三极管放大电路分析
三极管基本放大电路分析
三极管基本放大电路解析三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。
分成NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
三极管在实际的放大电路中使用时,还需要加合适的偏置电路。
这有几个原因。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。
但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
三极管放大电路及分析
三极管放大电路及分析三极管是一种具有三个电极的半导体器件,通常由一个P型或N型的掺杂基片和两个掺杂型材料的层组成。
根据材料的不同,可以分为PNP型和NPN型三极管。
在三极管的正常工作状态下,基极和发射极之间的结为正向偏置,而基极和集电极之间的结为反向偏置。
当输入信号施加在基极上时,可以控制从发射极到集电极的电流,从而实现信号放大。
三极管放大电路的一种常见形式是共发射极放大电路。
该电路由三个元件组成:三极管、输入电容和负载电阻。
输入信号通过输入电容作用于三极管基极,而输出信号则通过负载电阻从三极管的集电极获得。
在该电路中,输入信号的幅度决定了三极管的工作点(DC偏置点),而输出信号的幅度则由三极管的放大能力决定。
为了更好地理解三极管放大电路的工作原理,我们需要对其输入特性和输出特性进行分析。
首先是输入特性分析。
三极管的输入特性可以用输入特性曲线来表示,其中横轴表示输入电压或输入电流,纵轴表示基极-发射极电压。
当输入信号施加在三极管的基极时,可以通过改变输入电压或输入电流,观察基极-发射极电压的变化情况。
输入特性曲线可以帮助我们确定三极管的截止区、饱和区和放大区等工作状态。
其次是输出特性分析。
三极管的输出特性可以用输出特性曲线来表示,其中横轴表示集电极-发射极电压,纵轴表示集电极电流。
输出特性曲线可以帮助我们了解三极管的工作状态以及最大输出幅度等参数。
在三极管放大电路中,需要确定合适的偏置电压和工作点,以保证信号的放大不失真。
常见的偏置方法是通过电阻器网络实现的。
在共发射极放大电路中,一种常见的偏置网络是“电阻-电容耦合偏置网络”。
在三极管放大电路中,还需要选择合适的负载电阻以获得所需的放大倍数。
负载电阻的大小会影响输出信号的幅度和失真。
通常情况下,通过选择合适的负载电阻可以实现最大功率输出。
除共发射极放大电路外,三极管还可以用于其他形式的放大电路,如共集电极放大电路、共基极放大电路等。
这些电路的特点和应用场景各不相同。
三极管放大电路的分析方法的复习
三极管放大电路的分析方法的复习三极管放大电路是一种基于三极管工作特性的电路,用于放大电信号。
其基本组成部分是一个三极管(包括发射极、基极和集电极),以及与之相连的电阻、电容等元件。
三极管放大电路的分析方法通常分为直流分析和交流分析两个方面。
一、直流分析直流分析是对三极管放大电路在静态工作状态下的分析。
其目的是确定各个节点的直流电压和电流,以便进一步进行交流分析。
1.确定偏置点偏置点是三极管工作在合适的工作状态下的电压点,保证三极管在放大过程中能够正常工作。
通过合理选择电阻和电源电压,使得集电极电压、基极电压和电流都处于适当的工作范围。
2.确定直流电流根据电路拓扑和电流平衡原理,可以通过分析电路得到各个支路的直流电流。
例如,通过基本的电路分析方法(如基尔霍夫定律),可以得到发射极电流、基极电流和集电极电流之间的关系。
3.确定直流电压根据三极管工作的基本方程和电路拓扑关系,可以利用欧姆定律和基尔霍夫定律等方法,求解各个节点的直流电压值。
例如,基极电压、发射极电压以及集电极电压等。
二、交流分析交流分析是对三极管放大电路在交流信号下的分析。
其目的是确定电路的增益、频率响应以及输出电压等。
1.线性化模型在交流分析中,为了简化计算并且方便分析,常常使用线性化模型来进行计算。
三极管的线性化模型是通过三极管的微小信号模型来描述的,其中包括三极管的输出电阻、输入电阻以及电压增益等参数。
2.输入阻抗和输出阻抗的分析输入阻抗是指三极管放大电路对输入信号的阻抗大小,可以通过计算输入电阻来进行分析。
输出阻抗是指三极管放大电路中输出信号的阻抗大小,可以通过计算输出电阻来进行分析。
3.电压增益的分析电压增益是指三极管放大电路输出电压和输入电压之间的比值,可以通过计算电压增益来进行分析。
电压增益可以通过计算三极管的集电极电流和基极电流的比值来确定。
4.频率响应的分析频率响应描述了电路对于不同频率输入信号的响应情况。
可以通过计算电路的截止频率、增益衰减等参数来进行分析。
三极管放大电路详细分析
三极管放大电路详细分析一、原理1.共射放大电路:共射放大电路的输入信号加在基极上,输出信号从集电极上取出。
在共射放大电路中,基极和集电极之间呈负反馈,使放大电路的输入电阻变大,输出电阻变小。
共射放大电路具有电流放大性能好、电压放大倍数大、输入输出相位差小等特点,常用于对输入电流要求较高的场合。
2.共基放大电路:共基放大电路的输入信号加在发射极上,输出信号从集电极上取出。
在共基放大电路中,发射极与集电极之间呈负反馈,使得输出电阻变小,电流放大倍数增大。
共基放大电路的特点是电压放大率小,但电流放大率较高,具有宽频带、高频特性好的优点,适用于高频放大器。
3.共集放大电路:共集放大电路的输入信号加在栅极上,输出信号从源极上取出。
在共集放大电路中,源极与漏极之间呈负反馈,使放大电路的电压特性和输入输出特性更好。
共集放大电路具有输入电阻大,输出电阻小,电压放大倍数小的特点,常被应用于信号源驱动等场合。
二、特点1.放大性能好:三极管放大电路具有较好的电流放大倍数和电压放大倍数,能够将微弱的输入信号放大为较大的输出信号。
2.宽频带特性:三极管放大电路具有较好的频率响应特性,能够放大高频信号。
3.可控性强:通过改变三极管的偏置电流和工作点,可以调整放大电路的放大倍数和工作状态。
4.可靠性高:三极管具有耐压能力强、温度稳定、寿命较长等优点,可以在恶劣环境下稳定工作。
三、设计步骤1.确定放大电路的类型:根据需要的放大倍数和频率范围选择合适的三极管放大电路类型。
2.计算电阻值:根据三极管的参数和工作要求,计算出各个电阻的取值,以使得放大电路能够工作在合适的工作点。
3.搭建电路:根据设计的电阻值和三极管的引脚接法,搭建放大电路,注意保持电路的稳定性和可靠性。
4.测试和调整:通过信号发生器输入信号,使用示波器和万用表等测试工具,检测并调整放大电路的工作状态,使其达到设计要求。
四、应用三极管放大电路广泛应用于各种电子设备中,包括音频放大器、射频放大器、功率放大器、电子对抗设备等。
三极管放大电路分析方法
三极管放大电路分析方法1.直流分析法:首先需要对三极管的直流工作点进行分析,确定三极管的偏置电流及偏置电压。
偏置电流的大小决定了三极管的放大倍数,偏置电压的大小决定了输出信号的工作范围。
直流分析法的步骤如下:-根据电路图,将三极管放大电路简化为三极管模型,剔除输入和输出耦合电容等影响。
-利用基本电路分析技巧,根据电路中的电阻、电压和电流关系,列出基于基尔霍夫定律的电路方程。
-解电路方程,计算出各个节点和元件的电流和电压值。
-利用得到的结果,确定三极管的工作状态和偏置电流。
2.小信号分析法:在直流偏置条件下,对三极管的输入信号进行小信号分析,得到输入端和输出端的端口等效电路,从而计算三极管的增益和带宽等性能指标。
小信号分析法的步骤如下:-对三极管放大电路进行小信号模型化处理,即将电路中的大信号元件(如三极管和电容等)线性化为小信号源和等效电路。
-根据放大电路的小信号模型,利用基本电路分析技巧,建立输入端和输出端的等效电路。
-根据等效电路,计算放大电路的增益和带宽等性能参数。
3.负反馈法:-确定三极管放大电路的基本参数,如放大倍数、输入和输出阻抗等。
-控制负反馈系统的增益,确定电压比例器的比例关系。
-根据反馈系统的特性和电路的参数,确定电压比例器的阻值,从而实现所需的放大倍数。
-在确定了电压比例器的阻值后,通过计算反馈回路的频率响应、相移等参数,来进一步优化电路性能。
以上是三极管放大电路分析的几种常用方法,每种方法都有其独特的优势和适用范围。
通过综合运用这些方法,可以对三极管放大电路进行全面的分析和优化,实现设计要求。
三极管放大电路的分析计算
三极管放大电路的分析和计算公式在众多的三极管应用电路中,放大电路(或放大器)是其主要用途之一,利用三极管的电流放大作用可以构成各种放大电路,下面对共射基本放大电路(固定偏置放大电路)和工作点稳定的放大电路(分压式偏置放大电路),进行电路分析。
一、共发射极基本放大电路(固定偏置放大电路)1.电路组成2.直流通路直流通路是放大电路u i =0,仅在V CC 作用下直流电流所流过的路径。
画直流通路的原则:(1)输入信号u i 短路。
(2)电容视为开路。
(3)电感视为短路。
3.静态工作点的计算所谓静态工作点就是为了保证放大电路不失真的点。
估算静态工作点就是根据放大电路的直流通路,求I BQ 、I CQ 、I EQ 、和U CEQ 这四个量。
(根据下图,可得出下面两个公式)由以上三个公式,可得出静态工作点的值。
4.交流通路交流通路是放大电路在V CC =0,仅u i =0作用下交流电流所流过的路径。
画交流通路的原则:(1)由于耦合电容容量大,所有耦合电容视为通路。
(2)电源电压对地短路。
5.其主要性能指标的估算估算放大电路的主要性能指标就是根据放大电路的交流通路求,求A U 、R i 、R o 这些主要参数。
beb i r R R //=beLu r R A '-=βLC L R R R //='ber —三极管的输入电阻,是三极管b 、e 之间存在一个等效电阻。
co R R =二、分压式偏置放大电路(工作点稳定的)1.电路组成2.直流通路三、静态工作点估算静态工作点就是根据放大电路的直流通路,求IBQ 、ICQ、IEQ、和UCEQ这四个量。
(根据图,可得出下面的公式)四、交流通路交流通路是放大电路在V CC =0,仅u i 作用下交流电流所流过的路径。
画交流通路的原则:(1)由于耦合电容容量大,所有耦合电容视为通路。
(2)电源电压对地短路。
5.其主要性能指标的估算估算放大电路的主要性能指标就是根据放大电路的交流通路求,求A U 、R i 、R o这些主要参数。
三极管放大电路的分析计算
三极管放大电路的分析计算首先,我们需要了解三极管的工作原理和电路结构。
三极管有三个引脚,分别为发射极、基极和集电极。
发射极和基极之间的电流被控制,从而控制集电极之间的电流。
通过调节基极电压,我们可以改变三极管的工作状态和放大程度。
在进行分析和计算之前,我们需要明确以下几个参数:1. 输入电压 Vin:该参数代表信号源输入的电压信号的幅值。
2. 输出电压 Vout:该参数代表从放大电路输出的电压信号的幅值。
3. 电源电压 Vcc:该参数代表三极管放大电路所使用的直流电压。
接下来,我们将进行三极管放大电路的分析和计算。
首先,我们需要选择适当的三极管型号和参数。
通常,我们需要考虑三个重要的参数:β(或Hfe)、Vbe和Vce。
1. β(或Hfe):该参数代表晶体管的直流电流放大倍数。
一般情况下,该值介于20至200之间。
2. Vbe:该参数代表基极-发射极电压。
通常,Vbe约为0.7V。
3. Vce:该参数代表集电极-发射极电压。
通常,Vce约为0.2V至0.3V。
接下来,我们可以进行以下步骤来分析和计算三极管放大电路:1.确定放大倍数:通过选择合适的基极电阻和集电极电阻,我们可以调节三极管的工作点,以实现我们期望的放大倍数。
一般情况下,放大倍数(A)可以通过以下公式计算:A=β*Rc/Re,其中,Rc为集电极电阻,Re为发射极电阻。
2. 确定直流电流:通过选择适当的集电极电阻和发射极电阻,我们可以调节三极管的工作点,以实现我们期望的直流电流。
一般情况下,直流电流(Ic)可以通过以下公式计算:Ic = (Vcc - Vce) / Rc,其中,Vcc为电源电压,Vce为集电极-发射极电压。
3. 确定输入电阻 Rin:输入电阻(Rin)可以通过以下公式计算:Rin = β * Re,其中,β为晶体管的直流电流放大倍数,Re为发射极电阻。
4. 确定输出电阻 Rout:输出电阻(Rout)通常较小,可以忽略不计。
三极管放大电路解析
三极管放大电路解析引言三极管是一种重要的半导体器件,广泛应用于放大、开关和稳压等电路中。
其中,三极管放大电路是最常见的应用之一。
本文将对三极管放大电路进行解析,探讨其原理和特点。
一、三极管基本原理三极管是一种由两个PN结构组成的半导体器件。
它的三个引脚分别为:发射极(Emitter)、基极(Base)和集电极(Collector)。
三极管的放大作用是通过控制基极电流来控制集电极电流的大小。
在三极管的放大过程中,基极电流(IB)的变化会导致集电极电流(IC)的相应变化。
当基极电流增大时,三极管进入放大区,此时集电极电流也相应增大。
反之,当基极电流减小时,三极管进入截止区,此时集电极电流减小。
二、三极管放大电路的分类根据三极管的工作状态和连接方式,三极管放大电路可以分为共射极放大电路、共基极放大电路和共集极放大电路三种。
1. 共射极放大电路共射极放大电路是最常见的一种三极管放大电路。
它的特点是:输入信号通过基极电流的变化来控制输出信号。
在共射极放大电路中,输入信号加在基极上,输出信号从集电极取。
该电路具有电压放大和相位反转的特点,适用于需要电压放大和反相输出的场合。
2. 共基极放大电路共基极放大电路的特点是:输入信号通过发射极电流的变化来控制输出信号。
在共基极放大电路中,输入信号加在发射极上,输出信号从集电极取。
该电路具有电流放大和相位不变的特点,适用于需要电流放大和不变相输出的场合。
3. 共集极放大电路共集极放大电路的特点是:输入信号通过基极电压的变化来控制输出信号。
在共集极放大电路中,输入信号加在基极上,输出信号从发射极取。
该电路具有电压放大和相位不变的特点,适用于需要电压放大和不变相输出的场合。
三、三极管放大电路的特点1. 增益大:三极管放大电路具有很高的电压增益和电流增益,可以实现信号的有效放大。
2. 频率响应宽:三极管放大电路的频率响应范围广,可以满足不同频率信号的放大需求。
3. 稳定性好:三极管的工作稳定性较好,能够在一定范围内保持放大特性的稳定。
三极管放大电路及其分析方法
三极管放大电路及其分析方法1.共射放大电路共射放大电路的基本结构是:输入信号通过电容耦合到三极管的基极,输出信号从集电极输出。
这种电路的特点是电压放大倍数大,功率放大倍数高,但频率响应不是很理想。
共射放大电路的工作原理:当输入信号作用在基极时,三极管的集电流会改变,进而导致集电极的电压改变。
根据负反馈原理,集电极的输出电压与输入信号的相位差为180°,输出电压幅度与输入信号成正比。
分析方法:1)静态工作点分析:通过直流分析,确定三极管的偏置电流和偏置电压。
2)小信号分析:将输入信号分解为直流分量和交流分量,通过等效电路分析交流放大特性。
3) 频率响应分析:通过增益-带宽积(Gain-Bandwidth Product, GBW)计算电路的频率响应特性。
4)稳定性分析:通过极点零点分析,确定电路的稳定性。
2.共基放大电路共基放大电路的基本结构是:输入信号通过电容耦合到三极管的发射极,输出信号从集电极输出。
这种电路的特点是电压放大倍数小,功率放大倍数低,但频率响应较好。
共基放大电路的工作原理:当输入信号作用在发射极时,三极管的发射电流会改变,进而改变集电极的电流。
根据负反馈原理,输出电压与输入信号的相位差与共射放大电路相反,输出电压幅度与输入信号成正比。
分析方法:1)静态工作点分析:通过直流分析,确定三极管的偏置电流和偏置电压。
2)小信号分析:将输入信号分解为直流分量和交流分量,通过等效电路分析交流放大特性。
3)频率响应分析:测量输入和输出的频率特性,并计算放大电路的频率响应。
4)稳定性分析:通过极点零点分析,确定电路的稳定性。
3.共集放大电路共集放大电路的基本结构是:输入信号通过电容耦合到三极管的基极,输出信号从发射极输出。
这种电路的特点是电压放大倍数一般,功率放大倍数较高,频率响应较好。
共集放大电路的工作原理:输入信号作用在基极上时,三极管的集电极电压不变,而发射电压会对应变化。
根据负反馈原理,输出电压与输入信号的相位差与共射放大电路相同,输出电压幅度与输入信号成正比。
三极管放大电路及其等效电路分析法
共集放大电路采用NPN或PNP三极管,输入信号加在基极和发射极之间,通过调整集电极和发射极之间的电压来 控制输出信号的幅度和相位。其输入阻抗较高,输出阻抗较高,电压放大倍数小于1,适用于信号跟随和缓冲。
04
CATALOGUE
三极管放大电路的应用
在音频信号处理中的应用
音频信号放大
三极管放大电路常用于音频信号的放大 ,如音响设备、麦克风等。通过放大音 频信号,提高声音的响度和清晰度。
合理布线
优化电路板布线,减小信号干扰和寄生效应 。
电源滤波
采用电源滤波技术,减小电源噪声对电路的 影响。
三极管放大电路的调试与测试
静态工作点的调试
调整三极管基极和集电极的偏置电压 ,使放大器处于最佳工作状态。
动态性能测试
测试放大器的电压放大倍数、频率响 应和失真度等动态性能指标。
输入输出匹配调试
确保输入信号和输出信号之间的阻抗 匹配,减小信号损失。
VS
声音效果处理
在音频领域,三极管放大电路还可以用于 声音效果的添加和处理,如音调调整、混 响等。
在通信系统中的应用
信号放大
在通信系统中,三极管放大电路用于信号的 放大,确保信号传输的稳定性和可靠性。
调制解调
在无线通信中,三极管放大电路用于信号的 调制和解调,实现信号的发送和接收。
在自动控制系统中的应用
CATALOGUE
三极管放大电路的等效电路分析法
等效电路分析法的定义
等效电路分析法是一种将复杂电路简 化为简单等效电路的方法,通过等效 元件和等效参数来描述电路的性能。
在三极管放大电路中,等效电路分析 法可以将三极管内部结构及其工作原 理抽象化,以便于理解和分析。
第21讲三极管放大电路的静态分析
交流信号输入了,IB变化了,静态工作点偏移出去。这个偏移变化 的轨迹一定会沿着直流负载线变化。那么IB在20-40的范围内变化, 这时可以知道IC 的动态变化范围就从2-4之间的交变变化。由于在 放大的这部分是线性变化的,信号交变量 ic也是随时间作正弦规律 变化,跟输入信号的波形是一致的。我们加上一个时间坐标轴,这 样iC的变化规律也可以表示出来了。
iB也是直流和交流共存的,静态值IB 叠加了一个信号的交流量ib, ib变化 同样引起iC的变化。
uCE是静态值UCE叠加了一个信号的 交流量uce, uCE既有直流也有交流, 电流经过电容,直流被隔断,交流被 输出,就得到uo 注:uo和ui的输出相位不同!!!=UCC-iCRC
我们对基本放大电路提出了两点的要求: (1)要放大输入信号(Au高) (2)信号波形不失真
我们以上的分析,由于静态工作点选在了特性曲线的线性部分的中 部,信号输入以后都是在特性曲线的线性部分工作,因此波形基本 上是不失真的。但是如果我们的工作点选择的不合适,就可能使得 信号输入以后,在特性曲线的非线性部分工作,这样就产生了失真。 这种失真我们称之为非线性失真。
第 9 章 基本放大电路 9.3 放大电路的静态分析---图解法
已知:UCC=12V,β=100,RC=2kΩ, RB=370kΩ,求静态工作点.
这个例题就是单电源的放大作用,得到的主要数据如上图所示。这 个数据后面我们要用到。这个就是静态计算的估算法。
下面我们开始学习静态分析的第二种方法-----图解法
(3)通过电路,可以求得电压放大倍数 数值上等于输出电压的有效值与输入电压的有效值的比值,还等于 输出信号的幅值与输入信号的幅值的比值。
三极管及放大电路解析
6. 集电极最大允许耗散功耗PCM PCM取决于三极管允许的温升,消耗功率过大,温升过高会烧坏三极管。 PC PCM =IC UCE
硅管允许结温约为150C,锗管约为7090C。
由三个极限参数可画出三极管的安全工作区 IC
ICM
ICUCE=PCM
安全工作区 O
ICE 与 IBE 之比称为共发射极电流放大倍数
C IC
ICBO
N
ICE IB
P
EC
B
ICEICICBO IC
RB
IBE
N
IBE IBICBO IB
EB
E IE
IC IB ( 1)IC BO IB ICEO
若IB =0, 则 IC ICE0
集-射极穿透电流, 温度ICEO
忽 IC略 E , O IC 有 IB (常用公式)
(3)通频带 衡量放大电路对不同频率信号的适应能力。
由于电容、电感及放大管PN结的电容效应,使放大电路在信号频率较低和较高时电压放大倍数数值下降, 并产生相移。
下限频率
fbwfHfL
(4)最大不失真输出电压Uom:交流有效值。 (5)最大输出功率Pom和效率η:功率放大电路的主要指标参数
上限频率
二、基本共射极放大电路 1、基本放大电路组成及各元件作用
问题:
将两个电源合二为
1. 两种电源
一
2. 信号源与放大电路不“共地”
共地,且要使信号驮载在静 态之上
-+ UBEQ
有交流损失
有直流分量
静态时(ui=0),
UBEQURb1
动态时,VCC和uI同时作用于晶体管的输入回 路。
(2)阻容耦合放大电路
三极管的三种放大电路
三极管的三种放大电路三极管是一种常用的电子元件,广泛应用于各种电路中。
它具有放大电压和电流的功能,因此被广泛应用于放大电路中。
本文将介绍三极管的三种常见放大电路:共射、共集和共基电路。
一、共射放大电路共射放大电路是最常见的三极管放大电路之一。
它的特点是输入信号与输出信号均通过三极管的集电极。
其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制集电极电流的变化。
这种变化通过负载电阻产生的电压变化,即为输出信号。
共射放大电路具有电压增益大、输入电阻高、输出电阻低等特点。
因此,它常被用于需要电压放大的场合,如音频放大器等。
二、共集放大电路共集放大电路是另一种常见的三极管放大电路。
它的特点是输入信号与输出信号均通过三极管的发射极。
其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制发射极电流的变化。
输出信号即为负载电阻处的电压变化。
共集放大电路具有电流放大特性,且输入输出之间具有相位相反的特点,因此常被用于需要电流放大的场合,如电压稳压器等。
三、共基放大电路共基放大电路是三极管放大电路中最不常见的一种。
它的特点是输入信号通过三极管的发射极,输出信号通过三极管的集电极。
其工作原理是:当输入信号施加在基极上时,三极管的基极电流发生变化,进而控制发射极电流的变化。
输出信号即为负载电阻处的电压变化。
共基放大电路具有电压放大特性,且输入输出之间具有相位相同的特点,因此常被用于需要频率放大的场合,如射频放大器等。
三极管的三种放大电路分别为共射、共集和共基电路。
它们分别具有不同的特点和应用场合。
共射放大电路适用于需要电压放大的场合,共集放大电路适用于需要电流放大的场合,共基放大电路适用于需要频率放大的场合。
了解和掌握这些放大电路的特点和工作原理,对于电子工程师和电子爱好者来说是非常重要的。
希望本文能够对读者有所启发和帮助。
三极管放大电路工作原理及功能分析
电流放大功能
总结词
三极管放大电路能够将输入信号的电流幅度按一定比例放大,输出信号的电流幅 度远大于输入信号。
详细描述
除了电压放大作用外,三极管还能实现电流放大。在三极管的工作区域内,基极 输入信号的微小变化会引起集电极输出信号的较大变化,从而实现电流的放大。
功率放大功能
总结词
三极管放大电路能够将输入信号的功率按一定比例放大,输出信号的功率远大于输入信 号。
03
CATALOGUE
三极管放大电路的功能分析
电压放大功能
总结词
三极管放大电路能够将输入信号的电压幅度按一定比例放大,输出信号的电压 幅度远大于输入信号。
详细描述
三极管具有电压放大作用,即基极输入信号的微小变化会引起集电极输出信号 的较大变化。通过合理设置电路参数,三极管可以实现对输入信号的电压放大 。
性能指标。
确定合适的静态工作点
要点一
总结词
静态工作点是三极管放大电路的重要参数,其设置是否合 适直接影响到电路的性能和稳定性。
要点二
详细描述
静态工作点需要根据输入信号的幅度和频率进行选择,通 常需要通过实验和调试来确定最佳的工作点。同时,还需 要考虑三极管的安全工作区,避免因工作点设置不当导致 三极管烧毁。
02
CATALOGUE
三极管放大电路的工作原理
电流放大过程
电流放大
动态范围
三极管通过基极电流的控制,实现集 电极电流的放大,从而实现电流放大 的功能。
三极管在放大不同幅值的信号时,能 够保持较为稳定的放大倍数,从而实 现宽动态范围的电流放大。
电流控制
三极管内部存在三个电极,其中基极 电流的控制作用最为显著,通过改变 基极电流的大小,可以实现对集电极 和发射极电流的调节。
三极管的三种放大电路
三极管的三种放大电路三极管是一种常用的电子元件,它具有放大信号的特性,因此被广泛应用于各种放大电路中。
三极管的三种放大电路分别是共射放大电路、共基放大电路和共集放大电路。
1. 共射放大电路共射放大电路是最常见的三极管放大电路之一,它的特点是输入信号与输出信号都是相对于电源地的。
在共射放大电路中,三极管的发射极作为输入端,集电极作为输出端,基极则起到控制信号的作用。
共射放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。
由于共射放大电路具有较大的电压增益和较小的输入阻抗,因此常用于需要较大信号放大的场合,如音频放大电路。
2. 共基放大电路共基放大电路是另一种常见的三极管放大电路,它的特点是输入信号与输出信号都是相对于基极的。
在共基放大电路中,三极管的基极作为输入端,发射极作为输出端,集电极则起到控制信号的作用。
共基放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。
由于共基放大电路具有较大的电流增益和较小的输出阻抗,因此常用于需要较大电流放大的场合,如射频放大电路。
3. 共集放大电路共集放大电路是三极管放大电路中的第三种形式,它的特点是输入信号与输出信号都是相对于集电极的。
在共集放大电路中,三极管的集电极作为输入端,发射极作为输出端,基极则起到控制信号的作用。
共集放大电路的工作原理是:当输入信号加在集电极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。
由于共集放大电路具有较小的电压增益和较大的输入阻抗,因此常用于需要较小信号放大的场合,如电压跟随器。
三极管的三种放大电路各有其特点和应用场合,合理选择和设计放大电路对于实现信号的有效放大至关重要。
在实际应用中,需要根据具体的要求和条件来选择合适的放大电路,并进行相应的电路设计和优化。
三极管放大电路详细分析
所以,交流负载是过 Q 点且与横轴夹角为 α′的直线。由于 RL′<RL,则 α′>α,所以交 流负载线比直流负载线陡一些。
接负载 RL′后,信号的工作点就沿着交流负载线变化。由于三极管输出曲线的恒流特 点。接 RL 与不接 RL 的 iC 相差不大,而 uCE 的动态范围减小了。因此,输出电压减小,电压 放大倍数下降。
分析放大电路时,一般要求解决两个方面的问题,即确定放大电路的静态和动态时的工
作情况。静态分析就是要确定放大电路没有输入交流信号时,三极管各极的电流和电压。动
态分析则是研究在正弦波信号作用下,放大电路的电压放大倍数、输入电阻和输出电阻等。
1.5.1 三极管放大电路的静态工作点的估算
三极管放大电路的静态值,即直流 IBQ、ICQ、UCEQ 的值在输出 特性上反映为一个点,称为静态工作点 Q。静态工作点负载线与静态工作点
【例 2】电路及参数与【例 2-2】相同,试用图解法求电路的静态工作点。 解:(1)画出直流负载线 MN。在方程 UCE=UCC-ICRC 中,令 IC=0,则 UCE=UCC= 12V,得 M 点;令 UCE=0,则 IC=UCC/Rc=12V/3KΩ=4mA,得 N 点,连接 MN 两点所得 到的直线即为直流负载线。 (2)确定静态工作点 静态基极电流
iB=IBQ+ib=40μA+20SinωtμA 由于三极管的电流放大作用,ib 变化将引起 ic 很大的变化,如图 2-18(a) 所示。 当 iB=60μA 时,负载线与 iB=60μA 的输出曲线的交点为 Q1;当 iB=20mA 时,负载线 与 iB=20mA 的输出特性曲线的交点为 Q2。因此,当信号变化时,工作点就在 Q1 与 Q2 之间 变化。如果工作点的变化是在放大区内。那么 ib 作正弦变化时。ic、uce 也按正弦规律变化, 所以
三极管的基本放大电路分析()
U CC , 在纵轴上得N点(0, RC )
连接M N 即直流负载线
(2) 求静态工作点
直流负载线与iB=IB对应的那条输出特性曲线的交 点Q, 即为静态工作点, 如图7.3(b)所示
(a)
(b)
图7.3 静态工作点的图解
[例7.1] 试用估算法和图解法求图7.4 (a) 所示放 大电路的静态工作点, 已知该电路中的三极管β=37.5, 直流通路如图7.4(b)所示, 输出特性曲线如图7. 4 (c) 所 示。
IE
300 (1 37.5) 26mV 1.5mA
= 967Ω
Au
RL/ rbe
37.5 (4 // 4) 0.967
78
Ri = RB // rbe=300 // 0.967≈0.964kΩ
Ro=RC=4kΩ
20 断开RL后
A u
RC rbe
37.5 4 0.967
156
② 发射极电阻RE:引入直流负反馈稳定静态工 作点。一般阻值为几千欧。
③ 发射极旁路电容CE:对交流而言,CE短接 RE ,确保放大电路动态性能不受影响。一般CE 也选择 电解电容,容量为几十微法。
(2) 稳定工作点原理 ① 利用RB1和RB2的分压作用固定基极UB。 ② 利用发射极电阻RE产生反映Ic变化的UE,再 引回到输入回路去控制UBE,实现IC基本不变。
Ro/
U I
RC
图 7. 18 不接CE时求输出电阻的等效电路
将有关数据分别代入上式得 A/u = - 0.36 R /i =103.25 kΩ R /o =3 kΩ
1.射极偏置电路
(a)电路图
(b)微变等效电路
图 7.15 射极偏置电路
三极管放大电路的分析-等效电路法
3、用h参数模型计算交流性能
⑴、基本共射放大电路 ⑵、直接耦合共射放大电路 ⑶、阻容耦合共射放大电路
微变等效电路的画法:1-2-3
看动画4.3-2
34 49
3、用h参数模型计算交流性能
⑴、基本共射放大电路
使用双电源
35 49
3、用h参数模型计算交流性能
36 49
3、用h参数模型计算交流性能
39 49
3、用h参数模型计算交流性能
⑵、直接耦合共射放大电路
40 49
3、用h参数模型计算交流性能
41 49
3、用h参数模型计算交流性能
①电压放大倍数
Rb1 + Rb 2 // rbe Ui = I b rbe Rb 2 // rbe
′ U O = I C ( RC // RL ) = β I b RL ′ Rb 2 // rbe β RL Au = = = Rb1 + Rb 2 // rbe Rb1 + Rb 2 // rbe rbe Ui I b rbe Rb 2 // rbe
2 49
三、等效电路分析法
1、晶体管的直流模型及静态工作点的计算 2、晶体管共射h参数等效模型 3、用h参数模型计算交流性能 4、应用举例
3 49
1、晶体管的直流模型及静态工作点的计算
⑴输入特性的等效
4 49
1、晶体管的直流模型及静态工作点的计态工作点的计算
ube = hiei + hreuce b i = hfei + hoeuce b c
21 49
⑵、晶体管 h参数模型的导出
若输入为正弦量,则可用向量表示,并得出h参数模 型。
ube = hiei + hreuce b c b i = hfei + hoeuce
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
A 点坐标:(UBB,0)
休息1 休息2
返回
A
uBE
IE
1 作直流负载线――图解Q点
(2) 输出回路直流负载线:
①由输出回路偏置方程:
EC=UCE+ICRC+IeRe
=UCE+IC(RC+Re)
可得输出回路直流负载线:
/ IC=(EC-UCE) (RC+Re ) 直流负载线
Ri
io
RC RL Ro
休息1 休息2
返回
放大器微变等效分析的步骤如下:
(1) 根据直流通道计算静态工作点 Q(IC,UCE)
2) 根据交流通道,用简化的低频小信号混合π(或 h 参数)
等效模型代替 BJT,画出放大器微变等效电路。
3) 由 静 态 工 作 点 计 算 模 型 参 数 : gm=Ic /UT , rb'e= β /gm , rce=UA/IC ,rbb'=50~200Ω
gm
, gm
IC UT
而
rce
UA IC
rbb 50~ 300
Rs
Rb hie
us
hfeib 1/ hie
RC RL
rbb'
Rs
Rb
us
+ u1 rb‘e⚀ u1gm rce
-
RC RL
返回
rbb' + u1 rb‘e
-
u1gm rce
休息1 休息2
放大器的动态(交流)参数 (1) 输入电阻:Ri
第二章 BJT放大电路基础
§2.1 放大电路的工作原理和图解分析 §2.2 三种基本组态放大电路的特性与分析 § 2.3 BJT组合放大电路
§2.1 放大电路的工作原理和图解分析
2.1 .1 放大电路的工作原理和图解分析 2.1.2图解法与动态工作分析
2.1.1 共射放大电路的组成及其交、直流通路 1 电路基本组成:
直流负载线:输入回路直流负载线 ――确定静态工作点 Q 输出回路直流负载线
动态分析:特性曲线 交流负载线:输入回路交流负载线 ――输入信号和输出信号的关系 输出回路交流负载线
返回 休息1 休息2
1 作直流负载线――图解Q点
(1) 输入回路直流负载线
iB
UBB UBE I B 1 Re Rb B
即: iB=IB+ib
电路仿真
iC=IC+ic
uCE=UCE+uce
的电压和电流之和,
返回 1 2 3 4 5 7
5)放大器有两类基本的问题:
A:直流偏置问题:
待求问题:Q(IB、IC、UCE)
分析方法: 估算法 等效电源法 直流通道 图解法
B:交流传输问题:
待求问题:输入、输出电阻:R i 、Ro 电流、电压、功率增益:A i、A u、Ap
-
iC
IS
expuBE UT
IS
exp ui UT
u0
EC
RC I S
exp ui UT
(3) 当 ui>0.6~0.7V 之后继续增大,
uO EC
UCE
·Q
BJT 由放大区进入饱合区,进入饱合区后 u0=uCE(sat)=0.2~0.3V,
0.5 1.0 UBE
休息1 休息2
uCE(sat) 1.5 ui(u)
4) 利用线性电路计算:Ri , Ro , A u , A i 等
iC=f(IBQ ,uCE)
输出特性曲线
②输出直流负载线的画法:
iC G
利用截距式确定两点:
IC
G 点:(0,EC/(RC+Re))
F 点:(EC,0)
返回 休息1 休息2
IC + UCE IE
·Q
IBQ
UCE
F uCE
2 作交流负载线――交流动态分析
(1) 输入回路的动态特性方程与交流负载线
②交①流输负载入线回的路画法 外:电路动态方程: ib a : u交b流e=负us载’-线ibR一b定’ 过静态工作点 Q
1 ) 入 信 号 源 : uS, RS
2)负载: RL 3) 射极基本放大器:
(1)输入回路: C1:输入耦合电容,隔直 Rb1,Rb2 基极偏置电阻 Re 射极偏置电阻(直流负反馈) (稳定工作点) Ce 射极旁路电容
2.1.1 共射放大电路的组成及其交、直流通路 1 电路基本组成:
(2) 输出回路: RC:集电极偏置电阻,具有把 集电极电流 iC 转化成集电 极电压 Ec 输出。 C2:输出耦合电容,(隔直)使 放大器与负载之间直流隔 离,而交流耦合。
返回
交流小信号(微变动态)分析:
(1) 交流等效电路
(2) 微变等效电路(混合π型等效电路)
利用简化 BJT 混合π型等效模型(不计 Cb'e、Cb'c、 rb'c→ ) 休息1
可得放大电路的微变等效电路(混合π型等效电路)
休息2
rbb' +
u1
-
rb‘e⚀
rce u1gm
rbb'
Rs
Rb
us
+ u1 rb‘e⚀ u1gm rce
耦合、旁路电容短路
直流电源对地短路
扼流电感开路
输入回路利用戴文宁原理可以简化:
Rb’=Rs∥Rb1∥Rb2
u s
R b 1 // R b 2 R s R b 1 // R b 2
us
休息1 休息2
返回
2.1.2 图解法与动态工作分析
图解法:利用晶体管的特性曲线和外电路特性经作图 ,分析放大器工作状态: 静态分析:特性曲线
Ri RS Ri
uS
而其中:
AuS
Ri RS Ri
Au
而 rbb’+rb'e = rbe=hie
io
RCuo RL
Ro
休息1
Ri 休息2
返回
射放大器的动态(交流)参数
(4) 电流增益:
ii
定义: A i
io ii
Rs
Rb
Ais
i0 is
ii io is ii
Rs Ri Rs
-
IBQ
②交流负载线的画法:
a:交流负载线一定过静态工作点: 即当,uCE=UCE iC=IC 得 Q
•
UCE D 返回
F uCE
休息1 休息2
二 图解法与动态工作分析:
3 动态工作状况分析
B iB
iC G
IB
·Q
IC
UBE D
UBB
A v BE
休息1 休息2
·Q
•
UCE
D
IBQ
UCC
F uCE
①③B而设J产加T生入的小C总信-瞬号时E正基极弦极电 电电压压 流::为:
IB
U BB U BE
Rb 1 Re
(IC≈βIB) ,UBE : s i :0.6-0.7V
C: ∵Ic=βIB
Ge:0.2V
输出回路偏置方程:
UCE=Ec-IcRC-IERe≈Ec-Ic(Rc+RE) (Ic=αIE≈IE)
返回
休息1 休息2
3: 交流通道
(1) 交流通道画法:
分析方法:图解法 交流通道
等效电路法
2 直流通道(直流等效电路)
(1) 直流通道画法:
原则:放大电路中所有电容开路, 电感短路, 变压器初级和次级之间开路, 所剩电路即为直流通道 交流信号源取零值
原因: 当 0 时 1
j c
j L 0
2 直流通道(直流等效电路)
(2) 静态工作点 Q 的估算法
§2.2 三种基本组态放大电路的特性与分析
2.2.1 共射放大电路的特性与动态分析 2.2.2 共集电极电路(射随器) 2.2.3 共基极(CB)放大电路
返回
2.2.1 共射放大电路的特性与动态分析
三种基本组态: 共射: CE 共集: CC 共基: CB
返回
休息1 休息2
2.2.1 共射放大电路的特性与动态分析
IB
Ic
C:UCE EC IC RC IE Re EC IC RC Re
返回 休息1 休息2
(3) 等效电源法:
A:利用戴文宁定律简化基极偏置电路
其中: U BB
EC Rb1 Rb2
Rb2
Rb=Rb1//Rb2
B:列出输入回路偏置方程:
UBB=IBRb+UBE+(IB+IC)Re
ube=uBE - UBE 代入上式
IB
所以 交流负载线:
iB
IB
1 Rb
us
uBE
U BE
+ ube -
·Q
•
UBE H 返回
休息1 休息2
A
uBE
(2) 输出回路的动态方程与交流负载线
① b:利输用出 截距回式路:动态方程:
令 iCi=c=0 -u得ce:/RuLC’E=UCE+ICRL’
一 共射放大电路的组成及其交、直流通路 1 电路基本组成:
4) 直流电源 EC:
为放大器提供直流偏置
提供能量,即在 uS 的控制下把直流能 量通过 T 转换成交流能量放大输出。
另外,电路中含有两个独立电源
直流电源 EC 交流信号源 uS 在两电源共同作用下,由线性网络的 选加原理电路中各支路上的电压和电流应 等于每个 独立电源单独作用于网络时产生