微积分--课后习题答案
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第2章
xn a xn a
由数列极限的定义得 考察数列
即
xn a
lim xn a
n
n n
xn (1) n ,知 lim xn 不存在,而 xn 1 , lim xn 1 ,
n
xn 0
由数列极限的定义可得 4. 利用夹逼定理证明:
即 xn
即 xn 0
lim xn 0
n
1
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
微积分 复旦大学出版社 曹定华主编 课后答案
微积分 复旦大学出版社 曹定华主编 课后答案
又 所以
xn 1 xn xn ( 2 xn ) ,而 xn 0 , xn 2 , xn 1 xn 0
即
xn 1 xn ,
即数列是单调递增数列。 综上所述,数列 xn 是单调递增有上界的数列,故其极限存在。 (3)由数列 xn 单调递增, yn 单调递减得 xn x1 , yn y1 。 又由 lim( xn yn ) 0 知数列 xn yn 有界,于是存在 M >0,使 xn yn M ,
即xn 1 xn
所以 xn 为单调递减有下界的数列,故 xn 有极限。 (2)因为 x1
2 2 ,不妨设 xk 2 ,则
xk 1 2 xk 22 2
故有对于任意正整数 n,有 xn 2 ,即数列 xn 有上界,
2
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
lim
2n 0 n n !
《微积分》课后习题答案
习题五 (A )1.求函数)(x f ,使)3)(2()(x x x f --=',且0)1(=f .解:6x 5x )(f 2++-='xC x x x x f +++-=⇒62531)(236230625310)1(=⇒=+++-⇒=C C f 62362531)(23+++-=x x x x f2.一曲线)(x f y =过点(0,2),且其上任意点的斜率为x x e 321+,求)(x f .解:x e x x f 321)(+=C e x x f x ++=⇒341)(21232)0(-=⇒=+⇒=C C f1341)(2-+=⇒x e x x f 3.已知)(x f 的一个原函数为2e x,求⎰'x x f d )(.解:222)()(x x xe e x f ='=⎰+=+='C xe C x f dx x f x 22)()(4.一质点作直线运动,如果已知其速度为t t dtdxsin 32-=,初始位移为20=s ,求s 和t 的函数关系.解:t t t S sin 3)(2-=C t t t S ++=⇒cos )(31212)0(=⇒=+⇒=C C S1cos )(3++=⇒t t t S5.设[]211)(ln x x f +=',求)(x f .解:[]1arctan )(ln 11)(ln C x x f x x f +=⇒+=')0()(arctan arctan 1>==⇒+C Ce e x f x C x6.求函数)(x f ,使5e 1111)(22+--++='x x x x f 且0)0(=f .解:C x e x x x f e x x x f x x ++-++=⇒--++=+521arcsin 1ln )(1111)(252 21002100)0(=⇒=++-+=C C f 21521arcsin 1ln )(2++-++=⇒x e x x x f x7.求下列函数的不定积分 (1)⎰-x xx x d 2(2)⎰-)1(t a dt(3)⎰mnx x d (4)⎰+-x xx d 1122(5)⎰++x x x d 114 (6)⎰++x xx xd cos sin 2sin 1(7)⎰+x x x x d cos sin 2cos (8)⎰++x xxd 2cos 1cos 12(9)⎰x x x xd cos sin 2cos 22 (10)x x x d sin 2cos 22⎰⎪⎭⎫⎝⎛+ (11)⎰-x xx x d cos sin12cos 22(12)⎰+-x xx d 1e 1e 2 (13)⎰⨯-⨯x xxx d 85382 (14)x xx x d 105211⎰-+-(15)⎰-x xx -x x d )e (e (16)⎰++x xx x d )31)(2e ( (17)x x x xx d 1111⎰⎪⎪⎭⎫⎝⎛+-+-+ (18)⎰----x x x x x x d 151)1(222(19)x xx d 1142⎰-+ (20)⎰-+-x xx xd sincos 1cos 1222(21)⎰+-+x x x x x d )1(1223 (22)⎰+-x x x x d 1224解:(1)=⎰+-=-C x x dxx x 252323215232)( (2)=⎰+-=--C tatt d a2121)1(2)1()1(.1(3)=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=-=+=≠-≠++=⎰⎰⎰+0 0, m C x dx n m C x In dx x m n m C x m n m dx x m n m m n m n(4)=⎰+-=⎪⎪⎭⎫⎝⎛+-C x x dx x arctan 2 121(5)=C x x x dx x x x x ++-=++-+⎰arctan 2311)1(32222(6)=⎰⎰++=+++dx xx x x dx xx xx x x cos sin )cos (sin cos sin cos sin 2cos sin 222=⎰+-=+C x x dx x x cos sin )cos (sin(7)=⎰⎰-=+-dx x x dx xx xx )sin (cos cos sin sin cos 22=C x x ++cos sin (8)=⎰⎰++=⎪⎪⎭⎫⎝⎛+=+C x x dx x dx xx2tan 21 1cos 121cos 2cos 1222 (9)=⎰⎰+--=⎪⎪⎭⎫ ⎝⎛-=-C x x dx x x dx x x xx tan cot cos 1sin 1cos sin sin cos 222222 (10)=⎰⎰⎪⎭⎫ ⎝⎛+-=-++dx x x dx x x 122cos 2cos 22cos 121cos =C x x x +-+2sin 41sin 21(11)=⎰⎰+-=-=---C x dx x dx xx xx x x tan 2cos 12cos sin sin cos sin cos 2222(12)=()⎰+-=-C x e dx e x x 1(13)=⎰⎰+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-C x dx dx xx85ln 85328532(14)=⎰⎰++-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛--C dx dx x x xx22ln 5155ln 22151512(15)=⎰+-=⎪⎭⎫⎝⎛-C x e dx x e x x ln 1(16)=[]⎰+++++=+++C e e dx e e xx x xxxxx6ln 63ln l )3(2ln 2)3(26(17)=⎰⎰+=-=--++C x dx xdx xx x arcsin 211211122(18)=⎰+--=⎪⎪⎭⎫⎝⎛---C x x x dx x xx arcsin 5ln 21151222 (19)=⎰+=-C x dx xarcsin 112(20)=⎰⎰+-=⎪⎪⎭⎫⎝⎛-=-C x x dx x dx xx2tan 211cos 121cos 2cos 1222 (21)=⎰⎰+++=⎪⎪⎭⎫ ⎝⎛++-=+-+C x x x dx x x x dx x x x x arctan 1ln 1111)1(1)1(22222 (22)=⎰⎰++-=⎪⎪⎭⎫ ⎝⎛++-=+++--C x x x dx x x dx x x x arctan 22312212)1(13222248.用换元积分法计算下列各题. (1)⎰+-x x x d 24 (2)⎰-x x d )23(8(3)x xxd e 3e 42⎰+ (4)⎰⎪⎭⎫ ⎝⎛+32cos d 2πx x(5)⎰-x xx d 432 (6)⎰+-52xd 2x x(7)⎰-+xxxe ed (8)⎰--xxxe e d(9)⎰-1tan cos d 2x xx(10)⎰)ln -(1d x x x(11)⎰-xx x2ln 1d (12)⎰-x xx d e9e 2(13)⎰+x xxx d sin2cos sin (14)⎰-x x x d 212(15)x xx x d 1arctan 2⎰++ (16)⎰+xxe1d(17)x x x d 11arctan2⎰+ (18)⎰+--x x x x d e )1(422(19)⎰+x xx d 1335(20)⎰+x xxx d ln 2ln(21)⎰+x xx d sin 1sin 2 (22)⎰+-x x xx d 2sin 1cos sin(23)⎰+2)cos 2(sin d x x x(24)⎰x xx xd cos sin tan ln(25)⎰+xx x22cos 3sin d (26)⎰-++1212d x x s(27)⎰+++3)1(1d x x x(28)⎰++52d 24x xxx(29)⎰+x x x x d )ln 1( (30)x x x x d 12⎰-+(31)⎰+)1(ln ln d 2x x x x(32)x x x xd )1(arcsin ⎰-(33)⎰xx x x cos sin d (34)x x x d )1(x arctan ⎰+(35)⎰+x xxd cos 1cos 2(36)⎰xdx x 3cos 2sin(37)x x x x ⎰-d 2cos )sin (cos (38)x xxx d sin1cos sin 4⎰+ (39)⎰x xd sin14(40)⎰xdx 3tan解:(1)=C x x x d x x dx x x ++-+=+⎪⎪⎭⎫ ⎝⎛+-+=+-+⎰⎰2123)2(12)2(32)2(262262(2)=⎰+-=--C x x d x 98)23(271)23()23(31 (3)=()()⎰+=+C e e e d x xx3arctan3213212222(4)=C x x x d +⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎰32tan 2132cos 32212πππ (5)=⎰⎰+--=---=-C x x x d x x d 333334324)4(314)(31(6)=C x x x d +-=+--⎰21arctan 214)1()1(2(7)=⎰+=+C e ee d x xx arctan 1)(2(8)=C e e e e d x x x x ++-=-⎰11ln 211)(2(9)=⎰+-=--C x x x d 21)1(tan 21tan )1(tan(10)=C xx d +--=---⎰lnx 1ln ln 1)ln 1((11)=⎰+=-C x x x d ln arcsin ln 1)(ln 2(12)=C e e e d x x x +=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛⎰3arcsin2922222(13)=C x xx d x x xd ++=++=+⎰⎰2222sin 2ln 21sin 2)sin 2(21sin 2)(sin sin (14)=C x x x d +--=---⎰222212121)21(41(15)=C x x x d x x x d +++=+++⎰⎰23222)(arctan 32)1ln(21)(arctan arctan 1)1(21(16)=⎰⎰⎰⎰+⎪⎪⎭⎫⎝⎛+=++-=+=+C e e e e d e e d e e e d dx e e e x x xx xx xxx xxx 1ln 1)1()()1()()1( (17)=C x d x xx d x +⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=+⎪⎭⎫⎝⎛-⎰⎰221arctan 211arctan 1arctan 1111arctan (18)=⎰+=+-+-+-C e x x d e x x x x 422422221)42(21 (19)=)(131)(131333333t d tttx x d xx ⎰⎰+=+令⎰⎰⎰⎪⎪⎪⎭⎫ ⎝⎛+-+=+-+=-)()1()()1(31)(1113131323t d t t d t t d t t C x x C t t ++-+=++-+=3233533235)1(21)1(51)1(21)1(51(20)⎰⎰+=+=tt td txx xd 2)(ln ln 2)(ln ln 令⎰⎰⎰++-++=+-+=tt d t d t tt d t 2)2(2)2()2(2)(2221C x x C t t ++-+=++-+=21232123)ln 2(4)ln 2(32)2(4)2(32 (21)⎰+-=--=C x xx d 2cos arcsincos 2)(cos 2(22)C x x x x x x d ++=++-=-⎰12)cos (sin )cos (sin )cos (sin(23)C x x x d ++-=++=-⎰12)2(tan )2(tan )2(tan(24)⎰⎰+===C x x xd x d x x 2)tan (ln 21)tan (ln tan ln )(tan tan tan ln (25)⎰⎰+=+=+=C x x x d xx d )tan 3tan(31)tan 3(1)tan 3(31tan31)(tan 22(26)C x x dx x x +⎥⎥⎦⎤⎢⎢⎣⎡--+=--+=⎰2323)12(32)12(324121212C x x +⎥⎥⎦⎤⎢⎢⎣⎡--+=2323)12()12(61(27)⎰⎰+=+++++=dt t t tt x x x x d 3321)1(1)1(令⎰++=+=+=C x C t dt t1arctan 2arctan 21122(28)⎰++=+++=C x xx d 21arctan 414)1()1(212222 (29)()⎰⎰+=+==+=C x C e e d dx x e x x x x x x x ln ln ln l )ln 1( (30)⎰⎰⎰++-=++-=+-=C x x x d x dx x dx x x x 23232222)1(3131)1(121)1((31)⎰⎰+=+=)1()(ln 令)1(ln ln )(ln 22tt t d tx x x d⎰++=⎪⎪⎭⎫ ⎝⎛++-=C t t t t d t t d 1ln 211)1()(21222222 C x x C x x ++-=++=)1ln(ln 21ln ln 1ln ln ln 2122(32)t x ==arcsin 令,则tdt t dt cos sin 2=⎰⎰+=+==C x C t dt t tdt t tt t 232322)(arcsin 34342cos sin 2cos sin(33)⎰⎰+===C x xx d x x x d tan ln 2tan )(tan cos sin)(2(34)⎰⎰+==+=Cx x d x x d x x22)(arctan arctan arctan 2)(1arctan 2(35)⎰+-+=-=C xx xx d sin 2sin 2ln221sin2)(sin 2(36)⎰⎰+-=-==C x x xd xdx x x 543cos 52cos cos 2cos cos sin 2 (37)⎰⎰---=+-=)sin (cos )sin (cos )sin (cos )sin (cos 22x x d x x dx x x x xC x x +--=3)sin (cos 31(38)⎰+=+=C x x x d 242sin arctan 21sin 1)(sin 21(39)⎰⎰⎰+--=+-=-==C x x x d x xx d dx xx cot cot 31)(cot )1(cot sin )(cot sinsin 132(40)⎰⎰⎰+-=-=-=C x x xdx x xd xdx x cos ln )(tan 21tan tan tan tan )1(sec 229.求下列函数的不定积分 (1)⎰+)1(d 7x x x(2)⎰-x x x d 12(3)⎰+-x x d 3211 (4)⎰+x x x-1)(1d(5)⎰+3d xx x (6)⎰-+x x xx d 21 (7)x x xd 11632⎰++ (8)x x d e 1⎰+ (9)⎰+-+x x x x d 4222(10)x x x d )1(3⎰-解:(1)⎰⎰++-=+=+=C x x x x dx dx x x x 77777761ln 71ln )1(71)1((2)令t x =-1,则tdt dx t x 2 , 16-=-=⎰⎰+++-=+--=--=C t t t dt t t t dt t t t )315271(2)2(2)2()1(3572462(3)令t x =-21,则tdt dx t x -=-= , 212⎰⎰++-+--=+++-=+---+=C x C t t dt t dt t t 321ln 3213ln 3)331()(31 (4)令t x =-1,则tdt dx t x 2 , 12-=-=⎰⎰+---+-=+-+-=-=--=C xx C tt tdtdt tt t1212ln221.222ln221.222).2(222(5)令t x =6,则dt t dx t x 566 , ==⎰⎰⎰+-+-=+=+=dt t t t dt t t dt tt t 11)1(616623235C t t t t ++-+-=)1ln 2131(623 C t t t t ++-+-=1ln 663223(6)令t x =-2,则tdt dx t x 2 , 22=+=⎰⎰++=++=++=C t t dt t tdt tt 2arctan22)211(22.23222C x x +-+-=22arctan222(7)令t x =+312)1(,则dt t xds 232=⎰⎰+++-=++-=+=C t t t dt t t dt t t )1ln 21(9111919222C x x x +++++-+=1)1(ln )1()1(29312312322 (8)令t e x =+1,则12 , )1ln(22-=-=t tdt dx t x⎰++++-++=++-+=-=C e e e C t t t dt t t x x x)1111ln 211(2)11ln 21(21222(9)令t x =-1,则dt dx t x =+= , 1⎰⎰⎰+++++=+++=++=C t t tdt t dt t t dt t t 3ln 3)3(333332212223C x x x x x ++-+-++-=421ln 3)42(2212(10)令t x =2,则t x =⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡-+--=-+--=-=dt t t dt t t dt t t 3233)1(1)1(121)1(1121)1(21 C t t C t t +-+-=+⎥⎥⎦⎤⎢⎢⎣⎡-----=22)1(141)1(21)1(1211121Cx x C x x +--=+-+-=222222)1(412)1(141)1(2110.设⎰⎰+=+=x xb x a xx x xb x a xx F d cos sin cos )G( , d cos sin sin )(求)()(x bG x aF +;)()(x bF x aG -;)(x F ;)(x G .解:⎰+=++=+C x dx xb x a xb x a x bG x aF cos sin cos sin )()(⎰⎰++=++=+-=-C x b x a dx xb x a x b x a d dx xb x a xb x a x bF x aG cos sin ln cos sin )cos sin (sin sin sin cos )()(C bx x b x a a b a x G +++-=⇒)cos sin ln (1)(22C ax x b x a b b a x F +++--=)cos sin ln (1)(2211.用三角代换求下列不定积分. (1)⎰-221x d x x(2)⎰32)-(1d x x(3)⎰-x x x d 122(4)⎰-x xa x d 22 (5)⎰-322)1(d x xx(6)x x x d )1(2101298⎰-解:(1)令t x sin =,则)2t ( cos π<=tdt dx⎰⎰+--=+-=+-===C x x C x C t t dtdt tt t2221)cot(arcsin cot sin cos sincos(2)令t x sin =,则)2t ( cos π<=tdt dxC xx C x C t tdtdt tt+-=+=+===⎰⎰2231)tan(arcsin tan cos cos cos(3)令t x sin =,则)2t ( cos π<=tdt dxC t t dt t tdt dt t t t +-=-===⎰⎰⎰2sin 412122cos 1sin cos cos sin 22 C x x x C x x +--=+-=2141arcsin 21)(arcsin 2sin 41arcsin 21 (4)令t a x sec =,则t a dx tan sec =,)20(π<<t⎰⎰⎰+-=-===C t a dt t a tdt a dt ta tt a t a )1(tan )1(sec tan sec tan sec .tan 22C saa a x C xa a a x a +--=+--=arccos )arccos (2222(5)令t x sin =,则tdt dx cos = 2π<t⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+-=-===dt t t dt t t dt t t dt tt t22222232cos 1cos 11cos )cos 1(1cos sin1cos sincosC xx x x C t t +---=++-=2211tan cot (6)令t x sin =,则tdt dx cos = 2π<t⎰⎰⎰+⎪⎪⎭⎫ ⎝⎛-=+====C x x C td dt t dt tt t 992999810098101981991tan 991tan tan cos sin cos cos sin12.用分部积分法计算下列积分.(1)⎰++x x x x d e )31(2 (2)⎰--x x x d e 1 (3)⎰-x x x x d )sin (cos e (4)⎰x x x d cos (5)⎰x x d arcsin (6)⎰+x x d )4ln(2 (7)⎰x x x x d cos sin 4 (8)x x d l arctan 2⎰- (9)⎰x xx d )ln(ln (10)⎰x x x d sec 22 (11)⎰x x x d arctan 2 (12)x x d )(arccos 2 (13)⎰+-x x xxd 44ln 2(14)⎰+x x xx d arctan 122(15)⎰+x x x x d arctan )1(632 (16)⎰x x xd cos tan ln(17)⎰∙x x x d sin sec ln (18)⎰∙x x x d tan ln 2sin(19)x x x x d ln 32ln 22⎰⎪⎭⎫ ⎝⎛+ (20)⎰x x x d arctan 2解:(1)⎰⎰+-++=++=dx x e e x x de x x x x x )32()31()31(22⎰++-++=dx e x e e x x x x x 2)32()31(2(2)C ex C dx e xe xde e x x x x ++-=+⎪⎭⎫ ⎝⎛--=-=+----⎰⎰)1()1(311 (3)⎰⎰⎰⎰-=-=xdx e xde xdx e xdx e x x x x sin cos sin cos⎰⎰+=-+=C x e xdx e xdx e x e x x x x cos sin sin cos(4)⎰⎰++=-==C x x x xdx x x x sd cos sin sin sin sin(5)⎰⎰--+=--=2221)1(21arcsin 1arcsin xx d x x xx x xC x x x +-+=21arcsin(6)⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+--+=+-+=+=dx x x x dx x x x x dx x 2222224412)4ln(42)4ln()4ln( C xx x x ++-+=2arctan 42)4ln(2(7)⎰⎰+--=+-=-=C x x x xdx x x x xd 2sin 212cos 2cos cos 2cos(8)⎰⎰---=-+---=dx x x s dx x xx x x x 111arctan )1(121121.1arctan 222222C x x x x +-+--=1ln 1arctan 22(9)⎰⎰+-====C t t t tdt e x t x x d x tln ln ln )(ln )ln(lnCx x C x x x +-=+-=)1)(ln(ln ln ln )ln(ln .ln(10)⎰⎰++=-==C x x x xdx x x x xd cos ln 2tan 2tan 2tan 2)(tan 2 (11)⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+-+-=++-=-=dx x x x xxdx x x x x xxd 11arctan 111arctan )1(arctanC x x x x ++-+-=)1ln(21ln arctan 2 (12)⎰⎰-=--===tdt t t t tdt t tdtdx tx .cos 2cos sin sin arccos 22⎰⎰+--=--=-=C t t t t t tdt t t t t t td t t cos 2sin 2cos )sin sin (2cos sin 2cos 222C x x x x x +---=21arccos 2arccos 2(13)⎰⎰⎰-+--=⎪⎭⎫⎝⎛--=-=dx x x x x x xd dx x x21.121.ln 21ln )2(ln 2 C xx x x dx x x x x +-+--=⎪⎭⎫⎝⎛--+--=⎰2ln 212ln 121212ln(14)⎰⎰⎰+-=⎪⎪⎭⎫⎝⎛+-=xdx xxdx xdx x arctan 11arctan arctan 11122⎰⎰-+-=)(arctan arctan 1arctan x xd dx x xx xC x x x x +-+-=22arctan 21)1ln(21arctan(15)()()()dx xx x x x xd 223232311.1arctan 11arctan ++-+=⎥⎦⎤⎢⎣⎡+=⎰⎰()⎰+++-+=dx x x x x x112arctan 13623()⎰⎪⎪⎭⎫ ⎝⎛+-++--+=dx x x x x x x x 1212arctan 122423()()C x x x x x x x +++--+-+=1ln 3151arctan 1223523 (16)⎰==t x x xd tan )(tan tan ln 令⎰+-=+-==C x x x C t t t tdt tan tan ln .tan ln ln(17)()⎰⎰+-=-=xdx xx x x x x xd tan .cos 1.cos .cos cos .sec ln cos sec ln ⎰+--=+-=C x xdx x x cos sec ln .cos sin cos .sec ln ()C e x x ++=22121(18)()⎰⎰-==dx xx xx x x xd cos sin 1sin tan ln .sin sin tan ln 222⎰++=-=C x x x xdx x x cos ln tan ln .sin tan tan ln .sin 22(19)()⎰⎰⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=dx x x x x x x x x d x x 1321.ln 231ln 32ln 31ln 32ln 3132332 ⎰⎰--⎪⎭⎫ ⎝⎛+=dx x xdx x x x x 222392ln 32ln 32ln 31 ()⎰⎰--⎪⎭⎫ ⎝⎛+=dx x x xd x x 232392ln 92ln 32ln 31 ⎰⎰-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=dx x dx x x x x x 2232392.ln 92ln 32ln 31 C x x x x x x x +=-⎪⎭⎫ ⎝⎛+=23323ln 31.ln 92ln 32ln 31 (20)()⎰⎰+-==dx x xx x x x d x 233.21.1131arctan 31arctan 31 ⎰⎰⎪⎪⎪⎪⎭⎫ ⎝⎛+-++--=+-=dx x x x x x x x dx x x x x 1161arctan 31161arctan 312121233253C x x x x x x ++-+-=arctan 313191151arctan 31212325313.计算下列有理函数的不定积分. (1)⎰+x x x d )31(1 (2)⎰---)32)(1)((d x x x x(3)x x x x x d )2()1(12---- (4)⎰-++x x xx d 32322(5)⎰-1d 4x x(6)⎰++++x x x xx d 25412 (7)⎰-+-x x x xxd 123(8)⎰+---x x xx x d )1)(1(122(9)⎰+++x x x xx d 14 (10)⎰+---x x x x x d )2()1(18332解:(1)C xC x x dx x x++=++-=⎪⎭⎫⎝⎛+-=⎰311ln31ln ln 311313 (2)C x x x dx x x x +---=⎪⎪⎭⎫⎝⎛-+--+-=⎰2)2()3)(1(ln 21)3(2121)1(21 (3)C x x dx x x +---=⎥⎥⎦⎤⎢⎢⎣⎡-+-=⎰112ln 21)2(12(4)C x x dx x x +--+=⎥⎦⎤⎢⎣⎡-++=⎰1ln 453ln 43)1(45)3(43(5)⎰+--+-=⎪⎪⎭⎫ ⎝⎛+--=C x x x dx x x arctan 2111ln 4111112122 (6)C x x x dx x x x ++++-+-=⎥⎥⎦⎤⎢⎢⎣⎡+++++-=⎰2ln 51ln 41225)1(2142 (7)⎰⎰⎥⎦⎤⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛+-+-=⎥⎥⎦⎤⎢⎢⎣⎡-++-=dx x x x x dx x xx)1(2111121)1(21)1(21222()C x x x +-+++-=1ln 21arctan 211ln 412 (8)⎰⎰⎰⎰+-++----=⎪⎪⎭⎫⎝⎛+-+-+-=dx x xdx x x x dx x dx x x x x 1123121111211222C x x x x +⎪⎪⎭⎫ ⎝⎛-++---=312arctan 31ln 211ln 2 (9)()()()()⎰⎰⎰++++-+-=⎥⎥⎦⎤⎢⎢⎣⎡+++-=dx x dx x x x x dx x x x 121121211111222()⎰⎰++++++⎪⎭⎫ ⎝⎛-+-=1ln 2111211141212222x dx x x x d x x ()C x x x x x +++-++-=arctan 211ln 411ln 212122(10)()()⎰⎰⎰+--+-=--+-+--=C x x x dx x dx x dx x 21ln 1121111223(B )1.填空题(1)设x x f 21)(ln +=',则)(x f = . (2)设函数)(x f 满足下列条件 ①2)0(=f ,0)2(=-f ;②)(x f 在1-=x ,5=x 处有极值;③)(x f 的导数是x 的二次函数,则)(x f = . (3)若C x x x xf x +=⎰e d )(2,则⎰x x f xd )(e = . (4)设2ln)1(222-=-x x x f ,且[]x x f ln )(=ϕ,则=⎰x x d )(ϕ .(5)设x x f ln )(=,则='⎪⎪⎭⎫ ⎝⎛-⎰-x f x x x x d )e (e-2e e 43 .(6)='⎰x x f xx f d )(ln )(ln .(7)设)(x f 的一个原函数为xxsin ,则='⎰x x f x d )2( . (8)若⎰⎰-=x x f x f x x x f d )(cos )(sin d )(sin ,则=)(x f .解:(1)()C e x x f x ++=2()()()C e x x f e x f e x x f x x x ++=⇒+='⇒+=+='2212121ln ln(2)215623+--x x x由已知可设d cx bx ax x f +++=23)( 有()C bx ax x f ++='232()()()()⎪⎪⎩⎪⎪⎨⎧=-=-==⇒⎪⎪⎩⎪⎪⎨⎧=++==+-=-'=+-+-=-==⇒2156101075502310248220d c b a c b a f c b a f d c b a f d f()215623+--=⇒x x x x f(3)C x ++2ln()()()x x x x x xe e x f e x xe x xf C e x dx x xf +=⇒+=⇒+=⎰2222⎰⎰++=+=⇒C x dx xdx x f e x2ln 21)( (4)C x x +++1ln 21)(1)(ln 11ln)(1111ln2ln)1(22222-+⇒-+=⇒--+-=-=-x x x x x f x x x x x f ϕϕ ⎰⎰⎰+-+=-+=-+=⇒-+=⇒C x x dx x dx x x dx x x x x 1ln 2)121(11)(11)(ϕϕ (5)C e e e x x x ++-+--22ln24121222⎰⎰++-+-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=---C e e e dx e e e dx ee e e x x x x x x x x x x 22ln 2412121.222242243原式 (6)C xf +)(ln 2C x f x f x f d +==⎰)(ln 2)(ln ))(ln (原式(7)C xxx +-42sin 42cos ⎰-=⇒+=2sin cos )(sin )(xxx x c f C x x dx x f C x xx x x x x x x x dx x f x xf x f xd +-=--=-==⎰⎰42sin 42cos 22sin 4142sin 2cos 2.21)2(41)2(21))2((21原式 (8)x ln⎰⎰'-=dx x f x f x x f x dx x g )()(cos )(sin )(sinC x x f xx f +=⇒='∴ln )(1)(,取x x f ln )(=2.选择题(1)设x x f 2cos )(sin =',则⎰=dx x f )(( B ) A .C x x +-331 B .1421212C Cx x x ++- C .C x x ++421212 C .C x x ++421212(2)设)()( , )(1)()( , )(1)()(2x g x F x f x f x g x f x f x F ='+=-=,且14=⎪⎭⎫⎝⎛πf ,则=)(x f ( A )A .x tanB .x cotC .x arctanD .x arc cot(3)若⎰+=C x x x f 2sin d )(,则⎰=--dx x x xf 12)12(22( B )A .C x +22sin 41B .C x +-)12sin(212 C .C x +-)12(sin 2122 D .C x +-)12sin(412 (4)设⎰⎰+∙=xdx x f x g dx xx f 22cot )()(sin)(,则)(x f ,)(x g 分别是( D )A .x x f cos ln )(=,x x g tan )(=B .x x f cos ln )(=,x x g cot )(-=C .x x f sin ln )(=,x x g tan )(=D .x x f sin ln )(=,x x g cot )(-= 解:(1)BC +-=⇒-='⇒-=='322x 31x )x (f x 1)x (f x sin 1x cos )x (sin f⎰++-=⇒142C x x 1212x f(x)dx C(2)A根据1)4f(=π,首先排除C 、D ,再将选项A 、B 分别代入原条件中,得A(3)B)1x 2sin(1x 2212x f 2xsinx f(x)2222--=-⇒= ⎰⎰+--=--=-=⇒C )1x 2sin(21)1d(2x )1x 2sin(2.41dx )1xsin(2x 22222原式,得B (4)D⎰⎰-=cotx)f(x)d(dx x sin f(x)取cotx g(x)-=则⎰+=xdf(x)cot f(x)g(x)上式 与条件比较,得cotxg(x) ,lnsinx f(x)cotx df(x)-==⇒=,得D3.计算下列不定积分(1)x xx x d 11ln 112-+-⎰(2)x x x x d cos 1)sin 1(e ⎰++(3)⎰+)e1(e d 2xxx(4)x xx d cos sin144⎰(5)⎰x x x x d cos e (6)⎰+++x x x x d 112(7)⎰xxcos d (8)⎰++x aax x xd 22(9)⎰-+293d x x (10)⎰-xx1 (提示 令t x 2sin =)(11)x x x d 283⎰++ (12)⎰-x xxxd 1arcsin 22(提示 令t x =arcsin ,t x sin =,再用分部积分法) (13)⎰x x x d )(arctan 2 (14)x xxx d e 1arctan arctan 2⎰+(15)⎰+x xxx d )3(ln 22(16)x x x d )sin(ln ⎰(提示 经过两次分部积分,又出现原积分形式,移项后便可得到所要结果)解:(1)C xxx x d x x ++-=+-+-=⎰11ln 41)11(ln 11ln 212 (2)dx x tg x tg e dx x xx e x x )2221(212cos )2cos 2(sin222++=+=⎰⎰⎰⎰++=dx e x tg dx e x tg e x x x 2212212 ⎰⎰+=++-+=C x tg e dx e x tg dx x tg e e x tg e x x x x x 2221)12(2122122 (3)⎰⎰+-=+=x xde eee ede )111()1(C e e x x +--=-arctan(4)C x x dx x +--==⎰cot cot 31sin 134C x x C x x x d x +--=⎥⎦⎤⎢⎣⎡+--=⎰2cot 382cot 82cot 2cot 31822sin 183134 (5)=[]c x x x x e x++-cos sin )1(21 (6)⎰⎰⎰+++++++=++-+=dx x x x x x d dx x x x 22222)23()21(1211)1(2112121C x x x x x C x x x x x ++++++++=++++++++=121ln 211121ln 2112.212222 (7)⎰⎰++=+==C x x x d x x d x32tan 31tan tan )tan 1()(tan cos 1(8)⎰⎰⎰++-+++++=++-+=dx aax x a aax x a ax x d dx a ax x aa x 222222221)2()(2122C a ax x ax a a ax x +++++-++=22222ln 2(9)t x sin 3==令,20π<<t 则⎰⎰⎰+-=+=+dt tdt t t dt t t )cos 111(cos 1cos cos 33cos 3⎰+-=-C tt t d t t 2arctan )2(2cos 12 C x x x C xx+-+-=+-=2933arcsin 23arcsintan3arcsin(10)t x 2sin ==令,20π<<t ,则⎰⎰⎰+==dt ttdt tdt t t t 22cos 12cos 2cos sin 2sin cos 2 C x x x t t dt t +-+=+=+=⎰2arcsin 2sin 21)2cos 1( (11)C x x x dx x x dx x x x ++-=++=++++=⎰⎰4342)42(2)42)(22(232(12)t x =arcsin 令,t x sin =,则⎰⎰⎰⎰+-=-===tdt t t t td dt tttdt tt tcot cot )cot (sincos cos sin22C x x xx C t t t ++--=++-=ln arcsin 1sin ln cot 2(13)xdx x x x x x d x arctan 1)(arctan 21)()(arctan 21222222⎰⎰+-==⎰⎰++-=xdx x xdx x x arctan 11arctan )(arctan 21222 C x x x x x x ++++-=2222)(arctan 21)1ln(21arctan )(arctan 21 (14)⎰⎰==dt te t x x d xe t x arctan )(arctan arctan arctan 令⎰⎰+-=+-=-==C e x C e t de te tde x t t t t arctan )1(arctan )1((15)⎰⎰⎰+++-=+-=++=dx xx x x x xd x d x x )3(1213ln 21)31(ln 21)3()3(ln 21222222C x x x x dx x x x x ++-++-=+-++-=⎰)3ln(121ln 613ln 21)311(613ln 212222 (16)⎰⎰+-=-=dx xx x x x d x 322ln cos 21)sin(ln 21)1()sin(ln 21 dx x xx xx x⎰---=322ln sin 41ln cos 41)sin(ln 21[]C x x x ++-=⇒ln cos ln sin 251原式。
微积分课后题答案习题详解
第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。
大学数学微积分第二版上册课后练习题含答案
大学数学微积分第二版上册课后练习题含答案前言数学是一门抽象的学科,需要大量的练习才能真正理解和掌握。
微积分作为数学中的基础学科,更是如此。
本文将为大家提供大学数学微积分第二版上册的课后习题及其答案,供大家参考和练习。
课后习题及答案第一章函数与极限习题1.11.计算以下极限:1.$\\lim\\limits_{x\\rightarrow 1}\\frac{x-1}{x^2-1}$2.$\\lim\\limits_{x\\rightarrow 0}\\frac{\\sqrt{1+x}-1}{x}$3.$\\lim\\limits_{x\\rightarrow 0}(\\frac{1}{\\sin{x}}-\\frac{1}{x})$答案:1.$\\frac{1}{2}$2.$\\frac{1}{2}$3.02.求曲线$y=\\frac{1}{x}$与直线y=x在第一象限中形成的夹角。
答案:$\\frac{\\pi}{4}$3.证明:$\\lim\\limits_{x\\rightarrow 0}x\\sin\\frac{1}{x}=0$答案:对任意$\\epsilon>0$,取$\\delta=\\epsilon$,则当$0<|x|<\\delta$时,有$|x\\sin\\frac{1}{x}-0|<|x|<\\delta=\\epsilon$ 习题1.21.求下列函数的导数:1.y=2x3+3x2−4x+12.$y=\\frac{1}{2}x^3-x^2+2x-1$3.$y=\\frac{1}{\\sqrt{x}}+x\\ln{x}$答案:1.y′=6x2+6x−42.$y'=\\frac{3}{2}x^2-2x+2$3.$y'=-\\frac{1}{2x^{\\frac{3}{2}}}+\\ln{x}+1$2.求函数y=xe x在x=1处的导数。
答案:y′=e+13.求f(x)=|x−2|的导函数。
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第11章
t t 1 t 1 1 1 yt (1)i 2t i 1 2t 1 ( )i 2t 2 3 i 0 i 0
由 (11 2 4) 式,得所给方程的通解
1 yt A(1)t 2t 3
(A 为任意常数)
*
(4)对应齐次差分方程为 yt 1 yt 0 ,其通解为 yt A , 设原方程特解为
yt 2t ( B1 cos πt B2 sin πt ) 代入原方程得:
2t 1[ B1 cos π(t 1) B2 sin π(t 1)] 2t ( B1 cos πt B2 sin πt ) 2t cos πt
yt 1
1 4 yt ,其中 3 3
1 4 a , b ,由通解公式 (11 2 7) 得原方程的通解为: 3 3
1 yt y A (t ) yt A( )t 1 (A 为任意常数) 3 1 3 t 1 3 1 (2)方程可化为 yt 1 yt ,其中 a , b0 , b1 ,故由通解公式 2 2 2 2 2 2 (11 2 9) 得方程的通解为: 3 1 1 1 t 1 7 t yt A( ) 2 2 2 t 即 yt A( )t . 1 1 1 2 9 3 2 1 (1 ) 2 1 2 2 2
t
(4) a 4 , π , b1 0 , b2 3 , D (4 cos π) sin π=9 0 ,且
2 2
由公式 (11 2 14) 得 = [0 (4 cos π) 3 sin π]=0 , = [3(4 cos π) 0 sin π]=1 , 方程通解为 yt A(4) sin πt ,以 t 0 时 y0 1 代入上式,得 A 1 ,故原方程特解为:
微积分课后题答案高等教育出版社习题七
习 题 七 (A )1.在空间直角坐标系中,下列方程表示什么形状的图形. (1)22y x z +=(2)042222=+-++y x z y x (3)2x y = (4)124222=++z y x (5)0222=-+y z x (6)2222z y x =+ (7)0)1(222=++-z y x (8)x z y =-22解:(1)旋转抛物面.(2)以(1,2,0)为原点5为半径的球面. (3)抛物线柱.(4)以2) , 2 , 1(为中心的椭球面. (5)旋转抛物面. (6)圆锥面. (7)一个点(8)双曲抛物面.2.给定两点3) , 1- , 2(1P ,5) , 0 , 3(2-P ,求 (1)1P 与2P 之间距离21P P; (2)线段21P P 的垂直平分面的方程; (3)以2P 为中心,21P P 为半径的球面方程.解:(1)30)()()(22122122121=-+-+-=z z y y x x P P .(2)中点4) , , 21(021P --;垂直向量2) , 1 , 1(;方程为:0)2(2)21()21(=-++++z y x .(3)30)5()3(222=-+++z y x .3.求下列函数定义域,并画出定义域示意图.(1)2241y x z -+-= (2))ln(22y x z -=(3)⎪⎭⎫ ⎝⎛-=1arcsin xyz (4)2221)ln(y x x y z --+-=(5))1ln(4222y x y x z ---= (6)y x z -=2(7)yx yx z --+=11 (8)94122y x z --=解:(1)⎩⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≥-≥-2211010122y x :y x 定义域 (2)022>-y x 定义域:y x >(3)200111≤≤⇒⎪⎩⎪⎨⎧≠≤-≤-x y x xy (4)⎪⎩⎪⎨⎧≤+≥⇒⎪⎩⎪⎨⎧≥-->-1010222222y x xy y x x y (5)⎪⎩⎪⎨⎧≥<-⇒⎪⎪⎩⎪⎪⎨⎧≥-≠-->--41041101222222222y x y x y x y x y x (6)4200x y y y x ≤≤⇒⎪⎩⎪⎨⎧≥≥- (7)y x y x y x >⇒⎩⎨⎧>->+00且y x ->(8)⎩⎨⎧≤≤-≤≤-⇒≤+≥--332236499412222y x y x y x4.设xy y x y x y x f -+=-+22) , (,求) , (y x f解:令y x v ,y x u +=+=;434)()(2)()().(222222v u y x y x y x y x v u f +=--++-++= 所以43) , (22y x y x f +=5.设x x y x y x x x y x f ln )ln (ln ,ln 2+-+=⎪⎭⎫ ⎝⎛,求),(y x f .解:令xyu ,lnx u == 则u u ve y e x ==,所以u v ve ue ve v e e v uf u u u u u ++=++=ln ln )(2,所以yx y e y x f x ++=ln )(,6.计算下列函数在给定点处的偏导数; (1)xyz arctan =,求)1 , 1( , )1 , 1(-'-'y x z z ; (2)yx yx z +-=,求)2 , 1( , )2 , 1(y x z z ''; (3)2e y x z +=,求)0 , 1( , )0 , 1(y x z z '';(4)z xy u )1(+=,求3) , 2 , 1(x u ',3) , 2 , 1(y u ',3) , 2 , 1(z u '; (5)3tan )1(xyx xy z -+=,求0) , 1(x z ',0) , 1(y z '; (6)yx xy y x z sin sin 1cos cos ++-=,求0) , 0(x z ',0) , 0(y z '.解:(1)21)1,1(1.)(11)1,1(2=-+=-'x xy z x 21)1,1(1.)(11)1,1(2=-+=-'x xy z y (2)94)2,1()()()2,1(2=+--+='y x y x y x z x 92)2,1()()()()2,1(2-=+--+-='y x y x y x z y(3)e e z y x x =='+)1,0()1,0(20)1,0(2.)1,0(2=='+y e z y x y(4)54)3,2,1()1()3,2,1(1=+='-yxy z u z x27)3,2,1()1()3,2,1(1=+='-xxy z u z y3ln 27)3,2,1()ln()1()3,2,1(=++='xy x xy z u zz(5))0,1()(31).((s co 1).1(tan )0,1(2343133xyx y x y xy x xyy z x--'-++='-- 1)0,1(1)(31(s co 1).1()0,1(343=-'-+='-x x y xyx x z y (6)1)sin sin 1(cos )cos cos ()sin sin 1)(sin (cos )0,0(2=++--+++='y x xx y y x y x x y y z x1)sin sin 1(cos )cos cos ()sin sin 1)(cos sin ()0,0(2-=++--++--='y x yx y y x y x x y x z y7.求下列函数的一阶偏导数 (1)yx xy z 2+= (2)y x z arctan =(3)3⎪⎪⎭⎫⎝⎛=y x z (4))ln ln(y x z +=(5))sin(tan xy x y z •= (6)xyyx z -+=1arctan(7)xyy x z )sin (+= (8)zy x u ⎪⎪⎭⎫⎝⎛=解:(1)22,2yx x z y x y z y x -+='+='(2)2222222)1( , )1(1y x x yx y xz yx y yx y z y x +-=+-='+=+='(3)436232233.,3y x y y x z y x z y x -=-='='(4))ln ln(y x z +=y x x z ln 1+=∂∂ yy x y z 1.ln 1+=∂∂ (5))sin(.tan xy xyz =)cos(.tan .)sin()..(sec 22xy x yy xy x y x y x z +-=∂∂ )cos(tan sec ).sin(.12xy xyx x y xy x y z +=∂∂ (6)xyyx -+1arctan22211)1()).(()1(.)(11x xy y y x xy xy x y x x z +=--+---++=∂∂ 22211)1())(()1()1(11y xy x y x xy xyy x y z +=--+--+-++=∂∂ (7)xy y x z )sin (+=)sin 1.)sin ln(..()sin ln(yx xy y x y e x z y x xy +++=∂∂+ ⎥⎦⎤⎢⎣⎡++++=y x xy x y x y xy sin )sin ln(.)sin .( ⎥⎦⎤⎢⎣⎡+++=∂∂+y x y xy y x x e y z y x xy sin cos .)sin ln(..)sin ln( ⎥⎦⎤⎢⎣⎡++++=y x y y y x y x x xy sin cos )sin ln()sin .( (8)zy x u ⎪⎪⎭⎫ ⎝⎛=11...1--⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=∂∂z z zy x y z x z y x uz y x y z y u ⎪⎪⎭⎫⎝⎛-=∂∂. yx y x z u zln ⎪⎪⎭⎫ ⎝⎛=∂∂ 8.设xyy x y x z ln +-=,验证方程0=∂∂+∂∂yz y x z x解:证明:=∂∂+∂∂yzy x z x01..ln )()()(..ln )()()(222=⎥⎥⎦⎤⎢⎢⎣⎡+-++--+-+⎥⎥⎦⎤⎢⎢⎣⎡-+-++--+x y x y x y x x y y x y x y x y x y x y y x y x x y y x y x y x x9.设)(by ax f z +=,f 可导,验证方程0=∂∂-∂∂yz a x z b解:证明:=⎥⎦⎤⎢⎣⎡++∂∂-⎥⎦⎤⎢⎣⎡++∂∂=∂∂-∂∂fb by ax y f a fa by ax x f b y z a x z b)()( 0)()(='-'abf abf10.设2e y xz =,验证方程02=∂∂+∂∂yzy x z x解:证明:021.224222=-+=∂∂+∂∂y xy ye y xe y z y x z x y xy x11.设⎪⎪⎭⎫⎝⎛+=y x f z 1ln ,其中f 为可微函数,验证方程 02=∂∂+∂∂yzy x z x解:证明:=⎥⎥⎦⎤⎢⎢⎣⎡-++∂∂+⎥⎦⎤⎢⎣⎡++∂∂=∂∂+∂∂2221)1(ln 1)1(ln y f y x y f y x f y x x f x y z y x z x0='-'f f12.设)tan tan ln(tan z y x u ++=,验证方程22sin 2sin 2sin =∂∂+∂∂+∂∂z zu y y u x x u解: 证明:=∂∂+∂∂+∂∂z zu y y u x x u 2sin 2sin 2sin=⎥⎥⎦⎤⎢⎢⎣⎡++++z z y y x x z y x 2sin cos 12sin cos 12sin cos 1tan tan tan 1222 2tan tan tan tan tan tan 2=++++zy x zy x13.求下列函数的二阶编导数y x zyz x z ∂∂∂∂∂∂∂22222 , , (1)22y x x z +=(2)xyz arctan= (3))ln(y x x z += (4)xy e y x z sin)(cos += (5)y x y x y x z arctan arctan 22-= (5)2222y x y x z +-= 解:(1)32222223222223222222)()3(2 , )()3(2 , )()3(2y x y x x y z y x y x y y x z y x y x x x z +--=∂∂+-=∂∂∂+-=∂∂ (2)2222222222222222)(2 , )( , )(2y x xyy z y x x y y x z y x xyx z+-=∂∂+-=∂∂∂+=∂∂ (3)22222222)( , )( , )(2y x xy z y x y y x z y x y x x z +-=∂∂+=∂∂∂++=∂∂ (4))sin cos 3sin 3cos (e 3222x y x y x y x xz xy ++--=∂∂)sin cos 2sin sin 2cos 2(e 22x xy x xy x x x y x y x zxy ++-+=∂∂∂ []x x x y x x yz xy cos sin )2(e 2222++=∂∂ (5)22222222222222arctan 2 , , 2arctan 2y x xy y x y z y x y x y x z y x xy x y x z ++-=∂∂+-=∂∂∂+-=∂∂ (6)3222222232222232222222)()3(4, )()(8 , )()3(4y x x y x y z y x y x xy y x z y x x y y x z +-=∂∂+-=∂∂∂+-=∂∂14.求下列函数的全微分 (1)xyz =(2)x y z arcsin =(3)xy x z y 2-= (4)yx yx z -+=arctan(5)y y x z cos += (6))sin(e 22xy xy z y x ++=(7)xyy x z e 122+= (8)2222arctany x y x z +-=(9)yz xy u e e += (10)xy z u =(11)z xy u )(= (12)xyy x z arctan-22e )(+=解:(1)dy x x y dx xy x y dy y z dx x z dz 1)(21.)(212122-+-=∂∂+∂∂=(2)dy xxy dx x yxy dy yz dx x z dz 1)(11)(11222-+--=∂∂+∂∂=(3)dy y x x x dx x y yx dy yzdx x z dz y y )ln ()(21211----+-=∂∂+∂∂=(4)dy y x y x y x yx y x dx y x y y x y x dy y z dx x z dz 2222)(.)(11)(2.)(11-++-+-++--+-+=∂∂+∂∂=(5)dy y y x y y x ydx y x dy y z dx x z dz ⎥⎥⎦⎤⎢⎢⎣⎡+-+++=∂∂+∂∂=--sin cos )(21cos )(212121(6)dy xy x xy x e dx xy y y xy e dy yzdx x z dz y x y x ⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++=∂∂+∂∂=)cos(2.)cos(2.2222 (7)dy y x xe y x ye dx y x ye y x xe dy y z dx x z dz xy xy xy xy ⎥⎥⎦⎤⎢⎢⎣⎡+++-+⎥⎥⎦⎤⎢⎢⎣⎡+++-=∂∂+∂∂=2222222222)(2)(2 (8)dz y e dy ye x e dx x e dz z u dy y u dx x u du x yx yx yx y1)1.1(1.22+-++=∂∂+∂∂+∂∂=(9)++--++-+-+=∂∂+∂∂=-dx xy x y x y x x y x y x y x y x dy yzdx x z dz 2)()()(2)(21.1122222222122222222dx yy x y x y x y y x y x y x y x 2)()()(2)(21.1122222222122222222+--+-+-+-+-(10)dz xyz zdy xz zdx yz dz zudy y u dx x u du xy xy xy 1ln ln -++=∂∂+∂∂+∂∂= (11)dz xy z dy xy xy x dx xy xy y dz zu dy y u dx x u du z z z 1)()ln()()ln()(-++=∂∂+∂∂+∂∂=(12)+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-++=∂∂+∂∂=--dx x y x y e y x xedy y z dx x z dz x yx y 22arctan 22arctan .)(11)(2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-++--dy x x y e y x yex yx y 1.)(11)(22arctan 22arctan dy ey x dx e y x x yx yarctanarctan)2()2(---++15.求下列函数在给定点的全微分(1)e) , (2ln y x z = (2)0) , (4 cos y x z = (3)0) , (0 )sin(y x x z +=,⎪⎭⎫⎝⎛4 , 4ππ (4)2) , 1 , (0)ln(32z y x u ++=解:(1)[]dy yx y xdx x dy y z dx x z dz y y 1.(ln 1)ln ln -+=∂∂+∂∂=当2x =,e y =时.dy edx dz 12+=(2)ydy x ydx x dy y z dx x z dz sin cos 2121-=∂∂+∂∂=-当4x =,0y =时.dx dz 41= (3)[]dy y x x dx y x x y x dy yz dx x z dz )cos()cos()sin(+++++=∂∂+∂∂=当0x =,0y =时.0=dz ;当4π=x ,4π=y 时dx dz =(4)dz zy x z dy z y x y dx z y x dz z u dy y u dx x u du 3223232321++++++++=∂∂+∂∂+∂∂=当0x =,1y =时.dz dy dx du 349291++=16.求函数22y y x z +=在点(2,1)当1.0=∆x ,2.0-=∆y 时的全增量和全微分.解:0.8321) , (20.8) , 1.2(),(),(0000-=-=-∆+∆+=∆f f y x f y y x x f zy x xzxy x z 2 , 22+=∂∂=∂∂ 8.0)2.1(4.0)2(202000=-+=∆++∆=y y x x y x dz17.求函数22yx x z +=在给定点与给定x ∆,y ∆的全微分(1)点(0,1),1.0=∆x ,2.0=∆y ; (2)点(1,0),2.0=∆x ,1.0=∆y .解:(1)01.01.02.212212222222222=+=∆++-+∆++-+=y y x y x x x x y x yx x xx y dz(2)1.01.002.212212222222222-=-=∆++-+∆++++=y y x y x x x x y x yx x xx y dz18.用全微分求下列各数的近似值.(1)33)97.1()02.1(+ (2)05.4)02.1(解:(1)令33y x +令02.0=∆x ,03.0-=∆y ,10=x ,20=y213212) , 1( , 32) , 1(332=+='=y x x f f x , 23212) , 1( , 32) , 1(332=+='=yx y f f y95.206.001.032) , 1(2) , 1(2) , 1()97.1()02.1(33=-+=∆'+∆'+=+∴y f x f f y x(2)令y x z =令10=x ,40=y ,02.0=∆x ,05.0=∆y4)4,1()4,1(1=='=-y x yx f f 0ln )4,1(=='x x f y y所以08.102.041)02.1(05.4=⨯+=19.已知一长为8米,宽为6米的矩形,当宽增加5厘米,长减少10厘米时,求矩形对角线长度变化的近似值.解:设长为x ,宽为y 对角线长22y x z +>.6).2.( 12122dy y dx zx yx dz ++-=)05.0(62)1.0(82(10121-⨯⨯+-⨯⨯⨯⨯-=dz)6.06.1(201+--= 201=20.用圆锥体形变时,它的底半径R 由30厘米增到30.1厘米,高h 由60厘米减到59.5厘米,试求体积变化的近似值.解:令体积303102==hx R v π,600=y ,1.0=∆x ,5.0-=∆yππ1200)60,30(,1800)60,30(='=R f fπππ30031)60,30(,1800)60,30(2=='=R f f k变后的体积y f x f v k R ∆'+∆'=∆)60,30()60,30()5.0(3001.01200-+⨯=ππ 330cm π=21.用水泥做一个长方形无盖水池,其外形长5米,宽4米,深3米,侧面和底均厚20厘米,求所需水泥的精确值和近似值.解:精确值2.0)22.04()2.02(52.03)22.04(22.03521⨯⨯-⨯⨯-+⨯⨯⨯-⨯+⨯⨯⨯=v634.12312.332.46=++= 近似值z f y f x f v x y x ∆'+∆'+∆'=)3,4,5()3,4,5()3,4,5(22.0204.0154.012⨯+⨯+⨯= 8.14=22.求下列复合函数的偏导数或全导数 (1))arcsin(y x z -=,t x 3=,34t y =,求dtdz ; (2))e e ln(y x z +=,3x y =,求dxdz ; (3)21)(e a z y u ax +-=,而x a y sin =,x z cos =,求dxdu ; (4)v u z ln 2=,x y u =,22y x v +=,求xz∂∂,y z ∂∂;(5)yx z 2=,v u x 2-=,u v y 2+=,求u z ∂∂,y z ∂∂;(6)uv z e =,22ln y x u +=,x y v arctan =,求xz∂∂,y z ∂∂;(7)v u z =,y x u cos =,x y v cos =,求xz∂∂,y z ∂∂;(8)y x z =,t x sin =,t y cos =,求dtdz.解:(1)[])123()43(11)43arcsin(2233t t t dt t t d dt dz ---=-=(2))3..(1)ln(2333x e e e e dt e e d dx dz x x xx x x ++=⎥⎦⎤⎢⎣⎡+= (3)[])sin cos ()cos sin (111)cos sin (22x x a e x x a ae adt a x x a e d dx du ax ax ax +=-+=⎥⎥⎦⎤⎢⎢⎣⎡+-= x e ax sin =(4)2222224222222)ln(2.)ln(y x x x y y x x x y x y x x y x z +++-=∂⎥⎥⎦⎤⎢⎢⎣⎡+∂=∂∂222222222222)ln(1)ln(y x y x y y x x y y x x y y z +++=∂⎥⎥⎦⎤⎢⎢⎣⎡+∂=∂∂ (5)2222)2()3)(2(2)2()2(2)2)(2(22)2(v u v u v u v u v u v u v u u u v u u u z ++-=+--+-=∂⎥⎥⎦⎤⎢⎢⎣⎡+-∂=∂∂ 222)(y x y y x y z -=∂∂=∂∂ (6))ln arctan 2.()(222222arctan.ln arctan.ln 2222y x yy x x y yx x exe xz x y y x x y y x +-+++=∂∂=∂∂++ )ln arctan 2.()(222222arctan.ln arctan.ln 2222y x xy x x y yx y eyeyz x y y x x y y x ++++=∂∂=∂∂++ (7)2)cos (sin cos cos cos )cos cos (x y x y yx x y y x x y yx xz+=∂∂=∂∂ =--=∂∂=∂∂2)cos (cos cos cos sin )cos cos (x y x y x x y x y x y yx yz2)cos (cos cos cos sin x y xy x x y xy --(8)[])ln(sin sin )(sin cos )(sin cos 1cos cos t t t t dtt d dt dz t t t+==-23.⎪⎪⎭⎫ ⎝⎛=y x x f u , ,f 可微,求x u ∂∂,y u∂∂. 解:令yxv =则yv x f v x f x u v u x u x u v x 1). , () , ('+'=∂∂∂∂+∂∂=∂∂ 2) , (yx v x f y u u u y u v -'=∂∂∂∂=∂∂24.)e , (22xy y x f z -=,f 可微,求xz∂∂,y z ∂∂.解:令22y x u -=y e v u f x v u f x v v z x u u z x z xy v u .).,(2).,('+'=∂∂∂∂+∂∂∂∂=∂∂ x e v u f y v u f yu v z y u u z y z e v xy v u xy .).,()2).(,('+-'=∂∂∂∂+∂∂∂∂=∂∂==25.设))(1ln(22222y x y x z ++++=,求dz .解:dy y x y x yy x y x y dx y x y x xy x y x x dy uz dx x z dz )(12).(2)(11212)(12).(2)(112122222222222222222+++++++++++++++++=∂∂+∂∂=26.设xyy x y x z 22e )(22++=,求dz .解:+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++=∂∂+∂∂=++dx xy y y x y x e y x xe dv y z dx x z dz xyy x xy y x 222222)()(2.)(22222 dy xy y y x y x xy y x e y x ye xyy x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++++22222222)()(2.)(22227.设⎪⎪⎭⎫⎝⎛=z y y x f u , ,其中f 可微,求u d .解:令zy v yx w == , dz zu v u z w w u dy y u v u y w w u dx x v v u x u w u dz z u dy y u dx x u du )()()(∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂+∂∂= dz z y v w f dy z u w f dx y v w f v v w 2),(1).,(1).,(-'+⎥⎦⎤⎢⎣⎡'+'=28.设)(u xF xy z +=,其中F 可微,而xyu =,证明xy z y z y x z x +=∂∂+∂∂.解:证明:)1).(()).()((2x u F x x y xy u F x u F y x y z y x z x'++-'++=∂∂+∂∂ xy z y u F xy y u F u xF xy +='++'-+=)()()(29.设)(32xy xy z ϕ+=,且ϕ可微,证明022=+∂∂-∂∂y y z xy x z x .解:证明: 22y yz xy x z x +∂∂-∂∂ 2222).(32).()3(3y x xy x y xy y xy x y x +⎥⎦⎤⎢⎣⎡'+-⎥⎥⎦⎤⎢⎢⎣⎡'+-=ϕϕ 0)(32)(3122222=+'--'+-=y xy y x y xy y x y ϕϕ30.设⎪⎭⎫⎝⎛=x y xe f z y sin , ,其中f 可微,求x z ∂∂,yz ∂∂.解:令y xe u =,xy v sin = 则)(cos ),(),(2xy x y v u f e v u f x v v z x u u z x z v y u -'+'=∂∂∂∂+∂∂∂∂=∂∂ )1(cos ),(),(xx y v u f xe v u f y v v z y u u z y z v y u '+'=∂∂∂∂+∂∂∂∂=∂∂31.v u z =,22ln y x u +=,xyv arctan =,求z d .解:dy yv v z y u u z dx x v v z x u u z dy y z dx x z dz )()(∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂+∂∂=dy xy x u u y x y vu dx xyxyuu y x x vu v v v v ))(11ln ())(1ln (222122221+++++-++=--dy y x x uu yx y vu dx yx y uu yx x vu v v v v )ln ()ln (2222122221+++++++=--32.设⎪⎪⎭⎫ ⎝⎛+=y x x xy z ,)sin(ϕ,求y x z∂∂∂2,其中),(v u ϕ有二阶编导数.解:y x v x u yz y yz yzz y z y y z =='-'-=∂∂⇒,)(2)()(令ϕϕϕyy v u v u xy y y u z vu ∂⎥⎦⎤⎢⎣⎡'+'+∂=∂∂∂1).,(),()cos(2ϕϕ 221),("1),("1),(")sin()cos(y v u y v u yv u xy xy xy uv vv uv -+++-=ϕϕϕ33.已知),(v u f z =,y x u +=,xy v =,且),(v u f 的二阶偏导数都连续,求yx z∂∂∂2.解:ayv u yf v u f y x z v u ⎥⎦⎤⎢⎣⎡'+'∂=∂∂∂),(),(2⎥⎦⎤⎢⎣⎡'+'+'+'+'=y v u f v u f y v u f v u yf v u f vv uu v uv uu ),(),(),(),(),( ),(),("),(")(),("v u f v u xyf v u f y x v u f v vv uv uu '+'++++=34.设),(v u f 具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又⎥⎦⎤⎢⎣⎡-=)(21,),(22y x xy f y x g求2222y g x g ∂∂+∂∂.解:令)(21,22y x v xy u -==[][][]='=---+'++++=∂∂+∂∂v vv vu uv uu v vv vu uv uu f y f x f y y f x f x f x f y f x x f y f y y g x g )""(""""""22222222)"")((y x f f y x vv uu +=++35.设⎪⎪⎭⎫ ⎝⎛=+y z y z x ϕ22,其中ϕ为可微函数,求y z∂∂.解:)).(()(2)(22z yzy z y z y y z yzyz y z x -∂∂'+=∂∂⇒=+ϕϕϕ )()()(2yzz y z y y z y z y yz ϕϕϕ'-=∂∂⎥⎦⎤⎢⎣⎡'-⇒)(2)()(yz y yz yz z y z y y z ϕϕϕ'-'-'=∂∂⇒36.已知)()(z yg z xf xy +=,0)()(≠'+'z g y z f x ,其中),(y x z z =是x 和y 的函数,求证[][]yz z f y xz z g x ∂∂-=∂∂-)()(解:)()(z yg z xf xy +=对等式两边分别微分得: [])1()()()(xz z g y z f x z y y ∂∂'+'=- 同理可得:[])2()()()(yzz f x z g y z g x ∂∂'+'=- 两式相乘得:[][]xz z g x y z z f y ∂∂-=∂∂-)()(37.设函数),,(z y x f u =有连续偏导数,且),(y x z z =由方程z y x ze ye xe =-所确定,求u d .解:z y x ze ye xe =-⎪⎪⎩⎪⎪⎨⎧++-='++='⇒⎪⎩⎪⎨⎧'+'=+-'+'=+⇒z x y z x x y z y z y x z x z x e z e y z e z e x z z ze z e y e z ze z e x e )1()1()1()1(·)1(··)1( 所以dy yzz u y u dx x u z u x u du )()(∂∂∂∂+∂∂+∂∂∂∂+∂∂= dy e z e y f f dx e z e x f f z y zg z x z x ⎥⎥⎦⎤⎢⎢⎣⎡++-'+'+⎥⎥⎦⎤⎢⎢⎣⎡++'+'=)1()1()1()1(38.求下列方程所确定的隐函数的导数dxdy (1)0)sin(=+xy xe y (2)xy y x 2222=+ (3)y x x y = (4)y x xy y x ++=+)ln(22解:(1))cos()cos(xy x xe xy y e xF z Fdx dg y y ++-=∂∂∂∂-=(2)令xy y x y x F 2),(22-+=则y x xy x y y x x F z F dx dy 22422--=---=∂∂∂∂-=(3)令y x x y y x F -=),(则x x xy yx y y xF z F dx dy y x y x ln ln 11---=∂∂∂∂-=--(4)令y x xy y x y x F ---+=)ln(),(22则12122222--+--+-=∂∂∂∂-=x y x y y yx x x F z F dxdy39.求下列方程所确定的隐函数),(y x z z =的全微分 (1))arctan(yz xz = (2)x z xyz +=e(3)1sin cos sin 222=++z y x (4))(32e z y x z y x ++-=++解:(1)令)arctan(),,(yz xz z y x F -=则y z xy x zz y y x z x F z F dx dz -+-=+--=∂∂∂∂-=22221 所以yy x x zdydx z y y z x x z dy x z dx x z dz -+-++-+-=∂∂+∂∂=222222)1( (2)令x z e xyz z y x F +-=),,(则z x z x z x e xy xz zF yFy e xy z e yz zF x Fx z +++--=∂∂∂∂-=∂-∂--=∂∂∂∂-=∂∂ 所以dy e xy xzdx e xy e yz dy y z dx x z dz zx z x z x +++--+---=∂∂+∂∂=(3)令1sin cos sin ),,(222-++=z y x z y x Fz x z z x x z F x F x z 2sin 2sin cos sin 2cos sin 2-=-=∂∂∂∂-=∂∂ z y z z y y zF y F y z 2sin 2sin cos sin 2cos sin 2-=--=∂∂∂∂-=∂∂ (4)令)(32),,(z y x e z y x z y x F ++--++=)(2)(31z y x z y x e z e z F x F x z ++-++-++-=∂∂∂∂-=∂∂ )(2)(32z y x z y x e z e y zF y F y z ++-++-++-=∂∂∂∂-=∂∂ 所以dy ez e y dz e z e dy y z dx x z dz z y x z y x z y x z y x )(2)()(2)(3231++-++-++-++-++-++-=∂∂+∂∂=40.求下列函数的极值,并判断是极大值还是极小值 (1)y x y xy x y x f +-+-=2),(22(2)0,0,ln 2ln 2),(22>>--+=y x y x y x y x f (3)1232),(23+--=y x xy y x f (4)25126),(23+-+-=y x x y y x f (5))2(e ),(22y y x y x f x ++=(6)[])2,0(),2,0( )cos(cos sin ),(ππ∈∈-++=y x y x y x y x f (7)22e )(),(xy x y x f +=(8))2)(2(),(22y by x ax y x f --=解:(1)令022),(0000=--='y x y x f x ,012),(0000=++-='y x y x f y0,100==⇒y x因为2),(" 1),(",2),("000000==-====y x f C y x f B y x f A yy xy xx所以02<-=AC B Ω 又因为02>=A所以(1,0)是极小值。
微积分课后题答案习题详解
微积分课后题答案习题详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!n n =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在.(1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。
《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第三章
第三章习题3-11.设s =12gt 2,求2d d t s t =.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==--21lim (2)22t g t g →=+=2.设f (x )=1x,求f '(x 0)(x 0≠0).解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠3.试求过点(3,8)且与曲线2y x =相切的直线方程。
解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x x x -=-。
由已知直线过点(3,8),得00082(3)y x x -=-(1)又点00(,)x y 在曲线2y x =上,故200y x =(2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。
也即440x y --=或8160x y --=。
4.下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1)0limx ∆→00()()f x x f x x-∆-∆=A ;(2)f (x 0)=0,0limx x →0()f x x x-=A ;(3)0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x xx →-→--+--'=-=-- 0()A f x '∴=-(2)000000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=--- 0()A f x '∴=-(3)000()()limh f x h f x h h→+-- 00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h →-→+-+--=+-000()()2()f x f x f x '''=+=02()A f x '∴=5.求下列函数的导数:(1)y;(2)y;(3)y2.解:(1)12y x==11221()2y x x -''∴===(2)23y x-=225133322()33y x x x ----''∴==-=-=(3)2152362y x x xx-==15661()6y x x -''∴===6.讨论函数y在x =0点处的连续性和可导性.解:00(0)x f →==000()(0)0lim lim 0x x x f x f x x →→→--===∞-∴函数y =在0x =点处连续但不可导。
《微积分》上册部分课后习题答案
微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。
经济应用数学基础(一)-微积分-课后习题答案_高
第一章 函 数习 题 一(A)1.解下列不等式,并用区间表示解集合(其中δ>0):(1)(x-2)2>9; (2)|x+3|>|x-1|;(3)|x-x0|<δ;(4)0<|x-x0|<δ.解 (1)由(x-2)2>9得|x-2|>3,从而解得x-2>3 或 x-2<-3由此得 x>5或x<-1.因此,解集合为(-∞,-1)∪(5,+∞)(2)由绝对值的几何意义知,不等式|x+3|>|x-1|表示点x与-3的距离大于点x与1的距离,如下图所示:因此,该不等式的解集合为(-1,+∞)(3)由|x-x0|<δ得-δ<x-x0<δ,由此得x0-δ<x<x0+δ,因此,解集合为(x0-δ,x0+δ)(4)由0<|x-x0|知x≠x0,由|x-x0|<δ知x0-δ<x<x0+δ.因此,解集合为(x0-δ,x0)∪(x0,x0+δ)2.证明如下不等式:(1)|a-b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|证 (1)由绝对值性质(4),有|a-b|≤|a|+|-b|=|a|+|b|.(2)|a-b|=|a-c+c-b|≤|a-c|+|c-b|.3.判断下列各对函数是否相同,并说明理由:(1)y=x与y=x2;(2)y=1-x2+x与y=(1-x)(2+x);(3)y=1与y=sin2x+cos2x;(4)y=2cosx与y=1+cos2x;(5)y=ln(x2-4x+3)与y=ln(x-1)+ln(x-3);(6)y=ln(10-3x-x2)与y=ln(2-x)+ln(5+x).解 (1)因y=x2=|x|与y=x的对应规则不同(值域也不同),故二函数不相同.(2)因y=1-x2+x与y=(1-x)(2+x)的定义域均为D f=[-2,1],故此二函数相同.(3)因sin2x+cos2x≡1,x∈(-∞,+∞),故此二函数相同.(4)因y=1+cos2x=2cos2x=2|cosx|与y=2cosx的对应规则不同,可知此二函数不相同.(5)因y=ln(x2-4x+3)=ln[(x-1)(x-3)]的定义域为D f=(-∞,1)∪(3,+∞);y=ln(x-1)+ln(x-3)的定义域为D f=(3,+∞).因此,此二函数不相同.(6)因y=ln(10-3x-x2)=ln[(2-x)(5+x)]与y=ln(2-x)+ln(5+x)的定义域均为D f=(-5,2),故此二函数相同.4.求下列函数的定义域:(1)y=x2+x-2; (2)y=sin(x);(2)y=9-x2+1ln(1-x);(4)y=lnx2-9x10;(5)y=1x-3x+10x-10;(6)y=(x-1)(x-3)x-3.解 (1)使该函数有定义的x应满足条件:x2+x-2=(x-1)(x+2)≥0由此解得x≥1或x≤-2.因此,该函数定义域为D f=(-∞,2]∪[1,+∞).(2)使该函数有定义的x应满足条件:x≥0 且 sinx≥0而由sinx≥0得2kπ≤x≤(2k+1)π,k=0,1,2,….因此,该函数的定义域为D f=∪∞k=0[(2kπ)2,(2k+1)π2].(3)使该函数有定义的x应满足如下条件:9-x2≥0, 1-x>0, 1-x≠1解得 |x|≤3且x<1且x≠0.因此,该函数定义域为D f=[-3,0)∪(0,1).(4)使该函数有定义的x应满足条件:x2-9x10≥1由此得 x2-9x-10=(x+1)(x-10)≥0,解得x≥10或x≤-1因此,该函数定义域为D f=(-∞,-1]∪[10,+∞)(5)使该函数有定义的x应满足如下条件:x-3≠0, x-10≠0, x+10x-10≥0由此解得x>10或x≤-10.因此,该函数定义域为D f=(-∞,-10]∪(10,+∞).(6)使该函数有定义的x应满足条件:x-3≠0, (x-1)(x-2)x-3≥0即(x-1)(x-2)≥0 且 x-3>0痴x>3(x-1)(x-2)≤0 且 x-3<0痴1≤x≤2因此,该函数定义域为D f=[1,2]∪(3,+∞).5.已知函数f(x)=q-x2,|x|≤3x2-9,|x|>3求函数值f(0),f(±3),f(±4),f(2+a).解 因为x=0,x=±3时,|x|≤3,所以f(0)=9=3, f(±3)=9-(±3)2=0又因为x=±4时,|x|>3,所以f(±4)=(±4)2-9=7当|2+a|≤3即-5≤a≤1时,f(2+a)=q-(2+a)2=(1-a)(5+a)当|2+a|>3即a>1或a<-5时,f(2+a)=(2+a)2-9=(a-1)(a+5)所以f(2+a)=(1-a)(5+a),-5≤a≤1(a-1)(5+a),a<-5或a>1.6.讨论下列函数的单调性:(1)y=1+6x-x2; (2)y=e|x|.解 (1)易知该函数定义域为D f=[0,6].设x1,x2∈(0,6), x1<x2则f(x1)-f(x2)=6x1-x21-6x2-x22=(6x1-x21)-(6x2-x22)6x1-x21+6x2-x22=6(x1-x2)-(x21-x22)6x1-x21+6x2-x22=[6-(x1+x2)](x1-x2)6x1-x21+6x2-x22<0,0<x1<x2<3>0,3<x1<x2<6所以该函数在区间(0,3)上单调增加,在区间(3,6)上单调减少.另解,因6x-x2=9-(x-3)2,所以y=1+6x-x2是圆(x-3)2+(y-1)2=32的上半圆.由此可知,该函数在(0,3)上单调增加,在(3,6)上单调减少.(2)因y=e|x|=ex,x≥0e-x,x<0所以,该函数在[0,+∞)上单调增加,在(-∞,0]上单调减少.7.讨论下列函数是否有界:(1)y =x 21+x2; (2)y =e-x 2;(3)y =sin1x;(4)y =11-x.解 (1)因为|y |=x21+x 2=1-11+x2≤1所以,该函数有界.(2)因为|y |=e-x 2=1ex 2≤1e0=1所以,该函数有界.(3)因为sin1x≤1(x ≠0),所以,该函数有界.(4)对任意给定的正数M >0,令x 0=1-12M≠1,则|y (x 0)|=11-1-12M=2M >M此式表明,对任意给定的M >0,存在点x 0∈D f ,使|y (x 0)|>M .因此,该函数无界.8.讨论下列函数的奇偶性:(1)f (x )=x sinx +cosx ; (2)y =x 5-x 3-3;(3)f (x )=ln(x +1-x 2);(4)f (x )=1-x ,x <0,1,x =0,1+x ,x >0.解 (1)因为f (-x )=(-x )sin(-x )+cos(-x )=x sinx +cosx =f (x ),x ∈(-∞,+∞)所以,该函数为偶函数.(2)因为f (-x )=-x 5+x 3-3≠f (x )或-f (x )所以,该函数既不是偶函数,也不是奇函数.(3)因为f (-x )=ln(-x +1+x 2)=ln(1+x 2)-x2x +1+x2=-ln(x+1+x2)=-f(x), x∈(-∞,+∞)所以,该函数为奇函数.(4)因为x>0(即-x<0)时, f(-x)=1-(-x)=1+xx<0(即-x>0)时, f(-x)=1+(-x)=1-x所以f(-x)=1-x,x<01,x=01+x,x>0=f(x)因此,该函数为偶函数.9.判别下列函数是否是周期函数,若是周期函数,求其周期:(1)f(x)=sinx+cosx; (2)f(x)=|sinx|;(3)f(x)=xcosx;(4)f(x)=1+sinπx.解 (1)因为f(x)=sinx+cosx=2sinx+π4所以f(x+2π)=2sinx+2π+π4=2sinx+π4=f(x)因此,该函数为周期函数,周期为2π.(2)因f(x+π)=|sin(x+π)|=|-sinx|=|sinx|=f(x)所以,该函数为周期函数,周期为π.(3)因cosx是以2π为周期的周期函数,但是f(x+2π)=(x+2π)cos(x+2π)=(x+2π)cosx≠xcosx=f(x)所以,该函数不是周期函数.(4)因为f(x+2)=1+sin(x+2)π=1+sinπx=f(x)所以,该函数为周期函数,周期为2.10.求下列函数的反函数及其定义域:(1)y=1-x1+x; (2)y=12(ex-e-x);(3)y=1+ln(x-1);(4)y=53x-5;(5)y=2sinx3, x∈-π2,π2;(6)y=2x-1,0<x≤12-(x-2)2,1<x≤2.解 (1)由y=1-x1+x 解出x,得x=1-y1+y因此,反函数为y=1-x1+x其定义域为D(f-1)=(-∞,-1)∪(-1,+∞)(2)由所给函数解出ex,得ex=y±1+y2=y+1+y2(因为ex>0,所以舍去“-”号)由此得x=ln(y+1+y2)因此反函数为y=ln(x+1+x2)其定义域为D(f-1)=(-∞,+∞).(3)所给函数定义域为D(f)=(1,+∞),值域为Z(f)=(-∞,+∞).由所给函数解出x,得x=1+ey-1,故反函数为y=1+ex-1其定义域为D(f-1)=(-∞,+∞).(4)所给函数定义域、值域分别为D(f)=(-∞,+∞), Z(f)=(-∞,+∞)由所给函数解出x,得x=13(y5+5), y∈Z(f)=(-∞,+∞)所以,反函数为y=13(x5+5)其定义域为D(f-1)=Z(f)=(-∞,+∞)(5)由所给函数解出x,得x=3arcsiny2所以,反函数为y=3arcsinx2其定义域为D(f-1)=Z(f)=[-1,1].(6)由所给函数可知:当0<x≤1时,y=2x-1,y∈(-1,1];当1<x≤2时,y=2-(x-2)2,y∈(1,2];由此解出x,得x=12(1+y),-1<y≤12-2-y,1<y≤2 (舍去“+”号,因1<x≤2)因此,反函数为y=12(1+x),-1<x≤12-2-x,1<x≤2其定义域为D(f-1)=Z(f)=(-1,2].11.分析下列函数由哪些基本初等函数复合而成:(1)y=loga x; (2)y=arctan[tan2(a2+x2)];(3)y=e2x/(1-x2);(4)y=cos2x2-x-1.解 (1)所给函数由对数函数y=loga u与幂函数u=x复合而成;(2)所给函数由反正切函数y=arctanu、幂函数u=v2、正切函数v=tanw 和多项式函数w=a2+x2复合而成;(3)所给函数由指数函数y=eu和有理分式函数u=2x1+x2复合而成;(4)所给函数由幂函数y=u2、余弦函数u=cosv、幂函数v=w与多项式函数w=x2-x-1复合而成.12.设销售某种商品的总收入R是销售量x的二次函数,且已知x=0,10,20时,相应的R=0,800,1200,求R与x的函数关系.解 设总收入函数为R(x)=ax2+bx+c(a≠0)已知R(0)=0 所以c=0又知R(10)=800, R(20)=1200即有100a+10b=800, 400a+20b=1200整理后,得联立方程组10a+b=80, 20a+b=60由此解得 a=-2,b=100.因此,总收入函数为R(x)=100x-2x2=x(100-2x).13.某种电视机每台售价为2000元时,每月可售出3000台,每台售价降为1800元时,每月可多售出600台,求该电视机的线性需求函数.解 设该电视机的线性需求函数为Q=a-bp则由已知条件有Q(2000)=a-2000b=3000Q(1800)=a-1800b=3600由此解得a=9000,b=3.因此,该商品的线性需求函数为Q=9000-3p.14.已知某商品的需求函数与供给函数分别由下列方程确定:3p+Q2d+5Q d-102=0p-2Q2s+3Q s+71=0试求该商品供需均衡时的均衡价格p e和均衡数量Q e.解 供需均衡的条件为Q d=Q s=Q e,对应均衡价格为p e,于是有3p3+Q2e+5Q-102=0p e-2Q2e+3Q e+71=0由其中第二个方程得p e=2Q2e-3Q3-71 (倡)将上式代入第一个方程,得7Q2e-4Q e-315=0由此解得Q e=7(舍去负根).将Q e=7代入(倡)得p e=6.因此,该商品供需均衡时,均衡价格p e=6,均衡数量Q e=7.(B)1.填空题:(1)已知函数f(x)的定义域为(0,1],则函数f(ex)的定义域为,函数f x-14+f x+14的定义域为;(2)已知函数f(x)=x1+x2,则f(sinx)=;(3)已知函数f(x)=x1-x,则f[f(x)]=,f{f[f(x)]}=;(4)已知f(3x-2)=x2,则f(x)=;(5)已知某商品的需求函数、供给函数分别为:Q d=100-2p, Q s=-20+10p,则均衡价格p e=,均衡数量Q e=;答 (1)(-∞,0],14,34; (2)sinx|cosx|;(3)x1-2x,x1-3x;(4)19(x+2)2;(5)10,80.解 (1)由0<ex≤1得x∈(-∞,0],由0<x-14≤1且0<x+14≤1,得x∈14,34;(2)f(sinx)=sinx1-sin2x=sinxcos2x=sinx·|cosx|;(3)f[f(x)]=f(x)1-f(x)=x1-2x,f{f[f(x)]}=f[f(x)]1-f[f(x)]=x1-3x;(4)令t=3x-2,则x=13(t+2),于是f(t)=f(3x-2)=x2=13(t+2)2=19(t+2)2所以f(x)=19(x+2)2(5)由Q d=Q s=Q e,得100-2p e=-20+10p e解得 p e=10,从而Q e=80.2.单项选择题:(1)若函数y=x+2与y=(x+2)2表示相同的函数,则它们的定义域为.(A)(-∞,+∞); (B)(-∞,2];(C)[-2,+∞);(D)(-∞,-2].(2)设f (x )=1,|x |<1,0,|x |>1,则f {f [f (x )]}=.(A)0;(B)1(C)1,|x |<1,0,|x |≥1;(D)1,|x |≥1,0,|x |<1.(3)y =sin1x在定义域内是.(A)周期函数;(B)单调函数;(C)偶函数;(D)有界函数.(4)设函数f (x )在(-∞,+∞)内有定义,下列函数中,必为偶函数.(A)y =|f (x )|;(B)y =[f (x )]2;(C)y =-f (-x );(D)y =f (x 2)cosx .(5)设函数f (x )在(-∞,+∞)内有定义,且f (x +π)=f (x )+sinx ,则f (x ).(A)是周期函数,且周期为π;(B)是周期函数,且周期为2π;(C)是周期函数,且周期为3π;(D)不是周期函数.答 (1)C; (2)C; (3)D; (4)D; (5)B.解 (1)由(x +2)2=|x +2|=x +2≥0可知x ≥-2,故选(C).(2)因f [f (x )]=1,|f (x )|<10,|f (x )|≥1=1,|x |≥10,|x |<1f {f [f (x )]}=1,|f [f (x )]|<10,|f [f (x )]|≥1=1,|x |<10,|x |≥1故选(C).(3)因sin1x≤1,橙x ≠0,故选(D).(4)因f ((-x )2)cos(-x )=f (x 2)cosx ,故选(D).(5)因f (x +2π)=f (x +π)+sin(x +π)=f (x )+sinx -sinx =f (x )故f (x )为周期函数,且周期为2π,选(B).3.设f2x +12x -2-12f (x )=x ,求f (x ).解 令t =2x +12x -2,则x =2t +12t -2,代入所给方程,得f (t )-12f 2t +12t -2=2t +12t -2其中,由所给方程有f2t +12t -2=t +12f (t )于是得f (t )-12t +12f (t )=2t +12t -2由此得f (t )=23t 2+t +1t -1因此f (x )=23x 2+x +1x -1.4.证明下列各题:()若函数f (x ),g (x )在D 上单调增加(或单调减少),则函数h (x )=f (x )+g (x )在D 上单调增加(或单调减少).(2)若函数f (x )在区间[a ,b ],[b ,c ]上单调增加(或单调减少),则f (x )在区间[a ,c ]上单调增加(或单调减少).证 (1)对任意的x 1,x 2∈D ,且x 1<x 2,因f (x ),g (x )单调增加(减少),故有f (x 1)<f (x 2) (f (x 1)>f (x 2))g (x 1)<g (x 2) (g (x 1)>g (x 2))于是h (x 1)=f (x 1)+g (x 1)<f (x 2)+g (x 2)=h (x 2)(h (x 1)>h (x 2))所以,h (x )=f (x )+g (x )在D 上单调增加(减少).(2)对任意的x1,x2∈[a,c],x1<x2,若 a≤x1<x2≤b或b≤x1<x2≤c,则由题设有f(x1)<f(x2) (或f(x1)>f(x2))若 a≤x1≤b<x2≤c,则由题设有f(x1)≤f(b)<f(x2) (或f(x1)≥f(b)>f(x2))综上所述,f(x)在[a,c]上单调增加(或单调减少).5.设函数f(x)与g(x)在D上有界,试证函数f(x)±g(x)与f(x)g(x)在D 上也有界.证 因f(x)与g(x)在D上有界,故存在常数M1>0与M2>0,使得|f(x)|<M1, |g(x)|<M2, 橙x∈D.令M=M1+M2>0,则有|f(x)±g(x)|≤|f(x)|+|g(x)|<M1+M2=M,橙x∈D因此,f(x)±g(x)在D上有界.再令M=M1M2,则有|f(x)g(x)|=|f(x)||g(x)|<M1M2=M,橙x∈D因此,f(x)g(x)在D上有界.6.证明函数f(x)=xsinx在(0,+∞)上无界.证 要证f(x)=xsinx在(0,+∞)上无界,只需证明:对任意给定的常数M>0,总存在x0∈(0,+∞),使得|x0sinx0|>M.事实上,对任意给定的M>0,令x0=π2+2(1+[M])π∈(0,+∞)([M]为M的整数部分),则有|f(x0)|=π2+2(1+[M])π·sinπ2+2(1+[M])π=π2+2(1+[M])πsinπ2=π2+2(1+[M])π>M于是,由M>0的任意性可知,f(x)=xsinx在(0,+∞)上无界.7.已知函数函数f(x)满足如下方程af(x)+bf1x=c x,x≠0其中a,b,c为常数,且|a|≠|b|.求f (x ),并讨论f (x )的奇偶性.解 由所给方程有af1x+bf (x )=cx于是,解方程组af (x )+bf 1x=c xaf1x+bf (x )=cx可得f (x )=ac -bcx 2(a 2-b 2)x因为f (-x )=ac -bc (-x )2(a 2-b 2)(-x )=-ac -bcx2(a 2-b 2)x=-f (x )所以,f (x )为奇函数.8.某厂生产某种产品1000吨,当销售量在700吨以内时,售价为130元/吨;销售量超过700吨时,超过部分按九折出售.试将销售总收入表示成销售量的函数.解 设R (x )为销售总收入,x 为销售量(单位:吨).依题设有当0≤x ≤700时,售价p =130(元/吨);当700<x ≤1000时,超过部分(x -700)的售价为p =130×0.9=117(元/吨).于是,销售总收入函数为R (x )=130x , 0≤x ≤700130×700+117×(x -700), 700<x ≤1000=130x ,0≤x ≤700117x +9100,700<x ≤1000可见销售总收入R (x )为销售量x 的分段函数.9.某手表厂生产一只手表的可变成本为15元,每天固定成本为2000元,每只手表的出厂价为20元,为了不亏本,该厂每天至少应生产多少只手表?解 设每天生产x 只手表,则每天总成本为C (x )=15x +2000因每只手表出厂价为20元,故每天的总收入为20x (元),若要不亏本,应满足如下关系式:20x ≥15x +2000解得x≥400(只)即,若要不亏本,每天至少应生产400只手表.10.某玩具厂每天生产60个玩具的成本为300元,每天生产80个玩具的成本为340元,求其线性成本函数.该厂每天的固定成本和生产一个玩具的可变成本各为多少?解 设线性成本函数为C(x)=ax+b其中C(x)为总成本,x为每天的玩具生产量.由题设有C(60)=60a+b=300(元)C(80)=80a+b=340(元)由此解得a=2, b=180因此,每天的线性成本函数为C(x)=2x+180其中a=2元为生产一个玩具的可变成本,b=180元为每天的固定成本.第二章 极限与连续习 题 二(A)1.观察判别下列数列的敛散性;若收敛,求其极限值:(1)u n=5n-3n; (2)u n=1ncosnπ;(3)u n=2+-12n;(4)u n=1+(-2)n;(5)u n=n2-1n;(6)u n=a n(a为常数).解 (1)将该数列具体写出来为2,72,4,174,225,…,5-3n,…观察可知u n→5(n→∞).因此,该数列收敛,其极限为5.(2)因为u n=1ncosnπ=1n(-1)n=1n→0(n→∞)所以,该数列收敛,其极限为0.(3)因为u n-2=-12n=12n→0(n→∞)所以,该数列收敛,其极限为2.(4)该数列的前五项分别为:-1,5,-7,17,-31,…观察可知u n→∞(n→∞).因此,该数列发散.(5)该数列的前五项分别为0,32,83,154,245,…观察可知u n→∞(n→∞).所以,该数列发散.(6)当a<1时,u n=a n→0(n→∞);当a>1时,u n=a n→∞(n→∞);当a=1时,u n=1→1(n→∞);当a=-1时,u n=(-1)n,发散因此,a<1时,数列收敛,其极限为0;a=1时,数列收敛,其极限为1;a ≤-1或a>1时,数列发散.2.利用数列极限的定义证明下列极限:(1)limn→∞-13n=0; (2)limn→∞n2+1n2-1=1;(3)limn→∞1n+1=0;(4)limn→∞n2+a2n=1(a为常数).证 (1)对任意给定的ε>0(不妨设0<ε<1),要使u n-0=13n<ε只需n>log31ε (∵0<ε<1,∴log31ε>0)取正整数N=1+log31ε>log31ε,则当n>N时,恒有-13n-0<ε因此limn→∞-13n=0.(2)对任意给定的ε>0,要使u n-1=n2+1n2-1-1=2n2-1=2n+1·1n-1≤1n-1<ε只需n>1+1ε.取正整数N=1+1ε,则当n>N时,恒有n2+1n2-1-1<ε由此可知limn →∞n 2+1n 2-1=1.(3)对任意给定的ε>0,要使u n -0=1n +1-0=1n +1<1n<ε只需n >1ε2.取正整数N =1ε2+1,则当n >N >1ε2时,恒有1n +1-0<ε.由此可知limn→∞1n +1=0.(4)对任意给定的ε>0,要使u n -1=n 2+a2n -1=a2n (n 2+a 2+n )<a22n2<ε只需n >a2ε.取正整数N =a 2ε+1,则当n >N >a2ε时,恒有n 2+a2n-1<ε因此limn →∞n 2+a2n=1.3.求下列数列的极限:(1)limn →∞3n +5n 2+n +4; (2)limn →∞(n +3-n );(3)limn →∞(1+2n+3n+4n)1/n;(4)limn →∞(-1)n+2n(-1)n +1+2n +1;(5)limn →∞1+12+122+…+12n ;(6)limn →∞1+12+122+…+12n1+14+142+…+14n.解 (1)因为3n +5n 2+n +4=3+5n1+1n +4n 2→3(n →∞)所以limn→∞3n +5n 2+n +4=3.(2)因为n +3-n =3n +3+n →0(n →∞)所以limn →∞(n +3-n )=0.(3)因为(1+2n+3n+4n)1/n=414n+24n+34n+11/n→4(n →∞)所以limn→∞(1+2n+3n+4n)1/n=4.(4)因为(-1)n+2n(-1)n +1+2n +1=12·-12n+1-12n +1+1→12(n →∞)所以limn →∞(-1)n+2n(-1)n +1+2n +1=12.(5)因为 1+12+122+…+12n =1-12n +11-12=21-12n +1→2(n →∞)所以limn →∞1+12+122+…+12n =2.(6)因为1+12+122+…+12n =21-12n +1,1+14+142+…+14n =1-14n -11-14=431-14n +1于是1+12+122+…+12n 1+14+142+…+14n =32·1-12n +11-14n +1→32(n →∞)所以limn →∞1+12+122+…+12n1+14+142+…+14n=32.4.利用函数极限的定义,证明下列极限:(1)limx →3(2x -1)=5; (2)limx →2+x -2=0;(3)limx →2x 2-4x -2=4;(4)limx →1-(1-1-x )=1.证 (1)对任意给定的ε>0,要使(2x -1)-5=2x -3<ε只需取δ=ε2>0,则当0<x -3<δ时,恒有(2x -1)-5=2x -3<2δ=ε因此limx →3(2x -1)=5.(2)对任意给定的ε>0,要使x -2-0=x -2<ε只零取δ=ε2>0,则当0<x -2<δ时,恒有x -2-0=x -2<δ=ε所以limx →2+x -2=0.(3)对任意给定的ε>0,要使(x ≠2)x 2-4x -2-4=(x +2)-4=x -2<ε只需取δ=ε>0,则当0<x -2<δ时,恒有x 2-4x -2-4=x -2<δ=ε因此limx →2x 2-4x -2=4.(4)对任意给定的ε>0,要使(1-1-x )-1=1-x <ε只需0<1-x <ε2取δ=ε2>0,则当0<1-x <δ时,恒有(1-1-x )-1=1-x <δ=ε因此limx →1-(1-1-x )=1.5.讨论下列函数在给定点处的极限是否存在?若存在,求其极限值:(1)f (x )=1-1-x ,x <1,在x =1处;x -1,x >0(2)f (x )=2x +1,x ≤1,x 2-x +3,1<x ≤2,x 3-1,2<x ,在x =1与x =2处.解 (1)因为f (1-0)=limx →1-f (x )=limx →1-(1-1-x )=1f (1+0)=limx →1+f (x )=limx →1+(x -1)=0这表明f (1-0)≠f (1+0).因此,limx →1f (x )不存在.(2)在x =1处,有f (1-0)=limx →1-(2x +1)=3.f (1+0)=limx →1+(x 2-x +3)=3.因f (1-0)=f (1+0)=3,所以,limx →1f (x )=3(存在);在x =2处,有f (2-0)=limx →2-(x 2-x +3)=5f (2+0)=limx →2+(x 3-1)=7因f(2-0)≠f(2+0),所以limx→2f(x)不存在.6.观察判定下列变量当x→?时,为无穷小:(1)f(x)=x-2x2+2; (2)f(x)=ln(1+x);(3)f(x)=e1-x;(4)f(x)=1ln(4-x).解 (1)因为当x→2或x→∞时,x-2x2+2→0因此,x→2或x→∞时,x-2x2+2为无穷小.(2)因为当x→0时,ln(1+x)→0因此,x→0时,ln(1+x)为无穷小.(3)因为当x→+∞时,e1-x=eex→0,因此,x→+∞时,e1-x为无穷小.(4)因为当x→4-或x→-∞时,1ln(4-x)→0因此,x→4-或x→-∞时,1ln(4-x)为无穷小.7.观察判定下列变量当x→?时,为无穷大:(1)f(x)=x2+1x2-4; (2)f(x)=ln1-x;(3)f(x)=e-1/x;(4)f(x)=1x-5.解 (1)因为当x→±2时,x2-4x2+1→0因此当x→±2时,x2+1x2-4→∞所以,x→±2时,x2+1x2-4为无穷大.(2)因为当x→1时,1-x→0+当x→∞时,-x→+∞因此当x→1时,ln1-x→-∞当x→∞时,ln1-x→+∞所以,x→1或x→∞时,ln1-x为无穷大.(3)因为limn→0--1x=+∞所以limx→0-e-1/x=+∞由此可知,x→0-时,e-1/x为无穷大.(4)因为limx→5+x-5=0所以limx→5+1x-5=+∞由此可知,x→5+时,1x-5为无穷大.8.求下列函数的极限:(1)limx→3(3x3-2x2-x+2); (2)limx→05+42-x;(3)limx→16x-5x+4x-16;(4)limx→0(x+a)2-a2x(a为常数);(5)limx→0x2+a2-ax2+b2-b(a,b为正的常数);(6)limx→1x+x2+…+x n-nx-1(提示:x+x2+…+x n-n=(x-1)+(x2-1)+…+(x n-1))解 (1)由极限的线性性质,得原式=3limx→3x3-2limx→3x2-limx→3x+2=3x33-2×32-3+2=62(2)因为limx→0(2-x)=2≠0,所以原式=5+limx →042-x =5+4limx →0(2-x )=5+42=7.(3)因为x -5x +4=(x -4)(x -1),x -16=(x -4)(x +4).所以原式=limx →16(x -4)(x -1)(x -4)(x +4)=limx →16x -1x +4=38.(4)因为(x +a )2-a 2=x (x +2a ),所以原式=limx →0x (x +2a )x=limx →0(x +2a )=2a .(5)原式=limx →0(x 2+a 2-a )(x 2+a 2+a )(x 2+a 2+b )(x 2+b 2-b )(x 2+b 2+b )(x 2+a 2+a )=limx →0x 2(x 2+b 2+b )x 2(x 2+a 2+a )=limx →0x 2+b 2+bx 2+a 2+a=b a(6)因为 x +x 2+…+x n-n =(x -1)+(x 2-1)+…+(x n-1)=(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]所以原式=limx →1(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]x -1=limx →1[1+(x +1)+…+(x n -1+xn -2+…+1)]=1+2+…+n =12n (n +1).9.求下列函数的极限:(1)limx →∞[x 2+1-x 2-1]; (2)limx →∞(x -1)10(3x -1)10(x +1)20;(3)limx →+∞5x 3+3x 2+4x 6+1;(4)limx →∞(x +31-x 3);(5)limx →+∞x (3x -9x 2-6);(6)limx →+∞(a x+9)-a x+4(a >0).解 (1)原式=limx →∞2x 2+1+x 2-1=0.(2)原式=limx→∞1-1x103-1x 101+1x20=310(3)原式=limx →+∞5+(3/x )+(4/x 3)1+(1/x 3)=5.(4)因为(x +31-x 3)[x 2-x31-x 3+(31-x 3)2]=x 3-(31-x 3)3=1所以原式=limx→∞1x 2-x 31-x 3+(31-x 3)2=0.(5)因为x (3x -9x 2-6)=x (3x -9x 2-6)(3x +9x 2-6)3x +9x 2-6=x [9x 2-(9x 2-6)]3x +9x 2-6=6x3x +9x 2-6所以原式=limx →+∞6x3x +9x 2-6=limx →+∞63+9-(6/x 2)=1(6)原式=limx →+∞5a x+9+a x+4=1,0<a <110-5,a =10,a >1.10.求下列各题中的常数a 和b :(1)已知limx →3x -3x 2+ax +b=1;(2)已知limx →+∞(x 2+x +1-ax -b )=k (已知常数).解 (1)由于分子的极限limx →3(x -3)=0,所以分母的极限也应为0(否则原式=0≠1),即有limx →3(x 2+ax +b )=9+3a +b =0另一方面,因分子=x -3,故分母x 2+ax +b =(x -3)(x -c ),于是原式=limx →3x -3(x -3)(x -c )=limx →31x -c =13-c=1由此得c =2.于是得x 2+ax +b =(x -3)(x -2)=x 2-5x +6由此得a =-5,b =6(2)原式可变形为原式=limx →+∞[x 2+x +1-(ax +b )][x 2+x +1+(ax +b )]x 2+x +1+ax +b=limx →+∞(1-a 2)x 2+(1-2ab )x +(1-b 2)x 2+x +1+ax +b显然应有1-a 2=0,即有a =±1.于是原式=limx →+∞(1-2ab )x +(1-b 2)x 2+x +1+ax +b=limx →+∞1-2ab +(1-b 2)/x1+(1/x )+(1/x 2)+a +(b /x )=1-2ab1+a=k (a ≠-1)由上式可知,a ≠-1,于是a =1,从而有1-2b2=k 痴b =12-k .11.已知f (x )=2+x1+x(1-x )/(1-x )(1)limx →0f (x ); (2)limx →1f (x ); (3)limx →∞f (x ).解 令g (x )=2+x 1+x ,h (x )=1-x1-x.(1)因为limx →0g (x )=2,limx →0h (x )=1所以limx →0f (x )=limx →0g (x )h (x )=21=2.(2)因为 limx →1g (x )=32>0limx →1h (x )=limx →1(1-x )(1+x )(1-x )(1+x )=limx →111+x =12所以limx →1f (x )=limx →1g (x )h (x )=3212(3)因为limx →∞g (x )=limx →∞1+(2/x )1+(1/x )=1>0limx →∞h (x )=limx→∞(1/x )-(1-x )(1/x )-1=0所以limx →∞f (x )=limx→∞g (x )h (x )=10=1.12.求下列极限:(1)limx →0sin3x sin2x ; (2)limx →0tan5xsin2x ;(3)limx →0arctan4x arcsin2x;(4)limx →∞x sin1x;(5)limx →0sin2(2x )x2;(6)limx →0tan3x -sin2xx;(7)limx →01-cosxx sinx;(8)limx →0ax -sinbxtankx(a ,b ,k >0).解 (1)原式=limx →0sin3x3x·2x sin2x ·32=32.(2)原式=limx →0tan5x 5x ·2x sin2x ·52=52.(3)原式=limx →0arctan4x 4x ·2x arcsin2x ·42=2.(4)令u =1x,则x →∞时u →0.于是原式=limu →0sinu u=1.(5)原式=limx →0sin2(2x )(2x )2·4=4limx →0sin2x 2x 2=4.(6)原式=3limx →0tan3x 3x -2limx →0sin2x2x =3-2=1(7)因为1-cosx ~12x 2(x →0),所以原式=12limx →0x 2x sinx =12limx →0x sinx =12(8)原式=limx →0a k ·kx tankx -b k ·sinbx bx ·kxtankx=a k -b k =a -bk.13.求下列极限:(1)limx →∞1-1xx; (2)limx →∞1+5xx;(3)limx →0(1-sinx )1/x;(4)limx →0(1+3x )1/x;(5)limx →01-x22/x;(6)limx →∞x -2x +2x.解(1)原式=limx→∞1+1-x-x-1=1e.(2)原式=limx→∞1+1x /5x /55=e5.(3)令u =sinx ,则x →0时,u →0.于是原式=limu →0(1+u )1/u u /arcsin(-u )=e-1.(4)原式=limx →0[(1+3x )1/(3x )]3=e3(5)原式=limx →01-x 2-2/x-1=e-1(6)原式=limx →∞1-4x +2x=limx→∞1-4x +2-(x +2)/4-4x /(x +2)=e-4另解,令u =-x +24,则x =-4u -2,且u →∞(x →∞时),于是原式=limu →∞1+1u-4u -2=limu →∞1+1uu -4·limu →∞1+1u-2=e-4.14.求下列极限:(1)limx →0(cosx )1/(1-cosx ); (2)limx →0(sec2x )cot2x;(3)limx →π/2(1+cosx )5secx;(4)limx →0sinx -tanxsinx3;(5)limx →0(sinx 3)tanx1-cosx 2;(6)limx →π/61-2sinxsin(x -π/6);(7)limx →π/4(tan2x )tanπ4-x .解(1)令u =1-cosx ,则cosx =1-u ,且u →0(x →0时),因此原式=limu →0(1-u )1/u=e-1.(2)令u =cot2x ,则sec2x =1+1cot2x=1+1u ,且x →0时,u →+∞.因此原式=limu →+∞1+1uu=e(3)令u =cosx ,则secx =1u ,且x →π2时,u →0.因此原式=limu →0(1+u )5/u=limu →0(1+u )1/u 5=e5.(4)因为x →0时,sinx ~x ,sinx 3~x 3,cosx -1~-x22所以 原式=limx →0sinx (cosx -1)cosx ·sinx3=limx →0x ·(-x 2/2)x 3cosx=-12limx →01cosx =-12.(5)因为x →0时,sinx 3~x 3,tanx ~x ,1-cosx 2~12(x 2)2,所以原式=limx →0x 3·xx 4/2=2(6)令u =x -π6,则x →π6时,u →0,且有sinx =sinu +π6=12(3sinu +cosu )于是有 原式=limu →01-(3sinu +cosu )sinu=limu →01-cosu sinu -3=limu →0u 2/2sinu-3=-3.(7)因为tan2x =sin2x cos2x =sin2xcos2x -sin2xtanπ4-x =sinπ4-x cosπ4-x =cosx -sinx cosx +sinx所以tan2x tanπ4-x =sin2x cos2x -sin2x ·cosx -sinx cosx +sinx =sin2x (cosx +sinx )2从而原式=limx →π/4sin2x (cosx +sinx )2=122+222=12.15.讨论下列函数的连续性:(1)f (x )=x1-1-x ,x <0,x +2,x ≥0;(2)f (x )=e1/x,x <0,0,x =0,1xln(1+x 2),x >0.解 (1)由题设知f (0)=2,且f (0-0)=limx →0-x 1-1-x=limx →0-x (1+1-x )x =2f (0+0)=limx →0+(x +2)=2可见limx →0f (x )=2=f (0).所以,该函数在x =0处连续.另一方面,x1-1-x 在(-∞,0)内为初等函数,连续;x +2在(0,+∞)内为线性函数,连续.综上所述,该函数在(-∞,+∞)内连续.(2)因f (0)=0,且 f (0-0)=limx →0-e1/x=0, f (0+0)=limx →0+1xln(1+x 2)=limx →0+x ln(1+x 2)1/x 2=0·1=0所以 limx →0f (x )=0=f (0).因此,该函数在x =0处连续.另一方面,e1/x在(-∞,0)内连续,1xln(1+x 2)在(0,+∞)内连续.综上所述,该函数在(-∞,+∞)内连续.16.指出下列函数的间断点及其类型;如为可去间断点,将相应函数修改为连续函数;作出(1)、(2)、(3)的图形:(1)f (x )=1-x21+x ,x ≠-1,0,x =-1;(2)f (x )=x 2,x ≤0,lnx ,x >0;(3)f (x )=x x ; (4)f (x )=x sin1x.解 (1)由题设知f (-1)=0,而limx →-1f (x )=limx →-11-x 21+x =limx →-1(1-x )=2≠f (0)所以,x =-1为该函数的可去间断点.令f (-1)=2,则f ~(x )=1-x 21+x ,x ≠-12,x =-1=1-x在(-∞,+∞)内连续.f (x )的图形如图2.1所示.图2.1图2.2(2)由题设有f (0)=0,而f (0-0)=limx →0-x 2=0,f (0+0)=limx →0+lnx =-∞所以,x =0为该函数的无穷间断点.f (x )的图形如图2.2所示.(3)该函数在x =0处无定义,而f (0-0)=limx →0-xx =limx →0-x-x =-1,f (0+0)=limx →0+x x=limx →0+x x=1.图2.3因为左、右极限均存在但不相等,所以,x =0为该函数的跳跃间断点.f (x )的图形如图2.3所示.(4)该函数在x =0处无定义.因limx →0f (x )=limx →0x sin1x=0,故x =0为该函数的可去间断点.若令f (0)=0,则函数f ~(x )=x sin1x,x ≠00,x =0在(-∞,+∞)内连续.17.确定下列函数的定义域,并求常数a ,b ,使函数在定义域内连续:(1)f (x )=1x sinx ,x <0,a ,x =0,x sin1x+b ,x >0;(2)f (x )=ax +1,x ≤1,x 2+x +b ,x>1;(3)f (x )=1-x 2,-45<x <35,a +bx ,其他.解 (1)D f =(-∞,+∞).因f (x )在D f 的子区间(-∞,0)与(0,+∞)内均为初等函数.因此,f (x )在(-∞,0)∪(0,+∞)内连续.现讨论f (x )在分界点x =0处的连续性.已知f (0)=a ,而且f (0-0)=limx →0-sinxx =1,f (0+0)=limx →0+x sin1x+b =b 当f (0-0)=f (0+0)=f (0)时,即当a =b =1时,f (x )在x =0处连续.综上所述,当a =b =1时,该函数在其定义域(-∞,+∞)内连续.(2)D f =(-∞,+∞).因为f (-1)=1-a ,且f (-1-0)=limx →(-1)-(x 2+x +b )=bf (-1+0)=limx →(-1)+(ax +1)=1-a 所以,当a +b =1时,f (x )在x =-1处连续.又因f (1)=1+a ,且f (1-0)=limx →1-(ax +1)=a +1f (1+0)=limx →1+(x 2+x +b )=2+b所以,当a +1=2+b ,即a -b =1时,f (x )在x =1处连续.综上所述,当a +b =1且a -b =1,即a =1,b =0时,f (x )在x =-1和x =1处连续,从而f (x )在其定义域(-∞,+∞)内连续.(3)D f =(-∞,+∞).因f -45=a -45b ,且f -45-0=limx →-45-(ax +b )=a -45b f -45+0=limx →-45+1-x 2=35所以,当a -45b =35,即5a -4b =3时,f (x )在点x =-45处连续.又因f35=a +35b ,且f35-0=limx →35-1-x 2=45f35+0=limx →35+(a +bx )=a +35b 所以,当a +35b =45,即5a +3b =4时,f (x )在点x =35处连续.综上所述,当5a -4b =3且5a +3b =4,即a =57,b =17时,f(x)在x=-45与x=35处连续,从而f(x)在其定义域(-∞,+∞)内连续.(B)1.填空题:(1)limn→∞1n2+1(n+1)2+…+1(2n)2= ;(2)limx→0ln(x+a)-lnax(a>0)= ;(3)limx→a+x-a+x-ax2-a2(a>0)= ;(4)若limx→+∞xx n+1-(x-1)n+1=k≠0,n为正整数,则n= ,k= ;(5)x→0时,1+x-1-x是x的 无穷小;(6)设f(x)=sinx·sin1x,则x=0是f(x)的 间断点;(7)设f(x)=x x,则x=0是f(x)的 间断点;(8)函数f(x)=1x2-5x+6的连续区间是 .答 (1)0; (2)1a; (3)12a;(4)2008,12008; (5)等价;(6)可去; (7)跳跃; (8)(-∞,2)∪(3,+∞).解 (1)因为14n≤1n2+1(n+1)2+…+1(2n)2≤1n且limn→∞14n=0,limn→∞1n=0.所以,由夹逼定理可知,原式=0.(2)原式=limx→0ln1+x a1/x=1alimx→0ln1+x a a/x=1alnlimx→01+x a a/x=1alne=1a.(3)因为x-a+x-ax2-a2=x-ax+a(x+a)+1x+a且limx→a+x-ax+a(x+a)=0,limx→a+1x+a=12a所以,原式=12a.(4)因为x n+1-(x-1)n+1=[x-(x-1)][x n+x n-1(x-1)+…+x(x-1)n-1+(x-1)n]=x n1+1-1x+…+1-1x n-1+1-1x n所以,由题设有原式=limx→+∞x2008-n1+1-1x+…+1-1x n-1+1-1x n=k≠0显然,要上式成立,应有2008-n=0,即n=2008.从而原式=limx→+∞11+1-1x+…+1-1x n-11-1x n=1n=k所以,k=1n=12008.(5)因为limx→01+x-1-xx=limx→021+x+1-x=1所以,x→0时,1+x-1-x是x的等价无穷小.(6)因为limx→0sinx·sin1x=limx→0sinx x·limx→0xsin1x=1×0=0.所以,x=0是f(x)的可去间断点(令f(0)=0,即可).(7)因为f (0-0)=limx →0--x x =-1,f (0+0)=limx →0+xx=1左、右极限存在,但不相等,故x =0为跳跃间断点.(8)该函数有定义的条件是x 2-5x +6=(x -2)(x -3)>0由此得x <2或x >3.因此,该函数的连续区间为(-∞,2)或(3,+∞).2.单项选择题:(1)函数f (x )在点x 0处有定义,是极限limx →x 0f (x )存在的 .(A)必要条件; (B)充分条件;(C)充分必要条件;(D)无关条件.(2)下列“结论”中,正确的是 .(A)无界变量一定是无穷大;(B)无界变量与无穷大的乘积是无穷大;(C)两个无穷大的和仍是无穷大;(D)两个无穷大的乘积仍是无穷大.(3)设函数f (x )=1,x ≠1,0,x =1,则limx →1f (x )= .(A)0; (B)1; (C)不存在; (D)∞.(4)若limx →2x 2+ax +bx 2-3x +2=-1,则 .(A)a =-5,b =6; (B)a =-5,b =-6;(C)a =5,b =6;(D)a =5,b =-6.(5)设f (x )=1-x 1+x,g (x )=1-3x ,则当x →1时, .(A)f (x )与g (x )为等价无穷小;(B)f (x )是比g (x )高阶的无穷小;(C)f (x )是比g (x )低阶的无穷小;(D)f (x )与g (x )为同阶但不等价的无穷小.(6)下列函数中,在定义域内连续的是 .(A)f (x )=cosx ,x ≤0,sinx ,x >0; (B)f (x )=1x,x >0,x ,x ≤0;(C)f (x )=x +1,x ≤0,x -1,x >0;(D)f (x )=1-e-1/x 2,x ≠0,1,x =0.(7)下列函数在区间(-∞,1)∪[3,+∞]内连续的是 .(A)f (x )=x 2+2x -3; (B)f (x )=x 2-2x -3;(C)f (x )=x 2-4x +3;(D)f (x )=x 2+4x +3.(8)若f (x )在区间 上连续,则f (x )在该区间上一定取得最大、最小值.(A)(a ,b ); (B)[a ,b ]; (C)[a ,b ); (D)(a ,b ].答 (1)D; (2)D; (3)B;(4)A;(5)D; (6)D; (7)C; (8)B.解 (1)limx →x 0f (x )是否存在与f (x )在点x 0是否有定义无关,故应选(D).(2)(A)、(B)、(C)都不正确.例如n →∞时n sinn 是无界变量,而不是无穷大;n →∞时,n sinn 是无界变量,n 是无穷大,而n ·n sinn =n 2sinn 是无界变量,不是无穷大;n →∞时,n 与-n 都是无穷大,但n +(-n )=0是一常量,不是无穷大.(D)正确.例如,设limu →∞u 0=∞, limu →∞v n =∞则对任意给定的M >0,存在正整数N 1,N 2,使当n =N 1,n >N 2时,恒有u n>M ,v n >M取N =max{N 1,N 2},则当n >N 时,恒有u n v n=u n ·v n>M ·M =M2这表明limn →∞u n v n =∞.(3)易知f (1-0)=f (1+0)=1,从而limx →1f (x )=1,故应选(B).(4)因为limx →2(x 2-3x +2)=limx →2(x -2)(x -1)=0,因此,分子的极限也应为0,即应有x 2+ax +b =(x -2)(x -c )=x 2-(2+c )x +2c由此得a =-(2+c ),b =2c于是,由题设有limx →2x 2+ax +b x 2-3x +2=limx →2(x -2)(x -c )(x -2)(x -1)=limx →2x -cx -1=2-c =-1由此得c =3,从而得a =-5,b =6.故应选(A).(5)因为。
微积分课后题答案高等教育出版社1
习 题 二1.列数列}{n x 当∞→n 时的变化趋势,判定它们是否收敛,在收敛时指出它们的极限: (1); )1(1>=a ax nn (2); 3)1(nn x -=(3); 11ng x n = (4); )11()1(nx n n +-= (5); 1)1(3n x n n -+= (6); 1sec nx n =(7); 2642)12(531lim n n n ++++-++++∞→ (8). 2121121211lim1-∞→++++++n n 解:1)收敛.因为当∞→n 时,; )1(>∞→a a n 所以; 0→n x 所以. 01lim lim ==∞→∞→nx n x a x2)因为⎪⎩⎪⎨⎧==为奇数为偶数n n x x n n 313 所以n x 是发散的;3)发散的.因为当∞→n 时,01→n ;所以-∞→=ng x n 11; 4)因为⎩⎨⎧-=为奇数为偶数n n x n 1 1 所以n x 是发散的;5)收敛的.因为当∞→n 时, 01→n ;所以31)1(3→-+=n x n n ;即∞→x lim 3=n x ; 6)收敛的.当∞→n 时,01→n ;11sec →n ;即∞→x lim 1=n x ; 7)因为nn n n n n n n +=+-+=++++-+++12)22(2)121(2642)12(531 ;所以∞→x lim11=+nn; 所以是收敛的;8)因为23211)21(1212112121121211121)1(221=----=++++++----n n n n1211-+n 所以2321123lim 1=+-∞→n x ; 所以是收敛的;2.据我国古书记载,公元前三世纪战国时代的思想家庄子在其著作中提出“一尺之棰,日取其半,万世不竭”的朴素极限思想,将一尺长的木棒,“日取其半”,每日剩下的部分表示成数列,并考察其极限.解:数列为; 21 , , 21 , 21,11-n 2所以通项为; 211-=n n a 所以∞→x lim 0=n a ;3.由函数图形判别函数极限是否存在,如存在则求出其值:(1); )0(lim 0>→μμx x (2); )0(lim <∞→μμx x(3); 1) , 0(lim 0≠>→a a x x (4); 1) , 0(lim ≠>∞→a a x x(5); 1) , 0(log lim 1≠>→a x a x (6); arccos lim 1x x -→(7); arctan lim 1x x → (8). cos lim x x ∞→解:1)当0x →时,∞→x lim ; 0)0(=>u x u2)∞→x lim ∞→=<x u u x lim)0(; 0)0u (1=<-ux3)∞→x lim 1)1 , 0(=≠>a a a x4) 0; 1<a∞→x lim ⎩⎨⎧><=≠>.1 1.1 0)1 , 0(a a a a a x 所以极限不存在1 ; 1>a 5)0)1 , 0(log lim 1=≠>-→a a a x x6)π=-→x arccos lim 1x 所以; 1cos -=π7). 4x arctan lim 1π=-→x8)x cos lim ∞→x 的极限不存在4.求下列函数在指定点处的左、右极限,并判定函数在该点的极限是否存在: (1); 0 , )(==x xx x f (2); 0 ,3)( 1==xx f x(3); 0 ,1arctan )(==x x x f(4). 1 , 21 , )1arcsin(1 , )1(11)(=⎪⎩⎪⎨⎧≤≤-<+=x x x x x g x f解:1)10lim -→x +→≠-=0lim 1)x (f x ; 1)(f =x 所以该点的极限不存在2)10lim -→x ≠=0)x (f +→0lim x ; )x (f ∞=所以该点的极限不存在3)10lim -→x ; 2f(x)lim 2-f(x)0ππ=≠=+→x 所以该点的极限不存在4) ; 0)x (f lim 211)x (f lim 11=≠=+-→→x x g 所以该点的极限不存在5.用δε-或N -ε的方法陈述下列极限:(1); )(lim A x f ax =+→ (2); )(lim A x f ax =-→(3); )(lim A x f x =+∞→ (4). )(lim A x f x =-∞→解:1)当δ<-<a x 0时 ξ<-A x f )( 2)当δ<<x -a 0时 ξ<-A x f )( 3)当M x >时 ξ<-A x f )( 4)当-M x <时 ξ<-A x f )(6.用极限的严格定义(即δε-或N -ε的方法)证明下列极限: (1); 01lim4=∞→nn (2); 31135lim22-=+-∞→n n n(3); 01lim 1=++-→x x (4). 010lim =-∞→x x解:1)对于任意给定的ξ,要使δψξ成立,只要使ξ14>n 即41n ξ>成立所以对于任意给定的ξ,存在41N ξ=当N n >时恒有ξ<-014n成立,故01lim4=∞→n x2)对于任意给定的ξ,要使ξ<++-3113522n n 成立即29316 )(1lim ξξ->+∞=→n x f o x x 成立所以对于正数ξ,存在293-16N ξξ=成立当N n >时恒有ξ<++-3113522n n 成立 所以31135lim2-=+-∞→n n x 3)由于10)(+=-x x f 所以对于任意给定的0>ξ,存在2ξδ=当δ<+<10x 时 恒有ξ<-0)(x f 成立 故01lim 1=++-→x x4)对于任意给定的正数ξ要使ξ<-010x 成立即ξ1g x >成立 所以存在. 1g X ξ=当X x >时恒有ξ1g x >成立 即. 010lim =∞→x x7.求下列极限: (1); )(lim330hx h x h -+→ (2); 11lim 1--→x x n x(3);)2(arctan lim1x x x ++∞→ (4); 11lim 21⎪⎪⎭⎫⎝⎛---→x x x xx (5); 11lim220xx x +-→ (6); 231lim3xx x +--∞→(7); 22312lim 4---+→x x x (8). )31(lim 22---++∞→x x x x x解:1)22203322303303)33(lim 33lim )(lim x h xh x hx h xh h x x h h h x h h h =++=-+++=-+→→→2)n x x n x =--→11lim13)12)1(arctan lim 2arctan lim 1+=+=⎪⎪⎪⎭⎫⎝⎛++∞→+∞→πx x x x x 4)x x x x x x xx x x x x x 1lim)1()1)(1(lim )11(lim 111+=-+-=---→→→ 5)2)11(lim )11(lim11lim20222022-=++-=-++=+-→→→x xx x x x x x x6))31)(2(91231lim33+-+--=+---∞→x x x xx x)31)(2()42)(2(33323+-++-+=x x x x x2-= 7))312)(22()312)(312(lim22312lim44++--++-+=---+→→x x x x x x x x )312)(22()4(2lim 4++---=→x x x x)312()22(2lim 4+++-=→x x x322=8))31(lim 22---++∞→x x x x x)3142(lim 22--++++=∞→x x x x x x1)31111142(lim 2=--++++=∞→xx x x xx8.求. 3545lim 211++-∞→+-n n n n n解:51)53(95)54(411lim3545lim211=+-=+-∞→++-∞→n nn n n n nn9.下列数列}{n x ,当∞→n 时是否是无穷小量? (1); 31050nn x =(2)[]; 1)1(1n x nn -+=(3). n n n x =解:1)是无穷小量 因为0lim =∞→n n x2)是,因为0lim =∞→n n x (n 为奇数或者偶数)3)不是.10.当0→x 时下列变量中哪些是无穷小量?哪些是无穷大量? (1);100 3x y = (2); 101xy =(3); )1(log 2x y += (4); 4cot x y =(5); 2sec ⎪⎭⎫⎝⎛-=x y π(6). 1sin 1xx y =解:1)是无穷小,因为0lim 0=→y x2)是无穷大量,因为+∞=→y x 0lim3)是无穷小量,因为0lim 0=→y x4)是无穷大量,因为+∞=→y x 0lim5)是无穷大量,因为+∞=→y x 0lim6)非大非小11.已知)()(lim 0x g x f x x →存在,而0)(lim 0=→x g x x ,证明. 0)(lim 0=→x f x x解:因为, 5252lim 5arctan 2lim00==→→x x x x x x)(lim )(lim )()(lim 00x g x f x g x f x x x x x x →→→=存在 而0)(lim 0=→x g x x所以; 0)(lim 0=→x f x x12.设31lim 21=-++→x b ax x x ,求a ,b .解:因为3lim 1lim 121=+=-++→→y x x bax x x x所以1)2)(1(12---=-++x x x x b ax x 所以1a =,2b -=13.设011lim 2=⎪⎪⎭⎫ ⎝⎛--++∞→b ax x x x ,求a ,. b解:011lim )11(lim 222=+----+=--++∞→∞→x bbx ax ax x b ax x x x x所以即b bx ax ax x ----+221为一常数 所以-1b 1a ==14.当0→x 时,下列变量中与423x x +相比为同阶无穷小的是(B ).A .xB .2xC .3xD .4x解:B . 因为3131lim3lim 204220=+=+→→xxx x x x15.求. 28159lim 4823+--∞→n n n n n解:3281591lim281593lim4835482=+--=+--∞→∞→nn n n n nn n n16.设a x →时∞→)(x f ,∞→)(x g ,则下列各式中成立的是(D ).A .∞→+)()(x g x fB .0)()(→-x g x fC .0)()(1→+x g x f D .0)(1→x f解:D.因为a x →时∞→f(x),∞→g(x),所以0)(1→x f ,0)(1→x g .17.求下列极限 (1); )72()43()12(lim 15510--+∞→x x x x (2). )cos 100(1lim 2x xx x x +++∞→解:1)=--+∞→15510)72()43()12(limx x x x 32243232)72()43()12(lim1551015510==--+∞→x x x x x x 2)x)105100(1111lim)105100(1lim 232+++=+++∞→∞→xx x x x x x x x18.求下列极限: (1); 3sin 2sin lim0x x x → (2); sin sin lim 0xx xx x +-→(3); 5arctan 2lim0x x x → (4); sin lim ⎪⎭⎫ ⎝⎛∞→n n n π(5); sin limx x x -→ππ (6); cos 1lim 0xxx -+→(7); cos 1cos 1lim 20x x x --→ (8); sin tan lim 0xxx x -→(9); sin tan cos lim 0x x x x x x --→ (10). 65)1sin(lim 21-+-→x x x x解:1)3232lim 3sin 2sin lim00==→→x x x x x x2)0sin 1sin 1lim sin sin lim00=+-=+-→→xx x x x x x x x x 3)5252lim 5arctan 2lim00==→→x x x x x x4)ππππ===∞→∞→∞→nn n n nn n n n 1lim 1sinlim)sin (lim5)11cos lim ' )()(sin lim sin lim'=-=-=-→→→xx x x x x x x πππππ6)2)'2sin 2()'(lim2sin2limcos 1lim 0===-+++→→→xx xx xx x x x7)2 8)0)cos cos 1(lim ')'sin (tan lim sin tan lim 000=-=-=-→→→x x x x x x x x x x x9)1cos lim )cos cos 1(sin )cos 1(lim sin tan cos lim0==--=--→→→x xx x x x x x x x x x x10)7111lim )6)(1(1lim65)1sin(lim 1121=+=+--=-+-→→→x x x x x x x x x x19.设3)1sin(lim 221=-++→x b ax x x ,求a ,. b解:因为3)1)(1(lim )1sin(lim21221=+-++=-++→→x x bax x x bax x x x 所以)5)(1(2+-=++x x b ax x 所以-5b . 4==a20.设nn n n x n ++++++=22212111 ,用极限存在的夹逼准则求. lim n n x ∞→解:因为n n nx n n n +≤≤+22111而111lim 2=+∞→n nn ,11lim 2=+∞→nn nn所以1lim =∞→n n x21.求下列极限:(1); 31lim 3xx x ⎪⎭⎫ ⎝⎛+∞→ (2); )21(lim 13+∞→-xx x(3); 21lim 30x x x +→ (4); )tan 1(lim cot 210x x x -→+(5); 1232lim 1+∞→⎪⎭⎫⎝⎛++x x x x (6). 1312lim 10xx x x ⎪⎭⎫ ⎝⎛--→解:1). ])31[(lim )31(lim 9933e xx xx x x =+=+∞→∞→2). )21(*])21[(lim )21(lim 3232213---∞→+∞→=--=-e xx x xx xx3). 323221030])21[(lim 21lime x x x x xx =+=+→→4). e x)tan 1(*]x)tan 1[(lim x)tan 1(lim 2-2tanx 12cotx -10=+++-→=→x x5). 1x)1221(lim )1232(lim 212121x e x x x x x x =+++=++++∞→+∞→6)xx x x x x x x 1010)131(lim )1312(lim --=--→→ =331)3111(lim +-→-+x x x=. e22.设xx x k x x xx 2sinlim lim 2∞→-∞→=⎪⎭⎫⎝⎛-,求. k 解:因为.222sin 2lim 2sinlim ==∞→∞→xx x x x x所以. 2)1(lim )(lim 22*2==-=--∞→-∞→k kk xx x x e xk x k x 所以. n2121k =23.判定下列函数在定义域上是否连续(说明理由):(1)⎪⎩⎪⎨⎧=≠=; 0 , 0,0 , 1sin )(2x x x x x f (2)⎪⎩⎪⎨⎧=≠= . 0 , 1, 0 , sin )(x x x x x f解:1)因为0x)(f lim 0=→x ,而0f(0)=.所以f(x)在定义域上是连续的。
微积分第一章课外习题参考答案
p1 4 . 三 .3 .证 明 : 设 M m a x{ f ( x i ) | 1 i n },
m m in{ f ( xi ) | 1 i n}, 则 有 m f ( xi ) M ,1 i n,
p2. 四 . 证明: f (x) f (2a x)
f (2b 2a x) f [2(b a) x] 周期 T 2|b a |.
五 . 证明 f ( x) loga( x x2 1)
loga
x2
1 1
x
loga( x
x2 1)
f ( x).
§1.1, §1.2数列极限(3-4)
ak ).
例如:
lim n 1n 2n 8n 8.
n
p15. 三 .由 导 数 定 义 知 :
1. lim e xh e x . h0 h
tan( x x) 1
2. lim
x 0
x
cos2 x .
p16. 3.解 : 原 式 lim [(1
6
3 x2 6 x1
) ] 6 3 x 2 2
p 4 . 2 . 解 :由 题 意 ,设 P1 P2 1
P1 Pn
1
1 2
1 22
1 23
( 1)n2 2 n2
1 ( 1 )n1 2 2( 1 )n1
2 1 1
2 3
2
lim
n
P1 Pn
2 2( 1 )n1
lim
2
n
3
2 3
p4.3.证明 : { xn }有界, M 0,使得
经济应用数学基础(一)-微积分-课后习题答案_高
第一章 函 数习 题 一(A)1.解下列不等式,并用区间表示解集合(其中δ>0):(1)(x-2)2>9; (2)|x+3|>|x-1|;(3)|x-x0|<δ;(4)0<|x-x0|<δ.解 (1)由(x-2)2>9得|x-2|>3,从而解得x-2>3 或 x-2<-3由此得 x>5或x<-1.因此,解集合为(-∞,-1)∪(5,+∞)(2)由绝对值的几何意义知,不等式|x+3|>|x-1|表示点x与-3的距离大于点x与1的距离,如下图所示:因此,该不等式的解集合为(-1,+∞)(3)由|x-x0|<δ得-δ<x-x0<δ,由此得x0-δ<x<x0+δ,因此,解集合为(x0-δ,x0+δ)(4)由0<|x-x0|知x≠x0,由|x-x0|<δ知x0-δ<x<x0+δ.因此,解集合为(x0-δ,x0)∪(x0,x0+δ)2.证明如下不等式:(1)|a-b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|证 (1)由绝对值性质(4),有|a-b|≤|a|+|-b|=|a|+|b|.(2)|a-b|=|a-c+c-b|≤|a-c|+|c-b|.3.判断下列各对函数是否相同,并说明理由:(1)y=x与y=x2;(2)y=1-x2+x与y=(1-x)(2+x);(3)y=1与y=sin2x+cos2x;(4)y=2cosx与y=1+cos2x;(5)y=ln(x2-4x+3)与y=ln(x-1)+ln(x-3);(6)y=ln(10-3x-x2)与y=ln(2-x)+ln(5+x).解 (1)因y=x2=|x|与y=x的对应规则不同(值域也不同),故二函数不相同.(2)因y=1-x2+x与y=(1-x)(2+x)的定义域均为D f=[-2,1],故此二函数相同.(3)因sin2x+cos2x≡1,x∈(-∞,+∞),故此二函数相同.(4)因y=1+cos2x=2cos2x=2|cosx|与y=2cosx的对应规则不同,可知此二函数不相同.(5)因y=ln(x2-4x+3)=ln[(x-1)(x-3)]的定义域为D f=(-∞,1)∪(3,+∞);y=ln(x-1)+ln(x-3)的定义域为D f=(3,+∞).因此,此二函数不相同.(6)因y=ln(10-3x-x2)=ln[(2-x)(5+x)]与y=ln(2-x)+ln(5+x)的定义域均为D f=(-5,2),故此二函数相同.4.求下列函数的定义域:(1)y=x2+x-2; (2)y=sin(x);(2)y=9-x2+1ln(1-x);(4)y=lnx2-9x10;(5)y=1x-3x+10x-10;(6)y=(x-1)(x-3)x-3.解 (1)使该函数有定义的x应满足条件:x2+x-2=(x-1)(x+2)≥0由此解得x≥1或x≤-2.因此,该函数定义域为D f=(-∞,2]∪[1,+∞).(2)使该函数有定义的x应满足条件:x≥0 且 sinx≥0而由sinx≥0得2kπ≤x≤(2k+1)π,k=0,1,2,….因此,该函数的定义域为D f=∪∞k=0[(2kπ)2,(2k+1)π2].(3)使该函数有定义的x应满足如下条件:9-x2≥0, 1-x>0, 1-x≠1解得 |x|≤3且x<1且x≠0.因此,该函数定义域为D f=[-3,0)∪(0,1).(4)使该函数有定义的x应满足条件:x2-9x10≥1由此得 x2-9x-10=(x+1)(x-10)≥0,解得x≥10或x≤-1因此,该函数定义域为D f=(-∞,-1]∪[10,+∞)(5)使该函数有定义的x应满足如下条件:x-3≠0, x-10≠0, x+10x-10≥0由此解得x>10或x≤-10.因此,该函数定义域为D f=(-∞,-10]∪(10,+∞).(6)使该函数有定义的x应满足条件:x-3≠0, (x-1)(x-2)x-3≥0即(x-1)(x-2)≥0 且 x-3>0痴x>3(x-1)(x-2)≤0 且 x-3<0痴1≤x≤2因此,该函数定义域为D f=[1,2]∪(3,+∞).5.已知函数f(x)=q-x2,|x|≤3x2-9,|x|>3求函数值f(0),f(±3),f(±4),f(2+a).解 因为x=0,x=±3时,|x|≤3,所以f(0)=9=3, f(±3)=9-(±3)2=0又因为x=±4时,|x|>3,所以f(±4)=(±4)2-9=7当|2+a|≤3即-5≤a≤1时,f(2+a)=q-(2+a)2=(1-a)(5+a)当|2+a|>3即a>1或a<-5时,f(2+a)=(2+a)2-9=(a-1)(a+5)所以f(2+a)=(1-a)(5+a),-5≤a≤1(a-1)(5+a),a<-5或a>1.6.讨论下列函数的单调性:(1)y=1+6x-x2; (2)y=e|x|.解 (1)易知该函数定义域为D f=[0,6].设x1,x2∈(0,6), x1<x2则f(x1)-f(x2)=6x1-x21-6x2-x22=(6x1-x21)-(6x2-x22)6x1-x21+6x2-x22=6(x1-x2)-(x21-x22)6x1-x21+6x2-x22=[6-(x1+x2)](x1-x2)6x1-x21+6x2-x22<0,0<x1<x2<3>0,3<x1<x2<6所以该函数在区间(0,3)上单调增加,在区间(3,6)上单调减少.另解,因6x-x2=9-(x-3)2,所以y=1+6x-x2是圆(x-3)2+(y-1)2=32的上半圆.由此可知,该函数在(0,3)上单调增加,在(3,6)上单调减少.(2)因y=e|x|=ex,x≥0e-x,x<0所以,该函数在[0,+∞)上单调增加,在(-∞,0]上单调减少.7.讨论下列函数是否有界:(1)y =x 21+x2; (2)y =e-x 2;(3)y =sin1x;(4)y =11-x.解 (1)因为|y |=x21+x 2=1-11+x2≤1所以,该函数有界.(2)因为|y |=e-x 2=1ex 2≤1e0=1所以,该函数有界.(3)因为sin1x≤1(x ≠0),所以,该函数有界.(4)对任意给定的正数M >0,令x 0=1-12M≠1,则|y (x 0)|=11-1-12M=2M >M此式表明,对任意给定的M >0,存在点x 0∈D f ,使|y (x 0)|>M .因此,该函数无界.8.讨论下列函数的奇偶性:(1)f (x )=x sinx +cosx ; (2)y =x 5-x 3-3;(3)f (x )=ln(x +1-x 2);(4)f (x )=1-x ,x <0,1,x =0,1+x ,x >0.解 (1)因为f (-x )=(-x )sin(-x )+cos(-x )=x sinx +cosx =f (x ),x ∈(-∞,+∞)所以,该函数为偶函数.(2)因为f (-x )=-x 5+x 3-3≠f (x )或-f (x )所以,该函数既不是偶函数,也不是奇函数.(3)因为f (-x )=ln(-x +1+x 2)=ln(1+x 2)-x2x +1+x2=-ln(x+1+x2)=-f(x), x∈(-∞,+∞)所以,该函数为奇函数.(4)因为x>0(即-x<0)时, f(-x)=1-(-x)=1+xx<0(即-x>0)时, f(-x)=1+(-x)=1-x所以f(-x)=1-x,x<01,x=01+x,x>0=f(x)因此,该函数为偶函数.9.判别下列函数是否是周期函数,若是周期函数,求其周期:(1)f(x)=sinx+cosx; (2)f(x)=|sinx|;(3)f(x)=xcosx;(4)f(x)=1+sinπx.解 (1)因为f(x)=sinx+cosx=2sinx+π4所以f(x+2π)=2sinx+2π+π4=2sinx+π4=f(x)因此,该函数为周期函数,周期为2π.(2)因f(x+π)=|sin(x+π)|=|-sinx|=|sinx|=f(x)所以,该函数为周期函数,周期为π.(3)因cosx是以2π为周期的周期函数,但是f(x+2π)=(x+2π)cos(x+2π)=(x+2π)cosx≠xcosx=f(x)所以,该函数不是周期函数.(4)因为f(x+2)=1+sin(x+2)π=1+sinπx=f(x)所以,该函数为周期函数,周期为2.10.求下列函数的反函数及其定义域:(1)y=1-x1+x; (2)y=12(ex-e-x);(3)y=1+ln(x-1);(4)y=53x-5;(5)y=2sinx3, x∈-π2,π2;(6)y=2x-1,0<x≤12-(x-2)2,1<x≤2.解 (1)由y=1-x1+x 解出x,得x=1-y1+y因此,反函数为y=1-x1+x其定义域为D(f-1)=(-∞,-1)∪(-1,+∞)(2)由所给函数解出ex,得ex=y±1+y2=y+1+y2(因为ex>0,所以舍去“-”号)由此得x=ln(y+1+y2)因此反函数为y=ln(x+1+x2)其定义域为D(f-1)=(-∞,+∞).(3)所给函数定义域为D(f)=(1,+∞),值域为Z(f)=(-∞,+∞).由所给函数解出x,得x=1+ey-1,故反函数为y=1+ex-1其定义域为D(f-1)=(-∞,+∞).(4)所给函数定义域、值域分别为D(f)=(-∞,+∞), Z(f)=(-∞,+∞)由所给函数解出x,得x=13(y5+5), y∈Z(f)=(-∞,+∞)所以,反函数为y=13(x5+5)其定义域为D(f-1)=Z(f)=(-∞,+∞)(5)由所给函数解出x,得x=3arcsiny2所以,反函数为y=3arcsinx2其定义域为D(f-1)=Z(f)=[-1,1].(6)由所给函数可知:当0<x≤1时,y=2x-1,y∈(-1,1];当1<x≤2时,y=2-(x-2)2,y∈(1,2];由此解出x,得x=12(1+y),-1<y≤12-2-y,1<y≤2 (舍去“+”号,因1<x≤2)因此,反函数为y=12(1+x),-1<x≤12-2-x,1<x≤2其定义域为D(f-1)=Z(f)=(-1,2].11.分析下列函数由哪些基本初等函数复合而成:(1)y=loga x; (2)y=arctan[tan2(a2+x2)];(3)y=e2x/(1-x2);(4)y=cos2x2-x-1.解 (1)所给函数由对数函数y=loga u与幂函数u=x复合而成;(2)所给函数由反正切函数y=arctanu、幂函数u=v2、正切函数v=tanw 和多项式函数w=a2+x2复合而成;(3)所给函数由指数函数y=eu和有理分式函数u=2x1+x2复合而成;(4)所给函数由幂函数y=u2、余弦函数u=cosv、幂函数v=w与多项式函数w=x2-x-1复合而成.12.设销售某种商品的总收入R是销售量x的二次函数,且已知x=0,10,20时,相应的R=0,800,1200,求R与x的函数关系.解 设总收入函数为R(x)=ax2+bx+c(a≠0)已知R(0)=0 所以c=0又知R(10)=800, R(20)=1200即有100a+10b=800, 400a+20b=1200整理后,得联立方程组10a+b=80, 20a+b=60由此解得 a=-2,b=100.因此,总收入函数为R(x)=100x-2x2=x(100-2x).13.某种电视机每台售价为2000元时,每月可售出3000台,每台售价降为1800元时,每月可多售出600台,求该电视机的线性需求函数.解 设该电视机的线性需求函数为Q=a-bp则由已知条件有Q(2000)=a-2000b=3000Q(1800)=a-1800b=3600由此解得a=9000,b=3.因此,该商品的线性需求函数为Q=9000-3p.14.已知某商品的需求函数与供给函数分别由下列方程确定:3p+Q2d+5Q d-102=0p-2Q2s+3Q s+71=0试求该商品供需均衡时的均衡价格p e和均衡数量Q e.解 供需均衡的条件为Q d=Q s=Q e,对应均衡价格为p e,于是有3p3+Q2e+5Q-102=0p e-2Q2e+3Q e+71=0由其中第二个方程得p e=2Q2e-3Q3-71 (倡)将上式代入第一个方程,得7Q2e-4Q e-315=0由此解得Q e=7(舍去负根).将Q e=7代入(倡)得p e=6.因此,该商品供需均衡时,均衡价格p e=6,均衡数量Q e=7.(B)1.填空题:(1)已知函数f(x)的定义域为(0,1],则函数f(ex)的定义域为,函数f x-14+f x+14的定义域为;(2)已知函数f(x)=x1+x2,则f(sinx)=;(3)已知函数f(x)=x1-x,则f[f(x)]=,f{f[f(x)]}=;(4)已知f(3x-2)=x2,则f(x)=;(5)已知某商品的需求函数、供给函数分别为:Q d=100-2p, Q s=-20+10p,则均衡价格p e=,均衡数量Q e=;答 (1)(-∞,0],14,34; (2)sinx|cosx|;(3)x1-2x,x1-3x;(4)19(x+2)2;(5)10,80.解 (1)由0<ex≤1得x∈(-∞,0],由0<x-14≤1且0<x+14≤1,得x∈14,34;(2)f(sinx)=sinx1-sin2x=sinxcos2x=sinx·|cosx|;(3)f[f(x)]=f(x)1-f(x)=x1-2x,f{f[f(x)]}=f[f(x)]1-f[f(x)]=x1-3x;(4)令t=3x-2,则x=13(t+2),于是f(t)=f(3x-2)=x2=13(t+2)2=19(t+2)2所以f(x)=19(x+2)2(5)由Q d=Q s=Q e,得100-2p e=-20+10p e解得 p e=10,从而Q e=80.2.单项选择题:(1)若函数y=x+2与y=(x+2)2表示相同的函数,则它们的定义域为.(A)(-∞,+∞); (B)(-∞,2];(C)[-2,+∞);(D)(-∞,-2].(2)设f (x )=1,|x |<1,0,|x |>1,则f {f [f (x )]}=.(A)0;(B)1(C)1,|x |<1,0,|x |≥1;(D)1,|x |≥1,0,|x |<1.(3)y =sin1x在定义域内是.(A)周期函数;(B)单调函数;(C)偶函数;(D)有界函数.(4)设函数f (x )在(-∞,+∞)内有定义,下列函数中,必为偶函数.(A)y =|f (x )|;(B)y =[f (x )]2;(C)y =-f (-x );(D)y =f (x 2)cosx .(5)设函数f (x )在(-∞,+∞)内有定义,且f (x +π)=f (x )+sinx ,则f (x ).(A)是周期函数,且周期为π;(B)是周期函数,且周期为2π;(C)是周期函数,且周期为3π;(D)不是周期函数.答 (1)C; (2)C; (3)D; (4)D; (5)B.解 (1)由(x +2)2=|x +2|=x +2≥0可知x ≥-2,故选(C).(2)因f [f (x )]=1,|f (x )|<10,|f (x )|≥1=1,|x |≥10,|x |<1f {f [f (x )]}=1,|f [f (x )]|<10,|f [f (x )]|≥1=1,|x |<10,|x |≥1故选(C).(3)因sin1x≤1,橙x ≠0,故选(D).(4)因f ((-x )2)cos(-x )=f (x 2)cosx ,故选(D).(5)因f (x +2π)=f (x +π)+sin(x +π)=f (x )+sinx -sinx =f (x )故f (x )为周期函数,且周期为2π,选(B).3.设f2x +12x -2-12f (x )=x ,求f (x ).解 令t =2x +12x -2,则x =2t +12t -2,代入所给方程,得f (t )-12f 2t +12t -2=2t +12t -2其中,由所给方程有f2t +12t -2=t +12f (t )于是得f (t )-12t +12f (t )=2t +12t -2由此得f (t )=23t 2+t +1t -1因此f (x )=23x 2+x +1x -1.4.证明下列各题:()若函数f (x ),g (x )在D 上单调增加(或单调减少),则函数h (x )=f (x )+g (x )在D 上单调增加(或单调减少).(2)若函数f (x )在区间[a ,b ],[b ,c ]上单调增加(或单调减少),则f (x )在区间[a ,c ]上单调增加(或单调减少).证 (1)对任意的x 1,x 2∈D ,且x 1<x 2,因f (x ),g (x )单调增加(减少),故有f (x 1)<f (x 2) (f (x 1)>f (x 2))g (x 1)<g (x 2) (g (x 1)>g (x 2))于是h (x 1)=f (x 1)+g (x 1)<f (x 2)+g (x 2)=h (x 2)(h (x 1)>h (x 2))所以,h (x )=f (x )+g (x )在D 上单调增加(减少).(2)对任意的x1,x2∈[a,c],x1<x2,若 a≤x1<x2≤b或b≤x1<x2≤c,则由题设有f(x1)<f(x2) (或f(x1)>f(x2))若 a≤x1≤b<x2≤c,则由题设有f(x1)≤f(b)<f(x2) (或f(x1)≥f(b)>f(x2))综上所述,f(x)在[a,c]上单调增加(或单调减少).5.设函数f(x)与g(x)在D上有界,试证函数f(x)±g(x)与f(x)g(x)在D 上也有界.证 因f(x)与g(x)在D上有界,故存在常数M1>0与M2>0,使得|f(x)|<M1, |g(x)|<M2, 橙x∈D.令M=M1+M2>0,则有|f(x)±g(x)|≤|f(x)|+|g(x)|<M1+M2=M,橙x∈D因此,f(x)±g(x)在D上有界.再令M=M1M2,则有|f(x)g(x)|=|f(x)||g(x)|<M1M2=M,橙x∈D因此,f(x)g(x)在D上有界.6.证明函数f(x)=xsinx在(0,+∞)上无界.证 要证f(x)=xsinx在(0,+∞)上无界,只需证明:对任意给定的常数M>0,总存在x0∈(0,+∞),使得|x0sinx0|>M.事实上,对任意给定的M>0,令x0=π2+2(1+[M])π∈(0,+∞)([M]为M的整数部分),则有|f(x0)|=π2+2(1+[M])π·sinπ2+2(1+[M])π=π2+2(1+[M])πsinπ2=π2+2(1+[M])π>M于是,由M>0的任意性可知,f(x)=xsinx在(0,+∞)上无界.7.已知函数函数f(x)满足如下方程af(x)+bf1x=c x,x≠0其中a,b,c为常数,且|a|≠|b|.求f (x ),并讨论f (x )的奇偶性.解 由所给方程有af1x+bf (x )=cx于是,解方程组af (x )+bf 1x=c xaf1x+bf (x )=cx可得f (x )=ac -bcx 2(a 2-b 2)x因为f (-x )=ac -bc (-x )2(a 2-b 2)(-x )=-ac -bcx2(a 2-b 2)x=-f (x )所以,f (x )为奇函数.8.某厂生产某种产品1000吨,当销售量在700吨以内时,售价为130元/吨;销售量超过700吨时,超过部分按九折出售.试将销售总收入表示成销售量的函数.解 设R (x )为销售总收入,x 为销售量(单位:吨).依题设有当0≤x ≤700时,售价p =130(元/吨);当700<x ≤1000时,超过部分(x -700)的售价为p =130×0.9=117(元/吨).于是,销售总收入函数为R (x )=130x , 0≤x ≤700130×700+117×(x -700), 700<x ≤1000=130x ,0≤x ≤700117x +9100,700<x ≤1000可见销售总收入R (x )为销售量x 的分段函数.9.某手表厂生产一只手表的可变成本为15元,每天固定成本为2000元,每只手表的出厂价为20元,为了不亏本,该厂每天至少应生产多少只手表?解 设每天生产x 只手表,则每天总成本为C (x )=15x +2000因每只手表出厂价为20元,故每天的总收入为20x (元),若要不亏本,应满足如下关系式:20x ≥15x +2000解得x≥400(只)即,若要不亏本,每天至少应生产400只手表.10.某玩具厂每天生产60个玩具的成本为300元,每天生产80个玩具的成本为340元,求其线性成本函数.该厂每天的固定成本和生产一个玩具的可变成本各为多少?解 设线性成本函数为C(x)=ax+b其中C(x)为总成本,x为每天的玩具生产量.由题设有C(60)=60a+b=300(元)C(80)=80a+b=340(元)由此解得a=2, b=180因此,每天的线性成本函数为C(x)=2x+180其中a=2元为生产一个玩具的可变成本,b=180元为每天的固定成本.第二章 极限与连续习 题 二(A)1.观察判别下列数列的敛散性;若收敛,求其极限值:(1)u n=5n-3n; (2)u n=1ncosnπ;(3)u n=2+-12n;(4)u n=1+(-2)n;(5)u n=n2-1n;(6)u n=a n(a为常数).解 (1)将该数列具体写出来为2,72,4,174,225,…,5-3n,…观察可知u n→5(n→∞).因此,该数列收敛,其极限为5.(2)因为u n=1ncosnπ=1n(-1)n=1n→0(n→∞)所以,该数列收敛,其极限为0.(3)因为u n-2=-12n=12n→0(n→∞)所以,该数列收敛,其极限为2.(4)该数列的前五项分别为:-1,5,-7,17,-31,…观察可知u n→∞(n→∞).因此,该数列发散.(5)该数列的前五项分别为0,32,83,154,245,…观察可知u n→∞(n→∞).所以,该数列发散.(6)当a<1时,u n=a n→0(n→∞);当a>1时,u n=a n→∞(n→∞);当a=1时,u n=1→1(n→∞);当a=-1时,u n=(-1)n,发散因此,a<1时,数列收敛,其极限为0;a=1时,数列收敛,其极限为1;a ≤-1或a>1时,数列发散.2.利用数列极限的定义证明下列极限:(1)limn→∞-13n=0; (2)limn→∞n2+1n2-1=1;(3)limn→∞1n+1=0;(4)limn→∞n2+a2n=1(a为常数).证 (1)对任意给定的ε>0(不妨设0<ε<1),要使u n-0=13n<ε只需n>log31ε (∵0<ε<1,∴log31ε>0)取正整数N=1+log31ε>log31ε,则当n>N时,恒有-13n-0<ε因此limn→∞-13n=0.(2)对任意给定的ε>0,要使u n-1=n2+1n2-1-1=2n2-1=2n+1·1n-1≤1n-1<ε只需n>1+1ε.取正整数N=1+1ε,则当n>N时,恒有n2+1n2-1-1<ε由此可知limn →∞n 2+1n 2-1=1.(3)对任意给定的ε>0,要使u n -0=1n +1-0=1n +1<1n<ε只需n >1ε2.取正整数N =1ε2+1,则当n >N >1ε2时,恒有1n +1-0<ε.由此可知limn→∞1n +1=0.(4)对任意给定的ε>0,要使u n -1=n 2+a2n -1=a2n (n 2+a 2+n )<a22n2<ε只需n >a2ε.取正整数N =a 2ε+1,则当n >N >a2ε时,恒有n 2+a2n-1<ε因此limn →∞n 2+a2n=1.3.求下列数列的极限:(1)limn →∞3n +5n 2+n +4; (2)limn →∞(n +3-n );(3)limn →∞(1+2n+3n+4n)1/n;(4)limn →∞(-1)n+2n(-1)n +1+2n +1;(5)limn →∞1+12+122+…+12n ;(6)limn →∞1+12+122+…+12n1+14+142+…+14n.解 (1)因为3n +5n 2+n +4=3+5n1+1n +4n 2→3(n →∞)所以limn→∞3n +5n 2+n +4=3.(2)因为n +3-n =3n +3+n →0(n →∞)所以limn →∞(n +3-n )=0.(3)因为(1+2n+3n+4n)1/n=414n+24n+34n+11/n→4(n →∞)所以limn→∞(1+2n+3n+4n)1/n=4.(4)因为(-1)n+2n(-1)n +1+2n +1=12·-12n+1-12n +1+1→12(n →∞)所以limn →∞(-1)n+2n(-1)n +1+2n +1=12.(5)因为 1+12+122+…+12n =1-12n +11-12=21-12n +1→2(n →∞)所以limn →∞1+12+122+…+12n =2.(6)因为1+12+122+…+12n =21-12n +1,1+14+142+…+14n =1-14n -11-14=431-14n +1于是1+12+122+…+12n 1+14+142+…+14n =32·1-12n +11-14n +1→32(n →∞)所以limn →∞1+12+122+…+12n1+14+142+…+14n=32.4.利用函数极限的定义,证明下列极限:(1)limx →3(2x -1)=5; (2)limx →2+x -2=0;(3)limx →2x 2-4x -2=4;(4)limx →1-(1-1-x )=1.证 (1)对任意给定的ε>0,要使(2x -1)-5=2x -3<ε只需取δ=ε2>0,则当0<x -3<δ时,恒有(2x -1)-5=2x -3<2δ=ε因此limx →3(2x -1)=5.(2)对任意给定的ε>0,要使x -2-0=x -2<ε只零取δ=ε2>0,则当0<x -2<δ时,恒有x -2-0=x -2<δ=ε所以limx →2+x -2=0.(3)对任意给定的ε>0,要使(x ≠2)x 2-4x -2-4=(x +2)-4=x -2<ε只需取δ=ε>0,则当0<x -2<δ时,恒有x 2-4x -2-4=x -2<δ=ε因此limx →2x 2-4x -2=4.(4)对任意给定的ε>0,要使(1-1-x )-1=1-x <ε只需0<1-x <ε2取δ=ε2>0,则当0<1-x <δ时,恒有(1-1-x )-1=1-x <δ=ε因此limx →1-(1-1-x )=1.5.讨论下列函数在给定点处的极限是否存在?若存在,求其极限值:(1)f (x )=1-1-x ,x <1,在x =1处;x -1,x >0(2)f (x )=2x +1,x ≤1,x 2-x +3,1<x ≤2,x 3-1,2<x ,在x =1与x =2处.解 (1)因为f (1-0)=limx →1-f (x )=limx →1-(1-1-x )=1f (1+0)=limx →1+f (x )=limx →1+(x -1)=0这表明f (1-0)≠f (1+0).因此,limx →1f (x )不存在.(2)在x =1处,有f (1-0)=limx →1-(2x +1)=3.f (1+0)=limx →1+(x 2-x +3)=3.因f (1-0)=f (1+0)=3,所以,limx →1f (x )=3(存在);在x =2处,有f (2-0)=limx →2-(x 2-x +3)=5f (2+0)=limx →2+(x 3-1)=7因f(2-0)≠f(2+0),所以limx→2f(x)不存在.6.观察判定下列变量当x→?时,为无穷小:(1)f(x)=x-2x2+2; (2)f(x)=ln(1+x);(3)f(x)=e1-x;(4)f(x)=1ln(4-x).解 (1)因为当x→2或x→∞时,x-2x2+2→0因此,x→2或x→∞时,x-2x2+2为无穷小.(2)因为当x→0时,ln(1+x)→0因此,x→0时,ln(1+x)为无穷小.(3)因为当x→+∞时,e1-x=eex→0,因此,x→+∞时,e1-x为无穷小.(4)因为当x→4-或x→-∞时,1ln(4-x)→0因此,x→4-或x→-∞时,1ln(4-x)为无穷小.7.观察判定下列变量当x→?时,为无穷大:(1)f(x)=x2+1x2-4; (2)f(x)=ln1-x;(3)f(x)=e-1/x;(4)f(x)=1x-5.解 (1)因为当x→±2时,x2-4x2+1→0因此当x→±2时,x2+1x2-4→∞所以,x→±2时,x2+1x2-4为无穷大.(2)因为当x→1时,1-x→0+当x→∞时,-x→+∞因此当x→1时,ln1-x→-∞当x→∞时,ln1-x→+∞所以,x→1或x→∞时,ln1-x为无穷大.(3)因为limn→0--1x=+∞所以limx→0-e-1/x=+∞由此可知,x→0-时,e-1/x为无穷大.(4)因为limx→5+x-5=0所以limx→5+1x-5=+∞由此可知,x→5+时,1x-5为无穷大.8.求下列函数的极限:(1)limx→3(3x3-2x2-x+2); (2)limx→05+42-x;(3)limx→16x-5x+4x-16;(4)limx→0(x+a)2-a2x(a为常数);(5)limx→0x2+a2-ax2+b2-b(a,b为正的常数);(6)limx→1x+x2+…+x n-nx-1(提示:x+x2+…+x n-n=(x-1)+(x2-1)+…+(x n-1))解 (1)由极限的线性性质,得原式=3limx→3x3-2limx→3x2-limx→3x+2=3x33-2×32-3+2=62(2)因为limx→0(2-x)=2≠0,所以原式=5+limx →042-x =5+4limx →0(2-x )=5+42=7.(3)因为x -5x +4=(x -4)(x -1),x -16=(x -4)(x +4).所以原式=limx →16(x -4)(x -1)(x -4)(x +4)=limx →16x -1x +4=38.(4)因为(x +a )2-a 2=x (x +2a ),所以原式=limx →0x (x +2a )x=limx →0(x +2a )=2a .(5)原式=limx →0(x 2+a 2-a )(x 2+a 2+a )(x 2+a 2+b )(x 2+b 2-b )(x 2+b 2+b )(x 2+a 2+a )=limx →0x 2(x 2+b 2+b )x 2(x 2+a 2+a )=limx →0x 2+b 2+bx 2+a 2+a=b a(6)因为 x +x 2+…+x n-n =(x -1)+(x 2-1)+…+(x n-1)=(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]所以原式=limx →1(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]x -1=limx →1[1+(x +1)+…+(x n -1+xn -2+…+1)]=1+2+…+n =12n (n +1).9.求下列函数的极限:(1)limx →∞[x 2+1-x 2-1]; (2)limx →∞(x -1)10(3x -1)10(x +1)20;(3)limx →+∞5x 3+3x 2+4x 6+1;(4)limx →∞(x +31-x 3);(5)limx →+∞x (3x -9x 2-6);(6)limx →+∞(a x+9)-a x+4(a >0).解 (1)原式=limx →∞2x 2+1+x 2-1=0.(2)原式=limx→∞1-1x103-1x 101+1x20=310(3)原式=limx →+∞5+(3/x )+(4/x 3)1+(1/x 3)=5.(4)因为(x +31-x 3)[x 2-x31-x 3+(31-x 3)2]=x 3-(31-x 3)3=1所以原式=limx→∞1x 2-x 31-x 3+(31-x 3)2=0.(5)因为x (3x -9x 2-6)=x (3x -9x 2-6)(3x +9x 2-6)3x +9x 2-6=x [9x 2-(9x 2-6)]3x +9x 2-6=6x3x +9x 2-6所以原式=limx →+∞6x3x +9x 2-6=limx →+∞63+9-(6/x 2)=1(6)原式=limx →+∞5a x+9+a x+4=1,0<a <110-5,a =10,a >1.10.求下列各题中的常数a 和b :(1)已知limx →3x -3x 2+ax +b=1;(2)已知limx →+∞(x 2+x +1-ax -b )=k (已知常数).解 (1)由于分子的极限limx →3(x -3)=0,所以分母的极限也应为0(否则原式=0≠1),即有limx →3(x 2+ax +b )=9+3a +b =0另一方面,因分子=x -3,故分母x 2+ax +b =(x -3)(x -c ),于是原式=limx →3x -3(x -3)(x -c )=limx →31x -c =13-c=1由此得c =2.于是得x 2+ax +b =(x -3)(x -2)=x 2-5x +6由此得a =-5,b =6(2)原式可变形为原式=limx →+∞[x 2+x +1-(ax +b )][x 2+x +1+(ax +b )]x 2+x +1+ax +b=limx →+∞(1-a 2)x 2+(1-2ab )x +(1-b 2)x 2+x +1+ax +b显然应有1-a 2=0,即有a =±1.于是原式=limx →+∞(1-2ab )x +(1-b 2)x 2+x +1+ax +b=limx →+∞1-2ab +(1-b 2)/x1+(1/x )+(1/x 2)+a +(b /x )=1-2ab1+a=k (a ≠-1)由上式可知,a ≠-1,于是a =1,从而有1-2b2=k 痴b =12-k .11.已知f (x )=2+x1+x(1-x )/(1-x )(1)limx →0f (x ); (2)limx →1f (x ); (3)limx →∞f (x ).解 令g (x )=2+x 1+x ,h (x )=1-x1-x.(1)因为limx →0g (x )=2,limx →0h (x )=1所以limx →0f (x )=limx →0g (x )h (x )=21=2.(2)因为 limx →1g (x )=32>0limx →1h (x )=limx →1(1-x )(1+x )(1-x )(1+x )=limx →111+x =12所以limx →1f (x )=limx →1g (x )h (x )=3212(3)因为limx →∞g (x )=limx →∞1+(2/x )1+(1/x )=1>0limx →∞h (x )=limx→∞(1/x )-(1-x )(1/x )-1=0所以limx →∞f (x )=limx→∞g (x )h (x )=10=1.12.求下列极限:(1)limx →0sin3x sin2x ; (2)limx →0tan5xsin2x ;(3)limx →0arctan4x arcsin2x;(4)limx →∞x sin1x;(5)limx →0sin2(2x )x2;(6)limx →0tan3x -sin2xx;(7)limx →01-cosxx sinx;(8)limx →0ax -sinbxtankx(a ,b ,k >0).解 (1)原式=limx →0sin3x3x·2x sin2x ·32=32.(2)原式=limx →0tan5x 5x ·2x sin2x ·52=52.(3)原式=limx →0arctan4x 4x ·2x arcsin2x ·42=2.(4)令u =1x,则x →∞时u →0.于是原式=limu →0sinu u=1.(5)原式=limx →0sin2(2x )(2x )2·4=4limx →0sin2x 2x 2=4.(6)原式=3limx →0tan3x 3x -2limx →0sin2x2x =3-2=1(7)因为1-cosx ~12x 2(x →0),所以原式=12limx →0x 2x sinx =12limx →0x sinx =12(8)原式=limx →0a k ·kx tankx -b k ·sinbx bx ·kxtankx=a k -b k =a -bk.13.求下列极限:(1)limx →∞1-1xx; (2)limx →∞1+5xx;(3)limx →0(1-sinx )1/x;(4)limx →0(1+3x )1/x;(5)limx →01-x22/x;(6)limx →∞x -2x +2x.解(1)原式=limx→∞1+1-x-x-1=1e.(2)原式=limx→∞1+1x /5x /55=e5.(3)令u =sinx ,则x →0时,u →0.于是原式=limu →0(1+u )1/u u /arcsin(-u )=e-1.(4)原式=limx →0[(1+3x )1/(3x )]3=e3(5)原式=limx →01-x 2-2/x-1=e-1(6)原式=limx →∞1-4x +2x=limx→∞1-4x +2-(x +2)/4-4x /(x +2)=e-4另解,令u =-x +24,则x =-4u -2,且u →∞(x →∞时),于是原式=limu →∞1+1u-4u -2=limu →∞1+1uu -4·limu →∞1+1u-2=e-4.14.求下列极限:(1)limx →0(cosx )1/(1-cosx ); (2)limx →0(sec2x )cot2x;(3)limx →π/2(1+cosx )5secx;(4)limx →0sinx -tanxsinx3;(5)limx →0(sinx 3)tanx1-cosx 2;(6)limx →π/61-2sinxsin(x -π/6);(7)limx →π/4(tan2x )tanπ4-x .解(1)令u =1-cosx ,则cosx =1-u ,且u →0(x →0时),因此原式=limu →0(1-u )1/u=e-1.(2)令u =cot2x ,则sec2x =1+1cot2x=1+1u ,且x →0时,u →+∞.因此原式=limu →+∞1+1uu=e(3)令u =cosx ,则secx =1u ,且x →π2时,u →0.因此原式=limu →0(1+u )5/u=limu →0(1+u )1/u 5=e5.(4)因为x →0时,sinx ~x ,sinx 3~x 3,cosx -1~-x22所以 原式=limx →0sinx (cosx -1)cosx ·sinx3=limx →0x ·(-x 2/2)x 3cosx=-12limx →01cosx =-12.(5)因为x →0时,sinx 3~x 3,tanx ~x ,1-cosx 2~12(x 2)2,所以原式=limx →0x 3·xx 4/2=2(6)令u =x -π6,则x →π6时,u →0,且有sinx =sinu +π6=12(3sinu +cosu )于是有 原式=limu →01-(3sinu +cosu )sinu=limu →01-cosu sinu -3=limu →0u 2/2sinu-3=-3.(7)因为tan2x =sin2x cos2x =sin2xcos2x -sin2xtanπ4-x =sinπ4-x cosπ4-x =cosx -sinx cosx +sinx所以tan2x tanπ4-x =sin2x cos2x -sin2x ·cosx -sinx cosx +sinx =sin2x (cosx +sinx )2从而原式=limx →π/4sin2x (cosx +sinx )2=122+222=12.15.讨论下列函数的连续性:(1)f (x )=x1-1-x ,x <0,x +2,x ≥0;(2)f (x )=e1/x,x <0,0,x =0,1xln(1+x 2),x >0.解 (1)由题设知f (0)=2,且f (0-0)=limx →0-x 1-1-x=limx →0-x (1+1-x )x =2f (0+0)=limx →0+(x +2)=2可见limx →0f (x )=2=f (0).所以,该函数在x =0处连续.另一方面,x1-1-x 在(-∞,0)内为初等函数,连续;x +2在(0,+∞)内为线性函数,连续.综上所述,该函数在(-∞,+∞)内连续.(2)因f (0)=0,且 f (0-0)=limx →0-e1/x=0, f (0+0)=limx →0+1xln(1+x 2)=limx →0+x ln(1+x 2)1/x 2=0·1=0所以 limx →0f (x )=0=f (0).因此,该函数在x =0处连续.另一方面,e1/x在(-∞,0)内连续,1xln(1+x 2)在(0,+∞)内连续.综上所述,该函数在(-∞,+∞)内连续.16.指出下列函数的间断点及其类型;如为可去间断点,将相应函数修改为连续函数;作出(1)、(2)、(3)的图形:(1)f (x )=1-x21+x ,x ≠-1,0,x =-1;(2)f (x )=x 2,x ≤0,lnx ,x >0;(3)f (x )=x x ; (4)f (x )=x sin1x.解 (1)由题设知f (-1)=0,而limx →-1f (x )=limx →-11-x 21+x =limx →-1(1-x )=2≠f (0)所以,x =-1为该函数的可去间断点.令f (-1)=2,则f ~(x )=1-x 21+x ,x ≠-12,x =-1=1-x在(-∞,+∞)内连续.f (x )的图形如图2.1所示.图2.1图2.2(2)由题设有f (0)=0,而f (0-0)=limx →0-x 2=0,f (0+0)=limx →0+lnx =-∞所以,x =0为该函数的无穷间断点.f (x )的图形如图2.2所示.(3)该函数在x =0处无定义,而f (0-0)=limx →0-xx =limx →0-x-x =-1,f (0+0)=limx →0+x x=limx →0+x x=1.图2.3因为左、右极限均存在但不相等,所以,x =0为该函数的跳跃间断点.f (x )的图形如图2.3所示.(4)该函数在x =0处无定义.因limx →0f (x )=limx →0x sin1x=0,故x =0为该函数的可去间断点.若令f (0)=0,则函数f ~(x )=x sin1x,x ≠00,x =0在(-∞,+∞)内连续.17.确定下列函数的定义域,并求常数a ,b ,使函数在定义域内连续:(1)f (x )=1x sinx ,x <0,a ,x =0,x sin1x+b ,x >0;(2)f (x )=ax +1,x ≤1,x 2+x +b ,x>1;(3)f (x )=1-x 2,-45<x <35,a +bx ,其他.解 (1)D f =(-∞,+∞).因f (x )在D f 的子区间(-∞,0)与(0,+∞)内均为初等函数.因此,f (x )在(-∞,0)∪(0,+∞)内连续.现讨论f (x )在分界点x =0处的连续性.已知f (0)=a ,而且f (0-0)=limx →0-sinxx =1,f (0+0)=limx →0+x sin1x+b =b 当f (0-0)=f (0+0)=f (0)时,即当a =b =1时,f (x )在x =0处连续.综上所述,当a =b =1时,该函数在其定义域(-∞,+∞)内连续.(2)D f =(-∞,+∞).因为f (-1)=1-a ,且f (-1-0)=limx →(-1)-(x 2+x +b )=bf (-1+0)=limx →(-1)+(ax +1)=1-a 所以,当a +b =1时,f (x )在x =-1处连续.又因f (1)=1+a ,且f (1-0)=limx →1-(ax +1)=a +1f (1+0)=limx →1+(x 2+x +b )=2+b所以,当a +1=2+b ,即a -b =1时,f (x )在x =1处连续.综上所述,当a +b =1且a -b =1,即a =1,b =0时,f (x )在x =-1和x =1处连续,从而f (x )在其定义域(-∞,+∞)内连续.(3)D f =(-∞,+∞).因f -45=a -45b ,且f -45-0=limx →-45-(ax +b )=a -45b f -45+0=limx →-45+1-x 2=35所以,当a -45b =35,即5a -4b =3时,f (x )在点x =-45处连续.又因f35=a +35b ,且f35-0=limx →35-1-x 2=45f35+0=limx →35+(a +bx )=a +35b 所以,当a +35b =45,即5a +3b =4时,f (x )在点x =35处连续.综上所述,当5a -4b =3且5a +3b =4,即a =57,b =17时,f(x)在x=-45与x=35处连续,从而f(x)在其定义域(-∞,+∞)内连续.(B)1.填空题:(1)limn→∞1n2+1(n+1)2+…+1(2n)2= ;(2)limx→0ln(x+a)-lnax(a>0)= ;(3)limx→a+x-a+x-ax2-a2(a>0)= ;(4)若limx→+∞xx n+1-(x-1)n+1=k≠0,n为正整数,则n= ,k= ;(5)x→0时,1+x-1-x是x的 无穷小;(6)设f(x)=sinx·sin1x,则x=0是f(x)的 间断点;(7)设f(x)=x x,则x=0是f(x)的 间断点;(8)函数f(x)=1x2-5x+6的连续区间是 .答 (1)0; (2)1a; (3)12a;(4)2008,12008; (5)等价;(6)可去; (7)跳跃; (8)(-∞,2)∪(3,+∞).解 (1)因为14n≤1n2+1(n+1)2+…+1(2n)2≤1n且limn→∞14n=0,limn→∞1n=0.所以,由夹逼定理可知,原式=0.(2)原式=limx→0ln1+x a1/x=1alimx→0ln1+x a a/x=1alnlimx→01+x a a/x=1alne=1a.(3)因为x-a+x-ax2-a2=x-ax+a(x+a)+1x+a且limx→a+x-ax+a(x+a)=0,limx→a+1x+a=12a所以,原式=12a.(4)因为x n+1-(x-1)n+1=[x-(x-1)][x n+x n-1(x-1)+…+x(x-1)n-1+(x-1)n]=x n1+1-1x+…+1-1x n-1+1-1x n所以,由题设有原式=limx→+∞x2008-n1+1-1x+…+1-1x n-1+1-1x n=k≠0显然,要上式成立,应有2008-n=0,即n=2008.从而原式=limx→+∞11+1-1x+…+1-1x n-11-1x n=1n=k所以,k=1n=12008.(5)因为limx→01+x-1-xx=limx→021+x+1-x=1所以,x→0时,1+x-1-x是x的等价无穷小.(6)因为limx→0sinx·sin1x=limx→0sinx x·limx→0xsin1x=1×0=0.所以,x=0是f(x)的可去间断点(令f(0)=0,即可).(7)因为f (0-0)=limx →0--x x =-1,f (0+0)=limx →0+xx=1左、右极限存在,但不相等,故x =0为跳跃间断点.(8)该函数有定义的条件是x 2-5x +6=(x -2)(x -3)>0由此得x <2或x >3.因此,该函数的连续区间为(-∞,2)或(3,+∞).2.单项选择题:(1)函数f (x )在点x 0处有定义,是极限limx →x 0f (x )存在的 .(A)必要条件; (B)充分条件;(C)充分必要条件;(D)无关条件.(2)下列“结论”中,正确的是 .(A)无界变量一定是无穷大;(B)无界变量与无穷大的乘积是无穷大;(C)两个无穷大的和仍是无穷大;(D)两个无穷大的乘积仍是无穷大.(3)设函数f (x )=1,x ≠1,0,x =1,则limx →1f (x )= .(A)0; (B)1; (C)不存在; (D)∞.(4)若limx →2x 2+ax +bx 2-3x +2=-1,则 .(A)a =-5,b =6; (B)a =-5,b =-6;(C)a =5,b =6;(D)a =5,b =-6.(5)设f (x )=1-x 1+x,g (x )=1-3x ,则当x →1时, .(A)f (x )与g (x )为等价无穷小;(B)f (x )是比g (x )高阶的无穷小;(C)f (x )是比g (x )低阶的无穷小;(D)f (x )与g (x )为同阶但不等价的无穷小.(6)下列函数中,在定义域内连续的是 .(A)f (x )=cosx ,x ≤0,sinx ,x >0; (B)f (x )=1x,x >0,x ,x ≤0;(C)f (x )=x +1,x ≤0,x -1,x >0;(D)f (x )=1-e-1/x 2,x ≠0,1,x =0.(7)下列函数在区间(-∞,1)∪[3,+∞]内连续的是 .(A)f (x )=x 2+2x -3; (B)f (x )=x 2-2x -3;(C)f (x )=x 2-4x +3;(D)f (x )=x 2+4x +3.(8)若f (x )在区间 上连续,则f (x )在该区间上一定取得最大、最小值.(A)(a ,b ); (B)[a ,b ]; (C)[a ,b ); (D)(a ,b ].答 (1)D; (2)D; (3)B;(4)A;(5)D; (6)D; (7)C; (8)B.解 (1)limx →x 0f (x )是否存在与f (x )在点x 0是否有定义无关,故应选(D).(2)(A)、(B)、(C)都不正确.例如n →∞时n sinn 是无界变量,而不是无穷大;n →∞时,n sinn 是无界变量,n 是无穷大,而n ·n sinn =n 2sinn 是无界变量,不是无穷大;n →∞时,n 与-n 都是无穷大,但n +(-n )=0是一常量,不是无穷大.(D)正确.例如,设limu →∞u 0=∞, limu →∞v n =∞则对任意给定的M >0,存在正整数N 1,N 2,使当n =N 1,n >N 2时,恒有u n>M ,v n >M取N =max{N 1,N 2},则当n >N 时,恒有u n v n=u n ·v n>M ·M =M2这表明limn →∞u n v n =∞.(3)易知f (1-0)=f (1+0)=1,从而limx →1f (x )=1,故应选(B).(4)因为limx →2(x 2-3x +2)=limx →2(x -2)(x -1)=0,因此,分子的极限也应为0,即应有x 2+ax +b =(x -2)(x -c )=x 2-(2+c )x +2c由此得a =-(2+c ),b =2c于是,由题设有limx →2x 2+ax +b x 2-3x +2=limx →2(x -2)(x -c )(x -2)(x -1)=limx →2x -cx -1=2-c =-1由此得c =3,从而得a =-5,b =6.故应选(A).(5)因为。
微积分课后习题参考答案第六章
第六章 微分方程与差分方程§1微分方程的基本概念习 题 6 — 11.验证下列各题中函数是所给微分方程的解,并指出解的类型: ⑴03=+'y y x ,3-=Cx y ; 解:3-=Cx y 是03=+'y y x 的通解;⑵ax xyy +=',bx ax y +=2,其中a ,b 为常数; 解:bx ax y +=2是ax xy y +='的特解(因为b 不是任意常数);⑶()()022='-'+'+''-y y y y x y x xy ,()xy y ln =;解:()xy y ln =是()()022='-'+'+''-y y y y x y x xy 的特解;⑷0127=+'-''y y y ,x xe C e C y 4231+=;解:x xe C eC y 4231+=是0127=+'-''y y y 的通解;⑸x y y y 2103=-'+'',50355221--+=-x e C e C y x x. 解:50355221--+=-x e C eC y x x是x y y y 2103=-'+''的通解. 知识点:,定义6.2(若一个函数代入微分方程后,能使方程两端恒等,则称这个函数为微分方程的解)和若微分方程的解中含有独立的任意常数且个数与微分方程的阶数相同,这样的解叫做微分方程的通解,不含任意常数的解称为特解。
2.在曲线族()xex C C y 221+=中找出满足条件10==x y ,10='=x y 的曲线.解:由题意得:()xe x C C C y 222122++=',∵10==x y ,10='=x y , ∴解得11=C ,12-=C , 故所求曲线为()xex y 21-=(xxe y 2=)。
大学数学基础教程课后答案(微积分)
z c -a
-b a x
O
b y
(4) D = ( x, y, z ) x ≥ 0, y ≥ 0, z ≥ 0, x 2 + y 2 + z 2 < 1
{
}
z 1
O x 1
1
y
2
4.求下列各极限: (1) lim 1 − xy 1−0 = =1 2 2 x +y 0 +1 ln( x + e y ) = ln( 1 + e 0 ) = ln 2 1+ 0
4
t t t t z x = −2 sin 2( x − ), z t = sin 2( x − ), z xt = 2 cos 2( x − ), z tt = − cos 2( x − ) 2 2 2 2 t t 2 z tt + z xt = −2 cos 2( x − ) + 2 cos 2( x − ) = 0 . 2 2 y x 1 y 1 x e , z y = e x , dz = − 2 e x dx + e dy ; 2 x x x x
(1)为使函数表达式有意义,需 y − 2 x ≠ 0 ,所以在 y − 2 x = 0 处,函数间
(2)为使函数表达式有意义,需 x ≠ y ,所以在 x = y 处,函数间断。 习题 1—2 1.( 1) z =
x y + y x
∂z 1 y ∂z 1 x = − 2; = − . ∂x y x ∂y x y 2 (2) ∂z = y cos( xy) − 2 y cos( xy) sin( xy) = y[cos( xy) − sin( 2 xy)] ∂x ∂z = x cos( xy) − 2 x cos( xy) sin( xy) = x[cos( xy) − sin( 2 xy)] ∂y (3) ∂z = y (1 + xy) y −1 y = y 2 (1 + xy) y −1 , ∂x lnz= yln(1+xy),两边同时对 y 求偏导得 1 ∂z x = ln( 1 + xy) + y , z ∂y 1 + xy
大学一年级上学期-微积分课后练习及答案-1.5-无穷小与无穷大
8
x
x→0+
x + x = lim
1
x→0+
x4
3
1
x4 + x4 = 0
第 1 章 极限与连续 第 5 节 无穷小与无穷大 2/6
《微积分 A》习题解答
解法 2: 0 ≤
x+
8
x≤
4
2
x ≤2
x
=
8
2
x
8
8
x ∈ (0, 1)
x
x
x
lim 8 x = 0 ,由夹逼定理得 lim x + x = 0
(3). 1 − x 与1 − x ( x → 1) 1+ x
第 1 章 极限与连续 第 5 节 无穷小与无穷大 1/6
《微积分 A》习题解答
1− x 解: lim 1 + x = lim (1 − x) ⋅ (1 + x ) = lim (1 + x ) = 1
x→1 1 − x x→1 (1 + x) ⋅ (1 − x) x→1 (1 + x)
《微积分 A》习题解答
习题 1.5(P57)
1. 下列函数在指定的变化过程中哪些是无穷小量,哪些是无穷大量?
(1). x − 2 ( x → 0) x
(2). ln x ( x → 0+ )
1
(3). e x ( x → 0+ )
1
(4). e x ( x → 0− )
1
(5). 1 − e x2 ( x → ∞)
故当 x → ∞ 时 1 − x 与1 − x 是等价无穷小. 1+ x
(4). arcsin x 与 x ( x → 0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1—1解答 1. 设y x xy y x f +=),(,求),(1),,(),1,1(),,(y x f y x xy f y x f y x f -- 解yxxy y x f +=--),(;x xy y y x f y x y x xy f x y xy y x f +=+=+=222),(1;),(;1)1,1(2. 设y x y x f ln ln ),(=,证明:),(),(),(),(),(v y f u y f v x f u x f uv xy f +++=),(),(),(),(ln ln ln ln ln ln ln ln )ln )(ln ln (ln )ln()ln(),(v y f u y f v x f u x f v y u y v x u x v u y x uv xy uv xy f +++=⋅+⋅+⋅+⋅=++=⋅=3. 求下列函数的定义域,并画出定义域的图形: (1);11),(22-+-=y x y x f(2);)1ln(4),(222y x y x y x f ---=(3);1),(222222cz b y a x y x f ---=(4).1),,(222zy x z y x z y x f ---++=解(1)(2) (3) (4)4(1)1limy x →→(2)lim1→→y x(3)41)42()42)(42(lim 42lim000-=+++++-=+-→→→→xy xy xy xy xy xy y x y x(4)2)sin(lim )sin(lim202=⋅=→→→→x xy xy y xy y x y x5.证明下列极限不存在:(1);lim 00yx y x y x -+→→ (2)2222200)(lim y x y x y x y x -+→→ (1)证明 如果动点),(y x P 沿x y 2=趋向)0,0( 则322lim lim0020-=-+=-+→→=→x x xx y x y x x x y x ;如果动点),(y x P 沿y x 2=趋向)0,0(,则33lim lim 0020==-+→→=→y yy x y x y y x y所以极限不存在。
(2)证明 如果动点),(y x P 沿x y =趋向)0,0(则1lim )(lim 4402222200==-+→→=→x x y x y x y x x x y x ; 如果动点),(y x P 沿x y 2=趋向)0,0(,则044lim )(lim 244022222020=+=-+→→=→x x x y x y x y x x x y x 所以极限不存在。
6.指出下列函数的间断点:(1)xy xy y x f 22),(2-+=; (2)y x z -=ln 。
解 (1)为使函数表达式有意义,需022≠-x y ,所以在022=-x y 处,函数间断。
(2)为使函数表达式有意义,需y x ≠,所以在y x =处,函数间断。
习题1—2 1.(1)x y y x z +=,21x y y x z -=∂∂,21y xx y z -=∂∂. (2))]2sin()[cos()sin()cos(2)cos(xy xy y xy xy y xy y xz-=-=∂∂ )]2sin()[cos()sin()cos(2)cos(xy xy x xy xy x xy x yz-=-=∂∂(3)121)1()1(--+=+=∂∂y y xy y y xy y xz, lnz=yln(1+xy),两边同时对y 求偏导得,1)1ln(1xyxy xy y z z +++=∂∂]1)1[ln()1(]1)1[ln(xyxy xy xy xy xy xy z y zy ++++=+++=∂∂; (4))(2213323y x x y x x y x x y x z +-=+-=∂∂,;11322y x x y x x y z +=+=∂∂ (5)x x zy z ux x z y u x z y x u z yz yz yln ,ln 1,21-=∂∂=∂∂=∂∂-; (6)z z y x y x z x u 21)(1)(-+-=∂∂-, z z y x y x z y u 21)(1)(-+--=∂∂-,zz y x y x y x z u 2)(1)ln()(-+--=∂∂; 2.(1)0,1,0,,=====yy xy xx y x z z z x z y z ;(2) ),(2sin ),(2sin by ax b z by ax a z y x +=+=)(2cos 2),(2cos 2),(2cos 222by ax b z by ax ab z by ax a z yy xy xx +=+=+=.3 2222,2,2x yz f z xy f xz y f z y x +=+=+=,,2,2,2z f x f z f yz xz xx ===0)0,1,0(,2)2,0,1(,2)1,0,0(=-==yz xz xx f f f .4)2(2cos ),2(2cos 2),2(2sin ),2(2sin 2tx z t x z t x z t x z tt xt t x --=-=-=--=0)2(2cos 2)2(2cos 22=-+--=+tx t x z z xt tt .5.(1) x yx e x y z 2-=, x y y e x z 1=,=dz +-dx e xy x y 2dy e x x y1;(2) )ln(2122y x z +=,22yx x z x +=,22y x y z y +=,dy y x y dx y dz 2222x x +++=;(3)2222)(1y x y x y x y z x +-=+-= , 222)(11y x x xy x z y +=+= ,22y x xdy ydx dz ++-=; (4) ,1-=yz x yzxu x zx u yz y ln =,x yx u yz z ln =, =du xdz yx xdy zx dx yzx yz yz yz ln ln 1++-.6. 设对角线为z,则,22y x z +=22yx x z x +=,22yx y z y +=, =dz 22yx ydy xdx ++当1.0,05.0,8,6-=∆=∆==y x y x 时,2286)1.0(805.06+-⨯+⨯=≈∆dz z =-0.05(m).7. 设两腰分别为x 、y,斜边为z,则,22y x z +=22yx x z x +=,22yx y z y +=, =dz 22yx ydy xdx ++,设x 、y 、z 的绝对误差分别为x δ、y δ、z δ,当1.0,1.0,24,7=≤∆=≤∆==y x y x y x δδ时, 2524722=+=z222471.0241.07+⨯+⨯≤≤∆dz z =0.124,z 的绝对误差124.0=z δz 的相对误差≈∆z z %496.025124.0=. 8. 设内半径为r ,内高为h ,容积为V ,则h r V 2π=,rh V r π2=,2r V h π=,dh r rhdr dV 22ππ+=,当1.0,1.0,20,4=∆=∆==h r h r 时,)(264.551.0414.31.020414.3232cm dV V =⨯⨯+⨯⨯⨯⨯=≈∆.习题1—31.=∂∂+∂∂+∂∂=dxdz z f dx dy y f dx dx x f dx du ++2)(1z xy z y +⋅+ax ae zxy z x2)(122)(1z xy z xy +-)1(2+⋅ax a=222)]1(2[y x z ax axy axz z y ++-+=axax ex ax x a e ax 22422)1()1()1(++++. 2.x f x f x z ∂∂∂∂+∂∂∂∂=∂∂ηηξξ=4432224arcsin 11y x x y x x+⋅+----ξξη=))(1()ln(1arcsin 422224444223y x y x y x x y x y x x +--+-+--y f y f y z ∂∂∂∂+∂∂∂∂=∂∂ηηξξ=4432224arcsin 11y x y y x y+⋅+----ξξη=))(1()ln(1arcsin 422224444223y x y x y x y y x y x y +--+-+--.3. (1)xu ∂∂=212f ye xf xy +, y u ∂∂=212f xe yf xy+-.(2)x u ∂∂=11f y ⋅, y u ∂∂=2121f z f y x +⋅-,z u∂∂=22f zy ⋅-.(3)xu∂∂=321yzf yf f ++,y u ∂∂=32xzf xf +,z u ∂∂=3xyf .(4)x u ∂∂=3212f yf xf ++y u ∂∂=3212f xf yf ++,z u∂∂=3f .4 .(1)1yf xz=∂∂,21f xf y z +=∂∂, 11222f y x z =∂∂,12111121112)(yf xyf f f xf y f yx z ++=++=∂∂∂, 2221121122)(f xf f xf x yz +++=∂∂=22121122f xf f x ++ (2)2122xyf f y xz+=∂∂,2212f x xyf y z +=∂∂, 2222123114222212212112222442)2(22)2(f y x f xy f y yf xyf f y xy yf xyf f y y xz +++=++++=∂∂.1222223113212222121221121252222)2(22)2(2f y x yf x f xy xf yf f x xyf xy xf f x xyf y yf y x z++++=+++++=∂∂∂ 2241231122122221212211122442)2()2(22f x yf x f y x xf f x xyf x f x xyf xy xf y z +++=++++=∂∂ 5 yux u t y y u t x x u t u y u x u s y y u s x x u s u ∂∂+∂∂-=∂∂∂∂+∂∂∂∂=∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂2123,2321, 222)(4323)(41)(y u y u x u x u s u ∂∂+∂∂∂∂+∂∂=∂∂,222)(4123)(43)(yu y u x u x u t u ∂∂+∂∂∂∂-∂∂=∂∂, 2222)()()()(yu x u t u s u ∂∂+∂∂=∂∂+∂∂∴. 6 (1) 设)(),,(z y x ez y x z y x F ++--++=, )(1z y x x e F ++-+=,)(1z y x y e F ++-+=,)(1z y x z e F ++-+=,1-=-=∂∂z x F F x z ,1-=-=∂∂zy F F y zxz y x y x zy x y x z y x x F yx z y x z z y x F x 2))(21(sec tan,tan ),,()2(23222222222222222---------=---=设=222222tany x xz yx z yx x -+---222secyx z -,)2())(21(sectan2322222222222yz y x y x zy x yx zyx yF y --------=- =222222tany x yz yx z yx y -----222secyx z -,-=1z F 22222sec yx z y x --221yx -=222tanyx z --,=∂∂x z )cot 1(cot 222222222y x z y x xz y x z y x x F F z x -+-+---=-,=∂∂y z ).cot 1(cot 222222222yx z yx yz y x z y x y F F z y -+-----=-(3) 设xyz z y x z y x F 22),,(-++=,x yz F x -=1yxzF y -=2zxyF x -=1, =∂∂xzz x F F -=xy xyz xyz yz --,=∂∂yzz y F F -=xyxyz xyz xz --2.(4) 设y z z x y z z x z y x F ln ln ln ),,(+-=-=,y F z F y x 1,1==z zx F z 12--=, =∂∂x z z x z F F z x +=-,=∂∂y z )(2z x y z F F z y +=-, 7.设)32sin(232),,(z y x z y x z y x F -+--+=,),32cos(21z y x F x -+-=)32cos(42z y x F y -+-=,)32cos(63z y x F z -++-=,∴=∂∂x z31=-z x F F ,=∂∂y z 32=-z y F F ,∴+∂∂x z =∂∂yz1. 8.设2121,,),,(),,(φφφφφb a F c F c F bz cy az cx z y x F z y x --===--=,=∂∂x z211φφφb a c F F z x +=-,=∂∂y z ,212φφφb a c F F z y +=- ∴+∂∂xzac y z b =∂∂. 9. (1)方程两边同时对x 求导得⎪⎩⎪⎨⎧=+++=,0642,22dx dzz dx dy y x dx dy y x dx dz 解之得⎪⎪⎩⎪⎪⎨⎧+=++-=13,)13(2)16(z x dx dy z y z x dx dy(2) 方程两边同时对z 求导得⎪⎩⎪⎨⎧=++=++0222,01z dz dyy dz dx x dz dydz dx 解之得⎪⎪⎩⎪⎪⎨⎧--=--=.,yx xz dzdy yx zy dz dx(3) 方程两边同时对x 求偏导得⎪⎩⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=,sin cos 0,cos sin 1x v v u v x u x u e x v v u v x u x u e u u 解之得⎪⎪⎩⎪⎪⎨⎧+--=∂∂+-=∂∂.]1)cos (sin [cos ,1)cos (sin sin v v e u e v x v v v e v x u u uu 同理方程两边同时对y 求偏导得⎪⎪⎩⎪⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=,sin cos 1,cos sin 0y v v u v y u y u e yvv u v y u y u e u u解之得⎪⎪⎩⎪⎪⎨⎧+-+=∂∂+--=∂∂.]1)cos (sin [sin ,1)cos (sin cos v v e u e v x v v v e v x u u uu000000022200012141(1)23,(1,1,0),(1,1,2)22,44,60,4*((2)(),(1,1,1),(2,1,1);()()p p p p p p p pz z p p ul u x y z p l u x x u y y u zzl u l yu p l x u y yz x x x --∂∂=++=-∂==∂∂==∂∂==∂=∂∴=+=∂==-∂=-=∂习题。