半导体器件物理与工艺+施敏++答案
施敏-课后习题答案2
ni (9.65 10 ) n p 5 1015 1.86 10 4 cm 3
1 qp p
2
9 2
1 1.6 10 19 5 1015 350 3.57cm
(c) 51015硼原子/cm3、1017砷原子/cm3及1017镓 原子/cm3
(a) q
a q kT n N 0 exp( ax) q a kT n N 0 exp( ax ) a kT n N D q n N D a kT q
注,可用题十中的公式:
kT dN D ( x) 1 E(x) q N ( x) dx D
4 4 22 3 2 . 2 10 cm a 3 (5.65 108 )3
密度 = 每立方厘米中的原子数× 原子量/阿伏伽德罗常数
(69.72 74.92) 3 2.2 10 g / cm 23 6.02 10
22
2.2 144.64 g / cm 3 60.2
解:在能量为dE范围内单位体积的电子数N(E)F(E)dE, 而导带中每个电子的动能为E-Ec 所以导带中单位体积电子总动能为
Ec
( E Ec ) N ( E ) F ( E )dE
N ( E ) F ( E )dE
而导带单位体积总的电子数为
Ec
导带中电子平均动能:
Ec
( E Ec ) N ( E ) F ( E )dE
Slr vth p N st 107 2 1016 1010 20cm / s
半导体器件物理 习题答案
第二章
热平衡时的能带和载流子浓度
(施敏)半导体器件物理(详尽版)
实际应用中的
半导体材料
原子并不是静止在具有严格周期性 的晶格的格点位置上,而是在其平 衡位置附近振动
并不是纯净的,而是含有若干杂质, 即在半导体晶格中存在着与组成半 导体的元素不同的其他化学元素的 原子
晶格结构并不是完整无缺的,而存 在着各种形式的缺陷
在晶体中,不但外层价电 子的轨道有交叠,内层电 子的轨道也可能有交叠, 它们都会形成共有化运动;
半导体中的电子是在周期性排列 且固定不动的大量原子核的势场 和其他大量电子的平均势场中运动。 这个平均势场也是周期性变化的, 且周期与晶格周期相同。
但内层电子的轨道交叠较 少,共有化程度弱些,外 层电子轨道交叠较多,共 有化程度强些。
思考
• 既然半导体电子和空穴都能导电,而导 体只有电子导电,为什么半导体的导电 能力比导体差?
江西科技师范大学
半导体器件物理
●导带底EC 导带电子的最低能量
●价带顶EV 价带电子的最高能量
●禁带宽度 Eg
Eg=Ec-Ev
●本征激发 由于温度,价键上的电子 激发成为准自由电子,亦 即价带电子激发成为导带 电子的过程 。
江西科技师范大学
半导体器件物理
如图,晶面ACC’A’在 坐标轴上的
截距为1,1,∞,
其倒数为1,1,0,
此平面用密勒指数表示 为(110),
此晶面的晶向(晶列指 数)即为[110];
晶面ABB’A’用密勒指 数表示为( 100 );
晶面D’AC用密勒指数 表示为( 111 )。
江西科技师范大学
半导体器件物理
图1-7 一定温度下半导体的能带示意图 江西科技师范大学
半导体器件物理
半导体器件物理及工艺办法施敏答案
半导体器件物理及工艺办法+施敏++答案半导体器件物理及工艺是半导体科学与工程领域的重要分支,涉及半导体器件的基本原理、结构和制造工艺等方面。
本文将介绍施敏的《半导体器件物理及工艺》一书,并给出相应的答案。
一、半导体器件物理及工艺概述半导体器件物理及工艺是研究半导体器件的基本原理、结构和制造工艺的学科。
半导体器件具有高灵敏度、高可靠性、高速度等优点,在电子、通信、自动化等领域得到广泛应用。
半导体器件物理及工艺的主要研究对象包括半导体材料、半导体器件的原理和结构、制造工艺等。
二、施敏《半导体器件物理及工艺》简介施敏的《半导体器件物理及工艺》是一本经典的教材,系统地介绍了半导体器件的基本原理、结构和制造工艺。
全书分为十章,包括半导体材料、半导体器件的基本原理、PN结二极管、双极晶体管、金属氧化物半导体场效应晶体管、光电器件、半导体集成电路等。
三、施敏《半导体器件物理及工艺》答案1.什么是半导体?请列举出三种常见的半导体材料。
答:半导体是指导电性能介于导体和绝缘体之间的材料。
常见的半导体材料包括硅、锗、砷化镓等。
2.简述PN结的形成及其基本性质。
答:PN结是由P型半导体和N型半导体相互接触形成的势垒区。
PN结的基本性质包括单向导电性、电容效应和光电效应等。
3.解释双极晶体管的工作原理。
答:双极晶体管是由P型半导体和N型半导体组成的三明治结构,通过控制基极电流来控制集电极和发射极之间的电流,实现放大作用。
4.什么是金属氧化物半导体场效应晶体管?请简述其工作原理。
答:金属氧化物半导体场效应晶体管是一种电压控制型器件,通过改变栅极电压来控制源极和漏极之间的电流,实现放大作用。
其工作原理是基于MOS结构的电容效应和隧道效应。
5.光电器件的基本原理是什么?请举例说明其应用。
答:光电器件的基本原理是光电效应,即光照射在物质表面上时,物质会吸收光能并释放电子,产生电流。
光电器件的应用包括太阳能电池、光电传感器等。
6.请简述半导体的基本制备工艺流程。
半导体器件物理施敏答案
半导体器件物理施敏答案【篇一:施敏院士北京交通大学讲学】t>——《半导体器件物理》施敏 s.m.sze,男,美国籍,1936年出生。
台湾交通大学电子工程学系毫微米元件实验室教授,美国工程院院士,台湾中研院院士,中国工程院外籍院士,三次获诺贝尔奖提名。
学历:美国史坦福大学电机系博士(1963),美国华盛顿大学电机系硕士(1960),台湾大学电机系学士(1957)。
经历:美国贝尔实验室研究(1963-1989),交通大学电子工程系教授(1990-),交通大学电子与资讯研究中心主任(1990-1996),国科会国家毫微米元件实验室主任(1998-),中山学术奖(1969),ieee j.j.ebers奖(1993),美国国家工程院院士(1995), 中国工程院外籍院士 (1998)。
现崩溃电压与能隙的关系,建立了微电子元件最高电场的指标等。
施敏院士在微电子科学技术方面的著作举世闻名,对半导体元件的发展和人才培养方面作出了重要贡献。
他的三本专著已在我国翻译出版,其中《physics of semiconductor devices》已翻译成六国文字,发行量逾百万册;他的著作广泛用作教科书与参考书。
由于他在微电子器件及在人才培养方面的杰出成就,1991年他得到了ieee 电子器件的最高荣誉奖(ebers奖),称他在电子元件领域做出了基础性及前瞻性贡献。
施敏院士多次来国内讲学,参加我国微电子器件研讨会;他对台湾微电子产业的发展,曾提出过有份量的建议。
主要论著:1. physics of semiconductor devices, 812 pages, wiley interscience, new york, 1969.2. physics of semiconductor devices, 2nd ed., 868 pages, wiley interscience, new york,1981.3. semiconductor devices: physics and technology, 523 pages, wiley, new york, 1985.4. semiconductor devices: physics and technology, 2nd ed., 564 pages, wiley, new york,2002.5. fundamentals of semiconductor fabrication, with g. may,305 pages, wiley, new york,20036. semiconductor devices: pioneering papers, 1003 pages, world scientific, singapore,1991.7. semiconductor sensors, 550 pages, wiley interscience, new york, 1994.8. ulsi technology, with c.y. chang,726 pages, mcgraw hill, new york, 1996.9. modern semiconductor device physics, 555 pages, wiley interscience, new york, 1998. 10. ulsi devices, with c.y. chang, 729 pages, wiley interscience, new york, 2000.课程内容及参考书:施敏教授此次来北京交通大学讲学的主要内容为《physics ofsemiconductor device》中的一、四、六章内容,具体内容如下:chapter 1: physics and properties of semiconductors1.1 introduction 1.2 crystal structure1.3 energy bands and energy gap1.4 carrier concentration at thermal equilibrium 1.5 carrier-transport phenomena1.6 phonon, optical, and thermal properties 1.7 heterojunctions and nanostructures 1.8 basic equations and exampleschapter 4: metal-insulator-semiconductor capacitors4.1 introduction4.2 ideal mis capacitor 4.3 silicon mos capacitorchapter 6: mosfets6.1 introduction6.2 basic device characteristics6.3 nonuniform doping and buried-channel device 6.4 device scaling and short-channel effects 6.5 mosfet structures 6.6 circuit applications6.7 nonvolatile memory devices 6.8 single-electron transistor iedm,iscc, symp. vlsi tech.等学术会议和期刊上的关于器件方面的最新文章教材:? s.m.sze, kwok k.ng《physics of semiconductordevice》,third edition参考书:? 半导体器件物理(第3版)(国外名校最新教材精选)(physics of semiconductordevices) 作者:(美国)(s.m.sze)施敏 (美国)(kwok k.ng)伍国珏译者:耿莉张瑞智施敏老师半导体器件物理课程时间安排半导体器件物理课程为期三周,每周六学时,上课时间和安排见课程表:北京交通大学联系人:李修函手机:138******** 邮件:lixiuhan@案2013~2014学年第一学期院系名称:电子信息工程学院课程名称:微电子器件基础教学时数: 48授课班级: 111092a,111092b主讲教师:徐荣辉三江学院教案编写规范教案是教师在钻研教材、了解学生、设计教学法等前期工作的基础上,经过周密策划而编制的关于课程教学活动的具体实施方案。
半导体器件物理施敏第三版ppt
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
EF
EC
ED 2
kT ln 2
ND 2NC
0.027 0.022
0.005eV
(2) 常温情况(T=300K) EC -EF = kT ln(n/ni)= 0.0259ln(ND/ni) = 0.205 eV
(3) 高温情况(T=600K) 根据图2.22可看出ni =3X1015 cm-3,已接近施主浓度 EF -Ei = kT ln(n/ni) = 0.0518ln(ND/ni) = 0.0518ln3.3=0.06eV
D EF ED
kT
16
[(EC 0.0459)( EC 0.045)]1.61019 1.38102377
5.34105 cm3
n中性 n电离
(1 0.534) 1016 0.5341016
0.873
第三章 载流子输运现象
2. 假定在T = 300 K,硅晶中的电子迁移率为n = 1300 cm2/V·s,再假定迁移率主要受限于晶格散射, 求在(a) T = 200 K,及(b) T = 400 K时的电子迁移率。
n ni2 (9.65109)2 1.86104cm3
p
51015
1
qp p
1.6
10
19
1 5
1015
350
3.57cm
(c) 51015硼原子/cm3、1017砷原子/cm3及1017镓 原子/cm3
半导体器件物理与工艺英文版(施敏著)苏州大学出版社课后答案
课后答案网:若侵犯了您的版权利益,敬请来信告知!课后答案网您最真诚的朋友网团队竭诚为学生服务,免费提供各门课后答案,不用积分,甚至不用注册,旨在为广大学生提供自主学习的平台!课后答案网:视频教程网:PPT课件网:课后答案网 w w w .h a c k s h p .c n课后答案网 www.hackshp.cn课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 www.hackshp.cn课后答案网 www.hackshp.cn课后答案网 w ww.hackshp.cn课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w w w .h a c k s h p .c n课后答案网 w ww .h a c k s h p .c n。
半导体器件物理复习(施敏)
半导体器件物理复习(施敏)第⼀章1、费⽶能级和准费⽶能级费⽶能级:不是⼀个真正的能级,是衡量能级被电⼦占据的⼏率的⼤⼩的⼀个标准,具有决定整个系统能量以及载流⼦分布的重要作⽤。
准费⽶能级:是在⾮平衡状态下的费⽶能级,对于⾮平衡半导体,导带和价带间的电⼦跃迁失去了热平衡,不存在统⼀费⽶能级。
就导带和价带中的电⼦讲,各⾃基本上处于平衡态,之间处于不平衡状态,分布函数对各⾃仍然是适应的,引⼊导带和价带费⽶能级,为局部费⽶能级,称为“准费⽶能级”。
2、简并半导体和⾮简并半导体简并半导体:费⽶能级接近导带底(或价带顶),甚⾄会进⼊导带(或价带),不能⽤玻尔兹曼分布,只能⽤费⽶分布⾮简并半导体:半导体中掺⼊⼀定量的杂质时,使费⽶能级位于导带和价带之间3、空间电荷效应当注⼊到空间电荷区中的载流⼦浓度⼤于平衡载流⼦浓度和掺杂浓度时,则注⼊的载流⼦决定整个空间电荷和电场分布,这就是空间电荷效应。
在轻掺杂半导体中,电离杂质浓度⼩,更容易出现空间电荷效应,发⽣在耗尽区外。
4、异质结指的是两种不同的半导体材料组成的结。
5、量⼦阱和多量⼦阱量⼦阱:由两个异质结或三层材料形成,中间有最低的E C和最⾼的E V,对电⼦和空⽳都形成势阱,可在⼆维系统中限制电⼦和空⽳当量⼦阱由厚势垒层彼此隔开时,它们之间没有联系,这种系统叫做多量⼦阱6、超晶格如果势垒层很薄,相邻阱之间的耦合很强,原来分⽴的能级扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这种结构称为超晶格。
7、量⼦阱与超晶格的不同点a.跨越势垒空间的能级是连续的b.分⽴的能级展宽为微带另⼀种形成量⼦阱和超晶格的⽅法是区域掺杂变化第⼆章1、空间电荷区的形成机制当这两块半导体结合形成p-n结时,由于存在载流⼦浓度差,导致了空⽳从p区到n 区,电⼦从n区到p区的扩散运动。
对于p 区,空⽳离开后,留下了不可动的带负电的电离受主,这些电离受主,没有正电荷与之保持电中性,所以在p-n结附近p 区⼀侧出现了⼀个负电荷区。
半导体器件物理施敏
由两种不同材料的半导体接触形成的结; 一种由p型和 n型半导体接触形成的结,是大局部半导体器件的关键根底构造; 结合三个p-n结就可以形成p-n-p-n构造,叫做可控硅器件。 〔三〕异质结(heterojunction) 金属-氧化物界面和氧化物-半导体界面结合的构造; 可以用来做整流接触,具有单向导电性; 结合三个p-n结就可以形成p-n-p-n构造,叫做可控硅器件。 加上另一个p型半导体就可以形成一个p-n-p双极型晶体管; 〔二〕p-n结(junction) 〔一〕金属半导体接触 〔三〕异质结(heterojunction)
半导体器件物理施敏
〔一〕金属半导体接触
• 可以用来做整流接触,具有单向导 电性;
• 也可以用来做欧姆接触,电流双向 通过。
〔二〕p-n结(junction)
• 一种由p型和 n型半导体接触形成的结,是 〔一〕金属半导体接触
〔二〕p-n结(junction) 用MOS构造当作栅极,再用两个p-n结分别当作漏极和源极,就可以制作出金氧半场效应晶体管(MOSFET);
也可以用来做欧姆接触,电流双向通过。 〔三〕异质结(heterojunction) 〔二〕p-n结(junction) 结合三个p-n结就可以形成p-n-p-n构造,叫做可控硅器件。 加上另一个p型半导体就可以形成一个p-n-p双极型晶体管; 金属-氧化物界面和氧化物-半导体界面结合的构造; 由两种不同材料的半导体接触形成的结;
是快速器件和光电器件的关键构成要素。 一种由p型和 n型半导体接触形成的结,是大局部半导体器件的关键根底构造; 结合三个p-n结就可以形成p-n-p-n构造,叫做可控硅器件。 金属-氧化物界面和氧化物-半导体界面结合的构造;
半导体器件物理课后习题答案中文版(施敏)
E�
2 3
2 1
得�简化并式上入代
)
2
h / T k n m �2 ( 21 �
C
N和2/3)2h/Tkpm�2(2≡ VN将
DN=iN�时度温征本
3�
mc 01 � D N
51
,)Tk2/ g E-( pxe v N c N
� i n 有意题据根�解
�
。度温征本的品样硅的米厘 方立/子原磷 5101杂掺出找。度温的时度浓质杂于 等度浓子流载征本当为度温征本的体导半一 .41
�
) 2/3-aT : a�( = ) 2/3-T : n�( �解 。2度浓质杂总为TN中其 �化变而 TN/2/3T 着随为视可上论理 I�率移迁的成造所射散质 杂由。少减式方的 2/3-T 随将 L�率移迁的成造所射散格晶示 显析分论理。�页94书�系关例比的 2/3-T与L�用利以可实其
�
��
) x ( 散扩n J
�
��E
)x ( E � � �
移漂 n
J
式形分微的律定姆欧据根
移漂n
0 � nJ �
散扩n
J�
J
有以所�动流净的子流载有没部内品样�时衡平热为因
)x(E的时1-m�1 = a当出算计)b(。法示表的)x(E场电建内下态状衡 平在求�中围范的in >> DN在)a(。)xa-( pxeoN = DN 得使而�主施了杂掺端一从品样晶硅征本个一 .11
1
�
� pq
1
。之示表DN以并AN求�05 = pD/nD若。阻电 的1R 5.0个一了生产而��DN>>AN�AN主受的量知 未个一了杂掺又后之体导半个一同。1R阻电一有具且 �质杂的�in >> DN�DN为度浓了杂掺体导半个一 .9
(施敏)半导体器件物理(详尽版)
江西科技师范大学
半导体器件物理
光照与半导体
光照对半导体材料的导电能力也有很大的影响。
例如,硫化镉(CdS)薄膜的暗电阻为几十兆欧, 然而受光照后,电阻降为几十千欧,阻值在受光照以 后改变了几百倍。
光敏电阻 成为自动化控制中的一个重要元件。
江西科技师范大学
半导体器件物理
其他因素与半导体
除温度、杂质、光照外,电场、磁场及其他
解
江西科技师范大学
半导体器件物理 例1-2
硅(Si)在300K时的晶格常数为5.43Å。请计算出每立方厘米体 积中硅原子数及常温下的硅原子密度。(硅的摩尔质量为 28.09g/mol)
解
江西科技师范大学
半导体器件物理
晶体的各向异性
沿晶格的不同方向,原子排列的周期 性和疏密程度不尽相同,由此导致晶体在 不同方向的物理特性也不同 。
图1-7 一定温度下半导体的能带示意图 江西科技师范大学
半导体器件物理
注意三个“准”
• 准连续 • 准粒子 • 准自由
江西科技师范大学
半导体器件物理
练习
• 整理空带、满带、半满带、价带、导带、 禁带、导带底、价带顶、禁带宽度的概 念。
• 简述空穴的概念。
江西科技师范大学
半导体器件物理 1.4 半导体中的杂质和缺陷 理想的半导体晶体
● 空带
没有电子填充的一系列准 连续的能量状态 空带也不导电
图1-5 金刚石结构价电子能带图(绝对零度) 江西科技师范大学
半导体器件物理
●导带
有电子能够参与导电的能带, 但半导体材料价电子形成的高 能级能带通常称为导带。
●价带
由价电子形成的能带,但半导体 材料价电子形成的低能级能带通 常称为价带。
(施敏)半导体器件物理(详尽版)82866
图1-7 一定温度下半导体的能带示意图 江西科技师范大学
半导体器件物理
注意三个“准”
• 准连续 • 准粒子 • 准自由
江西科技师范大学
半导体器件物理
练习
• 整理空带、满带、半满带、价带、导带、 禁带、导带底、价带顶、禁带宽度的概 念。
• 简述空穴的概念。
江西科技师范大学
半导体器件物理 1.4 半导体中的杂质和缺陷 理想的半导体晶体
半导体的电导率随温度升高而迅速增加。
金属电阻率的温度系数是正的(即电阻率随温 度升高而增加,且增加得很慢);
半导体材料电阻率的温度系数都是负的(即温 度升高电阻率减小,电导率增加,且增加得很快)。
热敏电阻 对温度敏感,体积又小,热惯性也小, 寿命又长,因此在无线电技术、远距离控制与测量、 自动化等许多方面都有广泛的应用价值。
晶面指数(密勒指数)
• 任何三个原子组成的晶面在空间有许多和它相同 的平行晶面
• 一族平行晶面用晶面指数来表示 • 它是按晶面在坐标轴上的截距的倒数的比例取互
质数 • (111)、(100)、(110) • 相同指数的晶面和晶列互相垂直。
江西科技师范大学
半导体器件物理 1.2 半导体的电性能
温度与半导体
江西科技师范大学
半导体器件物理
金刚石结构
由两个面心立方结构 沿空间对角线错开四 分之一的空间对角线 长度相互嵌套而成。
硅(Si) 锗(Ge)
江西科技师范大学
半导体器件物理
大量的硅(Si)、锗 (Ge)原子靠共价键 结合组合成晶体,每 个原子周围都有四个 最邻近的原子,组成 正四面体结构, 。这 四个原子分别处在正 四面体的四个顶角上, 任一顶角上的原子各 贡献一个价电子和中 心原子的四个价电子 分别组成电子对,作 为两个原子所共有的 价电子对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Solutions Manual to Accompany SEMICONDUCTOR DEVICESPhysics and Technology2nd EditionS. M. SZEUMC Chair ProfessorNational Chiao Tung UniversityNational Nano Device LaboratoriesHsinchu, TaiwanJohn Wiley and Sons, IncNew York. Chicester / Weinheim / Brisband / Singapore / TorontoContentsCh.1 Introduction--------------------------------------------------------------------- 0 Ch.2 Energy Bands and Carrier Concentration-------------------------------------- 1 Ch.3 Carrier Transport Phenomena-------------------------------------------------- 7 Ch.4p-n Junction--------------------------------------------------------------------16 Ch.5 Bipolar Transistor and Related Devices----------------------------------------32 Ch.6 MOSFET and Related Devices-------------------------------------------------48 Ch.7 MESFET and Related Devices-------------------------------------------------60 Ch.8 Microwave Diode, Quantum-Effect and Hot-Electron Devices---------------68 Ch.9Photonic Devices-------------------------------------------------------------73 Ch.10 Crystal Growth and Epitaxy---------------------------------------------------83 Ch.11 Film Formation----------------------------------------------------------------92 Ch.12 Lithography and Etching------------------------------------------------------99 Ch.13 Impurity Doping---------------------------------------------------------------105 Ch.14 Integrated Devices-------------------------------------------------------------113CHAPTER 21. (a) From Fig. 11a, the atom at the center of the cube is surround by fourequidistant nearest neighbors that lie at the corners of a tetrahedron. Therefore the distance between nearest neighbors in silicon (a = 5.43 Å) is1/2 [(a /2)2 + (a 2/2)2]1/2 = a 3/4 = 2.35 Å.(b) For the (100) plane, there are two atoms (one central atom and 4 corner atoms each contributing 1/4 of an atom for a total of two atoms as shown in Fig. 4a)for an area of a 2, therefore we have2/ a 2 = 2/ (5.43 × 10-8)2 = 6.78 × 1014 atoms / cm 2Similarly we have for (110) plane (Fig. 4a and Fig. 6)(2 + 2 ×1/2 + 4 ×1/4) /a 22 = 9.6 × 1015 atoms / cm 2,and for (111) plane (Fig. 4a and Fig. 6)(3 × 1/2 + 3 × 1/6) / 1/2(a 2)(a23) =2232a= 7.83 × 1014 atoms / cm 2.2. The heights at X, Y, and Z point are ,43,41and 43.3. (a) For the simple cubic, a unit cell contains 1/8 of a sphere at each of the eight corners for a total of one sphere.4 Maximum fraction of cell filled= no. of sphere × volume of each sphere / unit cell volume = 1 × 4ð(a /2)3 / a 3 = 52 %(b) For a face-centered cubic, a unit cell contains 1/8 of a sphere at each of the eight corners for a total of one sphere. The fcc also contains half a sphere at each of the six faces for a total of three spheres. The nearest neighbor distance is 1/2(a 2). Therefore the radius of each sphere is 1/4 (a 2).4 Maximum fraction of cell filled= (1 + 3) {4ð[(a /2) / 4 ]3 / 3} / a 3 = 74 %.(c) For a diamond lattice, a unit cell contains 1/8 of a sphere at each of the eight corners for a total of one sphere, 1/2 of a sphere at each of the six faces for a total of three spheres, and 4 spheres inside the cell. The diagonal distancebetween (1/2, 0, 0) and (1/4, 1/4, 1/4) shown in Fig. 9a isD =21222222+ + a a a = 34a The radius of the sphere is D/2 =38a4 Maximum fraction of cell filled= (1 + 3 + 4)33834a π/ a 3 = ð3/ 16 = 34 %.This is a relatively low percentage compared to other lattice structures.4. 1d = 2d = 3d = 4d = d 1d +2d +3d +4d = 01d • (1d +2d +3d +4d ) = 1d • 0 = 021d +1d •2d +1d •3d + 1d •4d = 04d 2+ d 2 cos è12 + d 2cos è13 + d 2cos è14 = d 2 +3 d 2 cos è= 04 cos è =31−è= cos -1 (31−) = 109.470 .5. Taking the reciprocals of these intercepts we get 1/2, 1/3 and 1/4. The smallest three integers having the same ratio are 6, 4, and 3. The plane is referred to as (643) plane.6. (a) The lattice constant for GaAs is 5.65 Å, and the atomic weights of Ga and Asare 69.72 and 74.92 g/mole, respectively. There are four gallium atoms and four arsenic atoms per unit cell, therefore4/a 3 = 4/ (5.65 × 10-8)3 = 2.22 × 1022 Ga or As atoms/cm 2,Density = (no. of atoms/cm 3 × atomic weight) / Avogadro constant = 2.22 × 1022(69.72 + 74.92) / 6.02 × 1023 = 5.33 g / cm 3.(b) If GaAs is doped with Sn and Sn atoms displace Ga atoms, donors are formed, because Sn has four valence electrons while Ga has only three. The resulting semiconductor is n -type.7. (a) The melting temperature for Si is 1412 ºC, and for SiO 2 is 1600 ºC. Therefore,SiO 2 has higher melting temperature. It is more difficult to break the Si-O bond than the Si-Si bond.(b) The seed crystal is used to initiated the growth of the ingot with the correctcrystal orientation.(c) The crystal orientation determines the semiconductor’s chemical and electricalproperties, such as the etch rate, trap density, breakage plane etc.(d) The temperating of the crusible and the pull rate.8. E g (T ) = 1.17 – 636)(4.73x1024+−T T for Si∴ E g ( 100 K) = 1.163 eV , and E g (600 K) = 1.032 eVE g (T ) = 1.519 –204)(5.405x1024+−T T for GaAs∴E g ( 100 K) = 1.501 eV, and E g (600 K) = 1.277 eV .9. The density of holes in the valence band is given by integrating the product N (E )[1-F (E )]d E from top of the valence band (V E taken to be E = 0) to the bottom of the valence band E bottom :p = ∫bottomE 0N (E )[1 – F (E )]d E (1)where 1 –F(E) = ()[]{}/kT1 e/1 1F E E −+− = []1/)(e1−−+kTE EF If E F – E >> kT then1 – F (E ) ~ exp ()[]kT E E F −− (2)Then from Appendix H and , Eqs. 1 and 2 we obtainp = 4ð[2m p / h 2]3/2∫bottomE 0E 1/2 exp [-(EF – E ) / kT ]d E (3)Let x a E / kT , and let E bottom = ∞−, Eq. 3 becomesp = 4ð(2m p / h 2)3/2(k T)3/2exp [-(E F / kT )]∫∞− 0x 1/2e x d xwhere the integral on the right is of the standard form and equals π / 2.4 p = 2[2ðm p kT / h 2]3/2 exp [-(E F / kT )]By referring to the top of the valence band as E V instead of E = 0 we have,p = 2(2ðm p kT / h 2)3/2 exp [-(E F – E V ) / kT ]orp = N V exp [-(E F –E V ) / kT ]where N V = 2 (2ðm p kT / h 2)3 .10. From Eq. 18N V = 2(2ðm p kT / h 2)3/2The effective mass of holes in Si is m p = (N V / 2) 2/3 ( h 2 / 2ðkT ) = 3236192m 101066.2××−()()()30010381210625623234−−××..π = 9.4 × 10-31 kg = 1.03 m 0.Similarly, we have for GaAsm p = 3.9 × 10-31 kg = 0.43 m 0.11. Using Eq. 19(()C VV C N NkTE E E i ln 22)(++== (E C + E V )/ 2 + (3kT / 4) ln32)6)((n p m m (1)At 77 KE i = (1.16/2) + (3 × 1.38 × 10-23T ) / (4 × 1.6 × 10-19) ln(1.0/0.62) = 0.58 + 3.29 × 10-5 T = 0.58 + 2.54 × 10-3 = 0.583 eV.At 300 KE i = (1.12/2) + (3.29 × 10-5)(300) = 0.56 + 0.009 = 0.569 eV.At 373 KE i = (1.09/2) + (3.29 × 10-5)(373) = 0.545 + 0.012 = 0.557 eV.Because the second term on the right-hand side of the Eq.1 is much smallercompared to the first term, over the above temperature range, it is reasonable to assume that E i is in the center of the forbidden gap.12. KE =()())(/)( / d d e C F top C F topCE E x kTE E C E E kT E E C E E C EeE E EE E E E −≡−−−−−−−∫∫= kT ∫∫∞−∞− 021 023d e d e x x x x x x= kTΓ Γ2325 = kTππ505051...×× = kT 23.13. (a) p = mv = 9.109 × 10-31 ×105 = 9.109 × 10-26 kg–m/sλ = p h = 2634101099106266−−××..= 7.27 × 10-9m = 72.7 Å(b) n λ=λp m m 0= 06301.× 72.7 = 1154 Å .14. From Fig. 22 when n i = 1015 cm -3, the corresponding temperature is 1000 / T = 1.8.So that T = 1000/1.8 = 555 K or 282 .15. From E c – E F = kT ln [N C / (N D – N A )]which can be rewritten as N D – N A = N C exp [–(E C – E F ) / kT ]Then N D – N A = 2.86 × 1019 exp(–0.20 / 0.0259) = 1.26 × 1016 cm -3or N D = 1.26 × 1016 + N A = 2.26 × 1016 cm -3A compensated semiconductor can be fabricated to provide a specific Fermi energy level.16. From Fig. 28a we can draw the following energy-band diagrams:17. (a) The ionization energy for boron in Si is 0.045 eV. At 300 K, all boronimpurities are ionized. Thus p p = N A = 1015 cm -3n p = n i 2 / n A = (9.65 × 109)2 / 1015 = 9.3 × 104 cm -3.The Fermi level measured from the top of the valence band is given by:E F – E V = kT ln(N V /N D ) = 0.0259 ln (2.66 × 1019 / 1015) = 0.26 eV(b) The boron atoms compensate the arsenic atoms; we havep p = N A – N D = 3 × 1016 – 2.9 × 1016 = 1015 cm -3Since p p is the same as given in (a), the values for n p and E F are the same as in (a). However, the mobilities and resistivities for these two samples are different.18. Since N D >> n i , we can approximate n 0 = N D andp 0 = n i 2 / n 0 = 9.3 ×1019 / 1017 = 9.3 × 102 cm -3From n 0 = n i exp−kT E E i F ,we haveE F – E i = kT ln (n 0 / n i ) = 0.0259 ln (1017 / 9.65 × 109) = 0.42 eV The resulting flat band diagram is :19.Assuming complete ionization, the Fermi level measured from the intrinsic Fermi level is 0.35 eV for 1015 cm -3, 0.45 eV for 1017 cm -3, and 0.54 eV for 1019cm -3.The number of electrons that are ionized is given byn ≅ N D [1 – F (E D )] = N D / [1 + e ()T k E E F D /−− ]Using the Fermi levels given above, we obtain the number of ionized donors as n = 1015 cm -3 for N D = 1015 cm -3n = 0.93 × 1017 cm -3 for N D = 1017 cm -3n = 0.27 × 1019 cm -3 for N D = 1019 cm -3Therefore, the assumption of complete ionization is valid only for the case of 1015 cm -3.20. N D +=kT E E F D e /)(16110−−+ =135016e 110.−+ = 1451111016.+= 5.33 × 1015 cm -3The neutral donor = 1016 – 5.33 ×1015 cm -3 = 4.67 × 1015 cm -34 Theratio of +DD N N O = 335764..= 0.876 .CHAPTER 31. (a) For intrinsic Si, µn = 1450, µp = 505, and n = p = n i = 9.65×109We have 51031.3)(11×=+=+=p n i p n qn qp qn µµµµρ Ω-cm(b) Similarly for GaAs, µn = 9200, µp = 320, and n = p = n i = 2.25×106We have 81092.2)(11×=+=+=p n i p n qn qp qn µµµµρ Ω-cm.2. For lattice scattering, µn ∝ T -3/2T = 200 K, µn = 1300×2/32/3300200−− = 2388 cm 2/V-s T = 400 K, µn = 1300×2/32/3300400−− = 844 cm 2/V-s.3. Since21111µµµ+=∴500125011+=µ µ = 167 cm 2/V-s.4. (a) p = 5×1015 cm -3, n = n i 2/p = (9.65×109)2/5×1015 = 1.86×104 cm -3µp = 410 cm 2/V-s, µn = 1300 cm 2/V-s ρ =pq p q n q p p n µµµ11≈+ = 3 Ω-cm(b) p = N A – N D = 2×1016 – 1.5×1016 = 5×1015 cm -3, n = 1.86×104 cm -3µp = µp (N A + N D ) = µp (3.5×1016) = 290 cm 2/V-s,µn = µn (N A + N D ) = 1000 cm 2/V-s ρ =pq p q n q p p n µµµ11≈+ = 4.3 Ω-cm(c) p = N A (Boron) – N D + N A (Gallium) = 5×1015 cm -3, n = 1.86×104 cm -3µp = µp (N A + N D + N A ) = µp (2.05×1017) = 150 cm 2/V-s,µn = µn (N A + N D + N A ) = 520 cm 2/V-s ρ = 8.3 Ω-cm.5. Assume N D − N A >> n i , the conductivity is given byσ ≈ qn µn = q µn (N D − N A )We have that16 = (1.6×10-19)µn (N D − 1017)Since mobility is a function of the ionized impurity concentration, we can use Fig. 3 along with trial and error to determine µn and N D . For example, if we choose N D = 2×1017, then N I = N D + + N A - = 3×1017, so that µn ≈ 510 cm 2/V-s which gives σ = 8.16.Further trial and error yieldsN D ≈ 3.5×1017 cm -3andµn ≈ 400 cm 2/V-swhich givesσ ≈ 16 (Ω-cm)-1.6. )/( )( 2n n bn q p n q i p p n +=+=µµµσFrom the condition d σ/dn = 0, we obtainbn n i / =Thereforeb b b n q n b b bn qìi p i i p i m 21 )1(1)/( +=++=µρρ.7. At the limit when d >> s, CF =2ln π= 4.53. Then from Eq. 16226.053.410501011010433=×××××=××=−−−CF W I V ρ Ω-cm From Fig. 6, CF = 4.2 (d/s = 10); using the a/d = 1 curve we obtain 78.102.4105010226.0)/(43=×××=⋅⋅=−−CF W I V ρ mV.8. Hall coefficient,7.42605.0)101030(105.2106.1101049333=××××××××==−−−−W IB A V R z H H cm 3/C Since the sign of R H is positive, the carriers are holes. From Eq. 2216191046.17.426106.111×=××==−H qR p cm -3Assuming N A ≈ p , from Fig. 7 we obtain ρ = 1.1 Ω-cm The mobility µp is given by Eq. 15b 3801.11046.1106.1111619=××××==−ρµqp p cm 2/V-s.9. Since R ∝ ρ and p n qp qn µµρ+=1, hence pn p n R µµ+∝1From Einstein relation µ∝D 50//==p n p n D D µµpA n D nD N N N R .R µµµ+=15011We have N A = 50 N D .10. The electric potential φ is related to electron potential energy by the charge (− q )φ = +q1(E F − E i )The electric field for the one-dimensional situation is defined asE (x ) = −dx d φ=dx dE q i1n = n i exp−kT E E i F = N D (x )HenceE F − E i = kT lni D n )x (N dx )x (dN )x (N q kT (x) D D1 −=E.11. (a) From Eq. 31, J n = 0 anda qkT e N e a N q kT n dx dnDx ax axnn+=−==−− )(- - )(00µE(b) E (x ) = 0.0259 (104) = 259 V/cm.12. At thermal and electric equilibria, 0)()(=+=dxx dn qD x n q J nn n E µ xN N LN N N D LN N L xN N N D dx x dn x n D x L L n n L L n nn n )( ))((1)()(1)(000000−+−−=−−+−=−=µµµE000 0n ln )(D -N ND x N N LN N N V L n n L L Lµµ−=−+−=∫.13. 1116610101010=××==∆=∆−L p G p n τ cm -3151115101010≈+=∆+=∆+=n N n n n D no cm -3.cm 101010)1065.9(3-111115292≈+×=∆+=p N n p D i 14. (a)815715101021010511−−=××××=≈t th p p N νστ s 48103109−−×=×==p p p D L τ cm20101021010167=×××==−sts s th lr N S σν cm/s (b) The hole concentration at the surface is given by Eq. 67.cm 10 2010103201011010102)10(9.65 1)0(3-98481781629≈ ×+××−×+××=+−+=−−−−lr p p lr p L p no n S L S G p p τττ15. pn qp qn µµσ+=Before illuminationnon no n p p n n == ,After illumination,G n n n n p no no n τ+=∆+=Gp p p p p no no n τ+=∆+=.)( )()]()([G q p q n q p p q n n q p p n no p no n no p no n τµµµµµµσ+=+−∆++∆+=∆16. (a) diff ,dxdp qD J pp −== − 1.6×10-19×12×410121−××1015exp(-x /12)= 1.6exp(-x /12) A/cm 2(b) diff,drift ,p total n J J J −== 4.8 − 1.6exp(-x /12) A/cm 2(c) En n qn J µ=drift , Q ∴ 4.8 − 1.6exp(-x /12) = 1.6×10-19×1016×1000×E E = 3 − exp(-x /12) V/cm.17. For E = 0 we have022=∂∂+−−=∂∂xp D p p t p np p no n τat steady state, the boundary conditions are p n (x = 0) = p n (0) and p n (x = W ) =p no .Therefore[]−−+=p p no n non L W L x W p p p x p sinh sinh )0()([]−=∂∂−===p ppno n x npp L W L D p p q xp qD x J coth )0()0(0[]−=∂∂−===p p pno n Wx np p L W L D p p q xpqD W x J sinh 1)0()(.18. The portion of injection current that reaches the opposite surface by diffusion isgiven by)/cosh(1)0()(0p p p L W J W J ==α26105105050−−×=××=≡p p p D L τ cm98.0)105/10cosh(1220=×=∴−−αTherefore, 98% of the injected current can reach the opposite surface.19. In steady state, the recombination rate at the surface and in the bulk is equalsurface,surface ,bulk,bulk ,p n p n p p ττ∆=∆so that the excess minority carrier concentration at the surface∆p n , surface = 1014⋅671010−−=1013 cm -3The generation rate can be determined from the steady-state conditions in the bulkG = 6141010− = 1020 cm -3s -1From Eq. 62, we can write22=∆−+∂∆∂p p p G x p D τThe boundary conditions are ∆p (x = ∞) = 1014 cm -3 and ∆p (x = 0) = 1013 cm -3Hence ∆p (x ) = 1014(p L x e /9.01−−)where L p = 61010−⋅= 31.6 µm.20.The potential barrier heightχφφ−=m B = 4.2 − 4.0 = 0.2 volts.21. The number of electrons occupying the energy level between E and E +dE isdn = N (E )F (E )dEwhere N (E ) is the density-of-state function, and F (E ) is Fermi-Dirac distribution function. Since only electrons with an energy greater than m F q E φ+ and having a velocity component normal to the surface can escape the solid, the thermionic current density isdE e E v hm qv J kT E E x q E x F m F )(21 323)2(4−−∞+∫∫==φπwhere x v is the component of velocity normal to the surface of the metal. Since the energy-momentum relationship)(2122222z y x p p p mm P E ++==Differentiation leads to mPdP dE =By changing the momentum component to rectangular coordinates,zy x dp dp dp dP P =24πHencezmkTp y mkT p x x mkT mE p p zy x p mkTmE p p p x dp e dp e dp p e mhq dp dp dp e p mhq J zy f x x x f z y x 22 2)2( 3 p p 2/)2(322200y 2222 2−∞∞−−∞∞−−−∞∞∞−∞=∞−∞=−++−∫∫∫∫∫∫== where ).(220m F x q E m p φ+= Since 21 2=−∞∞−∫a dx eax π, the last two integrals yield (2ðmkT )21.The first integral is evaluated by setting u mkTmE p Fx =−222 .Therefore we have mkTdpp du xx = The lower limit of the first integral can be written as kT q mkT mE q E m m F m F φφ=−+22)(2 so that the first integral becomes kTq u ktq mm e mkT du e mkT φφ−−∞=∫ / Hence−==−kTq T A eT h qmk J mkTq mφπφexp 42*232.22. Equation 79 is the tunneling probability 110234193120m 1017.2)10054.1()106.1)(220)(1011.9(2)(2−−−−×=××−×=−=h E qV m n β []6121001019.3)220(241031017.2sinh(201−−−×=−××××××+=T .23. Equation 79 is the tunneling probability[]403.0)2.26(2.24)101099.9sinh(61)10(1210910=−×××××+=−−−T ()[]()912999108.72.262.24101099.9sinh 61)10(−−−−×=−×××××+=T .19234193120m 1099.9)10054.1()106.1)(2.26)(1011.9(2)(2−−−−×=××−×=−=hE qV m n β24. From Fig. 22As E = 103 V/sνd ≈ 1.3×106 cm/s (Si) and νd ≈ 8.7×106 cm/s (GaAs)t ≈ 77 ps (Si) and t ≈ 11.5 ps (GaAs)As E = 5×104 V/sνd ≈ 107 cm/s (Si) and νd ≈ 8.2×106 cm/s (GaAs)t ≈ 10 ps (Si) and t ≈ 12.2 ps (GaAs).cm/s105.9m/s 109.5 101.9300101.382 22 velocity Thermal 25.643123-0×=×=××××===−m kT m E v thth For electric field of 100 v/cm, drift velocitythn d v v <<×=×==cm/s 1035.110013505E µ For electric field of 104 V/cm.th n v ≈×=×=cm/s 1035.110135074E µ.The value is comparable to the thermal velocity, the linear relationship betweendrift velocity and the electric field is not valid.CHAPTER 41. The impurity profile is,space charge per unit area in the p -side must equal the total positive space charge per unit area in the n -side, thus we can obtain the depletion layer width in the n -side region:141410321088.0××=××n W Hence, the n -side depletion layer width is:m0671µ.W n =The total depletion layer width is 1.867 µm.We use the Poisson ’s equation for calculation of the electric field E (x).In the n -side region,()V/cm108640)100671(1031006710m 067134144×−===×−××=∴××−=⇒==+=⇒=−−.)x (.x qx .N qK ).x (K x N q )x (N q dx d n maxsn D sn D sn D s E E E E E E εεµεεIn the p -side region, the electrical field is:()()()V/cm10864010802108020m 8023242242×−===×−××=∴×××−=⇒=−=+×=⇒=−−.)x (.x a qx .a qK ).x (K ax q )x (N q dx d p maxsp s'p 'sp A s E E E EE E εεµεεThe built-in potential is:()()()V 52.0 0 0=−−=−=∫∫∫−−−−nn ppx side n x x x side p bi dx x dx x dx x V E E E.2. From ()∫−=dx x V bi E, the potential distribution can be obtainedWith zero potential in the neutral p -region as a reference, the potential in the p -side depletion region is()()()[]()(()()×−×−××−= ×−×−−=×−××−=−=−−−−−∫∫34243114243 0242108.032108.03110596.7108.032108.0312 108.02 x x x x qadx x a q dx x x V sxxs p εεEWith the condition V p (0)=V n (0), the potential in the n -region is()×−×−××−= ×+×−××−=−−−−734277342141098.010067.1211056.41098.010067.121103x x x x q x V s n εThe potential distribution isDistance p-region n-region-0.80.000-0.70.006-0.60.022-0.50.048-0.40.081-0.30.120-0.20.164-0.10.2110.2590.2594133330.10.3057885330.20.3476037330.30.3848589330.40.4175541330.50.4456893330.60.4692645330.70.4882797330.80.5027349330.90.51263013310.5179653331.0670.518988825Potentia l DistributionD i s t a nce (um)P o t e n t i a l (3. The intrinsic carriers density in Si at different temperatures can be obtained by using Fig.22 inChapter 2 :Temperature (K)Intrinsic carrier density (n i )250 1.50×1083009.65×109350 2.00×10114008.50×10124509.00×10135002.20×1014The V bi can be obtained by using Eq. 12, and the results are listed in the following table.T niVbi (V)250 1.500E+080.7773009.65E+90.717350 2.00E+110.6534008.50E+120.4884509.00E+130.3665002.20E+140.329Thus, the built-in potential is decreased as the temperature is increased.The depletion layer width and the maximum field at 300 K areV/cm. 10476.11085.89.1110715.910106.1m9715.010106.1717.01085.89.112241451519max151914×=××××××===××××××==−−−−−s D D bis W qN qN V W εµεE18162/11818141952/1max 10110755.1 10101085.89.1130106.121042 .4DDD D D A D A sRN N N N N N N N qV +=×⇒+×××××=×⇒+≈−−ε.E We can select n-type doping concentration of N D = 1.755×1016 cm -3 for the junction.5. From Eq. 12 and Eq. 35, we can obtain the 1/C 2 versus V relationship for doping concentration of1015, 1016, or 1017 cm -3, respectively.For N D =1015 cm -3,()()()V V N qåV V C B s bi j−×=×××××−×=−=−−837.010187.110108.8511.9101.60.837221161514192For N D =1016 cm -3,()()()V V N qåV V C B s bi j−×=×××××−×=−=−−896.010187.110108.8511.9101.60.896221151614192For N D =1017 cm -3,()()()V V N qåV V C s bi j −×=×××××−×=−=−−956.010187.110108.8511.9101.60.95622114171419B2When the reversed bias is applied, we summarize a table of 2j C 1/ vs V for various N D values asfollowing,V N D =1E15N D =1E16N D =1E17-4 5.741E+165.812E+155.883E+14-3.5 5.148E+165.218E+155.289E+14-3 4.555E+164.625E+154.696E+14-2.5 3.961E+164.031E+154.102E+14-2 3.368E +163.438E+153.509E+14-1.5 2.774E +162.844E+152.915E+14-1 2.181E +162.251E+152.322E+14-0.5 1.587E+161.657E+151.728E+149.935E+151.064E+151.134E+14Hence, we obtain a series of curves of 1/C 2 versus V as following,The slopes of the curves is positive proportional to the values of the doping concentration.1/C ^2 vs V-4.5-4-3.5-3-2.5-2-1.5-1-0.5Applied Volta ge1/C ^The interceptions give the built-in potential of the p-n junctions.6. The built-in potential is()V5686.01065.9106.180259.01085.89.111010ln 0259.0328ln 323919142020322=×××××××××××= =−−i s bi n q kT a q kT V εFrom Eq. 38, the junction capacitance can be obtained ()()()3/12142019-3/125686.0121085.89.1110101.612−×××××=−==−R R bi s s j V V V qa W C εεAt reverse bias of 4V, the junction capacitance is 6.866×10-9 F/cm 2.7. From Eq. 35, we can obtain()()22221jsR bi D B s bi jC q V V N N q V V C εε−=⇒−=We can select the n-type doping concentration of 3.43×1015cm -3.8. From Eq. 56,16915151571515108931065902590020exp 1002590020exp 1010101010exp exp ×=××−+ ×××=−+−=−=−−−−......n kT E E kT E E N U G it i p i t n tth n p σσυσσand()3152814192cm 10433)10850(108589111061422−−−−×=⇒×××××××=≅⇒>>.N ....C q V N V V d j s R D bi R εQ()m 266.1cm 1066.1210106.1)5.0717.0(1085.89.11225151914µε=×=××+××××=+=−−−A bi s qN V V W Thus2751619A/cm 10879.71066.121089.3106.1−−×=×××××==qGW J gen .9. From Eq. 49, and Di noN n p 2=We can obtain the hole concentration at the edge of the space charge region,()3170259.08.01629)0259.08.0(2cm 1042.2101065.9−×=×==ee N n p D i n .10. ()()()1/−=−+=kTqV s p n n p eJ x J x J J V. 017.0195.010259.00259.0=⇒−=⇒−=⇒V e e J J VVs11. The parameters aren i = 9.65×109 cm -3D n = 21 cm 2/secD p =10 cm 2/sec τp0=τn0=5×10-7 secFrom Eq. 52 and Eq. 54()()()3150259.07.0297192/cm 102.511065.910510106.1711−−−×=⇒−××××××=⇒−××=−=D DkT qV D i po p kT qV p no p n p N e N e N n D q e L p qD x J a τ()()()3160259.07.0297192/cm 10278.511065.910521106.12511−−−×=⇒−××××××=⇒−××=−=−A A kT qV A i no n kTqV npon p n N e N e N n D q eL n qD x J a τWe can select a p-n diode with the conditions of N A = 5.278×1016cm -3 and N D =5.4×1015cm -3.12. Assume ôg =ôp =ôn = 10-6 s, D n = 21 cm 2/sec, and D p = 10 cm 2/sec(a) The saturation current calculation.From Eq. 55a and p p p D L τ=, we can obtain+=+=002011n n Ap p D i np n pn p s D N D N qn L n qD L p qD J ττ()2126166182919A/cm 1087.6102110110101011065.9106.1−−−−×=+×××=And from the cross-sectional area A = 1.2×10-5 cm 2, we obtainA 10244.81087.6102.117125−−−×=×××=×=s s J A I .(b) The total current density is −=1kt qV s e J J ThusA.10244.8110244.8A 1051.41047.510244.8110244.8170259.07.0177.0511170259.07.0177.0−−−−−−−×=−×=×=×××=−×=e I e I VV。