大学数学线性代数知识点
线性代数知识点全归纳
线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
线性代数知识点总结
大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
大一线性代数必考知识点
大一线性代数必考知识点线性代数是大一学生学习的一门重要的数学课程。
掌握线性代数的基础知识对于后续学习高等数学、概率论、统计学等学科都非常重要。
接下来,本文将介绍大一线性代数必考的知识点,以帮助大一学生有效备考。
一、向量和矩阵1. 向量的概念和运算:向量的定义、数量积、向量的代数运算等。
2. 矩阵的概念和运算:矩阵的定义、矩阵的乘法、矩阵的转置和逆等。
3. 向量和矩阵的性质:向量和矩阵的加法和乘法满足的性质,线性相关和线性无关的概念等。
二、线性方程组1. 线性方程组的概念和解法:齐次线性方程组和非齐次线性方程组的定义、高斯消元法、矩阵的秩等。
2. 向量空间和子空间:向量空间的定义、子空间的定义、线性无关组和基、维数的概念等。
三、特征值和特征向量1. 特征值和特征向量的定义:特征值和特征向量的概念和基本性质等。
2. 对角化和相似矩阵:对角化的概念、相似矩阵的性质等。
四、内积空间和正交性1. 内积的定义和性质:内积的定义、内积的基本性质等。
2. 正交向量和正交投影:正交向量的定义、正交投影的概念等。
五、线性变换1. 线性变换的定义和基本性质:线性变换的定义、线性变换的基本性质等。
2. 线性变换的矩阵表示:线性变换与矩阵的关系、矩阵的相似和对角化等。
六、向量空间的维数和秩1. 向量空间的维数和秩的定义和性质:向量空间的维数的定义、秩的定义与性质等。
2. 雅可比矩阵和秩-零度定理:雅可比矩阵的定义和性质、秩-零度定理等。
这些是大一线性代数课程中必考的知识点,通过学习这些知识点,掌握了线性代数的基础知识,将能够更好地理解和应用其他数学知识,为今后的学习打下坚实的基础。
在备考过程中,建议多做习题和练习,加深对这些知识点的理解,并且理论联系实际,将其与实际问题进行结合,提高解决实际问题的能力。
祝大家在线性代数的学习中取得优异的成绩!。
大学数学线性代数知识点归纳总结
大学数学线性代数知识点归纳总结线性代数是数学的一个重要分支,广泛应用于各个领域。
作为大学数学的一门核心课程,线性代数为我们提供了一种处理线性方程组、矩阵运算和向量空间等数学工具和理论。
在这篇文章中,我将对大学数学线性代数的知识点进行归纳总结。
1. 向量与向量空间- 向量的定义和性质- 向量的线性组合与线性相关性- 向量空间的定义和基本性质- 子空间与超平面- 线性无关与基2. 线性方程组- 线性方程组的概念与解的存在唯一性- 矩阵形式与增广矩阵- 初等行变换与线性方程组的等价性- 齐次线性方程组与非齐次线性方程组- 线性方程组的解的结构3. 矩阵与矩阵运算- 矩阵的定义和性质- 矩阵的加法与数乘- 矩阵的转置与对称矩阵- 矩阵乘法与矩阵的秩- 逆矩阵与可逆矩阵4. 特征值与特征向量- 特征值与特征向量的定义 - 特征多项式与特征方程- 对角化与可对角化条件- 特征值与矩阵的相似性5. 线性变换与线性映射- 线性变换的基本性质- 线性变换矩阵与基变换- 线性变换的零空间与像空间 - 线性变换的维数定理6. 内积空间与正交性- 内积空间的定义和性质- 正交向量与正交补空间- 正交投影与最小二乘法- 施密特正交化过程7. 特殊矩阵与应用- 对角矩阵与对角化- 正交矩阵与正交对角化- 幂零矩阵与Jordan标准形- 应用:图像处理、数据压缩、网络分析等通过对以上知识点的整理和总结,我们对大学数学线性代数的学习有了更加清晰的认识。
线性代数的理论和方法在计算机科学、物理学、工程学等领域都有广泛的应用,了解和掌握线性代数知识对于我们的学术研究和职业发展都具有重要意义。
希望本文能帮助读者对线性代数有更深入的了解,并在实际应用中发挥作用。
大学数学易考知识点线性代数与概率论
大学数学易考知识点线性代数与概率论大学数学易考知识点:线性代数与概率论线性代数是大学数学中非常重要且基础的一门学科,它涉及到向量空间、矩阵、行列式、线性方程组等内容。
概率论则是研究随机事件发生的概率及其规律性的数学学科。
在大学数学考试中,线性代数与概率论是比较易于考察且知识点较为独立的部分。
本文将介绍大学数学考试中线性代数与概率论的一些常见易考知识点。
一、线性代数1. 向量空间与线性变换向量空间是线性代数的核心概念之一,在考试中常涉及到向量空间的基本性质、子空间、线性组合、线性相关性、线性无关性等内容。
此外,线性变换也是考察的重点,包括线性变换的定义、性质、矩阵表示及其相关定理等。
2. 矩阵与行列式矩阵是线性代数的重要工具,考试中经常涉及到矩阵的基本运算、特殊矩阵、矩阵的秩与逆等知识点。
行列式也是考试的常见题型,包括行列式的定义、性质、展开及其应用等内容。
3. 线性方程组与解空间线性方程组是线性代数的基本问题之一,考试中常涉及到线性方程组的求解、解的结构、解的个数等知识点。
此外,解空间也是考查的重点,包括零空间、列空间、行空间等相关概念及其性质。
4. 特征值与特征向量特征值与特征向量是线性代数中重要的概念,考试中常涉及到特征值与特征向量的定义、性质、求解、对角化等知识点。
矩阵的对角化定理也是考查的重点,需掌握其条件与应用。
二、概率论1. 随机变量与概率分布随机变量是概率论的基础,考试中常涉及到随机变量的定义、分类、概率分布、期望、方差等知识点。
常见的离散型随机变量包括二项分布、泊松分布等;常见的连续型随机变量包括均匀分布、正态分布等。
2. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要定理,考试中常涉及到大数定律的弱/强收敛形式、伯努利大数定律、切比雪夫大数定律等;中心极限定理的常见形式包括林德伯格-列维中心极限定理、中心极限定理的矩形式等。
3. 随机过程与马尔可夫链随机过程是概率论的重要内容,考试中常涉及到随机过程的定义、分类、马尔可夫性质等知识点。
大学数学知识点(微积分,线性代数)
线性代数知识点第一章 行列式1. 二阶、三阶行列式的计算*2. 行列式的性质(转置,换行,数乘,求和,数乘求和)3. 行列式展开(=D ,=0)4. 利用性质计算四、五阶行列式5. 克拉默法则解线性方程组及对方程组解的判定(分非齐次的和齐次的) 主要是行列式的计算第二章 矩阵1. 矩阵的定义、矩阵的行列式的定义及矩阵与行列式的区别2. 矩阵的运算(加减、数乘、乘法不满足交换律、转置、方阵的幂)3. 特殊的矩阵(对角、数量、单位矩阵、三角形矩阵、对称矩阵、分块矩阵)4. 矩阵的初等变换(三种)、行阶梯形、行最简形、标准形5. 逆矩阵的定义、运算性质6. 利用初等变换求逆矩阵及矩阵方程7. 矩阵的秩的概念及利用初等变换求矩阵的秩主要是矩阵的运算及逆矩阵和秩的求解第三章 线性方程组1. 线性方程组的求解(分非齐次的和齐次的)2. 线性方程组解的判定(分非齐次的和齐次的)3. N 维向量空间4. 向量间的线性关系a) 线性组合b) 线性相关与线性无关c) 极大无关组5. 线性方程组解的结构(分非齐次的和齐次的)主要是线性相关无关的判定及极大无关组、线性方程组的求解经济数学知识点第七章 无穷级数6. 无穷级数的概念:1231n n n uu u u u ∞==+++++∑7. 无穷级数的敛散性:部分和有极限——级数收敛8. 无穷级数的性质(和差、数乘、加减项、加括号、必要条件——通项不收敛于零)9. 正项级数收敛的基本定理——正项级数收敛的充分必要条件是:它的部分和数列n S 有界10. 常用判别法a) 比较判别法• 参考级数(p-级数、几何级数)• 推论(极限) b)比值判别法 c)根值判别法 • 不需要参考级数 • 与1比较(有时要结合比较判别法)——P285例9 11.交错级数:莱布尼茨定理 12.任意项级数 13.幂级数 a)幂级数的性质(和差、连续性、可积性、可导性——求和函数) b)收敛半径及收敛域 c)非特殊幂级数要结合换元法 14.泰勒公式和麦克劳林公式 15.泰勒级数和麦克劳林级数(条件) 16.函数的幂级数展开 a)直接法(泰勒级数法) b) 三种常用函数的泰勒展开式2111(,)2!!x n e x x x x n =+++++∈-∞+∞ 213511sin (1) (,)3!5!(21)!n n x x x x x x n +=-+-+-+∈-∞+∞+ 2311(1) (1,1)1n n x x x x x x=-+-++-+∈-+17. 函数的幂级数展开(间接法) – 利用已有的函数泰勒展开式 – 变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分 – 注意等式成立的范围 18.幂级数的应用举例 – 近似计算 19. 常用的泰勒公式01(1);1n n x x ∞==-∑01(2)(1);1n n n x x ∞==-+∑2201(3);1n n x x ∞==-∑0(4);!nx n x e n ∞==∑ 210(5)sin (1);(21)!n nn x x n +∞==-+∑10(6)ln(1)(1).1n n n x x n +∞=+=-+∑第八章 多元函数1. 空间解析几何简介2. 多(二)元函数的概念a) 定义域b) 二元函数的图象是一个曲面3. 二元函数的极限(方向任意)4. 二元函数的连续性及闭区间上连续函数的性质5. 二元函数的偏导数a) 偏导数的定义及计算b) 高阶偏导数c) 可微的必要条件、充分条件d) 二元函数的全微分e) 全微分在近似计算中的应用f) 复合函数的微分法(链式法则)g) 隐函数的微分法h) 二元函数的极值的必要条件、充分条件),(y x f 在点),(00y x 处是否取得极值的条件如下:(1)20B AC -<时具有极值, 当0<A 时有极大值, 当0>A 时有极小值; (2)20B AC ->时没有极值;(3)20B AC -=时可能有极值,也可能没有极值i) 条件极值及拉格朗日乘数法6. 二重积分a) 二重积分的定义及几何意义b) 二重积分的性质(数乘、和差、可加性、比较、长度、范围、中值) c) 二重积分的计算i. 积分顺序的交换ii. 化为累次积分第九章 微分方程与差分方程简介1. 微分方程的的概念2. 一阶微分方程——注意常数C 的选择a) 可分离变量的微分方程()()g y dy f x dx =、()()dy f x g y dx = b) 齐次微分方程()dy y f dx x= c) 一阶线性微分方程()()dy P x y Q x dx+= i. 一阶线性齐次方程()0dy P x y dx+= ii. 一阶线性非齐次方程()()dy P x y Q x dx+= 3. 几种二阶微分方程a) 22() d y f x dx=型的微分方程——两端连续两次积分即可 4. 差分方程。
线性代数知识点全面总结
矩阵
矩阵是线性代数的核心,矩阵的概念、运算及理论贯 穿线性代数的始终,对矩阵的理解与掌握要扎实深入。 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩 阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律, 了解方阵的幂与方阵乘积的行列式。正确理解逆矩阵的概 念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件, 理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。掌握矩阵 的初等变换,了解初等矩阵的性质和矩阵等价的概念,正 确理解矩阵的秩的概念,熟练掌握用初等变换求矩阵的秩 和逆矩阵的方法。了解分块矩阵及其运算。必须会解矩阵 方程。
三、重要公式
1、矩阵的秩 (1) R(A) = R(AT) ; (2) R(A+B) ≤ R(A) + R(B) (3) R(AB) ≤ min{ R(A) R(B)} (4) 若P、 Q可逆,则R(PA) = R(AQ) = R(PAQ)= R(A) R(A), k ≠ 0 , (5) R(kA) = 0 , k = 0; A 0 (6) R = R(A) + R(B)。 0 B
D=
D=
0 0 an1
0 a2 n 1 ann 1
n ( n 1) 2
a1n a2 n ann
a11 a21 an1
a12 a22 0
a1n 0 0
= (1)
a1n a2 n 1
an1.
3、设A是m 阶方阵,B是n 阶方阵,则 D= A 0 0 B A B;
0 D= B
1 x1 x
求 解
有非零解 R(A)<n. 1.化系数矩阵为最简形. 2.找等价的方程组.
3.写通解.
大学数学线性代数
大学数学线性代数线性代数是一门研究向量空间、线性变换以及其代数方程组解的数学学科,它在大学数学课程中占有重要地位。
本文将探讨线性代数的基本概念、矩阵运算、向量空间以及线性变换等内容。
一、向量与矩阵1.1 向量的定义与性质向量是线性代数的基本概念之一,它表示一个有大小和方向的量。
一般用箭头或粗体字母表示,如$\vec{v}$。
向量有很多重要性质,包括加法、数乘和点乘等运算。
1.2 矩阵的定义与性质矩阵是由若干个数排列成的矩形阵列,一般用大写字母表示。
矩阵可用于表示线性变换、解线性方程组等。
矩阵也有一些重要的性质,如加法、数乘和乘法等。
二、矩阵运算2.1 矩阵加法与数乘矩阵加法是指将两个具有相同维度的矩阵的对应元素相加,得到一个新的矩阵。
数乘是指将一个矩阵的每个元素乘以一个标量,得到一个新的矩阵。
2.2 矩阵乘法矩阵乘法是线性代数中的重要概念之一。
当两个矩阵相乘时,矩阵的列数等于另一个矩阵的行数。
乘积矩阵的元素由原矩阵的对应行与对应列的元素按一定规则计算得出。
三、向量空间3.1 向量空间的定义向量空间是指具有加法和数乘运算的集合,满足一定的公理。
向量空间包括零向量、闭性、加法逆元等性质。
3.2 子空间与基空间子空间是指向量空间的一个非空子集,且在相同的加法和数乘运算下仍然构成向量空间。
基空间是子空间中最基本的向量组合成的集合,可以表示整个子空间。
四、线性变换4.1 线性变换的定义与性质线性变换是指将一个向量空间映射到另一个向量空间的变换,同时保持向量空间的运算性质。
线性变换有一些重要的性质,如保持向量加法和数乘、保持零向量等。
4.2 线性变换与矩阵的关系线性变换可以用矩阵表示,对应于矩阵乘法。
通过矩阵乘法,可以将线性变换转化为矩阵的乘法运算,便于进行计算。
五、线性代数的应用线性代数在科学、工程以及计算机科学等领域中有广泛的应用。
例如,在图像处理中,可以利用矩阵运算进行图像的变换与处理;在机器学习中,可以利用线性代数理论对数据进行降维和分类等。
大学数学易考知识点线性代数中的矩阵与行列式
大学数学易考知识点线性代数中的矩阵与行列式大学数学易考知识点:线性代数中的矩阵与行列式在大学数学中,线性代数是一门重要的基础课程,其中矩阵与行列式是其核心内容之一。
掌握了矩阵与行列式的基本概念和操作方法,对于理解和应用线性代数具有极大的帮助。
本文将介绍线性代数中矩阵与行列式的相关知识点,帮助理清概念、加深理解,并为后续的学习奠定基础。
一、矩阵的基本概念与运算1. 矩阵的定义矩阵是一个由m行n列的数字按一定顺序排成的一个矩形阵列。
其常用表示形式为:A = [aij]m×n = |a11 a12 .. a1n||a21 a22 .. a2n||... ... .. ... ||am1 am2 .. amn|其中,a_ij表示矩阵A中第i行第j列的元素。
2. 矩阵的运算(1)矩阵的加法:若A = [aij]m×n,B = [bij]m×n为两个m×n矩阵,则矩阵A与B的和为C = [cij]m×n,其中cij = aij + bij。
(2)矩阵的数乘:若A = [aij]m×n为一个m×n矩阵,k为任意实数,则kA = [kaij]m×n。
(3)矩阵的乘法:若A = [aij]m×p为一个m×p矩阵,B = [bij]p×n为一个p×n矩阵,则矩阵A与B的乘积为C = [cij]m×n,其中cij =∑(k=1→p) aikbkj。
二、行列式的基本概念与性质1. 行列式的定义行列式是一个与矩阵相关的数。
对于一个n阶方阵A = [aij]n×n,其行列式记为|A|或det(A),定义为:|A| = ∑(s∈Sn) (sgn(s)·a1s(1)·a2s(2)·...·ans(n))其中,Sn为全排列的集合,sgn(s)为排列s的逆序数的(-1)^k次方。
大一线性代数知识点笔记
大一线性代数知识点笔记一、向量与矩阵1. 向量向量是有大小和方向的量,通常用箭头表示。
在线性代数中,向量可以表示为一个有序的数组。
向量的加法和数乘运算可通过对应元素的相加和相乘来完成。
2. 向量的内积向量的内积也称为点积,表示为两个向量的数量积。
内积的计算方法是将对应元素相乘再求和。
内积可以用于计算向量的长度、夹角以及投影等。
3. 矩阵矩阵是由数个元素排列成的矩形阵列。
矩阵的加法和数乘运算与向量类似,对应元素相加和相乘。
矩阵的乘法是将矩阵的行与列进行对应元素的乘积再求和。
4. 矩阵的特殊类型- 零矩阵:所有元素均为零的矩阵。
- 单位矩阵:对角线上的元素为1,其余元素为零的矩阵。
- 对称矩阵:矩阵的转置等于它本身的矩阵。
- 反对称矩阵:矩阵的转置等于它的相反数的矩阵。
二、线性方程组1. 线性方程组基本概念线性方程组由多个线性方程组成,其中的未知数之间的关系是线性的。
每个方程对应平面或空间中的一条直线、平面或超平面。
2. 线性方程组的求解- 列主元消元法:通过行变换将线性方程组转化为简化行阶梯形,进而求解。
- Cramer定理:使用行列式的方法求解线性方程组。
- 矩阵的逆:若矩阵存在逆矩阵,则可以通过矩阵的逆求解线性方程组。
三、向量空间与线性映射1. 向量空间向量空间是由满足一定条件的向量组成的集合。
向量空间中的向量支持加法和数乘运算,并满足一定的公理。
2. 子空间子空间是向量空间的一个子集,它本身也是一个向量空间,满足向量加法和数乘的封闭性。
3. 线性映射线性映射是一种将一个向量空间的向量映射到另一个向量空间的操作。
线性映射要求对向量的加法和数乘运算保持线性性质。
四、特征值与特征向量1. 特征值与特征向量的定义对于一个n阶方阵A,如果存在一个非零向量X和一个数λ,使得AX=λX成立,则称λ为矩阵A的特征值,X为对应于特征值λ的特征向量。
2. 特征值与特征向量的计算- 特征值可以通过求解矩阵的特征方程来得到。
大学线性代数知识点总结
大学线性代数知识点总结1. 向量与空间- 向量的定义与表示- 向量的加法与数乘- 向量的内积与外积- 向量的模、方向与单位向量- 向量空间的定义与性质- 基、维数与坐标表示- 子空间及其性质- 线性相关与线性无关的概念2. 矩阵- 矩阵的定义与表示- 矩阵的加法、数乘与转置- 矩阵的乘法规则- 矩阵的逆- 行列式的概念与性质- 行列式的计算方法- 秩的概念与求解- 矩阵的分块3. 线性方程组- 线性方程组的表示- 高斯消元法- 行列式法- 逆矩阵解法- 克拉默法则- 线性方程组的解的结构- 齐次与非齐次线性方程组 - 线性方程组的解空间4. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化- 矩阵的Jordan标准形- 特征值与特征向量的应用5. 内积空间- 内积空间的定义- 正交与正交性- 正交基与正交矩阵- 格拉姆-施密特正交化过程 - 最小二乘法- 正交投影与正交补6. 线性变换- 线性变换的定义与性质- 线性变换的矩阵表示- 线性变换的核与像- 线性变换的不变子空间- 线性变换的复合与逆变换 - 线性变换的分类7. 广义逆矩阵- 广义逆矩阵的概念- 广义逆矩阵的计算方法- 广义逆矩阵的性质与应用8. 谱理论- 谱定理- 谱半径与谱半径估计- 谱聚类9. 线性代数在其他领域的应用- 计算机图形学- 数据分析与机器学习- 量子力学- 结构工程- 电路分析结语线性代数是数学的一个重要分支,它在科学、工程、经济等多个领域都有着广泛的应用。
掌握线性代数的基本概念、理论和方法是解决实际问题的关键。
本文总结了线性代数的核心知识点,旨在为学习和应用线性代数提供参考和指导。
大一线性代数知识点组合
大一线性代数知识点组合线性代数是现代数学的一门重要学科,也是大学数学的一门必修课。
它研究的是向量空间及其线性变换的性质和结构。
在大一学习线性代数,我们需要掌握一些基本的知识点,下面将对这些知识点进行组合总结。
一、向量与矩阵1. 向量的定义及性质:向量是有大小和方向的量,可以表示箭头。
向量之间可以进行加法和数乘运算,具有交换律和结合律。
2. 矩阵的定义及性质:矩阵是一个按照长方阵列排列的数表,具有加法、数乘和乘法运算。
矩阵乘法要满足结合律,但不满足交换律。
3. 向量和矩阵的运算:向量可以与矩阵相加,矩阵可以与矩阵相加,向量可以与矩阵相乘。
二、线性方程组1. 线性方程组的定义:线性方程组是关于未知量的线性方程的集合,其中每个方程的未知量都是线性项的线性组合。
2. 线性方程组的解:对于线性方程组,可以有零个、一个或无穷个解。
3. 高斯消元法:通过一系列行变换将线性方程组化简为最简形式,从而求解解集。
4. 线性方程组的解的性质:如果一个线性方程组有解,则它的解集是一个向量空间。
三、行列式1. 行列式的定义:行列式是一个数表,由元素排成若干行若干列,行列式的值是一个确定的数。
2. 行列式的性质:行列式有加法性和数乘性,行列式的值与行列式的行列互换无关。
3. 行列式的计算:根据行列式的定义,可以通过代数余子式求得行列式的值。
四、向量空间和线性变换1. 向量空间的定义:向量空间是一组向量的集合,满足一定的运算和性质。
2. 子空间的概念:如果一个向量空间能包含于另一个向量空间中,则前者是后者的子空间。
3. 线性变换的定义:线性变换是一个向量空间到另一个向量空间的映射,满足线性性质。
4. 线性变换的矩阵表示:每个线性变换都可以用一个矩阵来表示,而且线性变换的复合对应于矩阵的乘法。
五、特征值与特征向量1. 特征值和特征向量的定义:对于线性变换T,如果存在一个非零向量v使得Tv=kv,其中k是一个常数,那么k是T的特征值,v是对应于特征值k的特征向量。
《线性代数》知识点归纳整理
《线性代数》知识点归纳整理线性代数是数学的一个分支,主要研究向量、向量空间以及线性映射等概念和性质。
它在数学领域具有广泛的应用,被广泛应用于物理学、计算机科学、经济学、工程学等领域。
以下是对《线性代数》的知识点进行归纳整理:1.矩阵和向量:矩阵是一个二维的数字阵列,可以表示为一个矩阵的形式。
向量是矩阵的特殊情况,只有一个列的矩阵。
矩阵和向量可以进行加法和数乘运算。
2.矩阵乘法:矩阵乘法是矩阵运算中的重要操作,它利用矩阵的行和列的组合,将两个矩阵相乘得到新的矩阵。
3.行列式:行列式是一个标量值,用于判断一些矩阵是否可逆。
行列式的值为0表示矩阵不可逆,非零表示矩阵可逆。
4.向量空间:向量空间是一组向量的集合,满足一定的条件。
向量空间具有加法和数乘运算,并满足一定的性质,如封闭性、结合律、分配律等。
5.线性相关与线性无关:向量集合中的向量如果不能由其他向量线性组合得到,则称这个向量集合是线性无关的;反之,如果存在一个向量可以由其他向量线性组合得到,则称这个向量集合是线性相关的。
6.基与维数:如果向量集合是线性无关的,并且能够生成整个向量空间中的所有向量,则称这个向量集合是向量空间的一组基。
向量空间的维数是指基向量的个数。
7.矩阵的秩:矩阵的秩是指矩阵列向量或行向量中的线性无关向量的个数。
秩表示矩阵中线性无关的方向个数。
8.特征值与特征向量:对于一个n维矩阵A,如果存在一个标量λ和非零向量X,使得AX=λX成立,则λ称为矩阵A的特征值,对应的非零向量X称为矩阵A的特征向量。
9.对角化:如果矩阵A可以通过相似变换得到一个对角矩阵B,则称矩阵A可以被对角化。
对角化后的矩阵可以简化各种计算。
10.线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵来表示,通过矩阵乘法来表示向量的线性变换。
11.正交性:向量集合中的向量如果互相垂直,则称这个向量集合是正交的。
如果正交向量集合中的每个向量都是单位向量,则称这个向量集合是标准正交的。
大一线性代数所有知识点
大一线性代数所有知识点大一线性代数是大学数学中的重要课程之一。
通过学习线性代数,我们能够提升自身的数学思维能力,为后续更高级的数学以及其他学科打下坚实的基础。
本文将总结大一线性代数的所有知识点,帮助读者巩固学习成果。
1. 向量和矩阵线性代数的基础是向量和矩阵。
向量是由有序的一列数构成的对象,常用于表示物理量和方向。
矩阵是由数按规则排列成的矩形阵列,可用于表示数据和变换。
在学习线性代数时,我们需要了解向量的加法、数乘以及内积和外积的概念。
同时,矩阵的加法、数乘以及乘法也是需要熟练掌握的。
2. 行列式和矩阵的逆行列式是矩阵的一个重要性质,它可以用于判断一个矩阵是否可逆。
如果一个矩阵的行列式不为零,那么它就是可逆矩阵,存在一个逆矩阵与之对应。
逆矩阵的求解过程可以使用伴随矩阵或者高斯-约当消元法来实现。
掌握逆矩阵的求解方法非常重要,它可以用于解线性方程组以及矩阵的运算。
3. 向量空间和子空间向量空间是由一组向量构成的集合,它具有封闭性和线性组合的性质。
学习线性代数时,我们需要了解向量空间的定义、性质以及判断向量是否构成向量空间的方法。
子空间是向量空间的子集,它是由向量空间中的向量封闭而产生的。
对于给定的一个向量空间,我们需要能够判断其是否存在子空间,并求解给定向量空间的基和维度。
4. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它保持向量空间中的线性组合以及任意向量的加法和数乘性质。
学习线性代数时,我们需要了解线性变换的定义、性质以及线性变换矩阵的求解方法。
矩阵的特征值和特征向量也是线性变换中的重要内容,它们可以帮助我们理解线性变换对向量空间的影响。
5. 特殊矩阵与二次型在线性代数中,还存在一些特殊的矩阵类型,如对称矩阵、正交矩阵和对角矩阵等。
这些特殊矩阵具有一些独特的性质和特点,对于理解线性代数的应用领域非常重要。
此外,二次型是线性代数中的一个重要概念,它可以用于描述二次方程的形式,通过对二次型的矩阵进行特征值分析,我们可以获得二次型的性质和变化规律。
大学数学易考知识点线性代数微积分概率论数值计算复变函数
大学数学易考知识点线性代数微积分概率论数值计算复变函数大学数学易考知识点线性代数、微积分、概率论、数值计算、复变函数大学数学作为理工类专业必修课程的一部分,在学生的学业发展中占据着重要的地位。
而数学的一些知识点,因其重要性和易考性质,往往成为考试的重点。
本文将对大学数学易考知识点进行全面的概述,包括线性代数、微积分、概率论、数值计算以及复变函数等方面的内容。
一、线性代数线性代数作为数学的一个重要分支,是大学数学中的一门基础课程。
其主要研究线性方程组、向量空间、矩阵理论等内容。
下面列举了一些线性代数中的易考知识点:1. 线性方程组的求解方法:包括高斯消元法、矩阵求逆法、克拉默法则等。
2. 向量空间:需要掌握向量的线性组合、线性相关性、基、维数等概念。
3. 矩阵的特征值与特征向量:理解矩阵特征值与特征向量的定义和意义,以及其在实际问题中的应用。
4. 线性变换:了解线性变换的概念、特点以及其在几何变换中的应用。
二、微积分微积分是数学中的另一个重要分支,主要研究函数的极限、连续性、导数和积分等概念及其应用。
1. 函数的极限与连续性:掌握函数极限的定义、性质以及常用极限运算法则;理解连续函数的定义和连续性的判定条件。
2. 导数与微分:了解导数的定义、性质以及常见的导数求法,能够计算函数的高阶导数;理解微分的定义和微分形式的运用。
3. 积分与不定积分:理解积分的定义、性质以及积分的运算法则;能够应用不定积分求解定积分和解决实际问题。
4. 微分方程:了解微分方程的基本概念、分类以及解微分方程的基本方法。
三、概率论概率论是数学中研究随机事件及其概率规律的数学分支,也是大学数学中的一门重要课程。
1. 随机事件与概率:了解随机事件的定义、概率的基本性质以及概率计算的方法,如加法法则、乘法法则等。
2. 随机变量与概率分布:掌握随机变量的定义、离散随机变量和连续随机变量的概率分布,以及随机变量的数学期望、方差等概念。
3. 大数定律与中心极限定理:了解大数定律和中心极限定理的概念和应用,理解随机事件在大样本下的规律。
(完整版)线性代数知识点全归纳
1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。
大一线性代数知识点归纳
大一线性代数知识点归纳线性代数是大学数学课程中的重要组成部分,主要涉及向量空间、线性变换、矩阵和行列式等内容。
下面是大一线性代数课程的几个重要知识点的归纳。
1. 向量空间向量空间是线性代数中最基本的概念之一。
一个向量空间必须满足以下条件:- 封闭性:对于任意向量v和w,其线性组合av + bw也在空间内,其中a和b是任意实数。
- 加法交换律:对于任意向量v和w,满足v + w = w + v。
- 加法结合律:对于任意向量v、w和u,满足(v + w) + u = v + (w + u)。
- 零向量存在性:存在一个零向量o,使得任意向量v + o = v。
- 反向元素存在性:对于任意向量v,存在一个负向量-v,使得v + (-v) = o。
2. 线性变换线性变换是指一个向量空间映射到另一个向量空间的变换。
线性变换必须满足以下条件:- 加法保持性:对于任意向量v和w,满足T(v + w) = T(v) +T(w)。
- 数乘保持性:对于任意向量v和实数a,满足T(av) = aT(v)。
- 保持零向量:T(o) = o,其中o是原向量空间的零向量。
3. 矩阵和行列式矩阵是一个按照矩形排列的数字表,是线性代数中常用的工具。
矩阵可以表示线性系统和线性变换。
行列式是一个用于描述矩阵性质的数。
行列式的计算方法可以通过高斯消元法或按定义展开等方法获得,其值可以用于判断矩阵是否可逆、线性无关等性质。
4. 线性方程组线性方程组是线性代数中的重要应用之一。
线性方程组可以用矩阵和向量表示,求解线性方程组的过程即为对矩阵进行变换得到解的过程。
5. 特征值和特征向量特征值和特征向量是线性代数中的常见概念。
对于一个线性变换T和一个非零向量v,如果满足T(v) = λv,其中λ是标量,则称λ为T的特征值,v为T的特征向量。
6. 线性相关与线性无关线性相关和线性无关是描述向量组的性质。
如果存在一组不全为零的系数使得向量组的线性组合为零向量,则称这个向量组线性相关;否则,向量组线性无关。
大学线性代数知识点总结
大学线性代数知识点总结线性代数是大学数学课程中的重要一环,它是研究向量空间及其上的线性变换和线性方程组的数学理论。
掌握线性代数的基本概念和定理,对于深入理解数学和应用领域都具有重要意义。
在本文中,将对大学线性代数的一些重要知识点进行总结。
一、向量与向量空间向量是线性代数的基本概念,它具有大小和方向。
在线性代数中,向量通常用列向量表示。
对于两个向量,可以进行加法和数乘运算。
向量空间是由一组向量及其运算所构成的集合,它具有封闭性、结合律、分配律等性质。
二、矩阵及其运算矩阵是线性代数中另一个重要的概念,它由若干行和列所组成的矩形数表。
矩阵可以进行加法、数乘和乘法运算。
矩阵乘法是线性代数中的核心内容,它不满足交换律。
矩阵的转置、逆矩阵和行列式等运算也是线性代数中常用的操作。
三、线性方程组及其求解线性方程组是线性代数的重要应用之一,它是由一组线性方程所组成的方程组。
线性方程组的解可以通过消元法、矩阵法或向量法来求解。
消元法是一种基本的求解思路,通过一系列行变换将线性方程组转化为等价方程组,进而求解未知数的值。
矩阵法则通过增广矩阵和高斯消元法来求解线性方程组。
向量法则利用矩阵乘法和逆矩阵的性质求解线性方程组。
四、向量空间的基与维数向量空间的基是向量空间的一个重要性质,它是一组线性无关的向量,可以通过线性组合得到向量空间中的任意向量。
向量空间的维数指的是基向量的个数,维数也是向量空间的一个重要特征。
五、特征值与特征向量特征值和特征向量是矩阵的重要性质。
对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx,则称k为矩阵A的特征值,x为对应的特征向量。
特征值和特征向量在物理、工程等领域有着广泛的应用,它们可以描述系统的特性和变化规律。
六、线性变换与矩阵的相似性线性变换是线性代数中一个重要的概念,它是由向量空间到它自身的一种映射。
与线性变换相关的概念还有矩阵的相似性。
如果两个矩阵具有相同的特征值,则它们被称为相似矩阵,相似矩阵在各种应用中具有重要意义。
大学数学-线性代数-向量组
向量组的线性组合
向量组的线性组合是指 通过给定向量组中的向 量以及标量系数的线性 运算得到的新向量。
线性组合的系数可以是 实数或复数,也可以是 标量或向量。
线性组合的结果是一个 新的向量,其分量是原 向量分量与系数的线性 组合。
线性组合满足交换律、 结合律和分配律。
秩的性质
定理
若矩阵A经过有限次初等行变换 得到矩阵B,则矩阵A和B的秩相 等。
若向量组中的向量个数等于向 量的维数,则该向量组线性无 关;若向量组中的向量个数小 于向量的维数,则该向量组线 性相关。
05
向量组的正交性
正交向量的定义
正交向量的定义
两个向量$vec{a}$和$vec{b}$是正交 的,如果它们的点积为0,即$vec{a} cdot vec{b} = 0$。
向量组线性相关的充要条件是该向量组构成的矩阵的 秩小于向量的个数。
如果向量组中任何一个向量是其余向量的线性组合, 则该向量组线性相关。
04
向量组的秩
向量组的秩的定义
秩的定义
向量组的秩是指该向量组中线性无关向量的最大数量。
线性无关的定义
如果向量组中的向量个数等于向量的维数,则该向量组线性无关。
向量组中线性无关向量的判断
02
向量组的定义与表示
向量组的定义
向量组是由一组有序数列构成的集合,每个数列称为一个向量, 每个向量由若干个数(分量)组成。
向量组中向量的个数称为向量组的维数,所有向量中分量的个数 必须相同。
向量组的表示方法
通常使用黑体字母表示向量,如 $mathbf{a}$、$mathbf{b}$、 $mathbf{c}$等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学数学线性代数知识点
大学数学线性代数知识点集锦
线性代数的考试知识点占比是比较重的,考生们备考线性代数可以通过下文进行专项备考。
小编整理了相关的内容,欢迎欣赏与借鉴。
矩阵
本章的概念和运算较多,主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。
本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。
其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的则是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题则用到了矩阵的秩的相关性质。
14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。
16年只有数二了矩阵等价的判断确定参数。
向量
本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。
重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。
出题方式主要以选择与大题为主。
这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的.线性表出就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题,13年考查的则是向量组的等价,14年的选择题则考查了向量组的线性无关性。
15年数一第20题结合向量空间的基问题考查了向量组等价的问题。
16年数数一、数三第21题与数二23题考的同样的题,第二问考向量组的线性表示的问题。
线性方程组
主要考点有两个:
一是解的判定与解的结构
二是求解方程
考察的方式还是比较固定,直接给方程讨论解的情况、解方程或者通过其他的关系转化为线性方程组、矩阵方程的形式来考。
06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题,13年考查的第一道大题考查的形式不是很明显,但也是线性方程组求解的问题。
14年的第一道大题就是线性方程组的问题,15年选择题考查了解的判定,数二、数三同一个大题里面考查了矩阵方程的问题。
16年数一第20题矩阵方程解的判断和求解,数三第20题与数二第22题直接考线性方程解的判断和求解,数一第21题第二问解矩阵方程。
16年数一、数三第21题与数二第23题第二问直接考矩阵方程解求解,基本都不需要大家做转换。
今年数一、数三第20题、数二第22题第二问题都考了抽象的线性方程的求解问题。