线性代数性质公式整理

合集下载

线代公式总结

线代公式总结

线代公式总结
线性代数中有很多重要的公式,以下是其中一些主要的公式:
1. 逆矩阵公式:对于一个矩阵A,如果存在一个矩阵B,使得AB=BA=I (单位矩阵),那么矩阵B称为矩阵A的逆矩阵,记作A^(-1)。

2. 行列式公式:对于一个n阶方阵A,其行列式记作det(A),定义为所有
取自不同行不同列的元素的乘积的代数和,即det(A)=a11a22...ann。

3. 特征值公式:对于一个n阶方阵A,如果存在一个数λ和一个非零向量x,使得Ax=λx成立,那么λ称为矩阵A的特征值,x称为矩阵A的对应于特
征值λ的特征向量。

4. 转置矩阵公式:对于一个矩阵A,其转置矩阵记作A^T,定义为将矩阵
A的行列互换得到的矩阵。

5. 行列式性质公式:对于一个n阶方阵A,有det(A^T)=det(A),
det(kA)=k^ndet(A),det(AB)=det(A)det(B)。

6. 向量点乘公式:对于两个向量a和b,其点乘记作a·b,定义为
a1b1+a2b2+...+anbn。

7. 向量叉乘公式:对于两个向量a和b,其叉乘记作a×b,定义为一个新
的向量c,其中c的每个分量c_i是a和b各个分量乘积的和,即
c=(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)。

这些公式是线性代数中最重要的部分,可以帮助我们解决很多问题。

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版线性代数是数学的一个重要分支,研究向量空间及其上的线性映射的理论和方法。

在学习线性代数的过程中,掌握一些重要的公式是非常重要的。

下面是线性代数中一些常见且重要的公式,希望能够帮助到你。

1.向量的加法和数乘:(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 +b2, ..., an + bn)k(a1, a2, ..., an) = (ka1, ka2, ..., kan)这是线性代数的基本操作,向量的加法是对应元素分别相加,向量的数乘是将向量中的每个元素与常数相乘。

2.内积:向量a = (a1, a2, ..., an) 和向量b = (b1, b2, ..., bn) 的内积定义为:a ·b = a1b1 + a2b2 + ... + anbn内积有许多重要的性质:a·b=b·a-->内积的交换律(ka) · b = a · (kb) --> 内积的数乘关系a·(b+c)=a·b+a·c-->内积的分配律内积可以用来计算向量的夹角和向量的长度,是线性代数中的一个重要概念。

3.范数:向量a的范数定义为:a, = sqrt(a1^2 + a2^2 + ... + an^2向量的范数满足以下性质:a,>=0,且当且仅当a=0时取等ka, = ,k,,a,对于任意的实数a+b,<=,a,+,b,三角不等范数是一个度量向量长度的函数,也是线性代数中常用的概念。

4.矩阵的乘法:对于矩阵A(m×n)和矩阵B(n×p),它们的乘积C=A×B是一个m×p的矩阵,其中C的第i行第j列的元素可以表示为:C(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+...+a(i,n)*b(n,j)矩阵乘法是线性代数中的核心概念,它在很多应用中都有重要的作用。

《线性代数》公式大全

《线性代数》公式大全

《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。

线性代数性质定理公式全总结

线性代数性质定理公式全总结

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确A可逆r(A) nA的列(行)向量线性无关的特征值全不为0AA 0 A x x Ax只有零解,nR, Ax总有唯一解TA A是正定矩阵A EA p p p p 是初等阵1 2 s i存在n阶矩阵B,使得AB E 或AB E○注:全体n维实向量构成的集合nR叫做n维向量空间.A不可逆r(A) n0 的列(行)向量线性相关AA0是的特征值A有非零解, 其基础解系即为关于0的特征向量AxAr (aE bA) n○注aE bA (aE bA) x 有非零解=- ab1向量组等价矩阵等价( )矩阵相似( )具有反身性、对称性、传递性矩阵合同( )√关于e e e :1, 2, , n①称为n 的标准基,n 中的自然基,单位坐标向量p教材87 ;②e1,e2, ,e n 线性无关;③e1,e2, ,e n 1;④tr E=n ;⑤任意一个n维向量都可以用e1,e2 , ,e n 线性表示.a a a11 12 1n行列式的定义a a a21 22 2n ( j j j )1D ( ) a a an 1j 2 j nj1 2 n1 2 nj j j1 2 na a an1 n2 nn√行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.2②若A与B 都是方阵(不必同阶), 则A O A A O=O B O B BO A A= ( 1)B O B OmnABA B(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.a O a1n1n④关于副对角线:a a2n 1 2n 1n(n1)( 1) 2 (即:所有取自不同行不同列的n个元素的乘积的代数和)a a a1n 2n n1a O a On1 n11 1 1x x x1 2 n⑤范德蒙德行列式: 2 2 2x x x1 2 nx xi j1 j i nn 1 n 1 n 1x x x1 2 na a a11 12 1n矩阵的定义由m n个数排成的m 行n列的表 A a a a21 22 2n 称为m n矩阵. 记作:A a 或A m nij m na a am1 m2 mnA A A11 21 n1伴随矩阵*A AijA A AT n12 22 2,A为 A 中各个元素的代数余子式.ijA A A1n 2n nn√逆矩阵的求法:3① A 1AA○注:1a b 1 d b 主换位c d ad bc c a 副变号②初等行变换1( A E) (E A )a11 1a1a11 1a3③ a21a2a21a2 a31a3a31a1√方阵的幂的性质:m n m n m n mnA A A (A ) (A)√设A m n ,B n s, A 的列向量为1, 2, , n , B 的列向量为1, 2 , , s ,b b b11 12 1s则AB C m sb b b21 22 2 s, , , c ,c , ,c1 2 n 1 2 sA c ,(i 1,2 , ,s)i ii 为Ax c i 的解b b bn1 n2nsA 1, 2 , s , A 1 A, 2 s , A , c1 s cc1,2,c2, ,, c c s 可由, 1, 2 , , n 线性表示. 即:C 的列向量能由A的列向量线性表示,B 为系数矩阵.同理:C 的行向量能由 B 的行向量线性表示,TA 为系数矩阵.a a a c11 12 1n 1 1 a a a c11 1 12 2 1n 2 1即:a a a c21 22 2n 2 2a a a c21 1 22 2 2n 2 2a a a cn1 n2 mn n ma a a cm1 1 m 2 2 mn 2 m√用对角矩阵○左乘一个矩阵, 相当于用的对角线上的各元素依次乘此矩阵的○行向量;4用对角矩阵○右乘一个矩阵, 相当于用的对角线上的各元素依次乘此矩阵的○列向量. √两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√分块矩阵的转置矩阵:T T T A B A CT T C D B D分块矩阵的逆矩阵:1 1A AB B 11 1A B1B A1 1 1 1A C A A CB1 1A O A OO B O B 1 1C B B CA B分块对角阵相乘:A B11 11A ,BA B22 22ABA B11 11A B22 22, nAnA11nA22分块对角阵的伴随矩阵:* *A BA*B AB*mnA ( 1) A BmnB ( 1) B A√矩阵方程的解法( A 0) :设法化成(I) AX B 或(II) XA B初等行变换(I) 的解法:构造( A B) ( E X )T T T (II) 的解法:将等式两边转置化为 AX B ,T用(I) 的方法求出X ,再转置得X①零向量是任何向量的线性组合, 零向量与任何同维实向量正交.②单个零向量线性相关;单个非零向量线性无关.5③部分相关, 整体必相关;整体无关, 部分必无关. (向量个数变动)④原向量组无关, 接长向量组无关;接长向量组相关, 原向量组相关. (向量维数变动)⑤两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关教材.p114⑥向量组1, 2, , n 中任一向量i (1≤i ≤n) 都是此向量组的线性组合.⑦向量组1, 2, , n 线性相关向量组中至少有一个向量可由其余n 1个向量线性表示.向量组1, 2 , , n 线性无关向量组中每一个向量i 都不能由其余n 1个向量线性表示.⑧m维列向量组1, 2 , , n 线性相关r(A) n;m 维列向量组1, 2 , , n 线性无关r (A) n .⑨若1, 2 , , n 线性无关,而1, 2, , n , 线性相关,则可由1, 2, , n 线性表示, 且表示法唯一.⑩矩阵的行向量组的秩列向量组的秩矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零. 当非零行的第一个非零元为行阶梯形矩阵可画出一条阶梯线,线的下1,且这些非零元所在列的其他元素都是0时,称为行最简形矩阵? 矩阵的行初等变换不改变矩阵的秩, 且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩, 且不改变行向量间的线性关系.即:矩阵的初等变换不改变矩阵的秩.6√矩阵的初等变换和初等矩阵的关系:对A施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A;对A施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .矩阵的秩如果矩阵 A 存在不为零的r 阶子式,且任意r 1阶子式均为零,则称矩阵A的秩为r . 记作r ( A) r向量组的秩向量组1, 2 , , n的极大无关组所含向量的个数,称为这个向量组的秩. 记作r( 1 , 2 , , n)矩阵等价A经过有限次初等变换化为 B . 记作: A B向量组等价1, 2, , n 和1, 2 , , n 可以相互线性表示.记作:1, 2, , n 1, 2, , n? 矩阵A与B 等价PAQ B ,P,Q 可逆r (A) r (B), A, B为同型矩阵A, B作为向量组等价, 即:秩相等的向量组不一定等价.矩阵A与B 作为向量组等价r( , , , n) r( , , , n) r ( 1, 2, n, 1 , 2 , , n )1 2 1 2矩阵A与B 等价.? 向量组1, 2, , s 可由向量组1, 2, , n 线性表示A X B 有解r ( 1, 2, , n )= r ( 1, 2, n, 1, 2 , , s ) r( 1, 2 , , s ) ≤r( 1, 2 , , n) . ? 向量组1, 2, , s 可由向量组1, 2, , n 线性表示,且s n,则1, 2 , , s 线性相关.向量组1, 2, , s 线性无关, 且可由1, 2, , n 线性表示,则s≤n .? 向量组1, 2, , s 可由向量组1, 2, , n 线性表示,且r ( 1 , 2, , s ) r( 1, 2 , , n ) , 则两向量组等价;p教材94,例10? 任一向量组和它的极大无关组等价. 向量组的任意两个极大无关组等价.7? 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定.? 若两个线性无关的向量组等价, 则它们包含的向量个数相等.?设A是m n矩阵, 若r ( A) m,A的行向量线性无关;若r ( A) n ,A的列向量线性无关, 即:1, 2 , , n 线性无关. √矩阵的秩的性质:r A r A r A A p教材101,T T①若A O r (A) ≥ 1 若A O r( A) 0 0≤r( A) ≤min( m, n) ②( ) ( ) ( )m n 例15③r (kA) r (A) 若k 0④若A , B ,若r( A B) 0m n n s r( A) r (B) nB的列向量全部是Ax 的解⑤r ( AB) ≤min r ( A), r (B)⑥若A可逆r ( AB) r (B)若B可逆r AB r A( ) ( )即:可逆矩阵不影响矩阵的秩.Ax只有零解⑦若r (A m n) nr ( AB) r (B)A在矩阵乘法中有左消去律AB O B O AB AC B C;若r (B ) nn s r ( AB) r (B)B在矩阵乘法中有右消去律.8E O E Or r⑧( )若r A r A与唯一的等价,称为矩阵A的等价标准型.O O O O⑨r (A B) ≤r (A) r (B) max r ( A), r (B) ≤r(A,B) ≤r (A) r (B) p教材70A O O A⑩r r (A) r(B) O B B OA Cr r (A) r(B)O B当为方阵时AAx 有无穷多解 A 0n表示法不唯一, , , 线性相关0有非零解Ax 1 2 n可由, , , 线性表示Ax 有解r (A) r (A )1 2 n A当为方阵时Ax 有唯一组解 A 0 克莱姆法则n表示法唯一, , , 1 2线n性无关只有零解Axr (A) r (A )不可由, , , 线性表示Ax 无解r (A) r( A)1 2 n教材72r (A) 1 r ( A )讲义87Ax有无穷多解其导出组有非零解○注:Ax有唯一解其导出组只有零解式Ax 向量式x x x阵线性方程组的矩1 12 2 n n9a a a x b11 12 1n 1 11 ja a a x b21 22 2n 2 2A , x , j2 j, ,2, ,j 1 na a a x bm1 m 2 mn n mmjx1( , , , n)1 2 x 2 x nT T T T T T T 矩阵转置的性质:( A ) A ( AB) B A ( k A) kATT T TA A (A B) A B1 T T 1 T T(A ) (A ) ( A ) ( A )矩阵可逆的性质: 1 1( A ) A1 1 1( AB) B A1 1 1( k A) k A1A A1 1 1 1(A B) A B1 k k 1 k(A ) (A ) A伴随矩阵的性质:n 2( A ) A A ( AB) B A n 1( k A) k A A An 1 * * *(A B) A B1 1( ) ( ) AA A ( ) ( )k kA AAn r(A) n若r(A ) 1 r(A) n 1若AB A B nkA k AkkA A AB A B AA A A A E (无条件恒成立)0 r(A) n 1若10(1) , 是Ax 的解, 也是它的解1 2 1 2(2) 是Ax 的解,对任意k, k 也是它的解齐次方程组(3) , , , 是Ax 的解, 对任意k个常数1 2 k, , , , 也是它的解1 2 k 1 1 2 2 k k线性方程组解的性质:(4) , ,是Ax 的解是其导出组Ax 的解是Ax 的解(5) , Ax , Ax是的两个解是其导出组的解 12 1 2(6 ) Ax , Ax是的解则也是它的解是其导出组的解2 1 1 2(7) , , , Ax ,是的解则 1 2k也是的解Ax1 12 2 k k 1 2 k1是的解Ax 0 0 1 1 2 2 k k1 2 k√设A为m n矩阵, 若r (A) m r (A) r ( A ) Ax 一定有解,当m n 时, 一定不是唯一解方程个数未知数的个数向量维数向量个数, 则该向量组线性相关.m 是r ( A)和r (A ) 的上限.√判断1, 2, , s 是Ax 的基础解系的条件:①1, 2, , s 线性无关;②1, 2, , s 都是Ax 的解;③s n r (A) 每个解向量中自由未知量的个数.√一个齐次线性方程组的基础解系不唯一.√若是Ax 的一个解,1, , , s 是Ax 的一个解1, , , s , 线性无关√Ax 与Bx 同解(A,B 列向量个数相同), 则:①它们的极大无关组相对应, 从而秩相等;②它们对应的部分组有一样的线性相关性;③它们有相同的内在线性关系.A.√两个齐次线性线性方程组Ax 与Bx 同解r r ( A) r (B)BA. √两个非齐次线性方程组Ax 与Bx 都有解,并且同解r r (A) r(B)B11√矩阵A与B l n 的行向量组等价齐次方程组Ax 与Bx 同解PA B (左乘可逆矩阵P );m n p教材101矩阵A m n 与B l n 的列向量组等价AQ B (右乘可逆矩阵Q ) .√关于公共解的三中处理办法:①把(I) 与(II) 联立起来求解;②通过(I) 与(II) 各自的通解,找出公共解;当(I) 与(II) 都是齐次线性方程组时,设1 , 2, 3 是(I) 的基础解系, 4, 5 是(II) 的基础解系,则(I) 与(II) 有公共解基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:r ( , , ) r( , , c c )1 2 3 1 2 3 1 4 2 5当(I) 与(II) 都是非齐次线性方程组时,设1c1 1 c2 2 是(I) 的通解, 2 c3 3 是(II) 的通解,两方程组有公共解2c3 3 1 可由 1 , 2线性表示. 即:r( 1, 2) r ( 1, 2 2 c3 3 1)③设(I) 的通解已知,把该通解代入(II) 中,找出(I) 的通解中的任意常数所应满足(II) 的关系式而求出公共解。

线性代数公式大全

线性代数公式大全

⎛ a11 a12 L a1n ⎞⎛ x1 ⎞ ⎛ b1 ⎞
②、
⎜ ⎜
a21
a22
L
a2 n
⎟⎜ ⎟⎜
x2
⎟ ⎟
=
⎜ ⎜
b2
⎟ ⎟

Ax
=
b (向量方程,
A为m×n
矩阵,
m
个方程,
n 个未知数)
⎜ M M O M ⎟⎜ M ⎟ ⎜ M ⎟
⎜ ⎝ am1
am2
L
⎟⎜ ⎟ amn ⎠⎝ xm ⎠
⎜⎟ ⎝ bm ⎠
1
⇔ A 的特征值全不为 0;
⇔ AT A 是正定矩阵;
⇔ A 的行(列)向量组是 Rn 的一组基;
⇔ A 是 Rn 中某两组基的过渡矩阵;
2. 对于 n 阶矩阵 A : AA* = A* A = A E 无条件恒成立;
3. ( A−1)* = ( A*)−1 ( AB)T = BT AT
( A−1)T = ( AT ) −1 ( AB)* = B* A*
O O
⎞ ⎟ ⎠m×
n

等价类:所有与 A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;
对于同型矩阵 A 、 B ,若 r(A) = r(B) ⇔ A B ;
2. 行最简形矩阵: ①、只能通过初等行变换获得;
②、每行首个非 0 元素必须为 1;
③、每行首个非 0 元素所在列的其他元素必须为 0;
A1−1
Ⅱ、
A−1
=
⎜ ⎜
A2−1
O
⎞ ⎟
⎟; ⎟
⎜⎜⎝
As−1 ⎟⎟⎠
②、
⎛ ⎜ ⎝
A O

线性代数重要公式

线性代数重要公式

线性代数重要公式在线性代数中,有许多重要的公式和定理,它们在解决线性方程组、矩阵运算、向量空间等问题中起到了关键作用。

接下来我们将介绍一些线性代数中的重要公式。

1.矩阵乘法的结合律:对于任意矩阵A、B和C,满足大小相容时,有(A·B)·C=A·(B·C)。

2.矩阵乘法的分配律:对于任意矩阵A、B和C,满足大小相容时,有A·(B+C)=A·B+A·C。

3.矩阵的转置:对于任意矩阵A,有(A^T)^T=A,其中A^T表示A的转置矩阵。

4.矩阵的转置与乘法:若A和B是满足乘法规则的矩阵,那么有(A·B)^T=B^T·A^T。

5.矩阵的逆:对于n阶方阵A,若存在逆矩阵A^-1,使得A·A^-1=A^-1·A=I,那么称A是可逆矩阵。

6.矩阵的伴随矩阵:对于n阶方阵A,将其每个元素的代数余子式组成的矩阵A*称为A的伴随矩阵。

7.克拉默法则:对于n个线性方程和n个未知数的线性方程组,如果行列式的值不为0,则该方程组存在唯一解,可以通过克拉默法则求解。

8.行列式的性质:-互换行列式的两行(列),行列式的值变号;-将行列式的行(列)乘以一个非零常数k,行列式的值变为原来的k 倍;-将行列式的行(列)加上另一行(列)的k倍,行列式的值不变。

9.矩阵的行列式和转置:对于矩阵A,有,A^T,=,A。

10.矩阵的秩:对于任意矩阵A,定义A的秩为矩阵A的行或列向量组的最大线性无关组中所含向量的个数。

11.矩阵的特征值和特征向量:对于n阶矩阵A,如果存在非零向量x,使得Ax=λx,其中λ是常数,那么称λ为矩阵A的特征值,x为对应的特征向量。

12.特征多项式和特征方程:对于n阶矩阵A,定义特征多项式为f(λ)=,λI-A,其中I为n阶单位矩阵。

将特征多项式f(λ)=0得到的方程称为特征方程。

13.矩阵的相似:对于n阶矩阵A和B,如果存在可逆矩阵P,使得P^-1AP=B,则称A 和B是相似的。

《线性代数》公式大全

《线性代数》公式大全

《线性代数》公式大全线性代数是数学中的一个分支,研究向量、矩阵和线性方程组等相关概念和性质。

它是现代数学和应用科学的基础,广泛应用于物理学、工程学、计算机科学等领域。

本文将介绍线性代数中的基本概念和相关公式。

1.向量的定义和运算:向量是有方向和大小的量,可以用有序数对或者列矩阵来表示。

设有向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量的运算包括:- 向量的加法:a + b = (a1 + b1, a2 + b2, ..., an + bn)- 向量的减法:a - b = (a1 - b1, a2 - b2, ..., an - bn)- 数乘:k * a = (k * a1, k * a2, ..., k * an)2.向量的模和单位向量:向量的模表示向量的长度,记作,a,计算公式为:,a, =sqrt(a1² + a2² + ... + an²)。

单位向量表示模为1的向量,计算公式为:u=a/,a。

3.内积和外积:内积也叫点积或数量积,计算公式为:a·b = a1 * b1 + a2 * b2+ ... + an * bn。

外积也叫向量积或叉积,计算公式为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)。

4.矩阵的定义和运算:矩阵是按照行列排列的矩形阵列,可以用方括号表示。

设有矩阵A和B,则矩阵的运算包括:-矩阵的加法:A+B=[a11+b11,a12+b12,...,a1m+b1m;a21+b21,a22+b22,...,a2m+b2m;...] -矩阵的减法:A-B=[a11-b11,a12-b12,...,a1m-b1m;a21-b21,a22-b22,...,a2m-b2m;...]-数乘:k*A=[k*a11,k*a12,...,k*a1m;k*a21,k*a22,...,k*a2m;...] -矩阵的乘法:A*B=[c11,c12,...,c1n;c21,c22,...,c2n;...]其中,cij = a(i1) * b(1j) + a(i2) * b(2j) + ... + a(im) *b(mj),a(ij)为矩阵A的第i行第j列元素。

线性代数公式必背 完整归纳清晰版

线性代数公式必背 完整归纳清晰版

线性代数必背公式(完全整理版)2010.41、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A CA B C B O B==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nm n mmm m r nr r n nn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数公式定理总结

线性代数公式定理总结

线性代数公式定理总结线性代数是一门研究向量空间及其线性映射与线性变换的数学学科,涉及了许多重要的公式和定理。

本文将对线性代数中的关键公式和定理进行总结,以帮助读者更深入地理解线性代数的基本概念和原理。

一、向量的基本性质和运算公式1. 向量空间的定义:向量空间是一个基于域上的向量集合,在满足一定性质(如封闭性、加法交换律等)的条件下进行线性组合和标量乘法运算。

2. 向量的加法和数乘:对于向量a和b,有加法公式a+b=b+a和数乘公式c(a+b) = ca + cb。

3. 零向量的性质:对于任意向量a,有a + 0 = a,其中0为零向量。

4. 向量的负向量:对于向量a,存在一个向量-b使得a + (-b) = 0。

5. 向量的数量积:向量a和b的数量积(内积)表示为a·b =||a|| ||b|| cosθ,其中||a||和||b||分别为向量a和b的模长,θ为a和b之间的夹角。

6. 内积的性质:内积满足加法性、齐次性、对称性和正定性等性质,如对于向量a,b和c,有a·(b + c) = a·b + a·c。

二、线性方程组和矩阵运算公式1. 线性方程组的标准形式:线性方程组可以表示为AX = B的形式,其中A为系数矩阵,X为未知变量向量,B为常数向量。

2. 线性方程组的解的存在性和唯一性:线性方程组的解存在并且唯一当且仅当系数矩阵A的秩等于常数向量B的秩。

3. 矩阵的乘法和转置:对于矩阵A和B,有乘法公式AB ≠ BA,矩阵转置的性质(A^T)^T = A和(AB)^T = B^T A^T。

4. 逆矩阵的性质:对于方阵A,若存在逆矩阵A^{-1}使得AA^{-1} = A^{-1}A = I,其中I为单位矩阵,则称A为可逆矩阵。

5. 逆矩阵的求解:对于方阵A,若A可逆,则可以使用伴随矩阵求解逆矩阵A^{-1} = (1/ det(A)) adj(A)。

6. 矩阵的行列式和性质:矩阵的行列式表示为det(A),满足交换行列式的值不变、对角矩阵的行列式等于对角线元素的乘积等性质。

线性代数性质定理公式全总结-3

线性代数性质定理公式全总结-3

√ 初等矩阵的性质:√ 设1110()m m m m f x a x a x a x a--=++++ ,对n 阶矩阵A 规定:1110()m m m m f A a A aA a A a E --=++++ 为A 的一个多项式.√ 1231122,T A mm k kAa b aA bE A A A A A Aλλλλλλλλλλλ-*⎧⎪++⎪⎪⎨= 是的特征值则:分别有特征值 .⎪⎪⎪⎪⎪⎩√ 1231122,A mm k kAa b aA bEAx A x A A A λλλλλλλλλλ-*⎧⎪++⎪⎪⎪⎨=⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. √ 2,mA A 的特征向量不一定是A 的特征向量. √ A 与TA 有相同的特征值,但特征向量不一定相同.1P AP B -= (P 为可逆矩阵) 记为:A B 1P AP B -= (P 为正交矩阵)A 与对角阵Λ相似. 记为:A Λ(称Λ是A√ A 可相似对角化⇔()i i n r E A k λ--= i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121212112212(,,,)(,,,)(,,,)(,,,)n n n n n n PPA A A A λλααααααλαλαλααααλΛ⎛⎫⎪⎪===⎪ ⎪⎝⎭. ○注:当i λ=0为A 的重的特征值时,A 可相似对角化⇔iλ的重数()n r A =-= Ax ο=基础解系的个数. √ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化.√ 若A 可相似对角化,则其非零特征值的个数(重根重复计算)()r A =.√ 若A Λ ⇒k A =1k P P -Λ,1211()()()()()n g g g A Pg P P P g λλλ--⎛⎫⎪⎪=Λ= ⎪ ⎪⎝⎭ √ 相似矩阵的性质:①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ②A B =tr tr③A B = 从而,A B 同时可逆或不可逆 ④()()r A r B =⑤TTA B ;11A B -- (若,A B 均可逆);**A B ⑥kkA B (k 为整数);()()f A f B ,()()f A f B =⑦,A BA B C D C D ⎛⎫⎛⎫⇒ ⎪⎪⎝⎭⎝⎭○注前四个都是必要条件. √ 数量矩阵只与自己相似. √ 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③一定有n 个线性无关的特征向量.若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--;④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥两个实对称矩阵相似⇔有相同的特征值.TAA E =√ A 为正交矩阵⇔A 的n 个行(列)向量构成n的一组标准正交基.√ 正交矩阵的性质:① 1T A A -=;② TTAA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.1211(,,,)n nTn ij iji j f x x x x Ax a x x====∑∑ ij ji a a =,即A 为对称矩阵,12(,,,)T n x x x x =T C AC B =. 记作:A B (,,A B C 为实对称矩阵为可逆矩阵)二次型的规范形中正项项数p r p -2p r - (r 为二次型的秩)√ 两个矩阵合同⇔它们有相同的正负惯性指数⇔他们的秩与正惯性指数分别相等. √ 两个矩阵合同的充分条件是:A B √ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x x Ax = 经过正交变换合同变换可逆线性变换x Cy =化为21ni i f d y =∑√ 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由()r A +正惯性指数负惯性指数唯一确定的.√ 当标准形中的系数i d 为-1或0或1时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 惯性定理:任一实对称矩阵A与唯一对角阵111100⎛⎫⎪⎪⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎪ ⎪ ⎪⎪⎝⎭合同. √ 用正交变换化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量正交规范化;③ 构造C (正交矩阵),作变换x Cy =,则1112221()()TT T T Tn n n y d y y d y Cy A Cy y C ACY y C ACY y d y -⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪⎪⎪=== ⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭④ 新的二次型为21ni i f d y =∑,Λ的主对角上的元素i d 即为A 的特征值.123,,ααα线性无关,112122111313233121122(,)(,)(,)(,)(,)(,)βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ=222βηβ= 333βηβ= 技巧:取正交的基础解系,跳过施密特正交化。

(完整版)线性代数公式大全

(完整版)线性代数公式大全

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数重要公式定理大全

线性代数重要公式定理大全

线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。

在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。

在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。

下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。

一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。

2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。

(2)行列式相邻行(列)对换,行列式的值不变。

(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。

(4)互换行列式的两行(列),行列式的值不变。

(5)若行列式的行(列)的元素都是0,那么行列式的值为0。

(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。

3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。

(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。

(3)行列式的转置等于行列式的值不变。

二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。

线性代数公式总结

线性代数公式总结

线性代数公式总结线性代数是数学中的一个分支,主要研究向量、向量空间、矩阵、线性方程组等概念和性质。

线性代数公式总结如下:1.向量加法和标量乘法:- 向量加法:如果u和v是n维向量,则它们的和为u + v = (u1 + v1, u2 + v2, ..., un + vn)- 标量乘法:如果k是一个实数,则k乘以向量v的结果为kv = (k*v1, k*v2, ..., k*vn)2.线性方程组:-n个未知数的线性方程组可以用矩阵和向量表示:Ax=b,其中A是一个m×n的矩阵,x是一个n维列向量,b是一个m维列向量。

- 如果Ax = b有唯一解,则A的行列式不为零。

行列式表示为det(A)。

-矩阵的逆:如果矩阵A的行列式不为零,则存在矩阵A的逆矩阵A^-1,使得AA^-1=A^-1A=I,其中I是单位矩阵。

3.向量空间和线性无关性:- 向量空间是指由向量的线性组合构成的集合,满足以下性质:对于任意的向量u和v以及任意的标量k和l,ku + lv仍然在向量空间内。

- 向量v1, v2, ..., vn是线性无关的,如果方程k1v1 + k2v2+ ... + knvn = 0只有零解。

- 如果一组向量v1, v2, ..., vn张成一个向量空间V,则称这组向量是V的基。

4.矩阵的运算:- 矩阵的加法:如果A和B是相同大小的矩阵,则它们的和为A + B = (aij + bij),其中aij和bij分别是矩阵A和B对应位置的元素。

- 矩阵的乘法:如果A是m×n的矩阵,B是n×p的矩阵,它们的乘积为C = AB,其中C是m×p的矩阵,其中C的元素cij可以表示为cij= Σ(k=1 to n) aikbk,其中aik是矩阵A的元素,bk是矩阵B的元素。

5.特征值和特征向量:-如果矩阵A乘以向量v得到一个与v方向相同的向量,那么v是A的特征向量,对应的乘积结果是特征值λ,即Av=λv。

(完整版)线性代数公式大全

(完整版)线性代数公式大全

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数性质公式整理

线性代数性质公式整理

线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里是1,2,···n的一个排列。

当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。

式(1.1)称为n阶行列式的完全展开式。

2.逆序与逆序数——一个排列中,假如一个大的数排列在小的数之前,就称这两个数构成一个逆序。

一个排列的逆序总是称为这个排列的逆序数。

用表示排列的逆序数。

3.偶排列与奇排列——假如一个排列的逆序数是偶数,那么称这个排列为偶排列,否那么称为奇排列。

阶与3阶行列式的展开——,5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为的余子式,记为;称为的代数余子式,记为,即。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。

二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。

2.两行互换位置,行列式的值变号。

特别地,两行一样(或两行成比例),行列式的值为0.3.某行如有公因子k,那么可把k提出行列式记号外。

4.假如行列式某行(或列)是两个元素之和,那么可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:假如A和B分别是m阶和n阶矩阵,那么4.范德蒙行列式5.抽象n阶方阵行列式公式(矩阵)假设A、B都是n阶矩阵,是A的伴随矩阵,假设A可逆,是A的特征值:;;|AB|=|A||B|;;;;假设,那么,且特征值一样。

线性代数公式必背_完整归纳清晰版

线性代数公式必背_完整归纳清晰版

线性代数必背公式(完全整理版)2010.41、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数公式定理大全(精简版)

线性代数公式定理大全(精简版)
1 2 3 4 5 6 7
零向量是任何向量的线性组合,零向量与任何同维实向量正交. 单个零向量线性相关;单个非零向量线性无关. 部分相关,整体必相关;整体无关,部分必无关. 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. 两个向量线性相关 对应元素成比例;两两正交的非零向量组线性无关. 向量组 1 , 2 , , n 中任一向量 i (1 ≤ i ≤ n) 都是此向量组的线性组合. 向量组 1 , 2 , , n 线性相关 向量组中至少有一个向量可由其余 n 1 个向量线性表示.
1
1
b a 1 an A2 1
AT A B T C D B
T
CT DT a2 an a1
1
a2
a11
1 a2
1 a1
伴随矩阵的性质: ( A ) A

n2
A
( AB) பைடு நூலகம் A


(kA) k

n 1
A

A A

n 1
( A1 ) ( A ) 1 (A ) (A )
T T
√ 矩阵方程的解法:设法化成(I)AX B 当 A 0 时,
初等行变换 (I)的解法:构造(A B) (E X )
(当B为一列时, 即为克莱姆法则)
(II)的解法:将等式两边转置化为AT X T BT , 用(I)的方法求出X T,再转置得X
√ Ax 和 Bx 同解( A, B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断1 , 2 , , s 是 Ax 0 的基础解系的条件: ① 1 , 2 , , s 线性无关; ② 1 , 2 , , s 是 Ax 0 的解; ③ s n r ( A) 每个解向量中自由变量的个数 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里 是1,2,·n的一个排列。

当 是偶排列时,该项的前面带正号;当 是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。

式(1.1)称为n阶行列式的完全展开式。

2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。

一个排列的逆序总是称为这个排列的逆序数。

用 表示排列 的逆序数。

3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。

4.2阶与3阶行列式的展开—— ,5.余子式与代数余子式——在n阶行列式中划去 所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为 的余子式,记为 ;称为 的代数余子式,记为 ,即 。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作 。

二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。

2.两行互换位置,行列式的值变号。

特别地,两行相同(或两行成比例),行列式的值为0.3.某行如有公因子k,则可把k提出行列式记号外。

4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则4.范德蒙行列式5.抽象n阶方阵行列式公式 (矩阵)若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:;; |AB|=|A||B|;;;;若 ,则,且特征值相同。

一般情况下:五、行列式的计算1.数字型行列式将行列式化为上下三角,再按行或列展开;化简技巧:①将每列(行)都加到同一列(行),或者将每列(行)k i倍都加到同一列(行)。

②逐行(或逐列)相加③利用范德蒙公式或特殊的拉普拉斯展开式数学归纳法——①验证n=1时命题正确;假设n=k时命题正确;证明n=k+1时,命题正确。

②验证n=1和n=2时命题都正确,假设n<k命题正确,证明n=k,命题正确。

③对于n阶的三对角行列式,通常可用数学归纳法。

2.抽象型行列式——通常与矩阵一起考,利用行列式的性质(倍加、提公因数k、拆项)等来恒等变形;也可能利用矩阵的运算、公式、法则、特征值、相似。

☆利用单位矩阵恒等变形来计算|A+B|形式的行列式。

3.行列式|A|是否为0的判定若A=[]是n阶矩阵,那么③看特征值是否为0;④反证法;⑤若|A|=k|A|,且k≠1时也能得出|A|=04.代数余子式求和①按定义直接计算求和;②用行列式的按行或列展开的公式。

由于 的值与 的值没有关系,故可以构造一个新的行列式|B|,通过求新行列式的代数余子式间接求出原行列式的代数余子式。

P205例20③利用行列式任一行元素与另一行元素的代数余子式乘积之和为0的性质④根据伴随矩阵的定义,通过求再来求和。

第二章矩阵一、矩阵的概念及运算矩阵——m×n个数排成如下m行n列的一个表格称为是一个m×n矩阵,当m=n时,矩阵A称为n阶矩阵或n阶方阵。

如果一个矩阵所有元素都是0,则称为零矩阵,记作O。

两个矩阵 , ,如果m=s,n=t,则称A与B是同型矩阵两个同型矩阵如果对应的元素都相等,则称矩阵A与B相等,记作A=B。

矩阵A是一个表格,而行列式|A|是一个数。

二、矩阵的运算1.(加法)设A、B是同型矩阵,则2.(数乘)3.(乘法)若A为m×s矩阵,B为s×n矩阵,则A、B可乘,且乘积AB是一个m×n矩阵。

记成 ,其中4.转置将矩阵A的行列互换得到矩阵A的转置矩阵三、矩阵的运算规则ABC为同型矩阵,则1.加法—— ;; ;2.数乘—— ;;;;3.乘法 ABC满足可乘条件; ;注意一般情况下 不能推出 或且,不能推出对角矩阵对角矩阵的逆矩阵4.转置——;;;5.伴随矩阵——; ;;;;;6.方阵的幂——,注意7.特殊方阵的幂 (求 )——①若秩 ,则可以分解为两个矩阵的乘积,有 ,从而例如P218②特殊的二项式展开③分块矩阵④特征值、特征向量、相似⑤简单试乘后如有规律可循,再用归纳法。

四、特殊矩阵设A是n阶矩阵:①单位阵:主对角元素为1,其余元素为0,记成 或②数量阵:数k与单位矩阵E的积kE称为数量矩阵。

③对角阵:非对角元素都是0的矩阵称为对角阵,记成 。

, ,,④上(下)三角阵:当 时,有 的矩阵称为上(下)三角阵。

⑤对称阵:满足 ,即 的矩阵称为对称阵⑥反对称阵:满足 ,即 , 的对称阵称为反对称阵。

⑦正交阵: 的矩阵称为正交阵,即⑧初等矩阵:单位矩阵经过一次初等变换所得到的矩阵。

⑨伴随矩阵:见(一.1.6)五、可逆矩阵1.主要定理:若A可逆则A的逆矩阵唯一且|A|不为0。

行列式不为0则矩阵可逆。

2.概念——设A是n阶方阵如果存在n阶矩阵B使得 成立,则称A是可逆矩阵或非奇异矩阵,B是A的逆矩阵,记成3.可逆的充要条件——①存在n阶矩阵B使得AB=E② ,或秩r(A)=n,或A的列(行)向量线性无关③齐次方程组Ax=0只有零解④矩阵A的特征值不全为04.逆矩阵的运算性质——若 ,则若A,B可逆,则;特别地若可逆,则; ;注意,即使A,B,A+B都可逆,一般地5.求逆矩阵的方法——①若 ,则行初等变换②初等变换③用定义求B,使得AB=E或BA=E,则A可逆且④分块矩阵,设B,C都可逆,则;六、初等变换、初等矩阵1.主要结论:用初等矩阵P左乘A,所得PA矩阵就是矩阵A做了一次和矩阵P同样的行变换;若是右乘就是相应的列变换。

2.初等变换——设A是 矩阵,(倍乘)用某个非零常数 乘 的某行(列)的每个元素,(互换)互换A的某两行(列),(倍加)将A的某行(列)元素的k倍加到另一行(列)。

称为初等变换。

3.初等矩阵——由E经过一次初等变换所得的矩阵倍乘初等矩阵互换初等矩阵倍加初等矩阵4.等价矩阵——矩阵A经过有限次初等变换变成矩阵B,则称A与B等价,记成 。

若,则后者称为A的等价标准形。

(A的等价标准型是与A等价的所有矩阵中的最简矩阵。

)5.初等矩阵与初等变换的性质——①初等矩阵的转置仍然是初等矩阵;②初等矩阵均是可逆矩阵且其逆矩阵仍是同一类型的初等矩阵,,③左行右列④当A时可逆矩阵时,则A可作一系列初等行变换成单位矩阵,即存在初等矩阵 ,,·,,使得七、矩阵的秩1.求秩的主要方法:经过初等变换矩阵的秩不变;如果A可逆,则 ,2.矩阵的秩——设A是m×n矩阵,若A中存在r阶子式不等于0,且所有r+1阶子式均为0,则称矩阵A的秩为r,记成r(A),零矩阵的秩规定为0。

3.矩阵的秩的性质——矩阵A中非零子式的最高阶数是rA中每一个r阶子式全为0A中有r阶子式不为0特别地, ;若A是n阶矩阵, 可逆不可逆若A是m×n矩阵,则4.矩阵的秩的公式——;当 时, ;;若A可逆,则 ,若A是m×n矩阵,B是n×s矩阵,AB=O,则分块矩阵 。

八、分块矩阵1.概念——将矩阵用若干纵线和横线分成许多小块,每一小块称为原矩阵的子矩阵(或子块),把子块看成原矩阵的一个元素,则原矩阵叫分块矩阵。

由于不同的需要,同一个矩阵有不同的方法分块,可以行分块,以列分块等。

2.分块矩阵的运算——对矩阵适当地分块处理(要保证相对应子块的运算能够合理进行),就有如下运算法则:若B,C分别是m阶与s阶矩阵,则,若B,C分别是m阶与s阶可逆矩阵,则,若A是m×n矩阵,B是n×S矩阵且AB=O,对B和O矩阵按列分块有即B的列向量是齐次方程组 的解。

线性表出P214第三章、向量一、n维向量的概念与运算1.n维向量——n个有序数组 所构成的一个有序数组成为n维向量,记成或,分别称为n维行向量或n维列向量,数 称为向量的第i个分量。

2.零向量——所有分量都是0的向量称为零向量,记为03.相等——n维向量与维向量相等,即4.运算—— n维向量与(加法),,(数乘),,,(内积),称为向量的长度。

, ,等号成立当且仅当。

特别地,如 ,则称与正交二、线性表出、线性相关1.线性组合——m个n维向量及m个数 所构成的向量称为向量组的一个线性组合,数 称为组合系数。

2.线性表出——①对n维向量和,如果存在实数 ,使得则称向量是向量的线性组合,或者说向量可由线性表出。

②设有两个n维向量组(Ⅰ);(Ⅱ);如果(Ⅰ)中每个向量都可由(Ⅱ)中的向量线性表出,则称向量组(Ⅰ)可由向量组(Ⅱ)线性表出。

如果(Ⅰ) 、(Ⅱ)这两个向量组可以互相线性表出,则称这两个向量组等价。

等价向量组具有传逆性、对称性、反身性。

向量组和它的极大线性无关组是等价向量组。

向量组的任意两个极大无关组是等价向量组。

等价的向量组有相同的秩,但秩相等的向量组不一定等价。

3.线性相关、无关——对于n维向量,如果存在不全为零的数 ,使得则称向量组线性相关,否则称它线性无关。

关于线性无关,只要 不全为零,必有 ,或者,当且仅当 时,才有显然,含有:零向量,相等向量,坐标成比例的向量组都是线性相关的,而阶梯形向量组一定是线性无关的。

证明:证明线性无关通常的思路是:用定义法(同乘或拆项重组),用秩(秩等于向量个数则线性无关),齐次方程组只有零解或反证法。

4.重要定理——①n维向量组线性相关齐次方程组有非零解秩②n个n维向量线性相关行列式③ 个n维向量必线性相关。

④如果线性相关,则必线性相关。

⑤如果n维向量组线性无关,则它的延伸组必线性无关。

⑥n维向量可由线性表出非齐次方程组有解秩⑦向量组线性相关至少有一个向量由其余s-1个向量线性表出。

⑧向量组线性无关,而向量组向量组线性相关,则向量可由线性表出,且表示方法唯一。

⑨设有两个n维向量组(Ⅰ);(Ⅱ),如果向量组(Ⅰ)可由向量组(Ⅱ)线性表出,且 ,则必线性相关。

若n维向量组可由线性表出,且线性无关,则三、极大线性无关组、秩1.概念——设向量组中,有一个部分组,满足条件①线性无关;②再添加任一向量,向量组必线性相关;(向量组中任何一个向量必可由线性表出)则称向量组是向量组的一个极大线性无关组。

注:只有一个零向量构成的向量组没有极大线性无关组。

相关文档
最新文档