火线100天(四川专版)中考数学一轮复习 第二单元 方程

合集下载

火线100天(四川专版)中考数学总复习 第2讲 整式及因式分解

火线100天(四川专版)中考数学总复习 第2讲 整式及因式分解

第2讲整式及因式分解整式的相关概念单项式概念由数与字母的①______组成的代数式叫做单项式(单独的一个数或一个②______也是单项式).系数单项式中的③____因数叫做这个单项式的系数.次数单项式中的所有字母的④________叫做这个单项式的次数.多项式概念几个单项式的⑤________叫做多项式.项多项式中的每个单项式叫做多项式的项.次数一个多项式中,⑥________的项的次数叫做这个多项式的次数.整式单项式与⑦________统称为整式.同类项所含字母⑧______并且相同字母的指数也⑨________的项叫做同类项.所有的常数项都是⑩________项.整式的运算整式的加减合并同类项(1)字母和字母的指数不变;(2)○11________相加减作为新的系数.添(去)括号添(去)括号:括号前面是“+”号,添(去)括号都○12________符号;括号前面是“-”号,添(去)括号都要○13________符号.幂的运算同底数幂的乘法a m·a n=○14______.注意:a≠0,b≠0,且m、n都为整数. 幂的乘方(a m)n=○15______.积的乘方(ab)n=○16______.同底数幂的除法a m÷a n=○17______.整式的乘法单项式与单项式相乘把它们的○18________、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的○19______作为积的一个因式.单项式与多项式相乘用单项式去乘多项式的每一项,再把所得的积○20________,即m(a+b+c)=○21________________.多项式与多项式相乘先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积○22________,即(m+n)(a+b)=○23________________.整式的除法单项式除以单项式把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的○24________作为商的一个因式.多项式除先把这个多项式的每一项分别除以这个单项式,然后把所以单项式得的商○25________. 乘法 公式平方差公式 (a +b)(a -b)=○26________. 完全平 方公式(a±b)2=○27____________. 因式分解定义 把一个多项式化成几个整式○28________的形式,就是因式分解. 方法提公因式法 ma +mb +mc =○29________. 公式法 a 2-b 2=○30________; a 2±2ab +b 2=○31________. 步骤(1)若有公因式,应先○32________; (2)看是否可用○33________; (3)检查各因式能否继续分解.【易错提示】 因式分解必须分解到每一个多项式不能再分解为止.1.求代数式的值主要用代入法,代入法分为直接代入法、间接代入法和整体代入法.2.整式的运算时不要盲目入手,先观察式子的结构特征,确定解题思路,结合有效的数学思想:整体代入、降次、数形结合、逆向思维等,使解题更加方便快捷.命题点1 列代数式及其求值(2015·自贡)为庆祝抗战70周年,我市某楼盘让利于民,决定将原价a 元/米2的商品房价降价10%销售,降价后的售价为() A .a -10% B .a ·10% C .a(1-10%) D .a(1+10%)列代数式需注意以下三点:一是抓住关键词语(如“和、差、积、商、幂以及大、小、多、少、倍、几分之几、倒数、相反数”等),确定好数量关系;二是理清问题语句的层次(通常按语句中出现的“的”字划分),明确运算顺序;三是熟悉相关知识.如几何图形问题中的周长、面积公式,商品销售问题中的利润、售价、进价之间的关系等.1.(2014·乐山)苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需() A .(a +b)元 B .(3a +2b)元 C .(2a +3b)元 D .5(a +b)元2.(2015·恩施)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b 元,则原售价为() A .(a +54b)元B .(a +45b)元C .(b +54a)元D .(b +45a)元3.(2015·湖州)当x =1时,代数式4-3x 的值是() A .1 B .2 C .3 D .4 4.(2015·咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a 元,则粽子的原价卖________元.命题点2 整式的运算(2015·衡阳)先化简,再求值:a(a-2b)+(a+b)2,其中a=-1,b= 2.【思路点拨】先利用乘法公式进行整式乘法计算,再进行整式加减运算,最后代入求值.【解答】整式的运算顺序与实数的运算顺序相同,也就是先算乘、除,再算加、减.代入求值时,先考虑是否可以整体代入,其次再考虑“先求后代”.1.(2015·遂宁)下列运算正确的是()A.a·a3=a3B.2(a-b)=2a-bC.(a3)2=a5D.a2-2a2=-a22.(2015·南充)下列运算正确的是()A.3x-2x=x B.2x·3x=6xC.(2x)2=4x D.6x÷2x=3x3.(2015·广元)下列运算正确的是()A.(-ab2)3÷(ab2)2=-ab2B.3a+2a=5a2C.(2a+b)(2a-b)=2a2-b2D.(2a+b)2=4a2+b24.(2015·温州)化简:(2a+1)(2a-1)-4a(a-1).命题点3 因式分解(2015·宜宾)把代数式3x3-12x2+12x分解因式,结果正确的是()A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2因式分解,首先考虑用提取公因式法,再考虑用公式法;同时要注意直到分解到不能再分解为止.1.(2015·临沂)多项式mx2-m与多项式x2-2x+1的公因式是()A.x-1 B.x+1C.x2-1 D.(x-1)22.(2015·成都)因式分解:x2-9=________.3.(2015·巴中)分解因式:2a2-4a+2=________.4.(2015·内江)分解因式:2x2y-8y=________.5.(2015·绵阳)在实数范围内因式分解:x2y-3y=____________.命题点4 整体代入求值(2015·盐城)若2m-n2=4,则代数式10+4m-2n2的值为________.思路点拨】将10+4m-2n2变形为10+2(2m-n2),再将条件整体代入,即可求出其值.整体代入就是根据不同的需要将问题中的某一部分看成一个整体.一般地,以下三种情形,需整体代入求值:一是已知条件中含有不定量时;二是已知条件中字母的取值在现阶段不能直接求出时;三是已知条件中的字母以有理数相关的概念形式出现时.1.(2015·娄底)已知a 2+2a =1,则代数式2a 2+4a -1的值为() A .0 B .1 C .-1 D .-22.(2015·潜江)已知3a -2b =2,则9a -6b =________.3.(2015·连云港)已知m +n =mn ,则(m -1)(n -1)=________.4.(2015·北京)已知2a 2+3a -6=0.求代数式3a(2a +1)-(2a +1)(2a -1)的值.1.(2015·厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10)元出售,则下列说法中,能正确表达该商店促销方法的是() A .原价减去10元后再打8折 B .原价打8折后再减去10元 C .原价减去10元后再打2折 D .原价打2折后再减去10元2.(2015·泸州)计算(a 2)3的结果为()A .a 4B .a 5C .a 6D .a 93.(2015·成都)下列计算正确的是()A .a 2+a 2=2a 4B .a 2·a 3=a 6C .(-a 2)2=a 4D .(a +1)2=a 2+14.(2015·龙岩)下列各式中能用完全平方公式进行因式分解的是()A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-6x +95.(2015·枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则a 2b +ab 2的值为()A .140B .70C .35D .246.(2015·佛山)若(x +2)(x -1)=x 2+mx +n ,则m +n =() A .1 B .-2 C .-1 D .2 7.(2015·福州)计算(x -3)(x +2)的结果是________.8.(2015·绵阳)计算:a(a 2÷a)-a 2=________.9.(2015·常德)计算:b(2a +5b)+a(3a -2b)=________.10.(2015·呼和浩特)分解因式:x 3-x =________.11.(2015·北京)分解因式:5x 3-10x 2+5x =________.12.(2015·衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________.13.(2015·扬州)若a 2-3b =5,则6b -2a 2+2 015=________.14.(2015·重庆A 卷)计算:y(2x -y)+(x +y)2.15.(2015·南昌)先化简,再求值:2a(a +2b)-(a +2b)2,其中a =-1,b = 3.16.(2015·梅州)已知a +b =-2,求代数式(a -1)2+b(2a +b)+2a 的值.17.(2015·十堰)当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为()A .-16B .-8C .8D .1618.(2015·邵阳)已知a +b =3,ab =2,则a 2+b 2的值为() A .3 B .4 C .5 D .619.(2015·随州)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.20.(2015·内江)(1)填空: (a -b)(a +b)=________;(a -b)(a 2+ab +b 2)=________;(a -b)(a 3+a 2b +ab 2+b 3)=________; (2)猜想:(a -b)(a n -1+a n -2b +…+ab n -2+b n -1)=________(其中n 为正整数,且n≥2);利用(2)猜想的结论计算:29-28+27-…+23-22+2.参考答案 考点解读考点1 ①乘积 ②字母 ③数字 ④指数的和 ⑤和 ⑥次数最高 ⑦多项式 ⑧相同 ⑨相同 ⑩同类考点 2 ○11系数 ○12不改变 ○13改变 ○14a m +n ○15a mn ○16a n b n ○17a m -n ○18系数 ○19指数 ○20相加 ○21ma +mb +mc ○22相加 ○23ma +mb +na +nb ○24指数 ○25相加 ○26a 2-b 2 ○27a 2±2ab +b 2 考点3 ○28乘积 ○29m(a +b +c) ○30(a +b)(a -b) ○31(a±b)2 ○32提公因式 ○33公式法 各个击破例1 C题组训练 1.C 2.A 3.A 4.54a例2 原式=a 2-2ab +a 2+2ab +b 2=2a 2+b 2.当a =-1,b =2时,原式=2+2=4.题组训练 1.D 2.A 3.A 4.原式=4a 2-1-4a 2+4a =4a -1. 例3 D题组训练 1.A 2.(x +3)(x -3) 3.2(a -1)24.2y(x +2)(x -2)5.y(x -3)(x +3) 例4 18题组训练 1.B 2.6 3.14.原式=6a 2+3a -(4a 2-1)=6a 2+3a -4a 2+1=2a 2+3a +1.∵2a 2+3a -6=0,∴2a 2+3a =6. ∴原式=6+1=7. 整合集训 基础过关1.B 2.C 3.C 4.D 5.B 6.C 7.x 2-x -6 8.0 9.5b 2+3a 210.x(x +1)(x -1) 11.5x(x -1)212.-3 13.2 00514.原式=2xy -y 2+x 2+2xy +y 2=x 2+4xy. 15.原式=(a +2b)[2a -(a +2b)] =(a +2b)(a -2b)=a 2-4b 2.把a =-1,b =3代入,得原式=(-1)2-4(3)2=-11.16.原式=a 2-2a +1+2ab +b 2+2a =(a +b)2+1.把a +b =-2代入,得原式=2+1=3. 能力提升 17.A 18.C19.原式=4-a 2+a 2-5ab +3ab =4-2ab ,当ab =-12时,原式=4+1=5.20.(1)a 2-b 2a 3-b 3a 4-b 4(2)a n -b n(3)原式=(2-1)(28+26+24+22+2)=342.。

火线100天(安徽专版)中考数学一轮复习 第二单元 方程与不等式 第5讲 分式方程-人教版初中九年级

火线100天(安徽专版)中考数学一轮复习 第二单元 方程与不等式 第5讲 分式方程-人教版初中九年级

第5讲分式方程命题点年份(2013~2015)题序题型分值考查方向分式方程的解法2014 13 填空题 5 近5年考查1次,考查方式较为简单.分式方程的应用2013 20(2) 解答题8 近5年考查1次,常与一次方程,不等式,函数结合考查.分式方程的解法基本思路将分式方程转化为①________求解,然后在分式方程中进行②____.具体步骤(1)③______,将分式方程转化为整式方程;(2)解整式方程;(3)检验,把整式方程的根代入到④____方程检验.【易错提示】解分式方程时要注意以下两点:(1)分式方程中去分母时,不要漏乘不含分母的项;(2)由于解分式方程有可能产生增根,因此验根必不可少.分式方程的应用分式方程的应用思路列分式方程解应用题的关键是分析题意、从多角度思考问题、找准⑤________,设出未知数,列出⑥________;检验解题结果时,既要检验解题结果是否是方程的解,又要检验是否符合实际意义,检验步骤需写在解题过程中.分式方程无解有两种情况:一是去分母后整式方程无解;二是整式方程的解使分式方程的最简公分母为0,分式方程无解. 命题点1 分式方程的解法(2015·庐阳二模)解方程:3(x -1)(x +2)+1=x x -1. 【思路点拨】 先确定最简公分母(x -1)(x +2),方程两边同乘最简公分母,把分式方程转化为整式方程求解,最后要检验.【解答】解分式方程的基本思想是“化分式方程为整式方程”.注意解分式方程一定要验根.1.(2015·某某)解分式方程2x -1+x +21-x=3时,去分母后变形正确的为( ) A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)2.(2015·某某)分式方程2x -2+3x 2-x=1的解为( ) A .x =1 B .x =2 C .x =13 D .x =03.(2014·某某)方程4x -12x -2=3的解是x =________. 4.(2015·某某)解方程:x 2x -3+53-2x=4.命题点2 分式方程的应用(2013·某某)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍贵了20元,购买羽毛球拍的费用比购买乒乓球拍的2 000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x 元,请你用含x 的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.【思路点拨】(1)由题可知,购买乒乓球拍的费用为2 000,购买羽毛球拍的费用为2 000+25x,所以购买这两种球拍的总费用为2 000+2 000+25x=4 000+25x(元);(2)根据两种球拍的数量相等,可列方程求解.【解答】对于列分式方程解应用题的题目,关键是设未知数、找出存在于题目中的等量关系,从而列方程求解,最后一定要进行检验,但检验的意义不同,这里的检验,一是检验所得未知数的值是否为原方程的解,二是检验方程的解是否符合实际意义.1.(2015·某某)某某市某生态示X园计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均亩产量为1.5x万千克.根据题意列方程为( )A.36x-36+91.5x=20 B.36x-361.5x=20C.36+91.5x-36x=20 D.36x+36+91.5x=202.(2014·某某)杨梅是某某的特色时令水果.杨梅一上市,水果店的老板用1 200元购进一批杨梅,很快售完;老板又用2 500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.第一批杨梅每件进价多少元?(2015·聊城)在“母亲节”前夕,某花店用16 000元购进第一批礼盒鲜花,上市后很快预售一空,根据市场需求情况,该花店又用7 500元购进第二批礼盒鲜花,已知第二批所购鲜花的盒数是第一批所购鲜花盒数的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?1.(2015·某某38中等六校模拟)解分式方程1-x x -2+2=12-x的结果是( ) A .x =2B .x =3C .x =4D .无解2.(2014·莱芜)已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲、乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A.40x =50x -12 B.40x -12=50xC.40x =50x +12 D.40x +12=50x3.(2015·荆州)若关于x 的分式方程m -1x -1=2的解为非负数,则m 的取值X 围是( )A .m>-1B .m ≥-1C .m>-1且m≠1D .m ≥-1且m≠14.(2013·枣庄)对于非零的两个实数a ,b ,规定a b =1b -1a ,若2(2x -1)=1,则x 的值为() A.56 B.54 C.32 D .-165.(2015·某某)方程xx -1-2x =1的解为x =________.6.(2015·威海)分式方程1-xx -3=13-x -2的解为________.7.解分式方程:(1)(2015·某某)2x -3=3x ;(2)(2015·某某)32x +2=1-1x +1.8.(2014·某某)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?9.(2015·某某)某某与两地相距480 km ,乘坐高铁列车比乘坐普通快车能提前4 h 到达,已知高铁列车的平均行驶速度是普通列车的3倍,求高铁列车的平均行驶速度.10.(2014·某某)若分式方程x x -1-m 1-x=2有增根,则这个增根是________.11.(2013·某某)若关于x 的方程ax x -2=4x -2+1无解,则a 的值是________. 12.(2015·某某)某某火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6 600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?参考答案考点解读①整式方程 ②验根 ③去分母 ④分式 ⑤等量关系 ⑥分式方程各个击破例1 方程两边同乘(x -1)(x +2),得3+(x -1)(x +2)=x(x +2).解得x =1.检验:当x =1时,(x -1)(x +2)=0,因此x =1不是原分式方程的解.所以,原分式方程无解.题组训练1.D2.A3.6,得x -5=4(2x -3).去括号,得x -5=8x -12.移项,合并得-7x =-7.系数化为1,得x =1.检验:当x =1时,最简公分母2x -3=2×1-3≠0,∴原方程的解是x =1.例2 (1)2 000+(2 000+25x)=4 000+25x(元).(2)由题意,列方程得2 000x =2 000+25x x +20.解得x 1=40,x 2=-40. 经检验x 1,x 2都是原方程的根.但x 是乒乓球拍的价格,必须大于0,∴x =40.答:每副乒乓球拍为40元.题组训练1.A,根据题意得:1 200x ×2=2 500x +5,解得x =120. 经检验x =120是原方程的根.答:第一批杨梅每件进价120元.,则第一批鲜花每盒的进价是(x +10)元,由题意得:16 000x +10×12=7 500x.解得x =150. 经检验x =150是原方程的解,且符合题意.答:第二批鲜花每盒的进价是150元.整合集训 1.D 2.B 3.D 4.A 5.2 6.x =47.(1)方程两边乘x(x -3),得2x =3(x -3).解得x =9.检验:当x =9时,x(x -3)≠0.∴原方程的解为x =9.(2)原方程可变形为:32(x +1)=1-1x +1. 方程两边都乘以2(x +1),得3=2(x +1)-2.解得x =32. 检验:当x =32时,2(x +1)=2(32+1)=5≠0, ∴原方程的解为x =32. ,则甲每小时做(x +5)面彩旗.根据题意,得60x +5=50x.解这个方程,得x =25. 经检验,x =25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.9.设普通列车的行驶速度为x km/h ,则高铁列车的平均行驶速度为3x km/h.由题意可知 480x -4803x=4.解得x =80. 经检验,x =80是分式方程的解,且符合题意.∴3x=240.答:高铁列车的平均行驶速度为240 km/h.10.x =111.1或212.(1)设B 花木的数量是x 棵,则A 花木的数量是(2x -600)棵,根据题意得 x +(2x -600)=6 600,解得x =2 400.所以2x -600=4 200.答:A 花木的数量是4 200棵,B 花木的数量是2 400棵.(2)设安排y 人种植A 花木,则安排(26-y)人种植B 花木,根据题意得4 20060y = 2 40040(26-y ).解得y =14. 经检验,y =14是原方程的根,且符合题意.26-y =12.答:安排14人种植A 花木,12人种植B 花木,才能确保同时完成各自的任务.。

火线100天(遵义专版)中考数学总复习 题型专项二 方程(

火线100天(遵义专版)中考数学总复习 题型专项二 方程(

方程(组)、不等式(组)的解法与应用纵观贵州9地州近年中考试卷命题情况分析,一次方程(组)、一元二次方程、分式方程、一元一次不等式(组)的解法已成高频考点,重在考查解法的技能;近年来方程与不等式不但作为解决其他数学题的工具,而且已频频单独凸显在试卷解答题中,注重考查构建方程或不等式模型解决现实生活中的问题.类型1 解方程(组)(2015·黔西南)解方程:2x x -1+11-x=3. 【解答】 去分母,得2x -1=3(x -1). 去括号,得2x -1=3x -3. 移项、合并,得-x =-2. 系数化为1,得x =2.检验:把x =2代入x -1,得2-1=1≠0, ∴x =2是原分式方程的解.解分式方程的基本思想是将分式方程转化为整式方程,转化的具体方法是去分母,由于在分式方程转化为整式方程过程中,容易产生增根(使分母为零的未知数的值),所以解分式方程必须验根,这是一个容易被忽视的过程. 解方程(组)注重的是解题过程,解答这类问题必须注意步骤分明,简洁.1.(2015·南京)解方程:2x -3=3x .2.(2013·遵义)解方程组:⎩⎪⎨⎪⎧x -2y =4,2x +y -3=0.3.解方程:x 2-6x +8=0.类型2 解不等式(组)(2015·黔东南)解不等式组⎩⎪⎨⎪⎧2(x +2)>3x ,3x -12≥-2,并将它的解集在数轴上表示出来.【思路点拨】 先分别计算不等式2(x +2)>3x 及3x -12≥-2的解集,再确定它们的公共部分,最后将不等式组的解集表示在数轴上.【解答】 解不等式2(x +2)>3x ,得x <4. 解不等式3x -12≥-2,得x≥-1.∴不等式组的解集为-1≤x<4.将解集表示在数轴上,如图所示:解不等式组思路概括为“分开解,解中判”. 求解集过程可以借助口诀:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集. 在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示.1.(2015·上海)解不等式组:⎩⎪⎨⎪⎧4x>2x -6,x -13≤x +19,并把解集在数轴上表示出来.2.(2015·呼和浩特)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y >-32,求出满足条件的m的所有正整数值.类型3 方程(组)、不等式的应用(2015·铜仁)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷所用车辆与乙种货车装运800件帐篷所用车辆相等. (1)求甲、乙两种货车每辆车可装多少件帐篷; (2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种汽车各有多少辆. 【思路点拨】 (1)根据等量关系“甲货车比乙货车每辆多装20件”可设乙货车每辆装x 件帐篷,根据等量关系“甲货车装1 000件和乙货车装800件辆数相等”列分式方程求解;(2)通过建立一元一次方程或二元一次方程组求甲、乙两种汽车的数量.【解答】 (1)设乙货车每辆装x 件帐篷,则甲货车每辆装(x +20)件,根据题意,得 1 000x +20=800x.解得x =80. 经检验,x =80是原方程的解,且符合题意,x +20=100. 答:甲、乙两种货车每辆分别装100件、80件.(2)设乙汽车有y 辆,则甲汽车有(16-y)辆,根据题意,得 100(16-y)+80(y -1)+50=1 490. 解得y =4,16-y =12.答:甲、乙两种汽车分别是12辆、4辆.解答本题的关键是读懂题意,找出合适的等量关系,构建方程模型求解. 列方程(组)、不等式解应用题的一般步骤:审:审清题意,分清题中的已知量、未知量;设:设未知数,设其中某个未知量为x ,并注意单位,对于含有两个未知数的问题,需要设两个未知数;列:根据题意寻找等量(不等)关系列方程(不等式);解:解方程(不等式);验:检验方程(组)、不等式的解是否符合题意;答:写出答案(包括单位).1.(2015·山西)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种 西红柿 青椒 西兰花 豆角 批发价(元/kg) 3.6 5.4 8 4.8 零售价(元/kg)5.48.4147.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg ,用去了1 520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1 520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1 050元,则该经营户最多能批发西红柿多少kg?2.(2015·连云港)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元. (1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.类型4 方程(组)、不等式与函数的综合应用(2015·黔西南)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?【思路点拨】 (1) 建立二元一次方程组求两种价格;(2)若每月用水量为x 吨,从x≤12和x>12两个方面来考虑应交水为y 与x 之间函数关系;(3)根据用水量这一变量值,结合(2)问选择函数表达式求函数变量x 的值. 【解答】 (1)设每吨水的政府补贴优惠价和市场调节价分别为a 元,b 元.依题意得⎩⎪⎨⎪⎧12a +12b =42,12a +8b =32.解得⎩⎪⎨⎪⎧a =1,b =2.5. 答:每吨水的政府补贴优惠价1元, 市场调节价2.5元. (2)当x≤12时,y =x.当x>12时,y =12+2.5(x -12),即y =2.5x -18.(3)当x =26时,y =2.5×26-18=65-18=47(元). 答:小黄家三月份应交水费47元.本题考查运用一次方程、一次函数及简单一元一次不等式综合解决实际问题. 解决这类问题,可以按照一般步骤:结合实际审题,构建方程或函数模型,求解方程或函数模型,检验结果写答案.按照解题的一般步骤可以顺利分析问题、解决问题.(2014·黔东南)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x >0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式;在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.参考答案 类型11.方程两边乘x(x -3),得2x =3(x -3).解得x =9. 检验:当x =9时,x(x -3)≠0. ∴原方程的解为x =9.2.解法一:⎩⎪⎨⎪⎧x -2y =4,①2x +y -3=0,②由①得x =2y +4.③将③代入②,得2(2y +4)+y -3=0.解得y =-1.将y =-1代入③,得x =2×(-1)+4=2.所以原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1.解法二:⎩⎪⎨⎪⎧x -2y =4,①2x +y -3=0.②①×2-②,得-5y = 5,即y =-1.将y =-1代入①,得 x -2×(-1)=4,即x =2.所以原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1.3.配方,得x 2-6x +9=1,即(x -3)2=1,∴x -3=1或x -3=-1. ∴x 1=4,x 2=2. 类型21.解不等式4x >2x -6,得x >-3. 解不等式x -13≤x +19,得x≤2.∴不等式组的解集为:-3<x≤2. 在数轴上表示如图:2.⎩⎪⎨⎪⎧2x +y =-3m +2,①x +2y =4,②①+②得3(x +y)=-3m +6,即x +y =-m +2.代入不等式,得-m +2>-32.解得m <72.则满足条件的m 的正整数值为1,2,3.类型31.(1)设批发西红柿x kg, 西兰花y kg. 由题意得⎩⎪⎨⎪⎧x +y =300,3.6x +8y =1 520.解得⎩⎪⎨⎪⎧x =200,y =100.200×(5.4-3.6)+100×(14-8)=960(元). 答:两种蔬菜当天全部售完一共能赚960元钱.(2)设批发西红柿a kg, 由题意得(5.4-3.6)a +(14-8)×1 520-3.6a 8≥1 050.解得a≤100.答:该经营户最多能批发西红柿100 kg.2.(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元, 根据题意得6 000x =4 800x -80.解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元.(2)设平均每次降价的百分率为y ,根据题意得400(1-y)2=324,解得y 1=0.1,y 2=1.9(不合题意,舍去). 答:平均每次降价10%. 类型41.(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎪⎨⎪⎧5x +3y =231,2x +3y =141.解得⎩⎪⎨⎪⎧x =30,y =27.答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x≤20时,y =30x ;当x >20时,y =20×30+(x -20)×30×0.7=21x +180. (3)设购进玩具z 件(x >20),则乙种玩具消费27z 元;当27z =21z +180,则z =30. 所以当购进玩具正好30件,选择购其中一种即可;当27z >21z +180,则z >30. 所以当购进玩具超过30件,选择购甲种玩具省钱;当27z <21z +180,则z <30. 所以当购进玩具少于30件,选择购乙种玩具省钱.。

火线100天(四川专版)中考数学一轮复习 题型1 与三角形 四边形有关的几何综合题-人教版初中九年级

火线100天(四川专版)中考数学一轮复习 题型1 与三角形 四边形有关的几何综合题-人教版初中九年级

几何图形综合题几何图形综合题是某某各地中考的必考题,难度较大,分值也较大,要想在中考中取得较高的分数,必须强化这类题目的训练.题型1 与三角形、四边形有关的几何综合题类型1 操作探究题(2015·某某)如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,22,10.△ADP 沿点A旋转至△ABP′,连PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.【思路点拨】(1)利用旋转相等的线段、相等的角△APP′是等腰直角三角形;(2)利用勾股定理逆定理证△BPP′是直角三角形,再利用(1)的结论,得∠BPQ的大小;(3)过点B作BM⊥AQ于M,充分利用等腰直角三角形、直角三角形的性质,特别是锐角三角函数,先求得正方形的边长和BQ的长,进而求得CQ的长度.【解答】(1)证明:由旋转可得:AP=AP′,∠BAP′=∠DAP.∵四边形ABCD是正方形,∴∠BAD=90°.∴∠PAP′=∠PAB+∠BAP′=∠PAB+∠DAP=∠BAD=90°.∴△APP′是等腰直角三角形.(2)由(1)知∠PAP′=90°,AP=AP′=1,∴PP′= 2.∵P′B=PD=10,PB=22,∴P′B2=PP′2+PB2.∴∠P′PB=90°.∵△APP′是等腰直角三角形,∴∠APP′=45°.∴∠BPQ=180°-90°-45°=45°.(3)过点B 作BM ⊥AQ 于M. ∵∠BPQ =45°,∴△PMB 为等腰直角三角形.由已知,BP =22,∴BM =PM =2.∴AM =AP +PM =3.在Rt △ABM 中,AB =AM 2+BM 2=32+22=13.∵cos ∠QAB =AM AB =AB AQ ,即313=13AQ , ∴AQ =133. 在Rt △ABQ 中,BQ =AQ 2-AB 2=2313. ∴QC =BC -BQ =13-2313=133.1.图形的旋转涉及三角形的全等,会出现相等的线段或者角.若旋转角是直角,则会出现等腰直角三角形,若旋转角是60度,则会出现等边三角形.2.旋转的题目中若出现三条线段的长度,则不妨考虑通过旋转将条件集中,看是否存在直角三角形.1.(2015·某某)在△ABC 中,AB =AC =5,cos ∠ABC =35,将△ABC 绕点C 顺时针旋转,得到△A 1B 1C.图1 图2(1)如图1,当点B 1在线段BA 延长线上时.①求证:BB 1∥CA 1;②求△AB 1C 的面积;(2)如图2,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.2.(2013·某某)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△A1B1C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=2,则CQ等于多少?(3)如图3,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.3.(2013·内江)如图,在等边△ABC中,AB=3,D,E分别是AB,AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分为图形L.(1)求△ABC的面积;(2)设AD =x ,图形L 的面积为y ,求y 关于x 的函数解析式;(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.类型2 动态探究题(2015·某某)如图1,四边形ABCD 中,∠B =∠D=90°,AB =3,BC =2,tanA =43. (1)求CD 边的长;(2)如图2,将直线CD 边沿箭头方向平移,交DA 于点P ,交CB 于点Q(点Q 运动到点B 停止),设DP =x ,四边形PQCD 的面积为y ,求y 与x 的函数关系式,并求出自变量x 的取值X 围.【思路点拨】 (1)分别延长AD 、BC 相交于E ,通过构造的Rt△ABE、Rt△DCE 求解;(2)利用△EDC∽△EPQ 及S 四边形PQCD =S △EPQ -S △EDC 求解.【解答】 (1)分别延长AD 、BC 相交于E.在Rt△ABE 中,∵tanA =43,AB =3,∴BE =4. ∵BC =2,∴EC =2. 在Rt△ABE 中,AE =AB 2+BE 2=32+42=5.∴sinE =35=DC EC .∴CD =65. (2)∵∠B=∠ADC=90°,∠E =∠E,∴∠ECD =∠A.∴tan ∠ECD =tanA =43. ∴ED CD =ED 65=43,解得ED =85. 如图4,由PQ∥DC,可知△EDC∽△EPQ,∴ED EP =DC PQ .∴8585+x =65PQ ,即PQ =65+34x. ∵S 四边形PQCD =S △EPQ -S △EDC ,∴y =12PQ ·EP -12DC ·ED =12(65+34x)(85+x)-12×65×85=38x 2+65x. 如图5,当Q 点到达B 点时,EC =BC ,DC ∥PQ ,可证明△DCE≌△HQC,从而得CH =ED =85, ∴自变量x 的取值方X 围为:0<x≤85.动态型问题包括动点、动线、动形问题,解动态问题的关键就是:从特殊情形入手,变中求不变,动中求静,抓住静的瞬间,以静制动,把动态的问题转化为静态的问题来解决.本题化动为静后利用三角形相似列比例式,表示出相关线段的长,求出函数关系.1.(2013·某某)如图,点B 在线段AC 上,点D ,E 在AC 的同侧,∠A =∠C=90°,BD ⊥BE ,AD =BC.(1)求证:AC =AD +CE ;(2)若AD =3,AB =5,点P 为线段AB 上的动点,连接DP ,作PQ⊥DP,交直线BE 于点Q.①当点P 与A ,B 两点不重合时,求DP PQ的值;②当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)2.(2015·某某)如图1,矩形ABCD 的两条边在坐标轴上,点D 与坐标原点O 重合,且AD =8,AB =6,如图2,矩形ABCD 沿OB 方向以每秒1个单位长度的速度运动,同时点P 从A 点出发也以每秒1个单位长度的速度沿矩形ABCD 的边AB 经过点B 向点C 运动,当点P 到达C 时,矩形ABCD 和点P 同时停止运动,设点P 的运动时间为t 秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值X围;(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.3.(2015·某某)如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A、C、G的路线向G点匀速运动(M不与A、G重合),设运动时间为t秒,连接BM并延长交AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N 在AD 边上时,若BN⊥HN,NH 交∠CDG 的平分线于H ,求证:BN =NH ;(3)过点M 分别作AB 、AD 的垂线,垂足分别为E 、F ,矩形AEMF 与△ACG 重叠部分的面积为S ,求S 的最大值.类型3 类比探究题(2015·某某)已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE=90°.(1)如图1,当四边形ABCD 和EFCG 均为正方形时,连接BF.①求证:△CAE∽△CBF;②若BE =1,AE =2,求CE 的长.(2)如图2,当四边形ABCD 和EFCG 均为矩形,且AB BC =EF FC=k 时,若BE =1,AE =2,CE =3,求k 的值; (3)如图3,当四边形ABCD 和EFCG 均为菱形,且∠DAB=∠GEF=45°时,设BE =m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【思路点拨】 (1)利用“夹这个角的两边对应成比例”得△CAE∽△CBF,进而证明∠EBF=90°,利用勾股定理求EF ,进而求CE ;(2)类比(1)解题思路以及相似三角形性质得到对应边成比例,进而用含有k 的式子表示出CE ,BF ,并建立CE 2,BF 2的等量关系,从而求出k ;(3)类比(1)、(2)的思路及菱形的性质找m ,n ,p 的关系.【解答】 (1)①∵∠ACE+∠ECB=45°,∠BCF +∠ECB=45°,∴∠ACE =∠BCF.又∵AC BC =CE CF=2,∴△CAE ∽△CBF. ②∵AE BF =AC BC =2,AE =2,∴BF = 2.由△CAE∽△CBF 可得∠CAE=∠CBF. 又∠CAE+∠CBE=90°, ∴∠CBF +∠CBE=90°,即∠EBF=90°. ∴EF =BE 2+BF 2= 3. ∴CE =2EF = 6.(2)连接BF ,同理可得∠EBF=90°,由AB BC =EF FC =k ,可得BC∶AB∶AC=1∶k∶k 2+1,CF ∶EF ∶EC =1∶k∶k 2+1. ∴AC BC =AE BF=k 2+1. ∴BF =AE k 2+1,BF 2=AE 2k 2+1. ∴CE 2=k 2+1k 2×EF 2=k 2+1k 2(BE 2+BF 2), 即32=k 2+1k 2(12+22k 2+1),解得k =104. (3)p 2-n 2=(2+2)m 2.提示:连接BF ,同理可得∠EBF=90°,过C 作CH⊥AB,交AB 延长线于H ,可解得AB 2∶BC 2∶AC 2=1∶1∶(2+2),EF 2∶FC 2∶EC 2=1∶1∶(2+2),∴p 2=(2+2)EF 2=(2+2)(BE 2+BF 2)=(2+2)(m 2+n 22+2)=(2+2)m 2+n 2. ∴p 2-n 2=(2+2)m 2.本例是将某一问题的解决方法,运用到解决不同情境下的类似问题,这类题充分体现了实践性、探究性,其解答思路的突破点是紧扣题中交代的思想方法,结合不同情境中对应知识来解决问题.1.(2013·某某)阅读下列材料:如图1,在梯形ABCD 中,AD ∥BC ,点M ,N 分别在边AB ,DC 上,且MN∥AD,记AD =a ,BC AM MB =m n ,则有结论:MN =bm +an m +n. 请根据以上结论,解答下列问题:如图2,图3,BE ,CF 是△ABC 的两条角平分线,过EF 上一点P 分别作△ABC 三边的垂线段PP 1,PP 2,PP 3,交BC 于点P 1,交AB 于点P 2,交AC 于点P 3.(1)若点P 为线段EF 的中点.求证:PP 1=PP 2+PP 3;(2)若点P为线段EF上的任意位置时,试探究PP1,PP2,PP3的数量关系,并给出证明.2.(2015·随州)问题:如图1,点E、E分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.[发现证明]小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图1证明上述结论.[类比引申]如图2,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD 满足______关系时,仍有EF=BE+FD.[探究应用]如图3,在某公园的同一水平面上,四条道路围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(3-1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:2≈1.41,3≈).参考答案 类型1 操作探究题 1.(1)①证明:∵AB =AC ,∴∠B =∠ACB.∵B 1C =BC ,∴∠CB 1B =∠B.又由旋转性质得∠A 1CB 1=∠ACB,∴∠CB 1B =∠A 1CB 1.∴BB 1∥CA 1.②过A 作AG⊥BC 于G ,过C 作CH⊥AB 于H.∵AB=AC ,AG ⊥BC ,∴BG =CG.∵在Rt△AGB 中,cos ∠ABC =BG AB =35,AB =5, ∴BG =3.∴BC =6.∴B 1C =BC =6.∵B 1C =BC ,CH ⊥AB ,∴BH =B 1H.∴B 1B =2BH.∵在Rt△BHC 中,cos ∠ABC =BH BC =35, ∴BH =185.∴BB 1=365.∴AB 1=BB 1-AB =365-5=115,CH =BC 2-BH 2=62-(185)2=245. ∴S △AB 1C =12AB 1·CH =12×115×245=13225. (2)过点C 作CF⊥AB 于F ,以点C 为圆心,CF 为半径画圆交BC 于F 1,此时EF 1最小.此时在Rt △BFC 中,CF =245. ∴CF 1=245.∴EF 1的最小值为CF -CE =245-3=95. 以点C 为圆心,BC 为半径画圆交BC 的延长线于F ′1,此时EF′1有最大值.此时EF ′1=EC +CF′1=3+6=9.∴线段EF 1的最大值与最小值的差9-95=365. 2.(1)证明:∵∠B 1CB =45°,∠B 1CA 1=90°,∴∠B 1CQ =∠BCP 1=45°.在△B 1CQ 和△BCP 1中,⎩⎪⎨⎪⎧∠B 1CQ =∠BCP 1,B 1C =BC ,∠B 1=∠B,∴△B 1CQ ≌△BCP 1.∴CQ =CP 1. (2)作P 1D ⊥CA 于D ,∵∠A =30°,∴P 1D =12AP 1=1. ∵∠P 1CD =45°,∴CP 1=2P 1D = 2.∵CP 1=CQ ,∴CQ = 2.(3)∵∠ACB=90°,∠A =30°,∴AC =3BC.∵BE ⊥P 1B ,∠ABC =60°,∴∠CBE =30°. ∴∠CBE =∠A.由旋转的性质可得:∠ACP 1=∠BCE,∴△AP 1C ∽△BEC.∴AP 1∶BE =AC∶BC=3∶1.设AP 1=x ,则BE =33x ,在Rt△ABC 中,∠A =30°, ∴AB =2BC =2.∴BP 1=2-x.∴S △P 1BE =12×33x(2-x)=-36x 2+33x =-36(x -1)2+36, ∵-36<0, ∴当x =1时,△P 1BE 面积的最大值为36. 3.(1)作AH⊥BC 于H ,∴∠AHB =90°.在Rt△AHB 中,AH =AB·sinB =3×sin60°=3×32=332. ∴S △ABC =3×3232=934. (2)如图1,,y =S △ADE .图1 作AG⊥DE 于G ,∴∠AGD =90°,∠DAG =30°.∴DE =x ,AG =32x. ∴y =x ×32x 2=34x 2. 如图2,当1.5<x <3时,作MG⊥DE 于G ,图2∵AD =x ,∴DE =AD =x ,BD =DM =3-x.∴DG =12(3-x),MF =MN =2x -3. ∴MG=32(3-x). ∴y=(2x -3+x )32(3-x )2=-334x 2+33x -934. ∴y =⎩⎪⎨⎪⎧34x 2(0<x≤1.5),-334x 2+33x -934(1.5<x <3). ,y =34x 2,∵a =34>0,开口向上,在对称轴的右侧y 随x 的增大而增大,∴x ,y 最大=9316,如图3,当1.5<x <3时,y =-334x 2+33x -934, ∴y =-334(x 2-4x)-934=334(x -2)2+334. ∵a =-334<0,开口向下,∴x =2时,y 最大=334.∵334>9316, ∴y 最大时,x =2.图3∴DE =AD =2,BD =DM =1.作FO⊥DE 于O ,连接MO ,ME.∴DO =OE =1.∴DM=DO.∵∠MDO=60°,∴△MDO 是等边三角形.∴∠DMO =∠DOM=60°,MO =DO =1.∴MO=OE ,∠MOE =120°.∴∠OME =30°.∴∠DME =90°.∴DE 是直径,S ⊙O =π×12=π.类型2 动态探究题1.(1)证明:∵BD⊥BE,A ,B ,C 三点共线,∴∠ABD +∠CBE=90°.∵∠C=90°,∴∠CBE +∠E=90°.∴∠ABD =∠E.又∵∠A=∠C,AD =BC ,∴△DAB ≌△BCE(AAS).∴AB=CE.∴AC=AB +BC =AD +CE.(2)①连接DQ ,设BD 与PQ 交于点F.∵∠DPF=∠QBF=90°,∠DFP =∠QFB,∴△DFP ∽△QFB.∴DF QF =PF BF. 又∵∠DFQ=∠PFB,∴△DFQ ∽△PFB.∴∠DQP =∠DBA.∴tan ∠DQP =tan ∠DBA.即在Rt△DPQ 和Rt△DAB 中,DP PQ =DA AB. ∵AD =3,AB =CE =5,∴DP PQ =35.②过Q 作QH⊥BC 于点H.∵PQ⊥DP,∠A =∠H=90°,∴△APD ∽△HQP.∴DP PQ =DA PH =35.∵DA =3,∴PH =5. ∵AP=PC =4,AB =PH =5,∴PB =CH =1. ∵EC⊥BH,QH ⊥BH ,∴EC QH =BC BH .∴5QH =34.∴QH =203. 在Rt△BHQ 中,BQ =BH 2+QH 2=(203)2+(123)2=4343. ∵MN 是△BDQ 的中位线,∴MN =2343. 2.(1)D(-4,3),P(-12,8). (2)当点P 在边AB 上时,BP =6-t.∴S=12BP ·AD =12(6-t)·8=-4t +24. 当点P 在边BC 上时,BP =t -6.∴S=12BP ·AB =12(t -6)·6=3t -18. ∴S =⎩⎪⎨⎪⎧-4t +24(0≤t≤6),3t -18(6<t≤14). (3)∵D(-45t ,35t),当点P 在边AB 上时,P(-45t -8,85t).若PE OE =CD CB 时,85t 45t +8=68,PE OE =CB CD 时,85t 45t +8=86,解得t =20. ∵0≤t≤6,∴t =20时,点P 不在边AB 上, 不合题意.当点P 在边BC 上时,P(-14+15t ,35t +6).若PE OE =CD BC 时,35t +614-15t =68,解得t =6. 若PE OE =BC CD 时,35t +614-15t =86,解得t =19013. ∵6≤t ≤14,∴t =19013时,点P 不在边BC 上,不合题意. ∴当t =6时,△PEO 与△BCD 相似.3.(1)当点M 为AC 的中点时,有AM =BM ,则△ABM 为等腰三角形;当点M 与点C 的重合时,BA =BM ,则△ABM 为等腰三角形;当点M 在AC 上且AM =2时,AM =AB ,则△ABM 为等腰三角形;当点M 为CG 的中点时,有AM =BM ,则△ABM 为等腰三角形.(2)证明:在AB 上取点K ,使AK =AN ,连接KN.∵AB=AD ,BK =AB -AK ,ND =AD -AN ,∴BK =DN.又DH 平分直角∠CDG,∴∠CDH =45°.∴∠NDH =90°+45°=135°.∵∠BKN =180°-∠AKN=135°,∴∠BKN =∠NDH.∵在Rt△ABN 中,∠ABN +∠ANB=90°,又BN⊥NH ,即∠BNH=90°,∴∠ANB +∠DNH =180°-∠BNH=90°.∴∠ABN =∠DNH.∴△BNK≌△NHD(ASA),∴BN =NH.(3)①当M 在AC 上时,即0<t≤22时,易知:△AMF 为等腰直角三角形.∵AM=t ,∴AF =FM =22t.∴S =12AF ·FM =12·22t ·22t =14t 2. 当M 在CG 上时,即22<t <42时,CM =t -AC =t -22,MG =42-t.∵AD=DC ,∠ADC =∠CDG,CD =CD ,∴△ACD ≌△GCD(SAS).∴∠ACD=∠GCD=45°. ∴∠ACM =∠ACD+∠GCD=90°.∴∠G=90°-∠GCD=90°-45°=45°. ∴△MFG 为等腰直角三角形.∴FG=MG·cos45°=(42-t)·22=4-22t. ∴S =S △ACG -S △MCJ -S △FMG =12×4×2-12·CM ·CM -12·FG ·FM =4-12·(t -22)2-12·(4-22t)2=-34t 2+42t -8. ∴S=⎩⎨⎧14t 2(0<t≤22),-34t 2+42t -8(22<t <42). ②在0<t≤22X 围内,当t =22时,S 的最大值为14×(22)2=2; 在22<t <42X 围内,S =-34(t -823)2+83.当t =823时,S 的最大值为83. ∵83>2,∴当t =823秒时,S 的最大值为83. 类型3 类比探究题1.(1)证明:过点E 作ER⊥BC 于点R ,ES ⊥AB 于点S.∵BE 为角平分线,∴ER =ES.过点F 作FM⊥BC 于点M ,FN ⊥AC 于点N ,同理FM =FN.∵ES⊥B A ,PP 2⊥AB ,∴PP 2∥ES.同理得PP 3∥FN ,FM ∥PP 1∥ER.∵点P 为EF 中点,PP 2∥ES ,∴△FPP 2∽△FES.∴ES =2PP 2,同理FN =2PP 3.∴FM =2PP 3,ER =2PP 2.在梯形FMRE 中,FM ∥PP 1∥ER ,FP PE =11, ∴根据题设结论可知:PP 1=ER×1+FM×11+1=ER +FM 2=2PP 2+2PP 32=PP 2+PP 3. (2)探究结论:PP 1=PP 2+PP 3.证明:过点E 作ER⊥BC 于点R ,ES ⊥AB 于点S ,则有ER =ES.过点F 作FM⊥BC 于点M ,FN ⊥AC 于点N ,,不妨设FP PE =m n ,则PF EF =m m +n ,PE EF =n m +n .∵PP 2∥ES ,∴PP 2ES =PF EF =n m +n. ∴ES =m +n mPP 2.∵PP 3∥FN ,∴PP 3FN =PE EF =n m +n .∴FN =m +n n PP 3.∴ER =m +n m PP 2,FM =m +n nPP 3. 在梯形FMRE 中,FM ∥PP 1∥ER ,PF PE =m n, ∴根据题设结论可知:PP 1=mER +nFM m +n =m ·m +n m PP 2+n ·m +n n PP 3m +n =(m +n )PP 2+(m +n )PP 3m +n=PP 2+PP 3. 2.[发现证明]:将△ABE 绕点A 逆时针旋转90°至△ADG,使AB 与AD 重合. ∴△ABE≌△ADG.∴∠BAE=∠DAG,∠B =∠ADG,AE =AG ,BE =DG.∴∠GAF=∠GAD+∠DAF=∠BAE+∠DAF=45°.在正方形ABCD 中,∠B =∠ADF=90°.∴∠ADG +∠ADF=180°,即点G 、D 、F 在一条直线上.在△EAF 和△GAF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF=45°,AF =AF ,∴△EAF ≌△GAF.∴EF =GF.又GF =DG +DF =BE +DF.∴EF=BE +FD.[类比引申]:∠EAF=12∠BAD , 理由如下:将△ABE 绕点A 逆时针方向旋转∠D AB 至△ADG,使AB 与AD 重合.∴△ABE≌△ADG.∴∠BAE=∠DAG,∠B =∠ADG,AE =AG ,BE =DG.∴∠GAF=∠GAD+∠DAF=∠BAE+∠DAF=12∠BAD. ∵在四边形ABCD 中,∠B +∠ADF=180°.∴∠ADG +∠ADF=180°,即点G 、D 、F 在一条直线上.在△EAF 和△GAF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF=12∠BAD,AF =AF ,∴△EAF ≌△GAF.∴EF =GF.又GF =DG +DF =BE +DF ,∴EF =BE +FD.[探究应用]:连接AF ,延长BA 、CD 交于点O.则∠BOC=180°-∠B-∠C=90°.∴△AOD 为直角三角形.在Rt△AOD 中,∠ODA =60°,∠OAD =30°,AD =80米.∴AO=403米,OD =40米.∵OF=OD +DF =40+40(3-1)=403(米),∴AO =OF.∴∠OAF=45°.∴∠DAF =45°-30°=15°.∴∠EAF =90°-15°=75°.∴∠EAF =12∠BAD. ∵∠BAE =180°-∠OAF-∠EAF=60°,∠B =60°,∴△BAE 为等边三角形. ∴BE=AB =80米.由[类比引申]的结论可得EF =BE +DF =40(3+1)≈109(米).。

火线100天(四川专版)中考数学总复习 第6讲 一元二次方程-人教版初中九年级全册数学试题

火线100天(四川专版)中考数学总复习 第6讲 一元二次方程-人教版初中九年级全册数学试题

第6讲一元二次方程一元二次方程的概念及解法一元二次方程的概念只含有①________个未知数,且未知数的最高次数是②________的整式方程,叫做一元二次方程.它的一般形式是ax2+bx+c=0(a≠0).一元二次方程的解法解一元二次方程的基本思想是③________,主要方法有:直接开平方法、④________法、公式法、⑤________法等.一元二次方程根的判别式及根与系数的关系根的判别式的定义关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式为⑥________.判别式与根的关系(1)b2-4ac>0一元二次方程⑦__________的实数根;(2)b2-4ac=0一元二次方程⑧__________的实数根;(3)b2-4ac<0一元二次方程⑨________实数根.根与系数的关系如果一元二次方程ax2+bx+c=0(a≠0)的两根分别是x1、x2,则x1+x2=-ba,x1·x2=ca.【易错提示】(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为0这个限制条件.(2)利用根与系数的关系解题时,要注意根的判别式b2-4ac≥0.一元二次方程的应用正确列出一元二次方程的前提是准确理解题意、找出等量关系,进而达到求解的目的.在此过程中往往要借助于示意图、列表格等手段帮助我们分析数量关系,并能根据具体问题的实际意义检验结果是否合理.1.已知方程一根求另一根和参数系数,可将已知根代入方程求出参数系数的值,再解方程另一根;也可以利用根与系数的关系求解.2.解一元二次方程需要根据方程特点选用适当的方法,一般情况下:(1)首先看能否用直接开平方法或因式分解法;(2)不能用以上方法时,可考虑用公式法;(3)除特别指明外,一般不用配方法.命题点1 一元二次方程的解法(2014·某某)解方程:3x(x-2)=2(2-x).【思路点拨】可以运用因式分解法比较简捷.【解答】一元二次方程的解法有四种:因式分解法、开平方法,配方法与公式法.若方程的右边为0,且左边能分解因式,则宜选用因式分解法;若方程形如x2=c、(ax+b)2=c(c≥0)或可化为这种形式的一类方程,则宜选用开平方法;若方程二次项系数为1,一次项的系数为偶数时,则宜选用配方法;若用直接开平方法、配方法、因式分解法都不简便时,则用公式法.1.(2015·某某A卷)一元二次方程x2-2x=0的根是()A.x1=0,x2=-2 B.x1=1,x2=2C.x1=1,x2=-2 D.x1=0,x2=22.(2015·滨州)用配方法解一元二次方程x2-6x-10=0时,下列变形正确的为()A.(x+3)2=1 B.(x-3)2=1C.(x+3)2=19 D.(x-3)2=193.解方程:4x2-12x+5=0.4.(2013·某某)用配方法解关于x的一元二次方程ax2+bx+c=0.命题点2 一元二次方程根的判别式及根与系数(2015·某某)已知关于x的一元二次方程(x-1)(x-4)=p2(p为实数).(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)【思路点拨】(1)首先将方程化为一般式,然后计算根的判别式为正,从而结论得以证明;(2)可以利用一元二次方程的根与系数的关系讨论得出p的值.【解答】利用一元二次方程的根与系数的关系求字母系数的值的前提条件是方程必有两个实数根,也就是Δ≥0.1.(2015·眉山)下列一元二次方程中有两个不相等的实数根的方程是()A.(x-1)2=0 B.x2+2x-19=0C.x2+4=0 D.x2+x+1=02.(2015·某某)关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值X围是() A.k>-1 B.k≥-1C.k≠0 D.k>-1且k≠03.(2015·内江)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.4.(2014·某某)已知关于x的一元二次方程x2-22x+m=0,有两个不相等的实数根.(1)某某数m的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x21+x22-x1x2的值.命题点3 一元二次方程的应用(2015·某某)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1 140 m2,求小路的宽.【思路点拨】设小路的宽x m,将四块种植地平移为一个矩形,矩形的长为(40-x)m,宽为(32-x)m,根据矩形的面积公式可建立一元二次方程,解之可得答案.【解答】列方程解应用题的关键是找到相等关系.而在找相等关系时,有时可借助图表,在求出方程的解后,要检验它是否符合实际意义.对于商品销售问题,相等关系是:总利润=每件利润×销售数量.1.(2015·某某)某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1-x2)=3152.(2015·达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1 200元,则每件童装应降价多少元?设每件童装应降价x元,可列方程为________________.3.(2015·乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定位多少元?4.(2015·某某)李明准备进行如下操作实验,把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm 2,你认为他的说法正确吗?请说明理由.1.(2014·某某)一元二次方程x 2-x -2=0的解是() A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=22.(2015·随州)用配方法解一元二次方程x 2-6x -4=0,下列变形正确的是() A .(x -6)2=-4+36 B .(x -6)2=4+36 C .(x -3)2=-4+9D .(x -3)2=4+93.(2015·某某)若一元二次方程x 2+2x +a =0有实数解,则a 的取值X 围是() A .a<1B .a ≤4C .a ≤1D .a ≥14.(2015·达州)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值X 围为()A .m>52B .m ≤52且m≠2C .m ≥3D .m ≤3且m≠25.(2015·某某)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是() A .12B .9C .13D .12或96.(2015·某某)若关于x 的方程x 2+3x +a =0有一个根为-1,则另一个根为() A .-2 B .2 C .4 D .-37.(2015·某某)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m ,另一边减少了3 m ,剩余一块面积为20 m 2的矩形空地,则原正方形空地的边长是()A .7 mB .8 mC .9 mD .10 m8.(2015·某某)解一元二次方程x 2+2x -3=0时,可转化为两个一元一次方程,请写出其中的一个一元一次方程________________.9.(2015·)关于x 的一元二次方程ax 2+bx +14=0有两个相等的实数根,写出一组满足条件的实数a ,b的值:a =________,b =________.10.(2015·甘孜)若矩形ABCD 的两邻边长分别为一元二次方程x 2-7x +12=0的两个实数根,则矩形ABCD 的对角线长为________.11.(2015·呼和浩特)若实数a 、b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =________. 12.(2015·某某)关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值X 围是________. 13.(2015·某某)解方程:x 2-3x +2=0.14.(2015·某某)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判断方程根的情况;(2)若方程有一个根为3,求m的值.15.(2015·某某)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)某某数k的取值X围;(2)若方程两实根x1,x2满足|x1|+|x2|=x1·x2,求k的值.16.(2015·东营)2013年,东营市某楼盘以每平方米6 500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5 265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,X强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,X强的愿望能否实现?(房价每平方米按照均价计算)17.(2015·某某)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值X 围是()A .m >34B .m >34且m≠2C .-12<m <2D.34<m <2 18.(2015·株洲)有两个一元二次方程:M :ax 2+bx +c =0,N :cx 2+bx +a =0,其中a +c =0,以下列四个结论中,错误的是()A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根D .如果方程M 和方程N 有一个相同的根,那么这个根必是x =119.(2015·某某)关于m 的一元二次方程7nm 2-n 2m -2=0的一个根为2,则n 2+n -2=________. 20.(2015·凉山)已知实数m 、n 满足3m 2+6m -5=0,3n 2+6n -5=0,则n m +m n=________.参考答案 考点解读考点1 ①一 ②2 ③降次 ④配方 ⑤因式分解考点2 ⑥b 2-4ac ⑦有两个不相等 ⑧有两个相等 ⑨没有 各个击破,得(x -2)(3x +2)=0. ∴x-2=0或3x +2=0.因此,原方程的解为x 1=2,x 2=-23.题组训练 1.D 2.D 1=52,x 2=12.4.∵关于x 的方程ax 2+bx +c =0是一元二次方程, ∴a≠0.∴由原方程,得x 2+b a x =-c a.等式的两边都加上(b 2a )2,得x 2+b a x +(b 2a )2=-c a +(b 2a )2,配方,得(x +b 2a )2=-4ac -b24a 2, 开方,得x +b 2a =±b 2-4ac2a,解得x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.例2 (1)化简方程,得x 2-5x +(4-p 2)=0,Δ=(-5)2-4(4-p 2)=9+4p 2. ∵p 为实数, ∴9+4p 2>0.∴方程有两个不相等的实数根.(2)当p 为0、2、-2时,方程有整数解. 题组训练 1.B 2.D 3.24.(1)∵一元二次方程x 2-22x +m =0有两个不相等的实数根, ∴Δ=8-4m >0,解得m <2,故整数m 的最大整数值为1. (2)∵m=1,∴此一元二次方程为x 2-22x +1=0.∴x 1+x 2=22,x 1x 2=1,∴x 21+x 22-x 1x 2=(x 1+x 2)2-3x 1x 2=8-3=5. 例3 设小路的宽为x m ,依题意,, 得x 21=2,x 2=70(不合题意,舍去). 答:小路的宽为2 m.题组训练 1.B 2.(40-x)(20+2x)=1 200 ,则售价为(60-x)元,销售量为(300+20x)件,根据题意得(60-x -40)(300+20x)=6 080,解得x 1=1,x 2=4. 又∵要让顾客得实惠, 故取x =4,即定价为56元. 答:应将销售单价定位56元.4.(1)设剪成的较短的这段为x cm ,较长的这段就为(40-x) cm , 由题意,得(x 4)2+(40-x 4)2=58,解得x 1=12,x 2=28.当x =12时,较长的为40-12=28(cm), 当x =28时,较长的为40-28=12<28(舍去). 答:李明应该把铁丝剪成12 cm 和28 cm 的两段. (2)李明的说法正确.理由如下:设剪成的较短的这段为m cm ,较长的这段就为(40-m)cm ,由题意,得(m 4)2+(40-m 4)2=48,变形为m 2-40m +416=0.∵Δ=(-40)2-4×416=-64<0, ∴原方程无实数根,即李明的说法正确,这两个正方形的面积之和不可能等于48 cm 2. 整合集训 基础过关1.D 2.D 3.C 4.B 5.A 6.A 7.A 8.x +3=0(或x -1=0) 9.1 1 10.5 11.1或-12 12.m>1413.∵a=1,b =-3,c =2,∴Δ=b 2-4ac =(-3)2-4×1×2=1. ∴x=3±12×1=3±12. ∴x 1=1,x 2=2.14.(1)因为Δ=(2m)2-4(m 2-1)=4>0,所以,原方程有两个不相等的实数根.(2)将x =3代入原方程,得32+6m +m 2-1=0,即m 2+6m +8=0,解得m =-2或m =-4.15.(1)∵原方程有两个不相等的实数根,∴Δ=(2k +1)2-4(k 2+1)=4k 2+4k +1-4k 2-4=4k -3>0,即k >34. (2)∵k >34, ∴x 1+x 2=-(2k +1)<0.又∵x 1·x 2=k 2+1>0,∴x 1<0,x 2<0.∴|x 1|+|x 2|=-x 1-x 2=-(x 1+x 2)=2k +1.∵|x 1|+|x 2|=x 1·x 2,∴2k +1=k 2+1.∴k 1=0,k 2=2.又∵k>34, ∴k =2.16.(1)设平均每年下调的百分率为x ,根据题意,得6 500(1-x)2=5 265,解得x 1=0.1=10%,x 2=1.9(不合题意,舍去).答:平均每年下调的百分率为10%.(2)若下调的百分率相同,2016年的房价为5 265×(1-10%)=4 738.5(元/m 2). 则100平方米的住房的总房款为:100×4 738.5=473 850(元)=47.385(万元). ,∴X 强的愿望可以实现.能力提升22 17.D 18.D 19.26 20.-5。

【火线100天】(四川专版)中考数学专题复习一规律与猜想

【火线100天】(四川专版)中考数学专题复习一规律与猜想

规律与猜想学习数学很重要的一个目的,就是要善于捕捉事物的规律,用数学形式和数学方法表示出来.规律与猜想类试题选材一般有一定的趣味性,呈现形式多样,便于学生观察,侧重考查学生观察和归纳能力,让学生从不同的角度,利用不同的方法探索并发现数学规律,并自我验证,最后用于解决相关问题,真正考查了学生的数学思考能力.类型1 数式规律(2015·巴中)a 是不为1的数,我们把11-a 称为a 的差倒数,如:2的差倒数为11-2=-1;-1的差倒数是11-(-1)=12;已知a 1=3,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…依此类推,则a 2 015=________.【思路点拨】 先根据差倒数的定义表示出各项,再归纳总结规律,最后利用规律表示a 2 015的值.【解答】 a 1=3;a 2是a 1的差倒数,即a 2=11-3=-12; a 3是a 2的差倒数,即a 3=11+12=23; a 4是a 3的差倒数,即a 4=11-23=3; …依此类推,∵2 015÷3=671……2,∴a 2 015=-12. 故答案为-12.解答数式规律探索题的一般步骤:第一步:找序数;第二步:找规律,分别比较数式中各部分与序数之间的关系,把其蕴含的规律用含序数的式子表示出来;第三步:根据找出的规律得出第n 个数式.有时,也会根据计算前面几个数式,总结出循环规律,再求解,如本例题.1.(2015·临沂)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2 015个单项式是( )A .2 015x2 015 B .4 029x 2 014 C .4 029x 2 015 D .4 031x 2 0152.(2015·泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .2523.(2013·绵阳)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j)表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2 013=( )A .(45,77)B .(45,39)C .(32,46)D .(32,23)4.(2013·广元)观察下列等式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;…,通过观察,用你所发现的规律确定22 013的个位数字是________.5.(2015·恩施)观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n 都连续出现n 次,那么这一组数的第119个数是________.6.(2015·平凉)古希腊数学家把数形结合1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是________,2 016是第________个三角形数.7.(2014·南充)一列数a 1,a 2,a 3,…,a n ,其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 014=________.8.(2014·黄石)观察下列等式:第一个等式:a 1=31×2×22=11×2-12×22; 第二个等式:a 2=42×3×23=12×22-13×23; 第三个等式:a 3=53×4×24=13×23-14×24; 第四个等式:a 4=64×5×25=14×24-15×25; 按上述规律,回答以下问题:用含n 的代数式表示第n 个等式:a n =____________=________________;式子a1+a2+a3+…+a20=________.类型2 图形规律(2015·内江)如图是由火柴棒搭成的几何图案,则第n个图案中有______根火柴棒.(用含n的代数式表示)…【思路点拨】本题可分别写出n=1,2,3,…时所对应的火柴棒的根数.然后进行归纳即可得出最终答案.【解答】依题意得:n=1,根数为4=2×1×(1+1);n=2,根数为12=2×2×(2+1);n=3,根数为24=2×3×(3+1);…第n个图案火柴棒根数为2n(n+1).解答图形排列中的规律的一般步骤为:第一步:标图形序数;第二步:找关系,找一个图形相比前一个图形中所求量之间的关系,或找出图形中的所求量与图形序数之间的关系;第三步:计算每个图形中所求量的个数;第四步:对求出的结果进行一定的变形,使其呈现一定的规律;第五步:归纳结果与序数之间的关系,即可得到第n个图形中的所求量的个数;第六步:验证.对于图形循环变换类规律题,求经过n次变换后对应的图形的解题步骤为:第一步:通过观察,得到该组图形经过一个循环的次数,即为a;第二步:用n除以a,商b余m(0≤m<a)时,第n次变换后对应的图形就是一个循环变换中第m次变换后对应的图形;第三步:根据题意,找出第m次变换后对应的图形,推断出第n次变换后对应的图形.1.(2014·攀枝花)如图,两个连接在一起的菱形的边长都是1 cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2 014 cm时停下,则它停的位置是( )A.点F B.点E C.点A D.点C2.(2015·绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n =( )…A .14B .15C .16D .173.(2014·宜宾)如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…,A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n -1C .(14)n -1 D.14n 4.(2014·内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2 014个图形是________.5.(2015·山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第(n)个图案有________个三角形(用含n 的代数式表示).6.(2014·德阳)如图,直线a∥b,△ABC 是等边三角形,点A 在直线a 上,边BC 在直线b 上,把△ABC 沿BC 方向平移BC 的一半得到△A′B′C′(如图1);继续以上的平移得到图2,再继续以上的平移得到图3,…;请问在第100个图形中等边三角形的个数是________.7.(2015·随州)观察下列图形规律:当n =________时,图形“的个数和“△”的个数相等.…8.(2014·绵阳)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,S 1+S2+S3+…+S2 014=________.9.(2015·潍坊)如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=________.(用含n的式子表示)10.(2014·成都)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是________.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S=________.(用数值作答)类型3 坐标规律(2015·德阳)如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n-1P n =2n-1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为________.【思路点拨】 利用特殊直角三角形求出OP n 的值,再利用∠AOB=60°即可求出点Q n 的坐标.【解答】 ∵△AOB 为正三角形,射线OC⊥AB,∴∠AOC =30°.又∵P n -1P n =2n -1,P n Q n ⊥OA ,∴OQ n =32(OP 1+P 1P 2+P 2P 3+…+P n -1P n )=32(1+3+5+…+2n -1)=32n 2. ∴Q n 的坐标为(32n 2·cos60°,32n 2·sin60°),即Q n 的坐标为(34n 2,34n 2).本题主要考查了坐标与图形性质,解题的关键是正确地求出OQ n 的值.点的坐标变化主要是点所在的图形的位置在发生变化,解决这类问题,先应分析坐标系中的图形的位置变化规律,然后再根据图形的变化规律寻找图形上的点的坐标的变化规律.1.(2015·济南)在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A 的对称点为P 1,P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按照此规律继续以A 、B 、C 为对称中心重复前面的操作,以此得到P 4,P 5,P 6,…,则点P 2 015的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)2.(2014·内江)如图,已知A 1、A 2、A 3、…、A n 、A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n +1=1,分别过点A 1、A 2、A 3、…、A n 、A n +1作x 轴的垂线交直线y =2x 于点B 1、B 2、B 3、…、B n 、B n +1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n +1、B n A n +1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、…、△A n B n P n 的面积依次记为S 1、S 2、…、S n ,则S n 为( )A.n +12n +1 B.n 3n -1C.n 22n -1D.n 22n +13.(2015·成都)已知菱形A 1B 1C 1D 1的边长为2,∠A 1B 1C 1=60°,对角线A 1C 1,B 1D 1相交于点O.以点O 为坐标原点,分别以OA 1,OB 1所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以B 1D 1为对角线作菱形B 1C 2D 1A 2∽菱形A 1B 1C 1D 1,再以A 2C 2为对角线作菱形A 2B 2C 2D 2∽菱形B 1C 2D 1A 2,再以B 2D 2为对角线作菱形B 2C 3D 2A 3∽菱形A 2B 2C 2D 2,…,按此规律继续作下去,在x 轴的正半轴上得到点A 1,A 2,A 3,…,A n ,则点A n 的坐标为________.4.(2015·达州)在平面直角坐标系中,直线y =x +1与y 轴交于点A 1,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…,A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在x 轴上,图中阴影部分三角形的面积从左到右依次记为S 1、S 2、S 3、…S n ,则S n 的值为________(用含n 的代数式表示,n 为正整数).5.(2015·东营)如图放置的△OAB 1,△B 2A 2B 3,…都是边长为1的等边三角形,点A 在x 轴上,点O ,B 1,B 2,B 3,…都在直线l 上,则点A 2 015的坐标是________________.6.(2013·内江)如图,已知直线l :y =3x ,过点M(2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 10的坐标为____________.(2013·自贡)如图,在函数y =8x(x >0)的图象上有点P 1、P 2、P 3…、P n 、P n +1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1、P 2、P 3…、P n 、P n +1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1、S 2、S 3…、S n ,则S 1=________,S n =________.(用含n 的代数式表示)参考答案类型1 数式规律1.C 2.C 3.C 4.2 5.15 6.45 63 7.2 0112 8.n+2n (n +1)·2n +1 1n·2n -1(n +1)·2n +112-121×221类型2 图形规律1.A 2.C 3.B 4.正方形 5.(3n +1) 6.301 7.5 8.1-122 014 9.32(34)n 10.7,3,10 11类型3 坐标规律1.A 2.D 3.(3n -1,0) 4.22n -3 5.(2 0172,2 01532) 6.(2 097 152,0)7.4 8n (n +1)。

火线100天(安徽专版)中考数学一轮复习 第二单元 方程与不等式 第4讲 一次方程(组)-人教版初中

火线100天(安徽专版)中考数学一轮复习 第二单元 方程与不等式 第4讲 一次方程(组)-人教版初中

第4讲一次方程(组)命题点年份(2013~2015)题序 题型 分值 考查方向一次方程(组)的应用 2014 20(1) 解答题 5 近5年考查两次,以实际应用为主,经常与不等式,函数结合考查.一元一次方程及解法一元一次方程的概念只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程.解一元一次方程的步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.【易错提示】 掌握移项法则,需注意:(1)移项要变号,不变号不能移项;(2)可以同时移动多项.二元一次方程组的解法二元一次方程组的解二元一次方程组的①________________,叫做二元一次方程组的解. 解二元一次方程组的方法步骤二元一次方程组――→消元转化②________方程. 解二元一次方程组的思路与方法消元是解二元一次方程组的基本思路,方法有③____消元法和④____消元法两种. 一次方程(组)的应用列一次方程(组)解应用题的步骤(1)审:弄清题意和数量关系,弄清已知量和未知量,明确各数量之间的关系;(2)设:设未知数(可设直接或间接未知数);(3)列:根据相等关系列出需要的代数式,进而列出方程(组);(4)解:解方程(组);(5)答:检验所求的未知数的值是否符合题意,写出答案.【易错提示】 实际问题中注意检验解题结果,既要检验解题结果是否使方程(组)成立,又要检验是否符合实际意义,检验步骤不需写在解题过程中.1.解二元一次方程组时,若方程组其中一个方程中的未知数系数为1或-1,则采用代入消元法求解;解二元一次方程组时,若相同未知数的系数相等或互为相反数时,则采用加减消元法求解.2.列方程(组)的关键是寻找等量关系,寻找等量关系常用的方法有:(1)抓住不变量;(2)找关键词;(3)画线段图或列表格;(4)运用数学公式.命题点1 一次方程(组)及解法(2014·宿松三模)解方程:(2x +1)2=(2x -1)2-1.【解答】解一元一次方程在去括号、移项及系数化为1时,应注意符号变化.(2015·东营)解方程组:⎩⎪⎨⎪⎧x +y =6,①2x -y =9.② 【思路点拨】 本题考查的是解二元一次方程组,由于方程组中y 的系数互为相反数,所以此题可以采用加减消元法解答,两式相加求出x 的值,再代入①式求出y 的值.【解答】解二元一次方程组时,要仔细观察方程组的特点,灵活地选择代入消元法和加减消元法.用代入法的关键是能将一个未知数用含另一个未知数的代数式表示.如果两个方程中的某一个未知数的系数成倍数关系,那么采用加减消元法.1.(2014·某某)方程x +2=1的解是( )A .x =3B .x =-3C .x =1D .x =-12.(2015·某某)方程2x -1=3x +2的解为________.3.(2014·某某预测)已知代数式2a 3b n +1与-3a m -2b 2是同类项,则2m +3n =________.4.(2015·某某B 卷)解二元一次方程组:⎩⎪⎨⎪⎧x -2y =1,①x +3y =6.②命题点2 一次方程(组)的应用(2014·某某二模)夏季来临,天气逐渐炎热起来.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%.已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料,问这两种饮料在调价前每瓶各多少元?,依据这两个等量关系可以列出方程组.【解答】建立方程或方程组的模型解决问题,首先要认真审题,读懂题意,抓住题目中的关键语句,找出等量关系,然后列出符合题意的方程或方程组,进而求解.1.(2015·某某)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( )A .54-x =20%×108B .54-x =20%(108+x)C .54+x =20%×162D .108-x =20%(54+x)(2015·某某)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球队各有多少支参赛?1.(2015·某某)方程2x -1=3的解是( )A .x =-1B .x =-2C .x =1D .x =22.(2014·某某)若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为( )A .-1B .0C .1 D.133.(2014·某某包河模拟)二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是( ) A.⎩⎪⎨⎪⎧x =0y =-12 B.⎩⎪⎨⎪⎧x =1y =1 C.⎩⎪⎨⎪⎧x =1y =0D.⎩⎪⎨⎪⎧x =-1y =-1 4.(2015·某某)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A .25台B .50台C .75台D .100台5.(2015·某某)利用消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6.②下列做法正确的是( ) A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.(2015·马某某二模)已知⎩⎪⎨⎪⎧x +2y =5,2x +y =4,则x +y 等于( ) A .2B .3C .4D .57.(2015·包河一模)今年植树节,学校团委组织60位团员去植树,他们共种了130棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =1303x +2y =60 B.⎩⎪⎨⎪⎧x +y =1302x +3y =60 C.⎩⎪⎨⎪⎧x +y =603x +2y =130D.⎩⎪⎨⎪⎧x +y =602x +3y =1308.(2014·某某)已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________.9.若3x m +5y 2与x 3y n 的和是单项式,则n m=________. 10.(2014·某某毕业模拟)已知⎩⎪⎨⎪⎧x =-1,y =-1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为________. 11.(2014·某某)七、八年级学生分别到雷锋、纪念馆参观,共589人,到纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为______________.12.(2015·)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为____________.13.(2015·某某)解方程:5x =3(x -4).14.(2015·某某)解方程组:⎩⎪⎨⎪⎧x +2y =5,①3x -2y =-1.②15.(2015·某某)解方程组:⎩⎪⎨⎪⎧2x -y =5,①x -1=12(2y -1).②16.(2015·日照)已知关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +2y =3,3x +5y =m +2的解满足x +y =0,求m 的值.17.一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作3天,余下的由乙单独完成.问开始到完工共用了多少天时间?18.(2015·某某)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).求A、B两种花草每棵的价格分别是多少元?19.(2013·某某)朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有多少个小朋友?( )A.4个 B.5个C.10个 D.12个20.(2013·某某)某某某某地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有( )A.4种 B.11种C.6种 D.9种21.(2015·某某)某校规划在一块长AD为18 m,宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?参考答案考点解读①两个方程的公共解 ②一元一次 ③代入 ④加减各个击破例1 去括号得:4x 2+4x +1=4x 2-4x +1-1,移项得:8x =-1,系数化为1,得:x =-18. 例2 ①+②得:3x =15.∴x=5.将x =5代入①,得:5+y =6.∴y=1.∴方程组的解为⎩⎪⎨⎪⎧x =5,y =1. 题组训练 1.D 2.x =-3 3.134.②-①得,y =1.将y =1代入①得x =3.∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =1. 例3 设调价前碳酸饮料每瓶x 元,果汁饮料每瓶y 元,依题意得:⎩⎪⎨⎪⎧x +y =7,3(1+10%)x +2(1-5%,解得⎩⎪⎨⎪⎧x =3,y =4. 答:调价前这种碳酸饮料每瓶的价格为3元,这种果汁饮料每瓶的价格为4元. 题组训练1.B支排球队参赛,由题意得⎩⎪⎨⎪⎧x +y =48,10x +12y =520,解得⎩⎪⎨⎪⎧x =28,y =20. 答:篮球、排球队各有28支、20支参赛.整合集训 1.D 2.A 3.B 4.C 5.D 6.B 7.C 8.1 9.14 10.-1 11.2x +56=589-x 12.⎩⎪⎨⎪⎧5x +2y =102x +5y =8 ,得5x =3x -12.移项,得5x -3x =-12.合并同类项,得2x =-12.系数化为1,得x =-6.14.①+②,得4x =4,解得x =1,将x =1代入①,解得y =2,所以方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 15.由②得:2x -2y =1.③①-③得:y =4.把y =4代入①得:x =92, ∴原方程组的解为⎩⎪⎨⎪⎧x =92,y =4.⎩⎪⎨⎪⎧x +2y =3,x +y =0.解得⎩⎪⎨⎪⎧x =-3,y =3. 将⎩⎪⎨⎪⎧x =-3,y =3代入3x +5y =m +2,得3×(-3)+5×3=m +2.解得m =4. ,由题意,得(110+130)×3+130x =1.解得x =18.18+3=21. 答:开始到完工共用了21天时间.A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据题意得:⎩⎪⎨⎪⎧30x +15y =675,12x +5y =940-675.解得⎩⎪⎨⎪⎧x =20,y =5. 答:A 种花草每棵的价格是20元,B 种花草每棵的价格是5元.19.B20.C21.设通道的宽为x m ,AM =8y m ,∵AM ∶AN =8∶9, ∴AN =9y ,∴⎩⎪⎨⎪⎧2x +24y =18,x +18y =13.解得⎩⎪⎨⎪⎧x =1,y =23. 答:通道的宽是1 m.。

火线100天(四川专版)中考数学总复习 第5讲 一次方程(组)-人教版初中九年级全册数学试题

火线100天(四川专版)中考数学总复习 第5讲 一次方程(组)-人教版初中九年级全册数学试题

第二单元方程与不等式第5讲一次方程(组)一元一次方程及解法等式的性质性质1:等式两边加(或减)同一个数或同一个①________,所得结果仍是等式;性质2:等式两边乘(或除以)同一个数(除数不能为0),所得结果仍是②________.方程的概念含有未知数的③________叫做方程.方程的解使方程左右两边的值④________的未知数的值叫做方程的解.一元一次方程的概念只含有⑤________个未知数,且未知数的最高次数是⑥________的整式方程,叫做一元一次方程.一元一次方程的解法解一元一次方程的一般步骤:去分母、去⑦________、移项、合并⑧________、系数化为1.二元一次方程组及解法二元一次方程的概念含有⑨________个未知数,并且未知项的次数是⑩________的整式方程叫做二元一次方程.二元一次方程组的概念一般地,含有○11________的未知数的○12________个二元一次方程合在一起,就组成了一个二元一次方程组.二元一次方程组的解二元一次方程组的两个方程的○13________,叫做二元一次方程组的解.二元一次方程组的解法解二元一次方程组的方法步骤:二元一次方程组――→消元转化○14________方程.消元是解二元一次方程组的基本思路,方法有○15______消元法和○16______消元法两种.三元一次方程 组的解法类似二元一次方程组的解法,将三元一次方程组转化为二元一次方程组最后转化为一元一次方程组进行求解.一次方程(组)的应用列方程(组)解应用题的一般步骤 1.审 审清题意和数量关系,弄清题中的已知量和未知量,明确各数量之间的关系. 设未知数(可设直接或○17________未知数). 3.列 根据题意寻找○18________列方程(组). 解方程(组).检验所求的未知数的值是否符合题意,写出答案.1.解二元一次方程组时,若方程组其中一个方程中的未知数系数为1或-1,则直接采用代入消元法求解;若相同未知数的系数相等或互为相反数时,则直接采用加减消元法求解.2.列方程(组)的关键是寻找等量关系,寻找等量关系常用的方法有:(1)抓住不变量;(2)找关键词;(3)画线段图或列表格;(4)运用数学公式.命题点1 一次方程(组)的解法(2015·某某)解方程组:⎩⎪⎨⎪⎧x +2y =5,①3x -2y =-1.②【思路点拨】 观察方程组的结构,未知数y 的系数互为相反数,直接将两式相加即可消去y ,再解关于x 的一元一次方程求出x 的值,最后将x 的值代入任一方程求出y 的值. 【解答】解二元一次方程组的基本思想是消元,即是化“二元”为“一元”.其方法有代入消元法与加减消元法两种.(1)当方程组中的某一个未知数的系数为1或-1时,通常用代入消元法;(2)当方程组中的某一个未知数的系数相同或互为相反数或成倍数关系时,通常用加减消元法.1.(2015·某某)一元一次方程4x +1=0的解是() A .x =14B .x =-14C .x =4D .x =-42.(2015·某某)若单项式2x 2y a +b与-13x a -b y 4是同类项,则a ,b 的值分别为()A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-13.(2015·甘孜)已知关于x 的方程3a -x =x 2+3的解为2,则代数式a 2-2a +1的值是________.4.(2015·某某)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =k ,x +2y =-1的解互为相反数,则k 的值是________.5.(2015·某某)解方程组:⎩⎪⎨⎪⎧2x -y =5,①x -1=12(2y -1).②命题点2 一次方程(组)的应用(2014·某某)小林在某商店购买商品A 、B 共三次,只有一次购买时,商品A 、B 同时打折,其余两次均按标价购买.三次购买商品A 、B 的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个) 购买总费用(元) 第一次购买 6 5 1 140 第二次购买 3 7 1 110 第三次购买981 062(1)小林以折扣价购买商品A 、B 是第________次购物; (2)求商品A 、B 的标价;(3)若商品A 、B 的折扣相同,问商店是打几折出售这两种商品的?【思路点拨】 (2)设商品A 、B 的标价分别为x 元、y 元,根据图表列出方程组求出x 和y 的值.(3)设商店是打a 折出售这两种商品.根据折后费用1 062元,列出方程求解. 【解答】构建方程(组)解决实际问题的关键是弄清题意,找出题中的相等关系,当题中含有多种关系时,列方程组可降低思维难度.但一般情况是一个相等关系只能用一次.1.(2015·内江)植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是()A.⎩⎪⎨⎪⎧x +y =523x +2y =20B.⎩⎪⎨⎪⎧x +y =522x +3y =20 C.⎩⎪⎨⎪⎧x +y =202x +3y =52 D.⎩⎪⎨⎪⎧x +y =203x +2y =52 2.(2015·某某)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是() A .25台 B .50台 C .75台 D .100台3.(2015·某某)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.4.(2015·某某)某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12棵和5棵.两次共花费940元(两次购进的A 、B 两种花草价格均分别相同).求A 、B 两种花草每棵的价格分别是多少元.1.(2015·某某)方程2x -1=3的解是()A .x =-1B .x =-2C .x =1D .x =2 2.(2015·某某)方程2x -1=3x +2的解为() A .x =1B .x =-1C .x =3D .x =-33.(2015·某某)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为()A .-4B .4C .-2D .24.(2015·某某)已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的平方根为() A .±2 B. 2 C .± 2 D .25.(2015·某某)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列方程() A .54-x =20%×108 B .54-x =20%×(108+x) C .54+x =20%×162 D .108-x =20%×(54+x)6.(2015·某某)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为()A.⎩⎪⎨⎪⎧4x +6y =28x =y +2B.⎩⎪⎨⎪⎧4y +6x =28x =y +2 C.⎩⎪⎨⎪⎧4x +6y =28x =y -2D.⎩⎪⎨⎪⎧4y +6x =28x =y -2 7.(2015·某某)一元一次方程3x -6=0的解是________.8.(2015·某某)方程组⎩⎪⎨⎪⎧x -y =4,2x +y =-1的解是________.9.(2015·潜江)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有________名同学.10.(2015·)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两”.设每头牛值金x ,每只羊各值金y 两,可列方程组为________. 11.解方程(组):(1)(2015·某某)5x =3(x -4);(2)(2015·东营)⎩⎪⎨⎪⎧x +y =6,①2x -y =9;②(3)(2014·威海)⎩⎪⎨⎪⎧3x -5y =3,①x 2-y 3=1.②12.(2015·某某改编)已知a +b +5+|2a -b +1|=0,求(b -a)2 015的值.13.(2015·某某)某超市为促销,决定对A ,B 两种商品进行打折出售.打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元;打折后,买50件A 商品和40件B 商品仅需364元.这比打折前少花多少钱?14.(2015·某某)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元.商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.求商场销售A ,B 两种型号计算器的销售价格分别是多少元.(利润=销售价格-进货价格)15.(2015·某某)某校规划在一块长AD 为18 m ,宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮.如图,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?16.方程组⎩⎪⎨⎪⎧x +y =2,y +z =1,z +x =-3的解中,y 的值为()A .-1B .-2C .-3D .317.(2015·某某)定义运算“*”,规定x*y =ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,则2*3=________.18.(2015·崇左)4个数a 、b 、c 、d 排列成⎪⎪⎪⎪⎪⎪ab cd ,我们称之为二阶行列式,规定它的运算法则为:⎪⎪⎪⎪⎪⎪ab cd⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x =________. 19.(原创)有一种用来画圆的工具板(如图所示),工具板长21 cm ,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3 cm ,其余圆的直径从左到右依次递减x cm ,最大圆的左侧距工具板左侧边缘1.5 cm ,最小圆的右侧距工具板右侧边缘;且相邻两圆的间距d 均相等.(1)用含x 的代数式表示出其余四个圆的直径长;(2)若最大圆是最小圆的直径的1511,求相邻两圆的间距.20.(2014·日照)如图,长青化工厂与A 、B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B 地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15 000元,铁路运输费97 200元.求:(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?参考答案 考点解读考点1 ①整式 ②等式 ③等式 ④相等 ⑤一 ⑥1 ⑦括号 ⑧同类项 考点2 ⑨两 ⑩1 ○11相同 ○12两 ○13公共解 ○14一元一次 ○15代入 ○16加减 考点3 ○17间接 ○18等量关系 各个击破例1 ①+②,得4x =4,解得x =1.将x =1代入第一个式子,⎩⎪⎨⎪⎧x =1,y =2.题组训练 1.B 2.A 3.1 4.15.由②,得2x -2y =1,③ ①-③,得y =4.把y =4代入①,得x =92.∴原方程组的解为⎩⎪⎨⎪⎧x =92,y =4.例2 (1)三(2)设A 、B 两种商品的标价分别为x 元,y 元.根据题意,可得⎩⎪⎨⎪⎧6x +5y =1 140,3x +7y =1 110.解得⎩⎪⎨⎪⎧x =90,y =120.答:A 、B 两种商品的标价分别为90元,120元.(3)设商店是打a 折出售的,则a10(90×9+8×120)=1 062,解得a =6.答:商店是打6折出售商品A 、B 的. 题组训练 1.D 2.C 3.1338价格x 元,B 种花草每棵的价格y 元,根据题意,得⎩⎪⎨⎪⎧30x +15y =675,12x +5y =940-675.解得⎩⎪⎨⎪⎧x =20,y =5.答:A 种花草每棵的价格是20元,B 种花草每棵的价格是5元. 整合集训 基础过关1.D 2.D 3.B 4.A 5.B 6.A 7.x =2 8.⎩⎪⎨⎪⎧x =1y =-310.⎩⎪⎨⎪⎧5x +2y =102x +5y =811.(1)去括号,,,,得x =-6. (2)①+②,得3x =15,∴x =5.将x =5代入①,得5+y =6, ∴y =1.∴方程组的解为⎩⎪⎨⎪⎧x =5,y =1.(3)②×6,得3x -2y =6.③ ③-①,得3y =3. ∴y=1.把y =1代入①,得3x -5=3. ∴x=83.∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.12.∵a +b +5+|2a -b +1|=0,∴⎩⎪⎨⎪⎧a +b =-5,2a -b =-1.解得⎩⎪⎨⎪⎧a =-2,b =-3. ∴(b -a)2 015=(-3+2)2 015=-1.,B 商品的单价为y 元,根据题意得⎩⎪⎨⎪⎧6x +3y =54,3x +4y =32. 解得⎩⎪⎨⎪⎧x =8,y =2.则50×8+40×2=480(元),480-364=116(元). 答:这比打折前少花116元.,B 型号的计算器的销售价格分别是x 元,y 元,得⎩⎪⎨⎪⎧5(x -30)+(y -40)=76,6(x -30)+3(y -40)=120.解得⎩⎪⎨⎪⎧x =42,y =56. 答:A ,B 两种型号计算器的销售价格分别为42元,56元. m ,AM =8y m . ∵AM ∶AN =8∶9, ∴AN =9y.∴⎩⎪⎨⎪⎧2x +24y =18,x +18y =13.解得⎩⎪⎨⎪⎧x =1,y =23.答:通道的宽是1 m. 能力提升word11 / 11 16.D 17.10 18.119.(1)其余四个圆的直径长分别为(3-x)cm ,(3-2x)cm ,(3-3x)cm ,(3-4x)cm.(2)根据题意,得⎩⎪⎨⎪⎧1511(3-4x )=3,2×+[3+(3-x )+(3-2x )+(3-3x )+(3-4x )]+4d =21.解得答:相邻两圆的间距为1.25 cm.20.(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨,依题意,得{1.5(20y +10x )=15 000(110y +120x )=97 200.整理,得⎩⎪⎨⎪⎧2y +x =1 000, 11y +12x =8 100. 解得⎩⎪⎨⎪⎧x =400,y =300.答:工厂从A 地购买了400吨原料,制成运往B 地的产品300吨.(2)300×8 000-400×1 000-15 000-97 200=1 887 800(元).答:这批产品的销售款比原料费与运输费的和多1 887 800元.。

【火线100天】(四川专版)中考数学专题复习三多结论判断题

【火线100天】(四川专版)中考数学专题复习三多结论判断题

多结论判断题在四川中考中,多结论判断题一般位于选择题或填空题的最后一个,综合性很强,难度很大,且考查频率较高,属于拉分题,复习时要注意这类题型的练习.类型1 代数结论判断题(2014·南充)二次函数y =ax 2+bx +c(a≠0)图象如图,下列结论:①abc >0;②2a +b =0;③当m≠1时,a +b >am 2+bm ;④a -b +c >0;⑤若ax 21+bx 1=ax 22+bx 2,且x 1≠x 2,x 1+x 2=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【解答】 ∵抛物线开口向下,∴a <0.∵抛物线对称轴为x =-b 2a=1, ∴b =-2a >0,即2a +b =0,故②正确;∵抛物线与y 轴的交点在x 轴上方,∴c >0.∴abc <0,故①错误;∵抛物线对称轴为x =1,∴函数的最大值为a +b +c.∴当m≠1时,a +b +c >am 2+bm +c ,即a +b >am 2+bm ,故③正确;∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为x =1,∴抛物线与x 轴的另一个交点在(-1,0)的右侧.∴当x =-1时,y <0,∴a -b +c <0,故④错误;∵ax 21+bx 1=ax 22+bx 2,∴ax 21+bx 1-ax 22-bx 2=0,∴a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)=0.∴(x 1-x 2)[a(x 1+x 2)+b]=0.又x 1≠x 2,∴a(x 1+x 2)+b =0,即x 1+x 2=-b a. ∵b =-2a ,∴x 1+x 2=2,故⑤正确.故选D.本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线开口向上;当a <0时,抛物线开口向下;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左边;当a 与b 异号时(即ab <0),对称轴在y 轴右边;常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c);抛物线与x 轴交点个数由Δ决定,Δ=b 2-4ac >0时,抛物线与x 轴有2个交点;Δ=b 2-4ac =0时,抛物线与x 轴有1个交点;Δ=b 2-4ac <0时,抛物线与x 轴没有交点.1.(2015·南充)关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m-2n≤1.其中正确结论的个数是( )A .0个B .1个C .2个D .3个 2.(2013·自贡)已知关于x 的方程x 2-(a +b)x +ab -1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 21+x 22<a 2+b 2.则正确结论的序号是________.(填上你认为正确结论的所有序号)3.(2013·绵阳)二次函数y =ax 2+bx +c 的图象如图所示,给出下列结论:①2a +b >0;②b >a >c ;③若-1<m <n <1,则m +n <-b a;④3|a|+|c|<2|b|.其中正确的结论是________(写出你认为正确结论的所有序号).4.(2013·德阳)已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b <m(am +b)(m≠1的实数),其中正确结论的序号有________.类型2 几何结论判断题(2015·攀枝花)如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.给出如下几个结论:①△AED ≌△DFB ;②S 四边形BCDG =32CG 2;③若AF =2DF ,则BG =6GF ;④CG 与BD 一定不垂直;⑤∠BGE 的大小为定值.其中正确的结论个数为( )A .4B .3C .2D .1【解答】 ①∵ABCD 为菱形,∴AB =AD.∵AB =BD ,∴△ABD 为等边三角形.∴∠A =∠BDF =60°.又∵AE =DF ,AD =BD ,∴△AED ≌△DFB.故本选项正确;②∵∠BGE =∠BDG +∠DBF =∠BDG +∠GDF =60°=∠BCD ,即∠BGD +∠BCD =180°,∴点B 、C 、D 、G 四点共圆.∴∠BGC =∠BDC =60°,∠DGC =∠DBC =60°.∴∠BGC =∠DGC =60°,过点C 作CM ⊥GB 于M ,CN ⊥GD 于N(如图1),则△CBM ≌△CDN(AAS),∴S 四边形BCDG =S 四边形CMGN ,S 四边形CMGN =2S △CMG .∵∠CGM =60°,∴GM =12CG ,CM =32CG ,∴S 四边形CMGN =2S △CMG =2×12×12CG ×32CG =34CG 2,故本选项错误; ③过点F 作FP ∥AE 于P 点(如图2),∵AF =2FD ,∴FP ∶AE =DF ∶DA =1∶3.∵AE =DF ,AB =AD ,∴BE =2AE.∴FP ∶BE =FP ∶12AE =1∶6.∵FP ∥AE ,∴PE ∥BE ,∴FG ∶BG =FP ∶BE =1∶6,即BG =6GF ,故本选项正确; ④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE =∠DBG=30°.∴DG =BG.在△GDC 与△GBC 中,∵DG =BG ,CG =CG ,CD =CB ,∴△GDC ≌△GBC ,∴∠DCG =∠BCG,∴CH ⊥BD ,即CG⊥BD,故本选项错误;⑤∵∠BGE =∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.图1 图2 图31.(2015·绥化)如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠AD C =60°,AB =12BC ,连接OE.下列结论:①∠CAD=30°,②S ABCD =AB·AC,③OB =AB ,④OE =14BC ,成立的个数有( )A .1个B .2个C .3个D .4个2.(2015·达州)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,连接OD 、OC ,下列结论:①∠DOC=90°,②AD +BC =CD ,③S △AOD ∶S △BOC =AD 2∶AO 2,④OD ∶OC =DE∶EC,⑤OD 2=DE·CD,正确的有( )A .2个B .3个C .4个D .5个3.(2015·湖州)如图,AC 是矩形ABCD 的对角线,⊙O 是△ABC 的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,点F ,G 分别在AD ,BC 上,连接OG ,DG ,若OG⊥DG,且⊙O 的半径长为1,则下列结论不成立的是( )A .CD +DF =4B .CD -DF =23-3C .BC +AB =23+4D .BC -AB =24.(2014·攀枝花)如图,正方形ABCD 的边CD 与正方形CGFE 的边CE 重合,O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于H ,连接OH 、FH ,EG 与FH 交于M ,对于下面四个结论:①GH ⊥BE ;②HO12BG ;③点H 不在正方形CGFE 的外接圆上;④△GBE∽△GMF.其中正确的结论有( )A .1个B .2个C .3个D .4个5.(2013·南充)如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1 cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为y cm 2,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE =5 cm ;②当0<t≤5时,y =25t 2;③直线NH 的解析式为y =-52t +27;④若△ABE 与△QBP 相似,则t =294秒.其中正确的结论个数为( )A .4B .3C .2D .16.(2013·广元)以如图1(以O 为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图2的有________(只填序号).①只要向右平移1个单位;②先以直线AB 为对称轴进行翻折,再向右平移1个单位;③先绕着点O 旋转180°,再向右平移一个单位;④绕着OB 的中点旋转180°即可.7.(2015·南充)如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连接DQ.给出如下结论:①DQ=1;②PQ BQ =32;③S △PDQ =18;④cos ∠ADQ =35.其中正确结论是________.(填写序号)8.(2015·广元)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G.连接AD ,分别交CE ,CB 于点P ,Q ,连接AC.关于下列结论:①∠BAD =∠ABC;②GP=GD ;③点P 是△ACQ 的外心.其中正确的是________(只需填写序号).9.(2013·攀枝花)如图,分别以直角△ABC 的斜边AB ,直角边AC 为边向△ABC 外作等边△AB D 和等边△ACE,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,∠ACB =90°,∠BAC=30°.给出如下结论:①EF ⊥AC ;②四边形ADFE 为菱形;③AD=4AG ;④FH=14BD.其中正确结论的为________(请将所有正确的序号都填上).10.(2015·宜宾)如图,在正方形ABC'D 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H.给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH·PB;④S △BPD S 正方形ABCD =3-14. 其中正确的是________(写出所有正确结论的序号).11.(2014·德阳)在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD.连接DE 交对角线AC 于H ,连接BH.下列结论正确的是________.(填序号)①AC⊥DE;②BE HE =12;③CD=2DH ;④S △BEH S △BEC =DH AC.参考答案类型1 代数结论判断题1.D 2.①② 3.①③④ 4.①③④类型2 几何结论判断题1.C 2.D 3.A 4.C 5.B 6.②③④7.①②④8.②③9.①③④10.①③④11.①③④。

《火线100天》小专题(二)方程(组)、不等式(组)的解法及应用解析

《火线100天》小专题(二)方程(组)、不等式(组)的解法及应用解析

滚动小专题(二)方程(组)、不等式(组)的解法及应用本专题主要考查方程(组)、不等式(组)的解法以及方程(组)和不等式的应用,在中考中往往以解答题的形式出现,属中档题•复习时要熟练掌握方程(组)与不等式(组)的解法以及它们的应用,并会检验解答结果的正确与否•类型1方程(组)的解法1 51.(2013 •梧州)解方程:一x+2 • (—x+1)=8+x.2 422.(2014 •遂宁)解方程:x +2x-3=0.373.------------------------------------------- (2014 •淄博)解方程:=0.x X +14.(2014 •甘孜)解方程组:x-3y/,①+2y = 6.②5.(2013 •桂林)解二元一次方程组:严+2心9,①Nx _ y = 1 ②类型2不等式(组)的解法x +1 x —11.(2013 •绍兴)解不等式:+ < 1.2 32.(2014 •南京)解不等式组:!3X'X+2,①4x - 2 < x + 4.②工x 一3 x -2乞4,①3.(2013 •广元)解不等式组:1 _ 2x并把解集在数轴上表示出来匕仝£1-X,②.4丄1-2x 4-3x x-2 金,①4.(2014 •毕节改编)解不等式组:< 3 6 2 并指出它的所有的非负整2x-7 兰3(x-1 ).②数解•类型3 方程(组)的应用1.(2014 •荷泽)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的 A, B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了 A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?2.(2014 •云南)“母亲节”前夕,某商店根据市场调查,用 3 000元购进第一批盒装花,上市后很快售完,接着又用 5 000元购进第二批这种盒装花,已知第二批所购花的盒数是第一批所购花的盒数的 2倍,且每盒花的进价比第一批的进价少5元,求第一批盒装花每盒的进价是多少元?3.(2014 •咸宁)随着市民环保意识的增强,烟花爆竹销售量逐年下降•咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为 9.8万箱.求咸宁市2011年到2013年烟花爆竹年销售量的平均下降率.4.(2014 •扬州)某漆器厂接到制作 480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多 50%结果提前10天完成任务.原来每天制作多少件?5.(2014 •株洲)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;⑷下山用1个小时;根据上面信息,他作出如下计划:在山顶游览1个小时;中午12: 00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?例如:一户居民七月份用电 420度,则需缴电费 420X 0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份, 且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?类型 4 不等式的应用1.(2013 •台州)某校班际篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场得1 分. 如果某班要在第一轮的 28场比赛中至少得 43 分, 那么这个班至少要胜多少场?2.(2014 •长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行•某施工队计划购买甲乙两种树苗共 400 棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵 200 元,乙种树苗每棵 300 元 .(1)若购买两种树苗的总金额为 90 000 元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?3.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球 (每个足球的价格相同,每个篮球的价格相同 ),若购买 3 个足球和 2个篮球共需 310 元,购买 2 个足球和 5 个篮球共需 500 元 .(1)求购买一个足球、一个篮球各需多少元?(2)根据同庆中学实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过 5 720 元,这所中学最多可以购买多少个篮球?参考答案类型1方程(组)的解法15 1 5 1. 去括号,得 一x+—x+2=8+x ,移项,得 一x+ —x-x=8-2,合并同类项,得 2x=6,2 222系数化为1,得x=3.2 22. v a=1, b=2, c=-3 , b-4ac=2 -4 x 1 x (-3)=16>0 • X 1=1, X 2=-3.3. 3(x+1)-7x=0.x= 3.经检验,x= 3是原方程的解.4 4『x = 4 4. ②-①,得y= 1.把y = 1代入①,得x= 4. •••原方程组的解为 'lyi.5. 解法1(代入法):由②,得y=2x-1 ,③把③代入①,得 3x+4x-2=19,解得x=3.把x=3代入③,得y=5. ^x = 3所以原方程组的解为'y =5.解法2(加减法):②x 2,得4x-2y=2,③①+③,得7x=21,解得x=3.1 x = 3, 把x=3代入②,得6-y=1,解得y=5.所以原方程组的解为 '[y =5.类型2不等式(组)的解法1. 不等式两边同时乘以 6,得3(x+1)+2(x-1)< 6,化简,得3x+3+2x-2 < 6,• x < 1.2. 解不等式①,得x> 1.解不等式②,得x V 2.所以不等式组的解集是 K x v 2. 3 33. 解不等式①得x> 1.解不等式②得x< 3. •此不等式组的解集是1 < x<3.22不等式组的解集在数轴上表示为:4. 解不等式①,得x w 1.解不等式②,得x > -4. •不等式组的解集为-4 < x<1. •不等式组的所有的非负整数解为 0, 1. 类型3 方程(组)的应用1. 方法一:设A 饮料生产了 x 瓶,则B 饮料生产了 (100-x)瓶.根据题意,得 2x+3(100-x) = 270.解得 x= 30.100-x = 70.答:A 饮料生产了 30瓶,B 饮料生产了 70瓶.方法二:设A 饮料生产了 x 瓶,则B 饮料生产了 y 瓶.根据题意,得x y =100, 2x 3y 二 270.答:A 饮料生产了 30瓶,B 饮料生产了 70瓶.—2±J 16 —2±4,••• x== ------2 22.设第一批盒装花每盒的进价是x元,由题意,得2X 3000 =5000 .解得乂=30.x X - 5经检验,x=30是方程的解.答:第一批盒装花每盒的进价是30元.3.设咸宁市2011年到2013年烟花爆竹年销售量的平均下降率为x,由题意,得20(1-x) =9.8.解得 X i=0.3=30%,X2=1 ・7=170%(不符合题意,舍去 ).答:咸宁市2011年到2013年烟花爆竹年销售量的平均下降率为30%.4.设原来每天制作x件,由题意得-480 -10= ------- 480---- .解得x=16.x (1+50%)x经检验,x=16是原分式方程的解.答:原来每天制作16件.5.设上山路程x千米,则下山路程为(x-2)千米,由题意,得x —2( -1) X 2=x-1 •解得x=5. •••上山时间:2.5小时;中间游览1小时;下山时间1小时;1要在12:00回到家吃中餐,需要 1225-1-1=7.5( 小时),即7:30分从家里出发.6.因为两个月用电量为 500度,所以每个月用电量不可能都在第一档,假设该用户五月、六月每月用电均超过 200度,此时的电费共计:500X 0.6=300(元),而300>290.5,不符合题意,又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档. 设五月份用电x度,六月份用电y度,根据题意,得0.55x 0.6y =290.5, x =190,i解得彳x y 二500. y = 310.答:该户居民五、六月份各用电 190度、310度.类型4不等式的应用1.设这个班要胜x场,则负(28-x)场,由题意,得 3x+(28-x) > 43.解得x> 7.5. 因为场次x为非负整数,故x> 8.答:这个班至少要胜 8场.2.(1)设需购买甲种树苗 x棵,则需购买乙种树苗(400-x)棵,依题意,得200x+300(400-x)=90 000. 解得x=300. • 400-x=100.答:需购买甲种树苗 300棵,乙种树苗100棵.⑵ 设应购买甲种树苗 y棵,由题意,得 200y >300(400-y).解得y》240.答:至少要购买甲种树苗 240棵.3.(1)设购买一个足球需要x元,购买一个篮球需要y元,由题意,得3x "310,解得 5,2x 5y =500. y =80.答:购买一个足球需要50元,购买一个篮球需要 80元.(2)设购买a个篮球,则购买(96-a)个足球,则根据题意,得280a+50(96-a) < 5 720,解得 a< 30 . •/ a 为非负整数,• a 最多是 30.3答:这所中学最多可以购买30个篮球.。

火线100天四川专版2016年中考数学一轮复习题型2与圆有关的几何综合题

火线100天四川专版2016年中考数学一轮复习题型2与圆有关的几何综合题

与圆有关的几何综合题(2015·德阳)如图,已知BC是⊙O的弦,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB为⊙O的切线;(2)若E、F分别是AB、AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.【思路点拨】(1)连接OB,证OB⊥AB即可;(2)取AB的中点G,连接DG,易证得△EGD≌△FCD,从而猜测出BE +DF的值是个定值,这个定值应该等于AB长的一半.【解答】(1)证明:∵△ABC为正三角形,D为BC的中点,∴OD⊥BC,AO平分∠BAC.∴∠BAD=30°.∵∠BMC=60°,∴∠BOA=∠BMC=60°.∴∠BAD+∠BOA=90°.∴∠ABO=90°.∴OB⊥AB.∵OB是⊙O的半径,∴AB是⊙O的切线.(2)∵∠BAD=30°,OB⊥AB,OB=2,∴AB=2 3.取AB的中点G,连接DG,∴AG=BG= 3.∵∠ABD=60°,∴△BDG是等边三角形.∴∠DGE=60°,GD=BD.∵∠FCD=60°,CD=BD,∴∠FCD=∠EGD,GD=CD.∵∠EDF=120°,∴∠FDC+∠BDE=60°.∵∠BDG=60°,∴∠EDG+∠BDE=60°.∴∠EDG=∠FDC.∴△EGD≌△FCD.∴FC=EG.∴BG=BE+EG=BE+CF= 3.即BE+CF的值是定值,这个值是 3.动态问题常见有两大类:动态问题中的定值和动态问题中的变值.动态问题中的定值往往包含关于角度、线段、面积等定值问题.解决这类问题时,要搞清图形的变化过程,正确分析变量与其他量之间的内在联系,建立它们之间的关系.要善于探索动点运动的特点和规律,抓住图形在变化过程中不变的元素.必要时,多作出几个符合条件的草图也是解决问题的好办法.1.(2015·内江)如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE 中AE 边上的高为h ,试用含h 的代数式表示⊙O 的直径AB ;(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当12CD +OD 的最小值为6时,求⊙O 的直径AB 的长.2.(2015·乐山)已知Rt△ABC 中,AB 是⊙O 的弦,斜边AC 交⊙O 于点D ,且AD =DC ,延长CB 交⊙O 于点E.(1)图1的A 、B 、C 、D 、E 五个点中,是否存在某两点间的距离等于线段CE 的长?请说明理由;(2)如图2,过点E 作⊙O 的切线,交AC 的延长线于点F.①若CF =CD 时,求sin ∠CAB 的值;②若CF =aCD(a >0)时,试猜想sin ∠CAB 的值.(用含a 的代数式表示,直接写出结果)3.(2014·南充)如图,已知AB 是⊙O 的直径,BP 是⊙O 的弦,弦CD⊥AB 于点F ,交BP 于点G ,E 在DC 的延长线上,EP =EG.(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF·BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=33.求弦CD的长.4.(2014·攀枝花)如图,以点P(-1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A 在D的下方),AD=23,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE 的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.参考答案1.(1)连接OC.∵CA=CE ,∠CAE =30°,∴∠E =∠CAE=30°,∠COE =2∠A=60°.∴∠OCE =90°.∴CE 是⊙O 的切线.(2)过点C 作CH⊥AB 于H.由题可得CH =h.在Rt△OHC 中,CH =OC·sin ∠COH , ∴h =OC·sin60°=32OC.∴OC =2h3=233h.∴AB =2OC =433h.(3)作OF 平分∠AOC,交⊙O 于F ,连接AF 、CF 、DF ,则∠AOF=∠COF=12∠AOC =12(180°-60°)=60°.∵OA =OF =OC ,∴△AOF 、△COF 是等边三角形.∴AF=AO =OC =FC.∴四边形AOCF 是菱形.∴根据对称性可得DF =DO.过点D 作DM⊥OC 于M ,∵OA =OC ,∴∠OCA =∠OAC=30°.∴DM =DC·sin ∠DCM =DC·sin30°=12DC.∴12CD +OD =DM +FD.根据两点之间线段最短可得:当F 、D 、M 三点共线时,DM +FD(即12CD +OD)最小.此时FM =OF·sin ∠FOM =32OF =6,则OF =4 3.∴AB =2OF =8 3.∴当12CD +OD 的最小值为6时,⊙O 的直径AB 的长为8 3.2.(1)存在.AE =CE.连接AE ,∵∠ABC =90°,∴AE 为⊙O 的直径.连接ED ,∴∠ADE =90°.又∵AD=DC.∴ED 为AC 的中垂线.∴AE=CE.(2)①连接AE 、DE.∵EF 是⊙O 的切线,∴∠AEF =90°.由(1)可知∠ADE=90°,∴∠AED +∠EAD=90°,∠AED +∠DEF=90°.∴∠EAD =∠DEF.∴△AED∽△EFD. ∴AD ED =ED DF .∴ED 2=AD·DF. 又AD =DC =CF ,∴ED 2=2AD·AD=2AD 2. 在Rt△AED 中,∵AE 2=AD 2+ED 2=3AD 2,∴sin ∠CAB =sin∠CED=sin∠AED=AD AE =13=33.②sin ∠CAB =a +2a +2.3.(1)证明:连接OP.∵EP=EG ,∴∠EPG =∠EGP.又∵∠EGP=∠BGF,∴∠EPG =∠BGF.∵OP=OB ,∴∠OPB =∠OBP.∵CD⊥AB,∴∠BFG =∠BGF+∠OBP=90°.∴∠EPG +∠OPB=90°.∴直线EP 为⊙O 的切线.(2)证明:连接OG .∵BG 2=BF ·BO ,∴BG BO =BFBG .又∵∠OBG=∠GBF,∴△BFG ∽△BGO.∴∠BGO =∠BFG=90°.∴BG =PG.(3)连接AC 、BC.∵sinB =33,∴OGOB =33.∵OB =r =3,∴OG =3,由(2)得∠GBF+∠FGB=90°,∠OGF +∠FGB=90°,∴∠GBF =∠OGF.∴sin∠OGF=33=OFOG .∴OF =33·OG =33·3=1.∴BF=BO -OF =3-1=2,FA =OF +OA =1+3=4,∵AB 为⊙O 的直径,∴∠ACB =∠A CF +∠BCF=90°.∵∠ACF +∠A=90°,∴∠BCF =∠A.∴△BCF∽△CAF.∴CF AF =BF CF .∴CF 2=BF·FA.∴CF=BF·FA=2×4=2 2.∴CD =2CF =4 2.4.(1)连接PA.∵PO⊥AD,AD =23,∴OA =12AD = 3.∵点P 坐标为(-1,0),∴OP =1.∴PA=OP 2+OA 2=12+(3)2=2.∴BP=CP =2.∴B(-3,0),C(1,0).(2)延长AP 交⊙P 于点M ,连接MB 、MC.线段MB 、MC 即为所求.四边形ACMB 是矩形. 理由如下:∵△MCB 由△ABC 绕点P 旋转180°所得,∴四边形ACMB 是平行四边形.∵BC 是⊙P 的直径,∴∠CAB =90°.∴平行四边形ACMB 是矩形.过点M 作MH⊥BC,垂足为H.在△MHP 和△AOP 中,∵∠MHP =∠AOP,∠HPM =∠OPA,MP =AP ,∴△MHP ≌△AOP.∴MH =OA =3,PH =PO =1.∴OH=2.∴点M 的坐标为(-2,3).(3)在旋转过程中∠MQG 的大小不变.∵四边形ACMB 是矩形,∴∠BMC =90°. ∵EG ⊥BO ,∴∠BGE =90°.∴∠BMC =∠BGE=90°.∵点Q 是BE 的中点,∴QM =QE =QB =QG.∴点E 、M 、B 、G 在以点Q 为圆心,QB 为半径的圆上,如图所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC =1,OA =3,∴tan ∠OCA =OA OC = 3.∴∠OCA =60°.∴∠MBC =∠BCA=60°.∴∠MQG =120°.∴在旋转过程中∠MQG 的大小不变,始终等于120°.。

四川省近年中考数学考点系统复习第二单元方程与不等式单元测试(二)方程与不等式试题

四川省近年中考数学考点系统复习第二单元方程与不等式单元测试(二)方程与不等式试题

单元测试(二)方程与不等式(时间:45分钟满分:100分)一、选择题(每小题3分,共24分)1.解分式方程错误!+错误!=3时,去分母后变形正确的为( D )A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)2.一元二次方程x2-x+错误!=0的根为( D )A.x1=错误!,x2=-错误! B.x1=x2=-错误!C.x1=2,x2=-2 D.x1=x2=错误!3.一元一次不等式2(x+1)≥4的解在数轴上表示为( A )4.分式方程错误!-错误!=0的根是( D )A.x=1 B.x=-1C.x=2 D.x=-25.(2016·锦江区一诊)关于x的一元二次方程x2-4x+2m=0没有实数根,则实数m的取值范围是( C )A.m<2 B.m>-2C.m>2 D.m<-26.某种商品的进价为800元,标价为1 200元,由于该商品积压,商店准备打折销售,但要保证利润率为20%,则可打( B )A.9折 B.8折 C.7折 D.6折7.若不等式组错误!有实数解,则实数m的取值范围是( A )A.m≤错误! B.m<错误! C.m>错误! D.m≥错误! 8.邱老师打算购买气球装扮学校“六一"儿童节活动会场,气球的种类有“笑脸”和“爱心”两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( C )A.19元 B.18元 C.16元 D.15元二、填空题(每小题4分,共16分)9.已知关于x的方程x2-3x+m=0的一个根是1,则m=2.10.不等式2x〈4x-6的最小整数解为4.11.已知关于x,y的方程组错误!的解满足不等式x+y<3,则a的取值范围为a〈1。

12.某小区2014年底绿化面积为1 000平方米,计划2016年底绿化面积要达到1 440平方米,如果每年绿化面积的增长率相同,那么增长率是20%.三、解答题(共60分)13.(6分)解不等式:1-错误!≥错误!.解:去分母,得6-2(2x+1)≥3(1-x).去括号,得6-4x-2≥3-3x。

火线100天(安徽专版)中考数学一轮复习 第二单元 方程

火线100天(安徽专版)中考数学一轮复习 第二单元 方程

第二单元 方程与不等式(时间:100分钟 满分:150分)题号 一 二 三 四 五 六 七 八 总分 合分人 复分人 得分一、选择题(本大题共10小题,每小题4分,满分40分)1.(滚动考查相反数与绝对值的概念)-||-4的相反数是( ) A .4 B .-4 C .±4D.142.(滚动考查科学记数法)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为( )A .0.35×108B .3.5×107C .3.5×106D .35×1053.(滚动考查分式性质)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=aa -bD.a -a +b =-aa +b4.把不等式组⎩⎪⎨⎪⎧x +1>0,x -1≤0的解集表示在数轴上,正确的为图中的( )5.(兼顾考查因式分解、一元二次方程的解、实数与整式运算)在一节数学复习课上,王老师在小黑板上写出四道判断题:①(-3)2=-3;②分解因式:16x 4-1=(4x 2+1)(4x 2-1);③方程x(x +2)=3(x +2)的解是x =3;④化简:x 3·x +2x 5÷x =3x 4.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个6.已知二元一次方程组⎩⎪⎨⎪⎧x +2y =-3.1,2x +y =6.4,则x +y 等于( )A .1B .1.1C .1.2D .1.37.(滚动考查列代数式的实际应用)岳西某村贫困家庭的孩子读书,享受“两免一补”(即免学杂费、免课本费,补助寄宿生活费),加上免收农业税,该家庭现在平均每月可减少40%的费用支出.若该家庭原来平均每月支出m 元,则现在每月的支出为( ) A.m0.6B.m0.4C .60%mD .40%m8.不等式组⎩⎪⎨⎪⎧3x<6,2x +1≥x 的解集在数轴上表示正确的是( )9.为了丰富同学们的业余生活,体育委员小强到体育用品商店购买羽毛球拍和乒乓球拍,若购买1副羽毛球拍和1A.⎩⎪⎨⎪⎧x +y =506(x +y )=320B.⎩⎪⎨⎪⎧x +y =506x +10y =320 C.⎩⎪⎨⎪⎧x +y =506x +y =320D.⎩⎪⎨⎪⎧x +y =5010x +6y =320 10.(2015·哈尔滨)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600时.设扩大后的正方形绿地边长为x m ,下面所列方程正确的是( ) A .x(x -60)=1 600 B .x(x +60)=1 600 C .60(x +60)=1 600 D .60(x -60)=1 600 二、填空题(本大题共4小题,每小题5分,满分20分) 11.(2014·怀远模拟)分式方程2x +1=1x 的解为x =________.12.(2014·宣城模拟)方程组⎩⎪⎨⎪⎧3x +y =5,2x -y =0的解是________.13.如图,数轴上所表示的不等式组的解集是____________________.14.(2015·咸宁)如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,则x 2-y 2的值为________. 三、(本大题共2小题,每小题8分,满分16分)15.解方程:5(x -5)+2x =-4.16.解方程:x 2+3x =2.四、(本大题共2小题,每小题8分,满分16分)17.(兼顾考查整式的运算和一元二次方程的解法)已知x 2-4x =0,求代数式(2x -1)2-(2x +y)(2x -y)-y 2的值.18.解不等式组:⎩⎪⎨⎪⎧1-x -13≥0, ①3-2(x -1)<3x.②五、(本大题共2小题,每小题10分,满分20分)19.(兼顾考查分式的运算和分式方程的解法)已知y =x x 2-x ÷x 2-1x 2-2x +1-2x +1,当x 为何值时,y 的值为12?20.(兼顾考查实数的运算和不等式的解法)定义新运算:对于任意实数a ,b ,都有a⊕b=a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5. (1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在数轴上表示出来.六、(本题满分12分)21.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图.请你根据图中的信息,若小明把50个纸杯整齐叠放在一起,你能帮小明求出它的高度吗?七、(本题满分12分)22.2013年底某市汽车拥有量为100万辆,而截止2015年底,该市的汽车拥有量已达到144万辆.求2013年底至2015年底该市汽车拥有量的年平均增长率.八、(本题满分14分)23.(兼顾考查二元一次方程组、一元一次不等式及一次函数的应用)(2015·常德)某物流公司承接A、B两种货物的运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收运费9 500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨.该物流公司6月份承接的A种货物和B种货物数量与5月份相同,6月份共收取运费13 000元.问:(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物共330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收取多少运输费?参考答案1.A 2.C 3.C 4.B 5.A 6.B 7.C 8.B 9.B 10.A 11.1 12.⎩⎪⎨⎪⎧x =1y =2 13.-1<x≤2(其他表示也可)14.-5415.去括号得:5x -25+2x =-4, 移项得:7x =21,系数化为1得:x =3. 16.∵a=1,b =3,c =-2,∴x 1,2=-3±32-4×1×(-2)2=-3±172,∴x 1=-3+172,x 2=-3-172.17.原式=4x 2-4x +1-4x 2+y 2-y 2=-4x +1.∵x 2-4x =0,解得x 1=4,x 2=0.当x =4时,原式=-4x +1=-4×4+1=-15; 当x =0时,原式=-4x +1=-4×0+1=1. 18.由①去分母得:3-(x -1)≥0, 化简得:-x≥-4,解得x≤4;由②去括号得:3-(2x -2)<3x ,即3-2x +2<3x ,解得x >1,把两解集表示在数轴上,如图所示:∴不等式组的解集为1<x≤4.19.原式=x x (x -1)·(x -1)2(x +1)(x -1)-2x +1=-1x +1,∴当y 的值为12时,-1x +1=12,解得x =-3,经检验x =-3是这个方程的解,且原式有意义, ∴当x =-3时,y 的值为12.20.(1)(-2)⊕3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3⊕x<13,∴3(3-x)+1<13,9-3x +1<13,-3x <3,x >-1.在数轴上表示如图所示:21.设每两个纸杯叠放在一起比单独的一个纸杯增高x cm ,单独一个纸杯的高度为y cm ,则⎩⎪⎨⎪⎧2x +y =9,7x +y =14,解得⎩⎪⎨⎪⎧x =1,y =7.则49x +y =49×1+7=56.答:把50个纸杯整齐地叠放在一起时的高度约是56 cm.答:2013年底至2015年底该市汽车拥有量的年平均增长率为20%. 23.(1)设该物流公司5月份运输A 、B 两种货物各x 吨、y 吨,依题意得⎩⎪⎨⎪⎧50x +30y =9 500,70x +40y =13 000,解得 ⎩⎪⎨⎪⎧x =100,y =150.答:该物流公司5月份运输A 种货物100吨,运输B 种货物150吨. (2)设物流公司7月份运输A 种货物a 吨,收取w 元运输费,则依题意有: a≤2(330-a),则a≤220.∴a 最大为220.w =70a +40(330-a)=30a +13 200. ∵k=30>0,w 随a 的增大而增大.∴当a =220时,w 最大=30×220+13 200=19 800(元). 答:该物流公司7月份最多将收取运输费19 800元.。

火线100天(四川专版)中考数学一轮复习 第二单元 方程与不等式 第8讲 一元一次不等式(组)-人教

火线100天(四川专版)中考数学一轮复习 第二单元 方程与不等式 第8讲 一元一次不等式(组)-人教

第8讲一元一次不等式(组) 不等式的概念及性质不等式的有关概念用不等号连接起来的式子叫做不等式,使不等式成立的未知数的取值X围叫做不等式的解集.不等式的基本性质性质1 若a<b,则a±c<b±c;性质2 若a<b且c>0,则ac①____bc(或ac②____bc);性质3 若a<b且c<0,则ac③____bc(或ac④____bc).一元一次不等式(组)的解法一元一次不等式的解法(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.不等式组的解法一般先分别求出不等式组中各个不等式的解集,并表示在数轴上,再求出他们的公共部分,就得到不等式组的解集.不等式组的解集情况(假设b<a) {x>a,x≥b x>a 同大取大{x<a,x≤b x≤b 同小取小{x<a,x≥b b≤x<a 大小小大中间找{x>a,x≤b无解大大小小无处找不等式的应用列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:(1)审清题意;(2)设未知数;(3)列不等式;(4)解不等式;(5)⑤________作答.1.已知不等式(组)的解集确定不等式(组)中字母的取值X围有以下四种方法:(1)逆用不等式(组)解集确定;(2)分类讨论确定;(3)从反面求解确定;(4)借助数轴确定.2.列不等式(组)解应用题应紧紧抓住“至多”、“至少”、“不大于”、“不小于”、“不超过”、“大于”、“小于”等关键词列出不等量关系式,进而求解.命题点1 不等式的性质(2015·某某)下列说法不一定成立的是() A .若a>b ,则a +c>b +c B .若a +c>b +c ,则a>b C .若a>b ,则ac 2>bc 2D .若ac 2>bc 2,则a>b利用不等式性质1和性质2对不等式变形,不等号的方向不改变;利用不等式性质3对不等式变形,不等号的方向必须改变.1.(2015·某某)若m >n ,下列不等式不一定成立的是() A .m +2>n +2 B .2m >2n C.m 2>n 2D .m 2>n 22.(2013·某某)若a>b ,则下列不等式变形错误的是() A .a +1>b +1B.a 2>b 2C .3a -4>3b -4D .4-3a>4-3b3.下列说法中,一定成立的有()①若a<b ,c>0,则ac +c>bc +c ;②若a>0,b<0,c<0,则(a -b)c<0;③若a m ≥b m ,则a<b ;④若a>b ,则a 2>b 2;⑤若ac 2>bc 2,则a>b. A .2个 B .3个 C .4个 D .5个命题点2 一元一次不等式的解法(2015·某某)解不等式:2x -13≤3x +24-1,并把解集表示在数轴上. 【思路点拨】 依照解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1进行解答.【解答】解一元一次不等式的步骤与解一元一次方程的步骤相同.值得注意的是,在利用不等式的性质去分母或系数化为1时,如果两边同乘以负数,不等号一定要改变方向;另外,在数轴上表示不等式的解集时,一定要注意包含界点用实心圆点,不包含界点用空心圆圈.1.(2013·某某改编)下列数值中不是不等式2x -1>3的解的是() A .3B .4C .2D .52.(2015·某某)不等式x -12>1的解集是________.3.(2015·某某)解不等式:4x -13-x>1,并把解集表示在数轴上.命题点3 一元一次不等式组的解法(2015·某某)求不等式组⎩⎪⎨⎪⎧3x -7<2,①2x +3≥1②的解集,并把它们的解集在数轴上表示出来.【思路点拨】 考查了不等式组的解法和解集在数轴上表示.先确定每个不等式的解集,再确定不等式组的解集.然后将其解集在数轴上表示. 【解答】解一元一次不等式组的步骤是:(1)求出这个不等式组中各个不等式的解集;(2)利用数轴求出这些不等式解集的公共部分,就是求出这个不等式组的解集.确定不等式组的解集通常有两种方法:即数轴法与口诀法.1.(2014·某某改编)不等式组⎩⎪⎨⎪⎧-2x +3≥0,x -1>0的解集是()A .x <1B .x ≥32C .1≤x <32D .1<x ≤322.(2014·某某)不等式组⎩⎪⎨⎪⎧12(x +1)≤2,x -3<3x +1的解集在数轴上表示正确的是()3.(2015·某某)一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是()A .4B .5C .6D .74.(2015·某某)一元一次不等式组⎩⎪⎨⎪⎧x +2≥0,5x -1>0的解集是________.5.(2013·德阳改编)适合不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x≥-13的全部整数解的和是________. 6.(2015·某某)解不等式组⎩⎪⎨⎪⎧-2x<6,①3(x +1)≤2x+5,②并将解集在数轴上表示出来.命题点4 一元一次不等式(组)的应用(2013·某某)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满. (1)求该校的大小寝室每间各住多少人;(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案? 【思路点拨】 (1)根据等量关系构造二元一次方程组求解;(2)先根据题意列出不等式组,求出不等式组的解集,再由解集的整数解的个数确定方案. 【解答】一次方程(组)与一元一次不等式(组)的综合应用的考查是中考命题热点.解决这类问题的关键是根据题意构建出一次方程(组)与一元一次不等式(组).其中,对于“至多”、“至少”这类问题,常直接设未知数,列出不等式,解不等式求出相应的X围,最后由X围中的最小(大)整数解得到问题的答案.1.(2014·某某)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤100m100+mC.n≤m100+mD.n≤100m100-m2.(2015·眉山)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1 100元,则工会最多可以购买多少支钢笔?3.(2014·某某)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?1.(2015·某某)不等式3x≤2(x-1)的解集为() A .x ≤-1B .x ≥-1C .x ≤-2D .x ≥-22.(2015·某某)不等式组⎩⎪⎨⎪⎧x +1<3,2x -1>x 的解集是()A .x >1B .x <2C .1≤x ≤2D .1<x <23.(2015·某某)如图,数轴上所表示关于x 的不等式组的解集是()A .x ≥2B .x>2C .x>-1D .-1<x≤24.(2015·某某)下列不等式变形正确的是() A .由a >b 得ac >bc B .由a >b 得-2a >-2b C .由a >b 得-a <-b D .由a >b 得a -2<b -25.(2013·内江)把不等式组⎩⎪⎨⎪⎧x >-1,x +2≤3的解集表示在数轴上,下列选项正确的是()A B C D6.(2013·某某)不等式组⎩⎪⎨⎪⎧3(x +1)>x -1,-23x +3≥2的整数解是()A .-1,0,1B .0,1C .-2,0,1D .-1,17.(2015·东营)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为,那么x 的最大值是() A .11B .8C .7D .58.(2015·某某)关于x 的不等式组⎩⎪⎨⎪⎧x >a ,x >1的解集为x >1,则a 的取值X 围是()A .a >1B .a <1C .a ≥1D .a ≤19.(2015·德阳)不等式组⎩⎪⎨⎪⎧x +1>0,1-13x≥0的解集为________.10.(2015·某某)不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.11.(2014·某某)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm.某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为________cm.12.(2015·某某)解不等式组:⎩⎪⎨⎪⎧x +3≥6,①2x -1≤9.②请结合题意填空,完成本题的解答. (1)解不等式①,得________; (2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________.13.(2014·某某)解不等式组:⎩⎪⎨⎪⎧2x +1≥-1,①1+2x 3>x -1.②并把不等式组的解集在数轴上表示出来.14.(2015·)解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x+10,①x -5<x -83,②并写出它的所有非负整数解.15.(2015·呼和浩特)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,①x +2y =4②的解满足x +y>-32,求出满足条件的m的所有正整数值.16.(2015·某某)暑期临近,某某某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人. (1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T 恤衫,成人T 恤衫每购买10件赠送1件儿童T 恤衫(不足10件不赠送),儿童T 恤衫每件15元,旅行社购买服装的费用不超过1 200元,请问每件成人T 恤衫的价格最高是多少元?17.(2015·某某)电影《X 三姐》中,秀才和X 三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”X 三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x 条,“三多”的狗有y 条,则解此问题所列关系式正确的是()A.⎩⎪⎨⎪⎧x +3y =3000<x<y<300B.⎩⎪⎨⎪⎧x +3y =3000<x<y<300x 、y 为奇数C.⎩⎪⎨⎪⎧x +3y =3000<3x =y<300x 、y 为奇数D.⎩⎪⎨⎪⎧x +3y =3000<x<3000<y<300x 、y 为奇数18.(2015·某某)关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x<m 的解集为x <3,那么m 的取值X 围为()A .m =3B .m >3C .m <3D .m ≥319.(2015·永州)若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,则m 的取值X 围是()A .-1≤m<0B .-1<m≤0C .-1≤m≤0D .-1<m <020.(2015·达州)对于任意实数m 、n ,定义一种运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <2※x<7,且解集中有两个整数解,则a 的取值X 围是________.21.(2014·陇南)阅读理解: 我们把⎪⎪⎪⎪⎪⎪a bc d 称作二阶行列式,规定他的运算法则为⎪⎪⎪⎪⎪⎪a b c d ⎪⎪⎪⎪⎪⎪2345=2×5-3×4=-2. 如果有⎪⎪⎪⎪⎪⎪23-x 1x >0,求x 的解集.22.(2015·某某)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1 520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元;(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2 000元,请求出所有符合条件的购书方案.参考答案 考点解读考点1 ①< ②< ③> ④> 考点3 ⑤检验 各个击破 例1 C题组训练 1.D 2.D 3.A例2 去分母,得4(2x -1)≤3(3x+2)-12. 去括号,得8x -4≤9x+6-12. 移项,得8x -9x≤6-12+4. 合并同类项,得-x≤-2, 系数化为1,得x≥2. 不等式的解集在数轴上表示为:题组训练 1.C 2.x >3 ,得4x -1-3x>3, 移项,得4x -3x>3+1, 合并同类项,得x>4.不等式的解集在数轴上表示为: 例3 解不等式①,得x<3; 解不等式②,得x≥-1 .则不等式组的解集是-1≤x<3. 解集在数轴上表示出来为: 题组训练 1.D 2.D 3.C 4.x>156.解不等式①,得x>-3.解不等式②, 得x≤2.原不等式组的解集为-3<x≤2. 解集在数轴上表示为:例4 (1)设该校的大寝室每间住x 人,小寝室每间住y 人,由题意得⎩⎪⎨⎪⎧55x +50y =740,50x +55y =730.解得⎩⎪⎨⎪⎧x =8,y =6.答:该校的大寝室每间住8人,小寝室每间住6人.(2)设大寝室a 间,则小寝室(80-a)间,由题意得⎩⎪⎨⎪⎧8a +6(80-a )≥630,a ≤80.解得75≤a≤80. ①a=75时,80-75=5,②a =76时,80-a =4,③a =77时,80-a =3,④a =78时,80-a =2,⑤a =79时,80-a =1,⑥a =80时,80-a =0.故共有6种安排住宿的方案.题组训练 1.B2.(1)设一支钢笔需x 元,一本笔记本需y 元,由题意得⎩⎪⎨⎪⎧2x +3y =62,5x +y =90.解得⎩⎪⎨⎪⎧x =16,y =10. 答:一支钢笔需16元,一本笔记本需10元.(2)设购买钢笔的数量为a ,则笔记本的数量为80-a ,由题意得16a +10(80-a)≤1 100,解得a≤50. 答:工会最多可以购买50支钢笔.3.(1)设小李答对了x 道题.依题意得5x -3(20-x)=60.解得x =15.答:小李答对了15道题.(2)设小王答对了y 道题,依题意得⎩⎪⎨⎪⎧5y -3(20-y )≥75,5y -3(20-y )≤85.解得1358≤y ≤1458. ∵y 是正整数,∴y =17或18.答:小王答对了17道题或18道题.整合集训基础过关1.C 2.D 3.A 4.C 5.B 6.A 7.B 8.D 9.-1<x≤3 10.0 11.7812.(1)x≥3 (2)x≤5 (3)图略 (4)3≤x≤513.由①,得x≥-1.由②,得x <4.故此不等式组的解集为-1≤x<4.在数轴上表示为:14.解不等式①,得x≥-2.解不等式②,得x<72. ∴原不等式组的解集为-2≤x<72. 因此,非负整数解为0、1、2、3.15.①+②,得3(x +y)=-3m +6,∴x +y =-m +2. ∵x+y>-32, ∴-m +2>-32. 解得m<72. ∵m 为正整数,∴m =1、2、3.16.(1)设旅游团中儿童有x 人,则成人有(2x -3)人,根据题意得x +(2x -3)=69,解得x =24.则2x -3=2×24-3=45.答:旅游团中成人有45人,儿童有24人.,∴可赠送4件儿童T 恤衫,设每件成人T 恤衫的价格是m 元,根据题意可得45m +15(24-4)≤1 200,解得m≤20.答:每件成人T 恤衫的价格最高是20元.能力提升17.B 18.D 19.A 20.4≤a<5,得2x -3+x >0.移项、合并同类项,,得x >1. 22.(1)设每本文学名著x 元,动漫书y 元,可得⎩⎪⎨⎪⎧20x +40y =1 520,20x -20y =440.解得⎩⎪⎨⎪⎧x =40,y =18. 答:每本文学名著和动漫书各为40元和18元.(2)设学校要求购买文学名著x 本,动漫书为(x +20)本,根据题意可得⎩⎪⎨⎪⎧x +x +20≥72,40x +18(x +20)≤2 000.解得26≤x≤82029.因为x取整数,所以x取26,27,28. 方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.。

火线100天(安徽专版)中考数学一轮复习 第二单元 方程

火线100天(安徽专版)中考数学一轮复习 第二单元 方程

第6讲一元二次方程命题点年份(2013~2015)题序题型分值考查方向一元二次方程的应用2015 6 选择题 4近5年考查两次,另外3年考查的是其解法,2013和2015两年考查的是增长率问题.2013 7 选择题 4一元二次方程的解法思想和思路解一元二次方程的基本思想是①____;解一元二次方程的常规思路是将二次方程转化为②________.主要解法(1)直接开平方法;(2)因式分解法;(3)③______;(4)公式法.一元二次方程ax2+bx+c=0(a≠0)的求根公式为:④________________.一元二次方程的应用一元二次方程的应用题解题步骤(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即方程;(4)解:求出所列方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:写出答案.1.在解一元二次方程时,要注意每一种解法的特点,灵活地选用合适的解法.在利用求根公式时,要注意前提条件b2-4ac≥0.2.用一元二次方程解决实际问题时,应把实际问题转化为数学模型,建立方程求解,分析等量关系,可借助画线段、表格等方法,同时应掌握一些常见的等量关系,如平均增长率问题、工程问题、利润问题等.对于一元二次方程的根要根据实际情况进行取舍.命题点1 一元二次方程的解法(2012·安徽)解方程:x2-2x=2x+1.【思路点拨】分析该一元二次方程的特点,先将方程整理一下,可以考虑用配方法或公式法.【解答】解一元二次方程通常就是四种方法,即直接开平方法,配方法,公式法和因式分解法.只要方程有实数根,配方法和公式法都是万能的,但要根据具体的方程选择合适的方法才不会让解方程变得很麻烦,直接开平方法和因式分解法适合特殊形式的方程,解起来简捷轻松.1.(2015·滨州)用配方法解一元二次方程x2-6x-10=0时,下列变形正确的为( )A.(x+3)2=1 B.(x-3)2=1C.(x+3)2=19 D.(x-3)2=192.(2015·聊城)一元二次方程x2-2x=0的解是________.3.(2015·丽水)解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写________________________________________________________________________.4.(2015·大连)解方程:x2-6x-4=0.命题点2 一元二次方程的应用(2015·蜀山二模)“大湖名城·创新高地·中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3 150元,问:共有多少名同学参加了研学游活动?【思路点拨】根据题中条件容易判断出参加的人数为30人以上,等量关系为:人均价格×参加人数=3 150,而人均费用代数式可表示为:[100-2(x-30)].从而可以列出方程,所求出的解需要根据人均费用不能低于80来判断是否符合题意.【解答】列方程解决实际问题的关键是要找到等量关系,在寻找等量关系时有时要借助示意图,图表等,在得到方程的解后,需要检验它是否符合实际意义.1.(2015·安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是( )A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.52.(2015·济南)将一块正方形铁皮的四角各剪去一个边长为3 cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm3,则原铁皮的边长为( )A.10 cm B.13 cmC.14 cm D.16 cm3.(2015·达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利 1 200元,则每件童装应降价多少元?设每件童装应降价x元,可列方程为________________________.1.(2015·随州)用配方法解一元二次方程x2-6x-4=0,下列变形正确的是( )A.(x-6)2=-4+36 B.(x-6)2=4+36C.(x-3)2=-4+9 D.(x-3)2=4+92.关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m等于( )A.1 B.2C.1或2 D.03.一元二次方程x(x-2)=2-x的根是( )A.x=-1 B.x=2C.x=1和x=2 D.x=-1和x=24.(2013·安徽)目前我们已经建立了比较完整的经济困难学生资助体系,某校去年上半年发给每个经济困难学生389元,今年上半年发438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是( ) A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=3895.(2015·烟台)如果x2-x-1=(x+1)0,那么x的值为( )A.2或-1 B.0或1C.2 D.-16.(2015·佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是( )A.7 mB.8 mC.9 mD.10 m7.(2015·厦门)方程x2+x=0的解是____________.8.(2014·广州)一元二次方程2x2-3x+1=0的解为____________.9.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有________支.10.解方程:(1)(2015·广东)x2-3x+2=0;(2)(2015·兰州)x2-1=2(x+1).11.(2015·自贡)利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地,求矩形的长和宽.12.(2014·合肥三十八中模拟)有一人患了流感,经过两轮传染后共有64人患了流感. (1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?13.(2015·长沙)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案 考点解读①降次 ②一次方程 ③配方法 ④x=-b ±b 2-4ac2a各个击破例1 原方程化为:x 2-4x -1=0.配方,得x 2-4x +4-1-4=0.整理,得(x -2)2=5.∴x-2=±5,即x 1=2+5,x 2=2- 5. 题组训练 1.D2.x =0或x =23.x +3=0(或x -1=0)4.移项,得x 2-6x =4,配方,得x 2-6x +9=4+9,即(x -3)2=13.所以,x -3=±13,因此,原方程的解为x 1=3+13,x 2=3-13. 例2 ∵100×30=3 000<3 150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x 人去旅游,则人均费用为[100-2(x -30)]元,由题意得: x[100-2(x -30)]=3 150.整理得x 2-80x +1 575=0,解得x 1=35,x 2=45.当x =35时,人均旅游费用为100-2(35-30)=90>80,符合题意.当x =45时,人均旅游费用为100-2(45-30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学游活动. 题组训练1.C2.D3.(40-x)(20+2x)=1 200 整合集训1.D 2.B 3.D 4.B 5.C 6.A 7.x 1=0,x 2=-1 8.x 1=1,x 2=12 9.510.(1)Δ=b 2-4ac =(-3)2-4×1×2=1, ∴x =3±12×1=3±12,∴x 1=1,x 2=2.(2)原方程可以化为:(x +1)(x -1)-2(x +1)=0, 左边分解因式,得(x +1)(x -3)=0, ∴x +1=0或x -3=0.因此,原方程的解为x 1=-1,x 2=3. 11.设垂直于墙的一边为x 米,得: x(58-2x)=200.解得x 1=25,x 2=4. ∴另一边为8米或50米.答:矩形长为25米宽为8米或矩形长为50米宽为4米. 12.(1)设每轮传染中平均一个人传染了x 个人,由题意,得 1+x +x(1+x)=64.解得x 1=7,x 2=-9(不合题意,舍去). 答:每轮传染中平均一个人传染了7个人. (2)7×64=448(人).答:第三轮将有448人被传染.13.(1)设该快递公司投递快递总件数的月平均增长率为x ,由题意,得10(1+x)2=12.1,解得x 1=0.1,x 2=-2.1(舍).答:该快递公司投递快递总件数的月平均增长率为10%. (2)6月:12.1×1.1=13.31(万件). ∵21×0.6=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务. ∵22<13.310.6<23,∴至少还需增加2名业务员.。

火线100天(四川专版)中考数学复习集训 滚动小专题二 方程(组)、不等式(组)的解法-人教版初中九

火线100天(四川专版)中考数学复习集训 滚动小专题二 方程(组)、不等式(组)的解法-人教版初中九

方程(组)、不等式(组)的解法类型1 方程(组)的解法1.(2014·滨州)解方程:2-2x +13=1+x 2.2.(2014·某某)解方程:x 2+2x -3=0.3.(2015·某某B 卷)解二元一次方程组:⎩⎪⎨⎪⎧x -2y =1,①x +3y =6.②4.(2015·某某)解方程:1-2x -3=1x -3.5.(2015·某某)解方程:x 2x -3+53x -2=4.6.(2015·黔西南)解方程:2x x -1+11-x =3.7.(2015·某某)解方程组:⎩⎪⎨⎪⎧2x +y =4,①x -y =-1.②8.(2015·某某)解方程:x 2-1=2(x +1).9.(2015·某某)解方程:x 2-2x -3=0.10.(2015·某某)先化简:(2x 2+2x x 2-1-x 2-x x 2-2x +1)÷x x +1,然后解答下列问题: (1)当x =3时,求原代数式的值;(2)原代数式的值能等于-1吗?为什么?类型2 不等式(组)的解法1.(2015·某某)解不等式:x 3>1-x -36.2.(2015·某某)解不等式2(x +1)-1≥3x+2,并把它的解集在数轴上表示出来.3.(2015·某某)解不等式组:⎩⎪⎨⎪⎧x -1>2,①x +2<4x -1.②4.(2014·某某)解不等式组:⎩⎪⎨⎪⎧3x≥x+2,①4x -2<x +4.②5.(2015·某某)解不等式组:⎩⎪⎨⎪⎧5x -3<4x ,①4(x -1)+3≥2x.②6.(2015·某某)解一元一次不等式组⎩⎪⎨⎪⎧1+x>-2,①2x -13≤1,②并把解在数轴上表示出来.7.(2013·某某)解不等式组:⎩⎪⎨⎪⎧x -3(x -2)≤4,①1-2x 4<1-x ,②并把解集在数轴上表示出来.8.(2015·黔东南)解不等式组⎩⎪⎨⎪⎧2(x +2)>3x ,①3x -12≥-2,②并将它的解集在数轴上表示出来.9.(2015·某某)求不等式组⎩⎪⎨⎪⎧2x +1>0,①x>2x -5②的正整数解.10.(2015·某某)已知A =x 2+2x +1x 2-1-x x -1. (1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.参考答案类型1 方程(组)的解法1.去分母,得12-2(2x +1)=3(1+x).去括号,得12-4x -2=3+3x.移项、合并同类项,得-7x =-7.解得x =1.2.∵a=1,b =2,c =-3,b 2-4ac =22-4×1×(-3)=16>0,∴x =-2±162=-2±42. ∴x 1=1,x 2=-3.3.②-①,得y =1.将y =1代入①得x =3.∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =1.,,,x =6是原方程的根.,得x(3x -2)+5(2x -3)=4(2x -3)(3x -2).化简,得7x 21=1,x 2=137. 经检验,x 1=1,x 2=137都是原方程的根. ,得2x -1=3(x -1).去括号、移项,得-x =-2.系数化为1,得x =2.经检验,x =2是原分式方程的根.7.①+②,得3x =3,即x =1.把x =1代入①,⎩⎪⎨⎪⎧x =1,y =2. ,得(x +1)[(x -1)-2]=0.即(x +1)(x -3)=0.因此x +1=0或x -3=0.所以x 1=-1,x 2=3.9.∵a=1,b =-2,c =-3,Δ=b 2-4ac =(-2)2-4×1×(-3)=16,∴x =2±162×1=2±42. ∴x 1=-1,x 2=3. 10.(1)原式=x +1x -1.当x =3时,原式=3+13-1=2. (2)如果x +1x -1=-1,那么x +1=-(x -1),解得x =0. 当x =0时,除式x x +1=0,原式无意义, 故原代数式的值不能等于-1.类型2 不等式(组)的解法1.去分母,得2x >6-x +3.移项,得2x +x >6+3.合并同类项,数化为1,得x >3.,得2x +2-1≥3x+2.合并同类项,得-x≥1.系数化为1,得x≤-1.这个不等式的解集在数轴上表示为:3.解不等式①,得x >3,解不等式②,,不等式组的解集为x >3.4.解不等式①,得x≥1.解不等式②,得x <2.所以不等式组的解集是1≤x<2.5.解不等式①,得x<3,解不等式②,得x≥12,因此,不等式组的解是12≤x<3. 6.由①得x >-3,由②得x≤2,∴不等式组的解集为-3<x≤2.解集在数轴上表示如下:7.解不等式①,得x≥1.解不等式②,得x<32. ∴此不等式组的解集是1≤x<32. 不等式组的解集在数轴上表示为:8.解不等式①,得x<4,解不等式②,得x≥-1,所以,原不等式组的解集为-1≤x<4.不等式组的解集在数轴上表示为: 9.解不等式①,得x>-12,解不等式②,得x<5,则不等式组的解集为-12<x<5. ∴此不等式组的正整数解为1,2,3,4.10.(1)化简A =1x -1. (2)解⎩⎪⎨⎪⎧x -1≥0,x -3<0得1≤x<3, ∵x 为整数,∴x =1或x =2.①当x =1时,A =1x -1无意义. ②当x =2时,A =1x -1=12-1=1.。

火线100天(四川专版)中考数学复习集训 滚动小专题三 方程(组)、不等式(组)的实际应用-人教版初

火线100天(四川专版)中考数学复习集训 滚动小专题三 方程(组)、不等式(组)的实际应用-人教版初

方程(组)、不等式(组)的实际应用1.(2015·某某)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?2.(2015·某某)利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地.求矩形的长和宽.3.,超过1.5千米的部分按每千米另收费.小X说:“我乘出租车从市政府到某某汽车站走了千米,付车费10.5元.”小李说:“我乘出租车从市政府到某某汽车站走了千米,元.”问:(1)出租车的起步价是多少元?超过千米后每千米收费多少元?,应付车费多少元?4.(2014·某某)某校为美化校园,计划对面积为1 800 m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2;,,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?5.(2015·某某)某工厂计划在规定时间内生产24 000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.6.(2015·某某)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每X降价80元,这样按原定票价需花费6 000元购买的门票X数,现在只花费了4 800元.(1)求每X门票原定的票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.7.(2014·某某)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?8.(2015·德阳)大华服装厂生产一件秋冬季外套需面料,里料,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价-布料成本-固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9 120元批发外套的件数和一个普通客户用10 080元批发外套的件数相同,求VIP客户享受的降价率.参考答案1.设胜了x 场,那么负了(8-x)场,根据题意,得2x +1×(8-x)=13,解得x =5,8-5=3(场).答:九年级一班胜、负场数分别是5和3.,则与墙平行的一边为(58-2x)米,根据题意,1=25,x 2=4.∴另一边长为8米或50米.答:当矩形的长为25米时,宽8米,当矩形边长为50米时宽为4米.3.(1)设出租车的起步价是x 元,超过1.5千米后每千米收费y 元.依题意,得 解得,超过后每千米收费2元.(2)4.5+(5.5-1.5)×2=12.5(元).答:小X 乘出租车从市政府到某某南站(高铁站)走了,应付车费12.5元.4.(1)设乙工程队每天能完成绿化的面积是x m 2,根据题意,得400x -4002x=4,解得x =50. 经检验,x =50是原方程的解.则甲工程队每天能完成绿化的面积是50×2=100(m 2). 答:甲、乙两工程队每天能完成绿化的面积分别是100 m 2、50 m 2.(2)设应安排甲队工作x 天,根据题意,得0.4x +1 800-100x 50×≤8,解得x≥10. 答:至少应安排甲队工作10天.5.(1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400. 经检验,x =2 400是原方程的根,且符合题意.∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400个,规定的天数是10天.(2)设原计划安排的工人人数为y 人,根据题意,得[5×20×(1+20%)·2 400y+2 400]×(10-2)=24 000,解得y =480. 经检验,y =480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.6.(1)设每X 门票原定的票价x 元.由题意得6 000x =4 800x -80,解得x =400. 经检验,x =400是原方程的解.答:每X 门票原定的票价400元.(2)设平均每次降价的百分率为y.由题意得400(1-y)2=324,解得y 1,y 2=1.9(不合题意,舍去) 答:平均每次降价10%.7.(1)每辆A 型车和B 型车的售价分别是x 万元、y 万元.则⎩⎪⎨⎪⎧x +3y =96,2x +y =62.解得⎩⎪⎨⎪⎧x =18,y =26. 答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元.(2)设购买A 型车a 辆,则购买B 型车(6-a)辆,则依题意得⎩⎪⎨⎪⎧18a +26(6-a )≥130,18a +26(6-a )≤140.解得2≤a≤134. ∵a 是正整数,∴a =2或a =3.∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车;方案二:购买3辆A 型车和3辆B 型车.8.(1)设里料的单价为x 元/米,面料的单价为(2x +10)元/米.根据题意得0.8x +1.2(2x +10)=76.解得x =20.2x +10=2×20+10=50. 答:面料的单价为50元/米,里料的单价为20元/米.(2)①设打折数为m.根据题意得150×m 10-76-14≥30.解得m≥8. ∴m 的最小值为8.②150×0.8=120(元).9 120120×(1-x )=10 080120×(1+x ),解得x =0.05. 经检验x =0.05是原方程的解.答:VIP 客户享受的降价率为5%.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲分式方程分式方程及解法分式方程的概念分母里含有①________的方程叫做分式方程.分式方程的解法解分式方程的基本思路是将分式方程转化为②________方程,具体步骤是:(1)去分母,在方程的两边都乘以③________,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母,如果④________,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.分式方程的应用列分式方程解应用题的步骤跟一次方程(组)的应用题不一样的是:要检验⑤________次,既要检验求出来的解是否为原方程的根,又要检验是否⑥________.分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.命题点1 分式方程的解法(2015·绵阳)解方程:32x+2=1-1x+1.【思路点拨】先确定最简公分母2(x+1),方程两边同乘以最简公分母,把分式方程转化为整式方程求解,最后要检验.【解答】解分式方程的基本思想是把分式方程转化为整式方程.解题过程中需注意两点:一是两边同乘以公分母去分母时,不要漏乘不含分母的项;二是必需检验.1.(2015·自贡)方程x2-1x+1=0的解是()A.1或-1 B.-1C.0 D.12.(2015·攀枝花)分式方程1x-1=3x+1的根为x=________.4.(2014·乐山)解方程:x x -1-3x =1.命题点2 分式方程的应用(2015·成都)某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元够进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?【思路点拨】 可设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫是2x 件,根据第二批这种衬衫单价贵了10元,也就是“第二批这种衬衫单价-第一批这种衬衫单价=10”,列出分式方程求解.【解答】列分式方程解应用题的关键是分析题意,弄清楚已知量与未知量之间的关系,从而得到相等关系,进而引进未知数,列出方程解决问题.构建分式方程解实际问题一定要注意检验,找出符合实际情况的答案.1.(2015·遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为()A.36x -36+91.5x =20 B.36x -361.5x =20 C.36+91.5x -36x =20 D.36x +36+91.5x=20 2.(2013·乐山)甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程,其中正确的是()A.110x +2=100x B.110x =100x +2 C.110x -2=100x D.110x =100x -23.(2015·宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险会0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元.1.(2015·常德)分式方程2x -2+3x 2-x =1的解为() A .x =1 B .x =2 C .x =13 D .x =0 2.(2015·岳阳)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是()A.200x =350x -3 B.200x =350x +3 C.200x +3=350x D.10x =350x -33.(2015·乌鲁木齐)九年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是()A.10x =102x -13 B.10x =102x -20 C.x 10=102x +13 D.10x =102x+20 4.(2015·巴中)分式方程3x +2=2x的解为x =________. 5.(2015·常德)若分式x 2-4x +2的值为0,则x =________. 6.(2014·巴中)若分式方程x x -1-m 1-x=2有增根,则这个增根是________. 7.解下列分式方程:(1)(2015·广安)1-x x -2=x 2x -4-1;(2)(2015·龙岩)x -3+6x -x 2x +3=0.8.如图,点A 、B 在数轴上,它们所对应的数分别是-3和1-x 2-x,且点A 、B 到原点的距离相等,求x 的值.1x -21-(x-2)=1……①去括号,得1-x-2=1……②合并同类项,得-x-1=1……③移项得-x=2……④解得x=-2……⑤∴原方程的解为x=-2……⑥10.(2015·大连)甲、乙两人制作某种机械零件.已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲、乙两人每小时各做多少个零件.11.(2015·安顺)“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元.12.(2015·北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个,预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?13.(2014·自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成.现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟完成?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?14.(2015·营口)若关于x 的分式方程2x -3+x +m 3-x =2有增根,则m 的值是() A .m =-1B .m =0C .m =3D .m =0或m =315.(2015·齐齐哈尔)关于x 的分式方程5x =a x -2有解,则字母a 的取值范围是() A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a≠016.(2015·淄博)若关于x 的方程2x -2+x +m 2-x =2的解为正数,则m 的取值范围是() A .m <6 B .m >6C .m <6且m ≠0D .m >6且m≠817.(2015·东营)若分式方程x -a x +1=a 无解,则a 的值为________. 18.(原创)阅读下列材料:方程1x +1-1x =1x -2-1x -3的解为x =1; 方程1x -1x -1=1x -3-1x -4的解为x =2; 方程1x -1-1x -2=1x -4-1x -5的解为x =3; …(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并猜想这个方程的解;(2)利用(1)中所得的结论,写出一个解为x =2 015的分式方程.19.(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A 、B 两种花木共6 600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?参考答案考点解读考点1 ①未知数 ②整式 ③最简公分母 ④不为0考点2 ⑤两 ⑥符合题意各个击破例1 方程两边同乘以2(x +1),去分母,得3=2x +2-2,移项、合并同类项,得-2x =-3.系数化为1,得x =32. 经检验,x =32是分式方程的解.题组训练 1.D 2.2 3.x =-34.去分母,得x 2-3x +3=x 2-x.移项、合并同类项,得-2x =-3.解得x =1.5.经检验,x =1.5是分式方程的解.例2 设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件,由题意可得28 8002x -13 200x =10,解得x =120.经检验,x =120是原方程的根.答:商家购进的第一批衬衫是120件.题组训练 1.A 2.A 3.设乙每年缴纳x 万元,可得15x +0.2=10x ,解得x =0.4.则x +0.2=0.6. 答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.整合集训基础过关 1.A 2.B 3.C 4.4 5.2 6.x =17.(1)化为整式方程得2-2x =x -2x +4,解得x =-2.把x =-2代入原分式方程中,等式两边相等. ∴x=-2是原分式方程的解.(2)原方程化为(x -3)(x +3)+6x -x 2=0.∴x 2-9+6x -x 2=0.解得x =32.经检验,x =32是原分式方程的解.∴原方程的解是x =32.8.依题意可得1-x2-x =3,解得x =52.经检验,x =52是原方程的解.∴x 的值为52.9.小明的解法有三处错误:步骤①去分母错误;步骤②去括号错误;步骤⑥之前缺少“检验”步骤.正确的解答过程如下:去分母,得1-(x -2)=x.去括号,得1-x +2=x.移项,得-x -x =-1-2.合并同类项,得-2x =-3.两边同除以-2,得x =32.经∴原方程的解是x =32.10.乙每小时做x 个零件,则甲每小时做(x +3)个零件,由题意得96x +3=84x ,解得x =21.经检验,x =21是方程的解,x +3=24.答:甲、乙两人每小时各做24和21个零件.11.设第一批盒装花的进价是x 元/盒,则2×3 000x =5 000x -5,解得x =30.经检验,x =30是原方程的根.答:第一批盒装花每盒的进价是30元.12.设2015年全市租赁点有x 个.根据题意,得50 000x =1.2×25 000600,解得x =1 000.经检验,x =1 000是原方程的解,且符合实际情况.答:预计到2015年底,全市将有租赁点1 000个.13.(1)设王师傅单独整理这批实验器材需要x 分钟完成,则(140+1x )×20+20x =1.解得x =80.经检验,得x =80是原分式方程的解,且符合题意.答:王师傅单独整理这批实验器材需要80分钟完成.(2)设李老师要工作m 分钟,则m 40+3080≥1.解得m≥25.答:李老师至少要工作25分钟.能力提升14.A 15.D 16.C 17.±118.(1)1x -n -1x -(n +1)=1x -(n +3)-1x -(n +4),其解为x =n +2.(2)因为n +2=2 015,所以n =2 013,其对应方程为1x -2 013-1x -2 014=1x -2 016-1x -2 017.19.(1)设B 种花木的数量是x 棵,则A 种花木的数量是(2x -600)棵.根据题意, 得x +(2x -600)=6 600,解得x =2 400.2x -600=4 200.答:A 种花木的数量是4 200棵,B 种花木的数量是2 400棵.(2)设安排y 人种植A 种花木,则安排(26-y)人种植B 种花木.根据题意,得4 20060y = 2 40040(26-y ),解得y =14.经检验,y =14是原方程的根,且符合题意.26-y =12.答:安排14人种植A 种花木,安排12人种植B 种花木,才能确保同时完成各自的任务.。

相关文档
最新文档