降水计算 完整井及非完整井
井点降水施工工艺和方法
井点降水施工工艺和方法在基坑开挖过程中,当基底低于地下水位时,由于土的含水层被切断,地下水会不断地渗入坑内。
雨期施工时,地面水也会不断流入坑内。
如果不采取降水措施,把流入基坑内的水及时排走或把地下水位降低,不仅会使施工条件恶化,而且地基土被水泡软后,容易造成边坡塌方并使地基的承载力下降。
另外,当基坑下遇有承压含水层时,若不降水减压,则基底可能被冲溃破坏。
因此,为了保证工程质量和施工安全,在基坑开挖前或开挖过程中,必须采取措施,控制地下水位,使地基土在开挖及基础施工时保持干燥。
井点降水方法降低地下水位的方法有集水井降水法和井点降水法。
集水井降水法一般适用于降水深度较小且土层为粗粒土层或渗水量小的粘性土层。
当基坑开挖较深,又采用刚性土壁支护结构挡土并形成止水帷幕时,基坑内降水也多采用集水井降水法。
如降水深度较大,或土层为细砂、粉砂或软土地区时,宜采用井点降水法降水但仍有局部区域降水深度不足时,可辅以集水井降水。
无论采用何种降水方法,均应持续到基础施工完毕,且土方回填后方可停止降水。
集水井降水施工1)施工过程基坑或沟槽开挖时,在坑底设置集水井,并沿坑底的周围或中央开挖排水沟,使水在重力作用下流入集水井内,然后用水泵抽出坑外。
2)构造四周的排水沟及集水井一般应设置在基础范围以外,地下水流的上游,基坑面积较大时,可在基坑范围内设置盲沟排水。
根据地下水量、基坑平面形状及水泵能力,集水井每隔20~40m设置一个。
3)设置集水坑的直径或宽度一般为0.6~0.8m,其深度随着挖土的加深而加深,并保持低于挖土面0.7~1.0m。
坑壁可用竹、木材料等简易加固。
当基坑挖至设计标高后,集水坑底应低于基坑底面1.0~2.0m,并铺设碎石滤水层(0.3m厚)或下部砾石(0.1m厚)上部粗砂(0.1m)的双层滤水层,以免由于抽水时间过长而将泥砂抽出,并防止坑底土被扰动。
流砂1)流砂现象基坑挖土至地下水位以下,土质为细砂土或粉砂土的情况下,采用集水坑降低地下水时,坑下的土有时会形成流动状态,随着地下水流入基坑,这种现象称为流砂现象。
基坑降水计算指南
基坑降水计算指南1.降水影响半径确定影响半径的方法很多,在矿坑涌水量计算中常用库萨金和吉哈尔特经验公式作近似计算。
当设计的矿山进行了大降深群孔抽水试验或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔网资料为基础的图解法进行推求。
1.1、经验公式法计算影响半径的主要经验公式见表1。
表1 计算影响半径的经验公式1.2、图解法当设计矿山做了大降深群孔抽水或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔实测资料,用图解法确定影响半径。
(一)自然数直角座标图解法在直角座标上,将抽水孔与分布在同一直线上的各观测孔的同一时刻所测得的水位连结起来,尚曲线趋势延长,与抽水前的静止水位线相交,该交点至抽水孔的距离即为影响半径(见图1)。
观测孔较多时,用图解法确定的影响半径较为准确。
(二)半对数座标图解法在横座标用对数表示观测孔至抽水孔的距离,纵座标用自然数表示抽水主孔及观测孔水位降深的直角座标系中,将抽水主孔的稳定水位降深及同时刻的观测孔水位降低标绘在相应位置,连结这两点并延长与横座标的交点即为影响半径(见图2)。
当有两个或两个以上观测孔时,以观测孔稳定水位降深绘图更准些。
1.3、影响半径经验数值根据岩层性质、颗粒粒径及单位涌水量与影响半径的关系来确定影响半径,见表2与表3。
表2 松散岩土影响半径(R)经验数值表3 单位涌水量与影响半径关系2 计算模型及公式2.1.潜水完整井计算模型()⎪⎭⎫ ⎝⎛+-=01log 2366.1r R S S H kQ …………………………………………公式1式中:Q 基坑涌水量(m 3/d );k :渗透系数(m/d ); H :潜水含水层厚度(m ): S :基坑水位降深(m ); R :降水影响半径(m ); r 0:基坑等效半径(m )。
2.2.承压水完整井计算模型⎪⎪⎭⎫⎝⎛+=01lg 73.2r R MS kQ式中:Q :K R :r 0:基坑(m );M :承压含水层厚度(m )2.3.承压水非完整井计算模型⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+=002.01lg 1lg 73.2r M l l M r R MSkQ ……………………………公式式中:Q :基坑涌水量(m 3/d );K :渗透系数(m/d ); R :降水影响半径(m ); r 0:基坑等效半径(m ); M :承压含水层厚度(m ); S :基坑水位降深(m );l :基坑降水井过滤器工作部分长度(m )()⎪⎪⎭⎫⎝⎛+--=021lg 2366.1r R h M M H kQ 式中:Q :基坑涌水量(m 3/d );K :渗透系数(m/d ); R :降水影响半径(m ); r 0:基坑等效半径(m ); M :承压含水层厚度(m );h2.5.线形工程潜水完整井计算模型Rh H kL Q 22-=…………………………………………………公式5()222h H Rx h y -+=……………………………………………公式6 ()dR r d SS H k q w 2ln 2πππ+-=…………………………………………………公式7双直线井排,条件同上,适用条件:①均质潜水含水层; ②完整井点; ③位于无界含水层中; ④直线井点排,两侧进水; ⑤L>50m 。
轻型井点降水计算
一பைடு நூலகம்计算参数
基坑平面尺寸
长
m
宽
m
深
m
长/宽=
地下水深
m
渗透系数
含水层厚度
m
降水深度
m
二、计算
1、井点管的长度
H≥H1+h+iL+l=
m
其中: H:井点管的埋置深度
H1:井点管埋设面至基坑底面的距离
h:基坑中央最深挖掘面至降水曲线最高点的安全距离
1.0
L:井点管中心至基坑中心短边距离
i:降水曲线坡度,与土的渗透系数、地下水流量等因素有关
l:滤水管长度
井点管的长度=H+0.5l+0.3=
其中: 0.2-0.3:井点管露出地面高度
2、井点型式的确定
3、基坑总涌水量计算 无压完整井
Q=1.366K(2H-S)S/(lgR-lgr)= 其中: Q:单井涌水量(m3/d)
K:渗透系数(m/d) H:含水层厚度(m) R:抽水影响半径(m)
R=1.95S(HK)1/2= S:水位降低值(m) r:井点的半径(m) 群井井点(环形井点系统)涌水量 Q=1.366K(2H-S)S/(lgR-lgx0)= 其中: x0:基坑的假想半径 x0=(A/π )1/2=
无压非完整井 Q=1.366K(2H0-S)S/(lgR-lgx0)=
轻型井点降水计算
无压非完整井 其中: Q=1.366K(2H0-S)S/(lgR-lgx0)= 915.49 m3/天 K:渗透系数(m/d) H0:抽水影响深度(m) H0=1.85(S'+l)= X0:环状轻型井点假象半径 X0=(F/π )0.5 R=1.95S(H0K)^0.5= R:抽水影响半径(m)
6.94 m 3.95 m 67.52 m
2.5 1.0 3.5 0.1 1
பைடு நூலகம்
m m m m
3、基坑总涌水量计算 无压完整井 Q=1.366K(2H-S)S/(lgR-lgr)= 其中: Q:单井涌水量(m3/d) K:渗透系数(m/d)
H:含水层厚度(m) R:抽水影响半径(m) R=1.95S(HK)1/2= S:水位降低值(m) r:井点的半径(m) 群井井点(环形井点系统)涌水量 Q=1.366K(2H-S)S/(lgR-lgx0)= 其中: x0:基坑的假想半径 x0=(A/π )1/2=
轻型井点降水计算
一、基础降水计算
1581/冷媒储罐基坑平面尺寸
KF002 宽 7m
地下水位 基坑底部高程 地下水深 渗透系数K 含水层厚度
长 深 长/宽= -0.7 -2.1 15 30 35
7m 2.1 m 1 m m m m/d m
水位降低值S 降水深度S’
2.4 m 2.75 m
二、计算 1、井点管的长度 管的埋置深度H≥H1+h+iL+l= 4.85 m H:井点管的埋置深度 其中: H1:井点管埋设面至基坑底面的距离 h:基坑中央最深挖掘面至降水曲线最高点的安全距离 L:井点管中心至基坑中心短边距离 i:降水曲线坡度,与土的渗透系数、地下水流量等因素有关 l:滤水管长度 井点管的长度=H+0.3= 5.15 m 0.2-0.3:井点管露出地面高度 其中: 2、井点型式的确定
降水计算过程
3.降水复核计算及抽水设备的选择(1)降水面积:以200m 长度为一典型单元,基坑底宽按照11.1m ,基坑面积A=200×11.1=2220㎡;(2)水位降深:勘察期间地下水标高-2.1~-4.5米,地下水静止水位按 3.0米考虑。
(3)最小要求降深:H =8m(整平标高下) (4)降水计算书 1)基坑总涌水量计算:图5.4.1-2 基坑降水示意图根据水井理论,水井分为潜水(无压)完整井、潜水(无压)非完整井、承压完整井和承压非完整井,本项目属于潜水(无压)完整井。
勘察期间地下水标高-2.1~-4.5米,地下水静止水位按3.0米考虑,地下埋深3m 时为粉土层,根据岩土工程勘察报告,粉土层渗透系数K 为0.1m/d ,细砂层渗透系数K 为5m/d ,卵石层渗透系数K 为20m/d 。
为预留保险系数,保证降水效果,渗透系数K 按卵石层渗透系数进行取值为20m/d 。
1.均质含水层潜水完整井基坑涌水量计算根据基坑是否邻近水源,本项目属于基坑远离地面水源,按照《建筑施工计算手册》采用以下公式计算:ro R SS H KQ lg lg )2(366.1--=Q 为基坑涌水量;k 为渗透系数(m/d)=20m/d=2.315×10-4m/s ; H 为含水层厚度(m)=10m ;R 为降水井影响半径(m),kH S R 95.1==1.95×10×(2.315×10-4×10)0.5=10m ;取值100m ;r 0为基坑等效半径(m),πAr =0=(2220/3.14)0.5=26.59m ;S 为基坑水位降深(m),按基坑最深12m 进行降水复核,约11m 入岩(弱透水层或不透水层),最大降水深度取值为8m ;roR SS H KQ lg lg )2(366.1--==1.366×20×(2×10-8)×8/(lg220.62-lg26.59) =2854.11m 3/d=0.033m 3/s通过以上计算可得基坑总涌水量为2854.11m 3/d=0.033m 3/s 。
非完整管井出水量计算的等效完整井法
常因经济技 术条件 限制或含水层部分厚度能 满足 需水量要 求而采用非完整井 , 非完整 井 出水量计 算的经验 、
理 论 公 式 因 边界 条件 的 差 别 而 异 , 选 用 时 较 易 出错 。 文 章 在 布 依 、 尔赫 格依 米 尔 、 在 佛 巴布 什 金 的 经 验 、 理 论 的基 础 上 , 出 了非 完整 井 出 水 量计 算 的 等 效 完整 井 法 。 提
后通过过 滤管 的进 水缝隙进入井管 内。 管井 出水 量的计算 , 管井设 计 的基础 , 供水 或人 工 是 对
降 低 水 位 都具 有 非 常 重 要 的 意 义 。
运动处于稳定状态 ; 地下水为层流 , 循达西定律 ; 含水 ② 遵 ③
层是均质 、 向同性 、 厚 、 各 等 水平 的; 静水 位是 水平 的 , ④ 抽
【 关键词 】 完整井; 非 完整 井; 有底界非 完整 井; 无底界非完整井 ; 等 效完整 井 ; 等效厚度
【 中图分类号 】 T 4 3 U6
管井是垂直安置 在地 下的取 水或 保护 地下水 的管状构 筑物 , 据其 揭露 的地下 水类 型 , 为潜 水井 ( 1 和承 压 根 分 图 )
非 完 整 管 井 出水 量 计 算 的 等 效 完 整 井 法
周 先 智 , 文 明 冯
( 中国建筑 西南 勘察 设计 研究 院有 限公 司 , 四川 成都 60 8 ) 10 1
【 摘 要 】 对含 水层 厚度 不大的完整井 , 一般 采用裘布依 稳定流公 式计算 出水量 ; 大厚度含 水层 中, 在
。
隔水 ; ⑥集水井是完整井 。
111 潜水完整井稳定流公 式 . .
Z 、Z
10 .
管井降水计算(潜水非完整井)
一、场地岩土工程情况本工程位于包头市友谊大街以南,劳动路以东,万青路以西,在地貌上属于大青山山前冲洪积地貌。
本场地地层结构和岩性如下:第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。
该层厚度在0.3~3.2m之间,层底标高在1052.62~1057.02m之间。
第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。
该层厚度在0.3~4.2m之间,层底标高在1052.02~1054.06m之间。
第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。
天然状态下呈稍湿~饱和,中密状态。
该层厚度在3.4~6.6m之间,渗透系数为K=1.66×10-2cm/s。
第③1层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状态下呈稍湿~饱和,中密状态。
该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在0.4~2.2m之间,层底标高在1047.91~1050.61m之间,渗透系数为K=5.64×10-3cm/s。
第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。
天然状态下呈饱和,中密状态。
该层厚度在4.3~9.4m之间,层底标高1039.21~1041.58m之间,渗透系数为K=2.24×10-3cm/s。
第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为1.3~6.1%,无摇振反应,切口光滑,干强度中等,韧性中等。
天然状态下呈可塑~软塑状态。
该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。
该层厚度在31.2~33.4m之间,层底标高在1006.57~1009.65m 之间,渗透系数为K=3.89×10-6cm/s。
地下水埋藏于自然地表下5.2~6.5m,标高在1049.64~1050.73m之间,属潜水。
01-管井降水计算(潜水非完整井)
一、场地岩土工程情况本工程位于市友谊大街以南,劳动路以东,万青路以西,在地貌上属于大青山山前冲洪积地貌。
本场地地层结构和岩性如下:第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。
该层厚度在0.3~3.2m之间,层底标高在1052.62~1057.02m之间。
第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。
该层厚度在0.3~4.2m之间,层底标高在1052.02~1054.06m之间。
第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。
天然状态下呈稍湿~饱和,中密状态。
该层厚度在3.4~6.6m之间,渗透系数为K=1.66×10-2cm/s。
第③1层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状态下呈稍湿~饱和,中密状态。
该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在0.4~2.2m之间,层底标高在1047.91~1050.61m之间,渗透系数为K=5.64×10-3cm/s。
第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。
天然状态下呈饱和,中密状态。
该层厚度在4.3~9.4m之间,层底标高1039.21~1041.58m之间,渗透系数为K=2.24×10-3cm/s。
第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为1.3~6.1%,无摇振反应,切口光滑,干强度中等,韧性中等。
天然状态下呈可塑~软塑状态。
该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。
该层厚度在31.2~33.4m之间,层底标高在1006.57~1009.65m 之间,渗透系数为K=3.89×10-6cm/s。
地下水埋藏于自然地表下5.2~6.5m,标高在1049.64~1050.73m之间,属潜水。
01-管井降水计算(潜水非完整井)
01-管井降水计算(潜水非完整井)一、场地岩土工程情况本工程位于包头市友谊大街以南,劳动路以东,万青路以西,在地貌上属于大青山山前冲洪积地貌。
本场地地层结构和岩性如下:第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。
该层厚度在0.3~3.2m之间,层底标高在1052.62~1057.02m之间。
第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。
该层厚度在0.3~4.2m之间,层底标高在1052.02~1054.06m之间。
第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。
天然状态下呈稍湿~饱和,中密状态。
该层厚度在3.4~6.6m之间,渗透系数为K=1.66×10-2cm/s。
第③1层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状态下呈稍湿~饱和,中密状态。
该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在0.4~2.2m之间,层底标高在1047.91~1050.61m之间,渗透系数为K=5.64×10-3cm/s。
第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。
天然状态下呈饱和,中密状态。
该层厚度在4.3~9.4m之间,层底标高1039.21~1041.58m之间,渗透系数为K=2.24×10-3cm/s。
第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为 1.3~6.1%,无摇振反应,切口光滑,干强度中等,韧性中等。
天然状态下呈可塑~软塑状态。
该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。
该层厚度在31.2~33.4m之间,层底标高在1006.57~1009.65m之间,渗透系数为K=3.89×10-6cm/s。
地下水埋藏于自然地表下5.2~6.5m,标高在1049.64~1050.73m之间,属潜水。
基坑降水的非完整井流计算
基坑降水的非完整井流计算【摘要】用三维边界单元法解决基坑施工中非完整井降水的渗流计算问题,为降水方案设计提供依据,并对降水过程作出预测。
【关键词】基坑降水基坑施工非完整井流计算【Abstract] The seepage calculation for partly penetrated well dewatering is solved in foundation pit construction by the three dimensional boundary elements method.This provides the basis for the scheme design of dewatering,and can make a prediction for dewatering process.【key words] foundation dewatering foundation pit constructioncalculation for partially penetrated well flow.0前言在建筑工程的深基坑施工过程中,往往要求将地下水位降到一定的深度之下,目的是使基坑的坑底面不积水,便于施工。
另一方面,降低水位是为了减小基坑的水压力,防止坑底土层破坏或防止发生流砂、管涌等现象。
同时基坑降水还能减小基坑侧壁的渗透压力,有助增加基坑侧壁的稳定性。
因此基坑降水在深基坑工程中占有重要位置。
在南方软土地区,由于地下水位浅,土质软弱,基坑降水的作用更加突出。
基坑降水的方案设计必须既科学又经济。
降水方案首先要确保降水效果能够达到预期的目的,降水过程能够按预定计划有控制地实行;其次,应考虑降水工程的经济性,做到以尽量少的工程费用实现降水的目的。
节约降水费用的关键是设计最经济的井数、井深及降水井的合理布置。
降水井的个数主要取决于单井的降水深度和单井的有效降深范围。
由于上海地区浅部土层的渗透性较小,因此降水井附近的降落曲线较陡,使得降水影响范围较小。
轻型井点降水方案及计算
轻型井点降水条件:井点抽水量必须大于场地范围的涌水量才能达到降水目的1.涌水量计算根据地下水位是否有压力,水井分为无压井和承压井.根据水井是否达到不透水层,分为完成井和非完成井.(只有无压完成井比较完善)1.环形井点(1).无压完成井的涌水量计算Q=1.366K【(2H-S)S/lgR-lgX.】K=地下水穿透土层的系数,单位 M/dH=含水层的厚度(原有地下水位到不透水层)s=水位降低值(原有地下水位倒降低后水位)R=抽水影响半径;R=1.95s√HK(√为开方)X。
=整个降水系统假想半径 X。
=√f/π (f为井点面积)(2)无压非完整井(仍用上述公式,只是将H换成地下水有效深度H。
)计算出的H。
必须与实际含水层厚度H相比较当H。
>H时依然取H(3)承压完整井计算公式Q=[2.73K(M×N)÷(lgR-lgX)]×[√M÷(L+0.5)r]×√(2M-L)÷MM=上层不透水层至下层不透水层r=井点管半径(4)承压非完整井计算公式Q=2.73K×M×S ÷(lgR-lgX。
)2.单根井点管水量计算q=65πdl(k) [l=滤管长度. d=井管直径将k开三次方]3.井点管数量及距离的计算(D可取0.8 1.6 1.2 2.0)数量n=1.1(Q÷q)距离D=L÷n(L为总管总长)D是否符合管上间距要求、对比取出管上间距再次求井管数量4.设备选择采用干式真空泵井点设备.型号W5.W6W5:L<100m数量<80根W6:L<120m数量<100根在系统使用过程中.经常检查真空表;压力表始终≥55KPa。
深井降水计算方法
一、前言近几年,深井降水利用较多,但有些单位在计算过程中采用的公式不当,或者考虑的因素不周,最终会造成降水的失败,最后不得不加井,这样既费钱又费时间,下面就以本人在深井降水方面的经验来和大家探讨。
二、深井降水概念深井(管井)井点,又称大口径井点,系由滤水井管、吸水管和抽水设备等组成。
具有井距大,易于布置,排水量大,降水深(>15m),降水设备和操作工艺简单等特点。
适用于渗透系数大(20-250m3/d),土质为砂类土,地下水丰富,降水深,面积大、时间长的降水工程应用。
三、深井设计1、计算思路第一步将基坑进行等效化为一口大井,第二步确定基坑总的涌水量,第三步确定单井出水量,第四步确定井的数量。
2、参数的确定与计算1)、设计水位降深水位降深在满足施工要求的时候,应尽量选择较小水位的降深,一般降到操作面下0.5m即可(有特殊要求的除外),这样可最大程度上避免降水对地层的影响,不至于造成地基承力的下降。
2)、井深及井径的选择要想使水位降低至操作面下,可以有两种途径,一种是加大井的直径和井的深度,即增大单井的落差,从而达到使最高水位降至操作面下0.5m.另一种通过均匀布井,控制单井的落差,使水位均匀降至设计要求。
前一种布井少,对地层扰动大,如建筑物对地基要求高时,此方法不可采用(除非施工后注浆),且此方法对原有建筑物也会带来较大的不利影响;后一种方法可能布井较多,但对地层扰动小,对原有建筑的危害也较小,因此条件允许时应优先选用后一种方法。
另外井深还要考虑单井的出水量与自已现有的水泵配套。
井深主要是根据水位降深、所需要的单井出水能力、水泵的进水口的位置、含水层的厚度、及泥浆淤积深度等因素进行选择。
井径的选择要综合考虑以下几种因素:A、单井要求的出水量;B、水泵的直径;C、当地施工机械,及井管的规格,如选用市场常用的规格,价格可能会便宜对控制成本有益。
3)、渗透系数的选择渗透系数是降水计算中重要的参数,此参数可以从地质报告中选取,但在大面积布井前,须重新验证,或者搜集附近的实际数据作为参考。
基坑降水计算程序(2012规范版)
类别
承压水非完 整井Βιβλιοθήκη 参数 基坑面积(m2)渗透系数k (m/d) 等效半径r 0 =(A/π)1/2
井水位降深sw(m) 降水井影响半径R =10sw(k )1/2
降水后基坑内的水位高度h(m) 潜水含水层厚度H(m)
基坑地下水位的设计降深sd(m) hm(m)
过滤器长度l (m) 过滤器半径r s (m) 基坑涌水量Q (m3/d) 管井单井出水量q (m3/d) 降水井数量n=1.1Q/q
012规范)
计算结果 16328.00 25.920 72.111 10.00 509.117 6.20 13.10 5.00 9.650 4.00 0.25 4122.591 1112.068 4.078 5
15.00 5.00
5088.334 1112.068
5.033 6
,承压水非完整井计算结果 井适当放大可用于本地区
取整
承压--潜水 非完整井
降水井总长度H (m) 坑底至管井底距离h (m)
基坑涌水量Q (m3/d) 管井单井出水量q (m3/d)
降水井数量n=1.1Q/q 取整
注:苏州地区一般按300-500m2一口降水井,承压水非完整井计算结果 基本不适于本地区,建议承压--潜水非完整井适当放大可用于本地区
备注
输入项 输入项
当井深 输入项 水位小
输入项 输入项 输入项 输入项 输入项
结果 输入项 输入项
结果
Q 3.1314k (2H sd )sd ln(1 R ) r0
Q
3.1314k
ln(1
R)
H 2 h2 hm l ln(1
0.2
hm
基坑降水计算-承压水完整井-非完整井
60.00m 60.00m 50.00m 50.00m 10.00m 10.00m
20.00m 20.00m 0.50m 0.50m 2.00m 2.00m 0.50m 0.50m 0.25m 0.25m 1.20m 1.20m 0.15m 0.15m 7.60m/d
7.60m/d
0.10
0.10
R=10S n=基坑承压水降水计算-图文
承压水完整井
承压水非完整井
输入参数输入参数基坑长度(L)基坑长度(L)基坑宽度(B)
基坑宽度(B)
基坑开挖深度(相对地表)基坑开挖深度(相对地表)承压水含水层厚度(M)承压水含水层厚度(M)降水后坑底水位与基底距离降水后坑底水位与基底距离承压水水头埋深(相对地表)
承压水水头埋深(相对地表)
井点管距坑壁距离井点管距坑壁距离降水井直径
降水井直径
过滤器进水长度(l )过滤器进水长度(l )过滤器半径(r s )过滤器半径(r s )渗透系数(K)渗透系数(K)水力坡降(i)水力坡降(i)说明:计算依据建筑基坑支护技术规程(JGJ120-2012),表中蓝色数字根据工程概况输入,单位为基坑工程设计规范默认单位,直接输入数字,单位自动添加,单井出水量和不同土体渗透系数参考值取值见附表。
R。
工程施工中常见地下水类型及井点降水计算方法
工程施工中常见地下水类型及井点降水计算方法作者:朱岩峰来源:《城市建设理论研究》2013年第33期摘要:通过对地下水的认识,了解人工降水的计算方法,结合实际情况,确定在施工中采用经济、方便、合理的人工降水形式,从而达到预想的降水效果。
本文主要介绍的是潜水完整井形式的管井井点降水计算方法。
关键词:地下水;降水;管井;计算方法中图分类号:TE42 文献标识码:A地下水的分类潜水:地表以下第一个具有自由表面的含水层中的水称作潜水。
潜水水位的变化受气候条件变化的影响很大。
一般埋藏较浅。
上层滞水:在潜水面之上,当存在局部隔水层时,在该局部隔水层上积聚着具有自由水面的重力水,叫做上层滞水。
上层滞水的水量一般不大,动态变化很大。
承压水:充满两个隔水层之间的水叫做承压水。
它承受着一定的静水压力。
降水方法与适用范围轻型井点:适用于渗透系数大,基坑面积较小,降水量小,降深3~12m。
电渗井点:适用于渗透系数小的土质,如淤泥质土,粉土,粘性土。
降深小于6米,降水量小。
但能使土体硬化,强度提高。
喷射井点:利用井管下部的喷射装置,将高压水或空气,从喷射嘴喷出,管内形成负压,使周围含水层的水流向管中排出。
类似轻型井点,但总体能力强于轻型井点。
成孔工艺要求高,工作效率低,运转过程要求管理严格,降深8~20m。
管井井点:利用钻孔成井,采用单井单泵抽取地下水的方法。
井点直径较大,出水量大,可满足大降深,大面积降水要求。
降深无限制,是目前我国应用最多最广泛的降水方法。
集水井的形式根据降水的形式可分为二种,完整井和非完整井。
完整井:整个井管贯穿含水层,井底深入不透水层,称为完整井。
非完整井:整个井管贯穿含水层,井底未达到不透水层,称为非完整井。
潜水完整井的计算降水流線在剖面上为一系列的曲线,由上至下逐渐变缓,等势线也是一条曲线,在影响半径以内的任一过水断面,应为等势线在空间中所形成的等势面,为了使问题简化,取圆柱面为过水断面,即W=2πxy,同时水力坡度仍为,按达西定律可得:移向积分:Rh降水曲线图其中:Q为单井出水量(m3/d)H为潜水含水层厚度(m)h为井中水深(m)K为渗透系数(m/d)S为水位降深(m)R为影响半径(m)r为井半径(m)4.1渗透系数K渗透系数K值确定是否准确,对计算结果影响很大。
02_管井降水计算(潜水完整井+潜水非完整井)
按井管(筒)是否穿透整个含水层分为完整如图1(a)基坑41基坑b 基坑c基坑dk 土的渗透系数m/d 1H 潜水含水层厚度m 19S 基坑水位降深m 9R 降水影响半径m 150γ0基坑等效半径m 6.09Q 基坑总涌水量m 3/d253.0783#DIV/0!#DIV/0!#DIV/0!注:(1)、降水影响半径宜根据试验确定,当基坑安全等级为二、三级时,如图1(b)条件:b<0.5R;b为基坑中心到河岸的距离基坑a 基坑b 基坑c 基坑db m 25Qm 3/d389.9217#DIV/0!#DIV/0!#DIV/0!如图2(a)基坑a基坑b 基坑c基坑dh mm 18单位意义符号符号符号意义意义基坑中心到河岸的距离基坑总涌水量(二)、均质含水层潜水非完整井基坑涌水量计算:1、基坑远离地面水源:数据单位(2)、基坑等效半径当基坑为圆形时就是基坑半径,当基坑为矩形时如下计算:γ0=0.29(a+b)当基坑为不规则形状时:2、基坑近河岸:数据一、基坑总涌水量计算(一)、均质含水层潜水完整井基坑涌水量计算:1、基坑远离水源时:数据当为潜水含水层时:当为承压水时:单位)2.01lg()1lg(366.10022r h l l h r Rh H kQ m m m+-++-=)1lg()2(366.10r RSS H KQ +-=kH S R 2=kS R 10=πA r =0)2(hH h m +=02lg )2(366.1r b SS H kQ -=l过滤器长度m2.5R 150γ0 6.09S9参数1H 2-h m 23700参数2lg(1+R/γ0) 1.408758#DIV/0!#DIV/0!#DIV/0!参数3(h m -l)/l 6.2#DIV/0!#DIV/0!#DIV/0!参数4lg(1+0.2×h m /γ0)0.201706#DIV/0!#DIV/0!#DIV/0!Q基坑总涌水量m 3/d13.91324#DIV/0!#DIV/0!#DIV/0!b>M/2基坑a 基坑b 基坑c 基坑dM 见表格上说明m 参数1(l+S)/lg(2b/γ0)12.5772#DIV/0!#DIV/0!#DIV/0!参数2lg(0.66l/γ0)-0.56713#DIV/0!#DIV/0!#DIV/0!参数30.25l/M#DIV/0!#DIV/0!#DIV/0!#DIV/0!参数4lg(b 2/(M 2-0.14l2))#NUM!#DIV/0!#DIV/0!#DIV/0!Q基坑总涌水量m 3/d#DIV/0!#DIV/0!#DIV/0!#DIV/0!单位如图2(b)式中:b为基坑中心至河岸的距离,M为过滤器向下至不透水土层的深度数据符号意义2、基坑近河岸:(含水层厚度不大时)]14.0lg 25.066.0lg 2lg [366.122200l M b M l r l lr b s l ks Q -+++=水层分为完整井和非完整井。
井点降水计算例题解读
例3
计算例2所示承压完整井的涌水量
解:
根据承压完整井 环形井点系统涌 水量计算公式 及含水层厚度 M=6.5m。 降水深s=62.5+0.5=4m 抽水影响半径:
基坑假想半径:
将左边数值代入公式, 其涌水量为:
例4
S/(S+l) H0 1.3(S+l) 1.5(S+l) 1.7(S+l) 1.84(S+l)
0.3
0.5
0.8
上表中,S为井点管内水位降落值(m),l为滤管长度 (m)。有效含水深度H0的意义是,抽水是在H0范围内受 到抽水影响,而假定在H0以下的水不受抽水影响,因而也 可将H0视为抽水影响深度。 应用上述公式时,先要确定x0,R,K。
在实际工程中往往会遇到 无压完整井的井点系统 (图b),这时地下水不仅 从井的面流入,还从井底 渗入。因此涌水量要比完 整井大。为了简化计算, 仍可采用公式(3)。此时 式中H换成有效含水深度 H0,即
无压非完整井计算
(m3/d)
有效深度H0值
S/(S+l)的中间值可采用插入法求H0。
0.2
解:
2.1井点系统的平面布置(见图a) 根据基坑平面尺寸,井点采用环形布置,井管距基坑边缘取 1m,总管长度 L=[(66+2)+(20+2)]X2=180(m)
2.2井点系统的高程布置(见图b) 采用一级轻型井点管,其埋深(即滤管上口至总管埋设面的 距离)h h≥h1+△h+iL=4.2+0.5+0.1X11=5.8m (长度) 井点管布置时,通常露出总管埋设面0.2m,所以,井点管长 度 l=5.8+0.2=6m 滤管长度可选用1m
一份完整的井点降水参数计算书
轻型井点降水1、适用范围本工工艺标准使用于单级轻型井点降水,进行井点降水后利于基础施工、排水 固结、增加基坑的稳定性、消除流沙、管涌、减少地下水对建筑的上浮作用等。
1.1、 土质条件:土层渗透系数0.1〜20m/d 的填土、粉土、粘土、砂土;1.2、 降水深度:W 6m ;2、编制依据2.1、 《上海市基坑工程技术规范》2.2、 《嵌基坑支护技术规范》2.3、 《建筑基坑工程监测技术规范》2.4、《建筑施工手册一一第四版》3、施工准备3.1、 材料准备支管、总管、连接套管、中粗砂、粘土、膨润土;3.2、 设备准备1) 泵机:真空泵或射流泵;2) 成孔设备:高压水枪、钻孔机、洛阳铲;3.3、 场地准备1) 现场用水:给水管网布置,冲孔高压水枪用水;2) 现场排水:安排合理排水管道,降水前施工现场排水系统完成;3) 现场用电:按井点冲成孔时用电量、抽水设备用电量;4、施工方法4.1、布置方式1)井点构造DG/TJ08-61-2010 JGJ120-99GB50497-2009并点:降水构造图A、井点管直径宜为38mm〜55mm,长度为6m〜9m;B、过滤器采用与井点管相同规格的钢管制作,长度为1m〜2m,过滤器底端封闭。
过滤器表面的进水孔直径10mm〜15mm,梅花状排列,中心距30mm〜40mm,孔隙率应大于15%。
紧贴过滤器外壁采用双层滤网包裹,内层滤网宜采用30〜80目的金属网或尼龙网,外层采用3〜10目的金属网或尼龙网,管壁与滤网间采用金属丝绕成螺旋形隔开,滤网外层应再绕一层粗金属丝。
滤管下端安装一个锥形铸铁头;C、连接管与集水总管连接管采用透明塑料管,集水总管直径宜为65mm〜110mm;D、抽水设备真空井点降水通常采用真空泵、射流泵,真空泵由真空泵、离心泵、水气分离器等组成,射流泵由离心水泵、射流器、水箱等组成;2)布型确定井点管布置根据基坑平面形状、水文地质条件及降水深度确定;A、基坑宽度小于6m时采用单排井点,布置于地下水上游,其布置见下图;单排线成井点布宜B、基坑宽度在6m〜20m时采用双排井点,布置于长边两侧;C、基坑宽度大于20m时采用环形井点,大于30m时坑中设置线状降水井点,线状降水井点总管长度不宜横跨两个土方开挖分段。
基坑降水计算-潜水完整井-非完整井
管井单井出水能力(q0) 基坑降水总涌水量(Q) 降水井数量(n) 降水井深度
133.4m3/d 2817.7m3/d
23.2口 14.26m
Q k
H 2 h2
ln 1
R r0
hm l
l
ln
1
ห้องสมุดไป่ตู้
0.2
hm r0
Q k (2H sd )sd
ln
1
R r0
Q k
H 2 h2
井
q0=120 r s l k 1/3
工作水压力 (MPa)
工作水流量 (m3/d)
设计单井出 适用含水层
水流量 渗透系数
(m3/d)
(m/d)
0.6~0.8 112.8~163.2 100.8~ 0.1~5.0
0.6~0.8 110.4~148.8 103.2~ 0.1~5.0
0.6~0.8
230.4
过滤器半径(rs)
渗透系数(K)
水力坡降(i)
60.00m 50.00m 10.00m 20.00m 0.50m 2.00m 0.50m 0.25m 1.20m 0.15m 7.60m/d
0.10
输入参数
基坑长度(L) 基坑宽度(B) 基坑开挖深度(相对地表) 降潜水后含坑水底层水厚位度与(H基) 底距 离 地下水水位埋深 井点管距坑壁距离 降水井直径 过滤器进水长度(l )
ln 1
R r0
hm l
l
ln
1
0.2
hm r0
Q k (2H sd )sd
ln
1
R r0
单井出水能力取值表
真空井 点 36m3/d~60m3/d
喷射井 点