n ·⎝ ⎛⎭⎪⎫12n -1=n 2n -2. 所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n 2n -2, 12S n =120+221+…+n -12n -2+n2n -1, 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1,解得S n =8-n +22n -2.②由①知c n =n2n -2,不等式(n +1)c n ≥λ,可化为n (n +1)2n -2≥λ.设f (n )=n (n +1)2n -2,计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154. 因为f (n +1)-f (n )=(n +1)(2-n )2n -1, 所以当n ≥3时,f (n +1)<f (n ).因为集合M 的元素个数为3,所以λ的取值范围是(4,5].。
【新高考】高三数学一轮基础复习讲义:第六章 6.4数列求和-(学生版+教师版)
数列求和1、判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( )(3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )2、设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( ) A.n 2+7n4B.n 2+5n 3C.2n 2+3n 4D .n 2+n3、数列{a n }中,a n =1n (n +1),若{a n }的前n 项和S n =2 0172 018,则n 等于( )A .2 016B .2 017C .2 018D .2 0194、数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-4005、数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________. 题型一 分组转化法求和例1 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 引申探究例1(2)中,求数列{b n }的前n 项和T n . 【同步练习】1、已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n . 题型二 错位相减法求和例2 已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .【同步练习】1、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n ,求数列{c n }的前n 项和T n .1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n (n +1)(2n +1)6.【知识拓展】 数列求和的常用方法 (1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和. (2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.题型三 裂项相消法求和 命题点1 形如a n =1n (n +k )型例3 S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.例4 已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=________. 【同步练习】1、在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .题型四 数列求和的综合应用例5 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n<564. 【同步练习】1、在数列{a n }中,已知a 1=1,a n +1=a 2nta n +2.(1)若t =0,求数列{a n }的通项公式;(2)若t =1,求证:23≤2a 1a 1+2+4a 2a 2+2+6a 3a 3+2+…+2na n a n +2<32.题型五四审结构定方案例6 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.一、分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.二、错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.三、数列和其他知识的综合,可先确定数列项的递推关系,求出数列通项或前n 项和;也可通过放缩法适当变形后再求和,进而证明一些不等式.1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n2.设等比数列{a n }的前n 项和为S n ,已知a 1=2 016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2 016等于( ) A .0 B .2 016 C .2 015D .2 0143.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .1004.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .825.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 2006.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于( ) A .153B .210C .135D .1207.已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.8.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.9.若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为__________.*10.已知正项数列{a n }的前n 项和为S n ,任意n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n ,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________. 11.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .12.已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. *13.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log .n a 求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34.数列求和1、判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )2、设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( ) A.n 2+7n4B.n 2+5n3C.2n 2+3n 4D .n 2+n答案 A解析 设等差数列的公差为d ,则a 1=2, a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6. 即(2+2d )2=2(2+5d ),整理得2d 2-d =0. ∵d ≠0,∴d =12.∴S n =na 1+n (n -1)2d =n 24+74n .3、数列{a n }中,a n =1n (n +1),若{a n }的前n 项和S n =2 0172 018,则n 等于( )A .2 016B .2 017C .2 018D .2 019答案 B解析 a n =1n (n +1)=1n -1n +1,S n =a 1+a 2+…+a n=(1-12+12-13+…+1n -1n +1)=1-1n +1=n n +1.令n n +1=2 0172 018,得n =2 017. 4、数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.5、数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________. 答案 1 008解析 因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4. 故S 4=a 1+a 2+a 3+a 4=2.a 5=0,a 6=-6,a 7=0,a 8=8,故a 5+a 6+a 7+a 8=2,∴周期T =4. ∴S 2 017=S 2 016+a 2 017 =2 0164×2+2 017·cos 2 0172π=1 008. 无题型一 分组转化法求和例1 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.作业检查引申探究例1(2)中,求数列{b n }的前n 项和T n . 解 由(1)知b n =2n +(-1)n ·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ] =2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n =2n +1-n 2-52.∴T n=⎩⎨⎧2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.【同步练习】1、已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n . 解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3, 所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n -n -12ln 3-ln 2-1.综上所述,S n=⎩⎨⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.题型二 错位相减法求和例2 已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,满足上式,所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1. (2)由(1)知,c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1, 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2 =-3n ·2n +2, 所以T n =3n ·2n +2.【同步练习】1、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意得⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎨⎧a n =19(2n +79),b n=9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n . ②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的前n 项和公式 S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n (n +1)(2n +1)6.【知识拓展】 数列求和的常用方法 (1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和. (2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;③1n+n+1=n+1-n.(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.题型三裂项相消法求和命题点1形如a n=1n(n+k)型例3S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和.解(1)由a2n+2a n=4S n+3,可知a2n+1+2a n+1=4S n+1+3.两式相减,得a2n+1-a2n+2(a n+1-a n)=4a n+1,即2(a n+1+a n)=a2n+1-a2n=(a n+1+a n)(a n+1-a n).由a n>0,可得a n+1-a n=2.又a21+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=n3(2n +3). 命题点2 形如a n =1n +n +k型例4 已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=________. 答案2 018-1解析 由f (4)=2,可得4a =2,解得a =12,则f (x )=∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018-2 017)= 2 018-1.思维升华 (1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n (n +k )=1k (1n -1n +k ),裂项后可以产生连续相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. 【同步练习】12.x1、在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n2n +1. 题型四 数列求和的综合应用例5 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n<564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0. 所以S n =n 2+n (n ∈N *). n ≥2时,a n =S n -S n -1=2n , n =1时,a 1=S 1=2适合上式. 所以a n =2n (n ∈N *).(2)证明 由a n =2n (n ∈N *),得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎡⎦⎤1n 2-1(n +2)2, 则T n =116⎣⎡ ⎝⎛⎭⎫1-132+⎝⎛⎭⎫122-142+⎝⎛⎭⎫132-152+…⎦⎤+⎝⎛⎭⎫1(n -1)2-1(n +1)2+⎝⎛⎭⎫1n 2-1(n +2)2=116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564(n ∈N *). 即对于任意的n ∈N *,都有T n <564.【同步练习】1、在数列{a n }中,已知a 1=1,a n +1=a 2nta n +2.(1)若t =0,求数列{a n }的通项公式;(2)若t =1,求证:23≤2a 1a 1+2+4a 2a 2+2+6a 3a 3+2+…+2na n a n +2<32.(1)解 因为t =0,所以a n +1=a 2n2.又a 1=1,所以a n >0, 从而ln a n +1=2ln a n -ln 2, 所以ln a n +1-ln 2=2(ln a n -ln 2),即lna n +12=2ln a n2, 所以数列{lna n 2}是以ln a 12为首项,2为公比的等比数列, 所以ln a n 2=(ln a 12)2n -1=所以a n 2=即a n = (2)证明 当t =1时,a n +1=a 2na n +2.由a 1=1,a n +1=a 2na n +2,得a n >0,所以a n +1-a n =-2a na n +2<0,所以{a n }为递减数列.因为a n +1a n =a n a n +2=1-2a n +2≤1-2a 1+2=13,所以a n +1≤13a n ,所以a n ≤a 1(13)n -1=(13)n -1.又因为2a na n +2=a n -a n +1 (n ∈N *),所以2a 1a 1+2+4a 2a 2+2+6a 3a 3+2+…+2na na n +2=(a 1-a 2)+2(a 2-a 3)+3(a 3-a 4)+…+n (a n -a n +1) =a 1+a 2+a 3+…+a n -na n +1 <1+13+(13)2+…+(13)n -1=1-(13)n1-13<32.12ln 2--,n 122--,n 1122.--n又因为2a 1a 1+2+4a 2a 2+2+6a 3a 3+2+…+2na n a n +2≥2a 1a 1+2=23,所以命题得证. 题型五四审结构定方案例6 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.(1)S n =-12n 2+kn ―――――→S n 是关于n的二次函数n =k 时,S n 最大 ―――――――→根据S n 的结构特征确定k 的值k =4;S n =-12n 2+4n ―――→根据S n 求a n a n =92-n (2)9-2a n 2n =n 2n -1―――――――→根据数列结构特征确定求和方法T n =1+22+322+…+n -12n -2+n 2n -1――――→错位相减法求和 计算可得T n ―→证明:T n <4 规范解答(1)解 当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[4分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立. 综上,a n =92-n .[8分](2)证明 ∵9-2a n 2n =n2n -1,∴T n =1+22+322+…+n -12n -2+n2n -1,①2T n =2+2+32+…+n -12n -3+n2n -2.②[9分]②-①,得2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1.[13分]∴T n =4-n +22n -1.∴T n <4.[14分]一、分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.二、错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 三、数列和其他知识的综合,可先确定数列项的递推关系,求出数列通项或前n 项和;也可通过放缩法适当变形后再求和,进而证明一些不等式.1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n答案 A解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.设等比数列{a n }的前n 项和为S n ,已知a 1=2 016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2 016等于( ) A .0 B .2 016 C .2 015 D .2 014 答案 A解析 ∵a n +2a n +1+a n +2=0(n ∈N *),∴a n +2a n q +a n q 2=0,q 为等比数列{a n }的公比, 即q 2+2q +1=0,∴q =-1.∴a n =(-1)n -1·2 016, ∴S 2 016=(a 1+a 2)+(a 3+a 4)+…+(a 2 015+a 2 016)=0.3.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100答案 C解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.4.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80 D .82答案 B解析 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.故选B.6.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于( ) A .153 B .210 C .135 D .120答案 A解析 令a n =2n -7≥0,解得n ≥72.∴从第4项开始大于0,∴|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=5+3+1+1+3+…+(2×15-7)=9+12×(1+23)2=153. 7.已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.答案 120 解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1. 令n +1-1=10,得n =120.8.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 答案 60解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.9.若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为__________.答案 34-2n +32(n +1)(n +2)解析 由前四项知数列{a n }的通项公式为a n =1n 2+2n ,由1n 2+2n =12(1n -1n +2)知, S n =a 1+a 2+a 3+…+a n -1+a n=12[1-13+12-14+13-15+…+(1n -2-1n )+(1n -1-1n +1)+(1n -1n +2)] =12[1+12-1n +1-1n +2] =34-2n +32(n +1)(n +2). *10.已知正项数列{a n }的前n 项和为S n ,任意n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n ,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________. 答案 9解析 ∵2S n =a 2n +a n ,① ∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0, 即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列. ∴a n =n ,∴b n =1n n +1+(n +1)n=(n +1)n -n n +1[n n +1+(n +1)n ][(n +1)n -n n +1]=(n +1)n -n n +1n (n +1)=1n -1n +1,∴T n =1-1n +1, ∴T 1,T 2,T 3,…,T 100中有理数的个数为9.11.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n . 解 (1)∵{a n -1}是等比数列且a 1-1=2, a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n ,∴a n =2n +1. (2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ).令T =2+2×22+3×23+…+n ·2n , 则2T =22+2×23+3×24+…+n ·2n +1. 两式相减,得-T =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1,∴T =2(1-2n )+n ·2n +1=2+(n -1)·2n +1. ∵1+2+3+…+n =n (n +1)2,∴T n =(n -1)·2n +1+n 2+n +42.12.已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解 (1)设数列{a n }的公比为q . 由已知,有1a 1-1a 1q =2a 1q 2,解得q =2或q =-1.又由S 6=a 1·1-q 61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n )=n -12,即{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n (b 1+b 2n )2=2n 2.*13.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34.(1)解 ∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n =18⎝⎛⎭⎫14n -1=⎝⎛⎭⎫122n +1.(2)证明 由c n +1-c n ==2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1),12log .n a 12log n a1c n =1(n +1)(n -1)=12(1n -1-1n +1), ∴1c 2+1c 3+1c 4+…+1c n=12×⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…+⎦⎤⎝⎛⎭⎫1n -1-1n +1 =12⎣⎡⎦⎤⎝⎛⎭⎫1+12-⎝⎛⎭⎫1n +1n +1 =34-12⎝⎛⎭⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。
高三数学一轮复习 等比数列与数列求和
6.3 等比数列 6.4数列求和【学习目标】1、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式2、熟练掌握等差等比数列的前n 项和公式,能应用公式求数列的前n 项和3、掌握非等差等比数列求和的几种方法【重点难点】重点:等比数列的定义和性质,数列求和的方法难点:等比数列的定义和性质,数列求和的方法. 【导学流程】 一、基础感知 1、等比数列基本公式 (1)定义:1(N ,)n na q n q a *+=∈为非零常数 (2)通项公式:11n n a a q -=⨯(3)等比中项:2,,a A b A ab ⇔=成等比数列(4)前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩2、等比数列基本性质(1)n m n m a a q -=⨯(2)m n k l m n k l a a a a +=+⇔⋅=⋅(3)232,,n n n n n S S S S S --成等比数列(4)n n S A Aq =-3、数列求和:(公式法、分组求和、错位相减、裂项相消、并项求和、倒序相加)(1)、公式求和①等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=②等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n (2)、分组求和:适用于等差、等比数列以加减的形式构成的新数列的前n 项和(3).错位相减:适用于等差、等比数列以乘、除的形式构成的新数列的前n 项和 若,其中是等差数列,是公比为等比数列, 令,则两式错位相减并整理即得 (4).裂项相消法:适用于类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和(1)(2); (3) (4)(5)、并项求和当数列通项中出现n )1(-或1)1(+-n 时,常常需要对n 取值的奇偶性进行分类讨论。
高考数学一轮总复习第六章数列6.4数列求和数列的综合应用理新人教B版
(1)求数列{an}的通项an;
(2)令bn= n,数 1列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn< . 5
(n
2)2
a
2 n
64
解题导引
(1)将已知等式变形求Sn→由an与Sn的关系求an (2)求bn→结合式子特点
裂项求和→用放缩法证Tn< 5
64
解析
(1)由 S
2 n
-(n2+n-1)Sn-(n2+n)=0,得[Sn-(n2+n)](Sn+1)=0.
④-③,得2Sn=n·3n+1-(3+32+33+…+3n),
即2Sn=n·3n+1- 3 (1 , 3 n )
1 3
所以Sn= (2n+ 1)3.n1 3 1-1 (2016广4西玉林4 贵港联考,17,12分)已知数列{an}中,a1=3,a2=5,且{an-1}是等比数列.
(1)求数列{an}的通项公式;
2
突破方法
方法1 错位相减法求和
1.一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位 相减法. 2.用错位相减法求和时,应注意: (1)要善于识别题目类型,特别是等比数列公比为负数的情形. (2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写 出“Sn-qSn”的表达式. (3)应用等比数列求和公式必须注意公比q≠1这一前提条件,如果不能确定公比q是否为1,应分 两种情况进行讨论,这在以前的高考中经常考查.
(2)若bn=nan,求数列{bn}的前n项和Tn.
解析
高考数学大一轮总复习 6.4 数列求和与数列的综合应用
【解密高考】2015届高考数学大一轮总复习 6.4 数列求和与数列的综合应用高效作业 理 新人教A 版时间:45分钟 满分:100分 班级:________ 姓名:________ 学号:________ 得分:________一、选择题(本大题共6小题,每小题6分,共36分,在下列四个选项中,只有一项是符合题目要求的)1.(2014·洛阳一模)已知函数f (n )=⎩⎪⎨⎪⎧n 2当n 为奇数时,-n 2当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10200解析:由题意,a 1+a 2+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=100.答案:B2.(2014·温州一模)12+12+38+…+n2n 等于( )A.2n -n -12nB.2n +1-n -22nC.2n -n +12nD.2n +1-n +22n解析:∵S n =12+222+323+…+n2n ,12S n =122+223+…+n -12n +n2n +1, ∴两式相减得: 12S n =12+122+…+12n -n 2n +1 =12[1-12n]1-12-n 2n +1, ∴S n =2n +1-n -22n.故选B. 答案:B3.(2014·山师附中质检)设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列{1f n}(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1 C.nn -1D.n +1n解析:f ′(x )=mx m -1+a =2x +1,∵a =1,m =2,∴f (x )=x (x +1), 1f n=1nn +1=1n -1n +1, 用裂项法求和得S n =nn +1.答案:A4.(2014·上海调研)数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n-1D .n 2-n +1-12n解析:该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .故选A.答案:A5.(2014·粤西北九校联考)数列a n =1nn +1,其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A .-10B .-9C .10D .9解析:设数列{a n }的前n 项和为S n ,则S n =a 1+a 2+…+a n , 又∵a n =1n -1n +1,∴S n =1-12+12-13+…+1n -1n +1=nn +1,又∵nn +1=910,∴n =9, ∴原题变为求10x +y +9=0在y 轴上的截距,令x =0,得y =-9, ∴直线在y 轴上的截距为-9.故选B. 答案:B6.(2014·江西八校联合模拟)已知数列{a n }的通项公式a n =log 2(n +1n +2)(n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值31解析:要使S n <-5,只需a 1+a 2+…+a n <-5. 即log 2(23×34×…×n +1n +2)<log 2132∴n <-2(舍去)或n >62. ∴n 的最小值为63.故应选A. 答案:A二、填空题(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上) 7.设S n =12+16+112+…+1nn +1,若S n ·S n +1=34,则n 的值为________. 解析:S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1, ∴S n ·S n +1=nn +1·n +1n +2=n n +2=34, 解得n =6. 答案:68.(2014·衡水调研)数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________.解析:∵a n +1+(-1)na n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60) =10+26+42+…+234=15×10+2342=1 830.答案:1 8309.(2014·怀化二模)将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数为________. 解析:在数阵中,从上到下各层最左边的第一个数字分别为:1,2,4,7,11,… 设第n 行最左边一个数字为a n ,则有:a 2-a 1=1, a 3-a 2=2, a 4-a 3=3,…a n -a n -1=n -1,∴各式相加得:a n -a 1=1+2+3+…+(n -1)=n n -12.∴a n =1+n n -12=n 2-n +22.∴第n 行从左向右的第3个数为:a n +2=n 2-n +22+2=n 2-n +62.答案:n 2-n +62(n ≥3)10.(2014·海口二模)已知S n 是等差数列 {a n }(n ∈N *)的前n 项和,且S 6>S 7>S 5,有下列四个命题:(1)d <0;(2)S 11>0;(3)S 12<0;(4)数列{S n }中的最大项为S 11,其中正确命题的序号是________.解析:由S 6>S 7>S 5,得a 7=S 7-S 6<0,a 6+a 7=S 7-S 5>0,所以a 6>0,a 7<0,所以d <0,所以(1)正确;又S 11=11a 6>0,所以(2)也正确;而S 12=6(a 1+a 12)=6(a 6+a 7)>0,所以(3)不正确;由上知,数列{S n }中的最大项应为S 6,所以(4)也不正确,所以正确命题的序号是(1)(2). 答案:(1)(2)三、解答题(本大题共3小题,共40分,11、12题各13分,13题14分,写出证明过程或推演步骤)11.(2014·湘潭二模)等差数列{a n }为递增数列,前n 项和为S n ,且a 1,a 3,a 9成等比数列,S 5=a 25.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =n 2+n +1a n ·a n +1,求数列{b n }的前99项的和.解:(1)设数列{a n }的公差为d (d >0), ∵a 1,a 3,a 9成等比数列,∴a 23=a 1a 9, ∴(a 1+2d )2=a 1(a 1+8d ),∴d 2=a 1d , ∵d >0,∴a 1=d ,① ∵S 5=a 25,∴5a 1+5×42·d =(a 1+4d )2②由①②得a 1=35,d =35,∴a n =35+(n -1)×35=35n (n ∈N *). (2)b n =n 2+n +135n ·35n +1=259·n 2+n +1n n +1 =259(1+1n -1n +1), ∴b 1+b 2+b 3+…+b 99=259(1+1-12+1+12-13+1+13-14+…+1+199-1100)=259(99+1-1100) =275+2.75=277.75.12.已知公差为d (d >1)的等差数列{a n }和公比为q (q >1)的等比数列{b n },满足集合{a 3,a 4,a 5}∪{b 3,b 4,b 5}={1,2,3,4,5},(1)求通项a n ,b n ;(2)求数列{a n ·b n }的前n 项和S n .解:(1)∵1,2,3,4,5这5个数中成公差大于1的等差数列的三个数只能是1,3,5;成公比大于1的等比数列的三个数只能是1,2,4.而{a 3,a 4,a 5}∪{b 3,b 4,b 5}={1,2,3,4,5}, ∴a 3=1,a 4=3,a 5=5,b 3=1,b 4=2,b 5=4, ∴a 1=-3,d =2,b 1=14,q =2,∴a n =a 1+(n -1)d =2n -5,b n =b 1×q n -1=2n -3.(2)∵a n b n =(2n -5)×2n -3,∴S n =(-3)×2-2+(-1)×2-1+1×20+…+(2n -5)×2n -3,2S n =-3×2-1+(-1)×20+…+(2n -7)×2n -3+(2n -5)×2n -2,两式相减得-S n =(-3)×2-2+2×2-1+2×20+…+2×2n -3-(2n -5)×2n -2=-34-1+2n -1-(2n -5)×2n -2.∴S n =74+(2n -7)×2n -2.13.(2013·浙江)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(Ⅰ)求d ,a n ;(Ⅱ)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(Ⅰ)由题意得a 1·5a 3=(2a 2+2)2, 即d 2-3d -4=0, 故d =-1或d =4,所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *.(Ⅱ)设数列{a n }的前n 项和为S n ,因为d <0,由(Ⅰ)得d =-1,a n =-n +11,则 当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n .当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110,综上所述,|a 1|+|a 2|+|a 3|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 6。
4 数列求和、数列的综合应用A 组 2014-2015年模拟·基础题组限时:35分钟1。
(2014河南安阳二模,6)已知数列{a n }中,a n =—4n+5,等比数列{b n }的公比q 满足q=a n —a n —1(n≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=( )A.1-4n B 。
4n —1 C.1-4n3 D.4n-132。
(2014辽宁五校协作体联考,15)已知数列{a n }满足a n =1+2+3+…+nn,则数列{1a n a n+1}的前n 项和为 。
3.(2014广东揭阳3月模拟,13)对于每一个正整数n,设曲线y=x n+1在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99= 。
4。
(2015河北石家庄调研)在数列{a n }中,已知a 1=14,a n+1a n=14,b n +2=3lo g 14a n (n∈N *). (1)求数列{a n }的通项公式; (2)求证:数列{b n }是等差数列;(3)设数列{c n }满足c n =a n +b n ,求{c n }的前n 项和S n .5.(2014广东湛江二模,19)已知等差数列{a n}的首项a1=1,公差d>0,且a2,a5,a14分别是等比数列{b n}的b2,b3,b4。
(1)求数列{a n}和{b n}的通项公式;(2)设数列{c n}对任意正整数n均有c1b1+c2b2+…+c nb n=a n+1成立,求c1+c2+…+c2 014的值。
B组2014—2015年模拟·提升题组限时:50分钟1.(2015长春外国语学校期中)若数列{a n}满足1a n+1—pa n=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列{1b n}为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A。
2 B.4 C。
6 D。
82。
(2014河北唐山模拟,12)各项均为正数的数列{a n}的前n项和为S n,且3S n=a n a n+1,则∑k=1n a2k=( )A。
n(n+5)2B.3n(n+1)2C。
n(5n+1)2D.(n+3)(n+5)23.(2014湖南岳阳一中第六次质量检测,6)已知数列{a n}的通项公式是a n=n2sin(2n+12π),则a1+a2+a3+…+a2 014=( )A。
2013×20142B。
2014×20152C。
2013×20132D.2014×201424。
(2014上海八校联考,18)等差数列{a n}的公差d≠0,a n∈R,前n项和为S n,则对正整数m,给出下列四个结论:(1)S m,S2m-S m,S3m-S2m可能成等差数列,也可能成等比数列;(2)S m,S2m—S m,S3m—S2m可能成等差数列,但不可能成等比数列; (3)S m,S2m,S3m可能成等比数列,但不可能成等差数列;(4)S m,S2m,S3m不可能成等比数列,也不可能成等差数列.其中正确的是()A。
(1)(3)B。
(1)(4)C。
(2)(3) D。
(2)(4)5.(2015河南中原名校期中)已知数列{a n}的前n项和为S n,且S n=2a n—2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,c n=1b n b n+1,记数列{c n}的前n项和为T n.若对n∈N*,T n≤k(n+4)恒成立,求实数k的取值范围。
6。
(2014广东惠州4月模拟,19)已知正项数列{a n}中,a1=3,前n项和为S n(n∈N*),当n≥2时,有√Sn —√Sn-1=√3.(1)求数列{a n}的通项公式;(2)记T n是数列{b n}的前n项和,若√bn 是1a n,1a n+1的等比中项,求T n。
7.(2014浙江镇海中学阶段检测,19)已知单调递增的等比数列{a n}满足a1+a2+a3=7,且a3是a1,a2+5的等差中项。
(1)求数列{a n}的通项公式a n;(2)已知数列{c n}满足:对任意的n∈N*,c1a1+c2a2+c3a3+…+c na n=22+2n-112n-1都成立。
①求数列{c n}的通项公式c n;②设数列{c n}的前n项和为S n,问n为何值时,S n最大。
A组2014—2015年模拟·基础题组1.B 由已知得b 1=a 2=—3,q=-4,∴b n =(-3)×(-4)n —1,∴|b n |=3×4n-1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1,选B 。
2。
答案2n n+2解析 a n =1+2+3+…+n n =n+12,则1a n a n+1=4(n+1)(n+2)=4(1n+1-1n+2),所以所求的前n 项和为 4[(12-13)+(13-14)+…+(1n+1-1n+2)] =4(12-1n+2)=2n n+2。
3.答案 -2解析 对y=x n+1求导得y'=(n+1)x n ,则曲线在点(1,1)处的切线方程为y —1=(n+1)(x —1),令y=0,得x n =n n+1,则a n =lg x n =lg n n+1,所以a 1+a 2+…+a 99=lg (12×23×…×99100)=lg 1100=—2. 4。
解析 (1)因为a n+1a n=14,a 1=14,所以数列{a n }是首项为14,公比为14的等比数列,所以a n =(14)n(n∈N *).(2)证明:因为b n =3lo g 14a n —2,所以b n =3lo g14(14)n-2=3n —2。
所以数列{b n }是首项为1,公差为3的等差数列。
(3)因为a n =(14)n,b n =3n-2,所以c n =3n —2+(14)n,所以S n =1+14+4+(14)2+7+(14)3+…+(3n -5)+(14)n -1+(3n-2)+(14)n=[1+4+7+…+(3n -5)+(3n-2)]+[14+(14)2+(14)3+…+(14)n-1+(14)n] =n(1+3n -2)2+14[1-(14)n]1-14=3n 2-n 2+13—13·(14)n. 5。
解析 (1)∵a 2=1+d,a 5=1+4d ,a 14=1+13d ,且a 2,a 5,a 14成等比数列,∴(1+4d)2=(1+d )(1+13d ),解得d=2,或d=0(舍去),∴a n =1+(n —1)·2=2n -1,又∵b 2=a 2=3,b 3=a 5=9,∴q=3,b 1=1,故b n =3n-1.(2)∵c 1b 1+c 2b 2+…+cnb n=a n+1,①∴c 1b 1=a 2,即c 1=b 1a 2=3,又c 1b 1+c 2b 2+…+c n -1b n -1=a n (n≥2),②①-②得c n b n=a n+1-a n =2,∴c n =2b n =2·3n-1(n≥2), ∴c n ={3(n =1),2·3n -1(n ≥2),则c 1+c 2+…+c 2 014=3+2·31+2·32+…+2·32 013 =3+2×(31+32+…+32 013) =3+2×3×(1-32 013)1-3=32 014.B 组 2014—2015年模拟·提升题组1.B 依题意可得b n+1=pb n ,因为p 为非零常数,所以数列{b n }为等比数列,所以b 1b 2b 3…b 99=b 5099=299,所以b 50=2,故b 8+b 92≥2√b 8·b 92=2b 50=4,当且仅当b 8=b 92时,取等号.2.B 当n=1时,3S 1=a 1a 2,即3a 1=a 1a 2,∴a 2=3,当n≥2时,由3S n =a n a n+1可得3S n —1=a n —1a n ,两式相减得3a n =a n (a n+1-a n-1),又∵a n >0,∴a n+1-a n-1=3(n≥2),∴{a 2n }是一个以3为首项,3为公差的等差数列,∴a 2n =3n ,∴∑k=1na 2k =a 2+a 4+a 6+…+a 2n =3n+n(n -1)2×3=3n(n+1)2,选B.3。
B a n =n 2sin (2n+12π)={-n 2(n 为奇数),n 2(n 为偶数),∴a 1+a 2+a 3+…+a 2 014=—12+22—32+42-…—2 0132+20142=(22-12)+(42-32)+…+(2 0142—2 0132)=1+2+3+4+…+2 014=(2-1)(2+1)+(4-3)(4+3)+…+(2 014—2 013)(2 014+2 013)=2 014×2 0152。
4.D S 2m —S m =S m +m 2d,S 3m -S 2m =S m +2m 2d ,则(S 2m -S m )2=(S m +m 2d)2=S m 2+2m 2dS m +m 4d 2=S m (S m +2m 2d)+m 4d 2≠S m (S 3m —S 2m ),2(S 2m -S m )=S 3m -S 2m +S m ,因此(1)错误,(2)正确,又S 2m =2S m +m 2d ,S 3m =3S m +3m 2d,所以S 2m 2—S m S 3m =S m 2+m 2dS m +m 4d 2=(S m +12m 2d)2+34m 4d 2≠0,又S 2m -S m ≠S 3m —S 2m ,故(3)错误,(4)正确。
5。
解析 (1)当n=1时,a 1=2,当n≥2时,a n =S n -S n-1=2a n —2—(2a n —1—2),∴a n a n -1=2,∴数列{a n }是以2为首项,2为公比的等比数列,∴a n =2n 。
(2)由b n =log 2a n 得b n =log 22n =n,则c n =1b n b n+1=1n(n+1)=1n —1n+1,∴T n =1—12+12-13+…+1n -1n+1=1—1n+1=n n+1. ∵n n+1≤k(n+4),∴k≥n (n+1)(n+4)=n n 2+5n+4=1n+4n+5.∵n+4n +5≥2√n ·4n +5=9,当且仅当n=4n ,即n=2时等号成立, ∴1n+4n+5≤19,因此k≥19. 故实数k 的取值范围为[19,+∞)。