人教版七年级数学下册第七章测试题(最新整理)
人教版七年级数学下册第七单元测试题及答案
A B E (第3题)A B A B C D P 12第7题A B C D第10题第1个第2个第3个七年级数学第七章《三角形》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共 30 分)1、下列三条线段,能组成三角形的是( A )A 、3,3,3B 、3,3,6C 、3,2,5D 、3,2,62、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( A )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、都有可能3、如图所示,AD 是△ABC 的高,延长BC 至E ,使CE =BC ,△ABC 的面积为S 1,△ACE的面积为S 2,那么( A )A 、S 1>S 2B 、S 1=S 2C 、 S 1<S 2D 、不能确定4、下列图形中有稳定性的是( B ) A 、正方形 B 、长方形 C 、直角三角形 D 、平行四边形5、如图,正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点 在小方格的顶点上,位置如图形所示,C 也在小方格的顶点上,且以A 、B 、 C 为顶点的三角形面积为1个平方单位,则点C 的个数为( D )A 、3个B 、4个C 、5个D 、6个 6、已知△ABC 中,∠A 、∠B 、∠C 三个角的比例如下,其中能说明△ABC 是直角三角形的是( A )A 、2:3:4B 、1:2:3C 、4:3:5D 、1:2:2 7、点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC , 则图中∠1、∠2、∠A 的大小关系是( C )A 、∠A >∠2>∠1B 、∠A >∠2>∠1C 、∠2>∠1>∠AD 、∠1>∠2>∠A8、在△ABC 中,∠A =80°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 、CE 相交于点O ,则∠BOC 等于( D )A 、140°B 、100°C 、50°D 、130°9、下列正多边形的地砖中,不能铺满地面的正多边形是( D ) A 、正三角形B 、正四边形 C 、正五边形 D 、正六边形10、在△ABC 中, ∠ABC =90°,∠A =50°,BD ∥AC ,则∠CBD等于(B ) A 、40° B 、50° C 、45° D 、60°二、填空题(本大题共6小题,每小题3分,共18分)11、P 为△ABC 中BC 边的延长线上一点,∠A =50°,∠B =70°,则∠ACP =___120°__。
人教版七年级数学下册第七章测试题
第七章 平面直角坐标系 水平测试题(一)一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.某同学的座位号为(4,2),那么该同学的位置是( )(A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定 2.下列各点中,在第二象限的点是( ) (A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3) 3.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )(A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3) 4.点M (1m +,3m +)在x 轴上,则点M 坐标为( ).(A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2) 5.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )(A )(3,2) (B )(3,2--) (C )(2,3-) (D )(2,3-) 6.如果点P (5,y )在第四象限,则y 的取值范围是( )(A )0y < (B )0y > (C )0y ≤ (D )0y ≥ 7.如图:正方形ABCD 中点A 和点C 的坐标分别为)3,2(-和)2,3(-,则点B 和点D 的坐标分别为( ).(A ))2,2(和)3,3( (B ))2,2(--和)3,3( (C ))2,2(--和)3,3(-- (D ))2,2(和)3,3(--8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为( ) (A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3) 9.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( )(A )A 1(0,5-),B 1(3,8--) (B )A 1(7,3), B 1(0,5) (C )A 1(4,5-) B 1(-8,1) (D )A 1(4,3) B 1(1,0)10.在方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ). (A )(-2,-5) (B )(-2,5) (C )(2,-5) (D )(2,5)二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!) 11.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________.12. 若点P (a ,b -)在第二象限,则点Q (ab -,a b +)在第_______象限.13. 若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是________(写出一个即可).14.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后猫眼的坐标为_________.15. 已知点P (x ,y )在第四象限,且|x |=3,|y |=5,则点P 的坐标是______. 16. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下一步它可能走到的位置的坐标________.17.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标________.AC B18.已知点P 的坐标(2a -,36a +),且点P 到两坐标轴的距离相等,则点P 的坐标是 .三、认真答一答:(本大题共4小题,每小题10分,共40分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.市场宾馆超市医院火车站文化宫体育场20.适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点。
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。
人教版数学七年级(下册)第七章测试卷(附参考答案)
人教版数学七年级(下册)第七章测试卷1.下列数据中不能确定具体位置的是()A.某市政府位于解放路12号B.小明住在花园小区3号楼7号C.太阳在我们的正上方D.东经102°,北纬25°的城市2.在平面直角坐标系中,若点P的坐标为(-3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列点中,位于直角坐标系第四象限的点是()A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)4.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,3)B.(-5,3)或(5,3)C.(3,5)D.(-3,5)或(3,5)5.已知直角坐标系中,点P(x,y)满足x2=4,y3=-27,则点P坐标为()A.(2,-3)B.(-2,3)C.(2,3)D.(2,-3)或(-2,-3)6.如果点M到x轴和y轴的距离相等,则点M横、纵坐标的关系是()A.相等B.互为相反数C.互为倒数D.相等或互为相反数7.经过两点A(2,3)、B(-4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.无法确定8.如图1所示,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()图1A.(4,3)B.(2,4)C.(3,1)D.(2,5)9.如果用(7,2)表示七年级二班,那么八年级三班可表示成.10.将点A(4,3)向平移个单位长度后,坐标变为(6, 3).11.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.12.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标.13.如果点P(x2-4,y+1)是坐标原点,则2x+y=.14.如图2所示,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A’的坐标是.图215.在平面直角坐标系中,分别作出下列各点,并依次连接起来.(0,0),(0,3),(-2,3),(-2,5),(-3,5), (-3,0),(-2,0),(-2,2), (-1,2),(-1,0).(1)观察连接成的图形,这个图形像什么?(2)画出把这个图形向右平移4个单位的图形.并分别写出与上述各点对应的点的坐标.图316.如图4所示,一个七棱锥,把它的展开图放在平面直角坐标系中,若B(3,3),C(4,0).(1)试画出平面直角坐标系;(2)求出其余六个点的坐标.图417.如图5所示,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标;(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.图518.如图6所示,在方格纸内将每个小正方形的边长为1,△ABC经过平移后得到△A’B’C’,图中标出了点B的对应点B’.(1)补全△A’B’C’;(2)△A’B’C’的面积为.图619.如图7所示,已知O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).(1)画出△OBC关于y轴的对称图形△OB’C’;(2)分别写出B、C两点的对应点B’、C’的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M’的坐标.图7参考答案1.C2.B3.D4.D5.D6.D7.A8.D9.(8,3)10.右 211.(8,2)或(-2,2)12.(2,2)(答案不唯一)13.3或-514.(2,3)15.解:(1)如图所示,图形像字母h或椅子 .(2)如图,对应点坐标分别为(4,0),(4,3),(2,3),(2,5),(1,5),(1,0),(2,0),(2,2),(3,2),(3,0).16.解:(1)略.(2)A(0,4),D(1,-3),E(-3,-3),F(-4,0),G(-3,3).17.解:(1)(2,0).(2)(7,0).18.解:(1)略;(2)A’B’C’的面积为8.19.解:(1)图略.(2)B’(-3,-1),C’(-2,1).(3)M’(-x,y).。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
最新人教版七年级数学下册第七章同步测试题及答案
最新人教版七年级数学下册第七章同步测试题及答案第七章平面直角坐标系7.1 平面直角坐标系一、选择题1.点P在四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P的坐标为()A. (−3,−2)B. (3,−2)C. (2,3)D. (2,−3)2.若y=√y−2+√2−y−3,则y(y,y)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.点y(y−3,y+1)在第二、四象限的平分线上,则点A的坐标为()A. (−1,1)B. (−2,−2)C. (−2,2)D. (2,2)4.已知点y(2y+1,1−y)在第一象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.5.如图,一个机器人从点O出发,向正西方向走2m到达点y1;再向正北方向走4m到达点y2,再向正东方向走6m到达点y3,再向正南方向走8m到达点y4,再向正东方向走10m到达点y5,…按如此规律走下去,当机器人走到点y2017时,点y2017的坐标为()A.(2016,2016)B. (2016,−2016)C. (−2018,−2016)D. (−2018,2020)6.已知点y(y,y)是平面直角坐标系中第四象限的点,则化简√y2+|y−y|的结果是()A. y−2yB. aC. −y+2yD. −y7.在平面坐标系内,点A位于第二象限,距离x轴1个单位长度,距离y轴4个单位长度,则点A的坐标为()A. (1,4)B. (−4,1)C. (−1,−4)D. (4,−1)8.如图,在平面直角坐标系中,y(1,1),y(−1,1),y(−1,−2),y(1,−2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按y→y→y→y→y…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A. (−1,0)B. (1,−2)C. (1,1)D. (0,−2)9.如图,矩形ABCD的两边BC、CD分别在x轴、y轴上,点C与原点重合,点y(−1,2),将矩形ABCD沿x轴向右翻滚,经过一次翻滚点A对应点记为y1,经过第二次翻滚点A对应点记为y2…依此类推,经过5次翻滚后点A对应点y5的坐标为()A. (5,2)B. (6,0)C. (8,0)D. (8,1)10.如图,在平面直角坐标系中,一动点从原点O出发,向上,向右,向下,向右的方向依次不断地移动,每次移动一个单位,得到点y1(0,1),y2(1,1),y3(1,0),y4(2,0),…那么点y42的坐标为()A. (20,0)B. (20,1)C. (21,0)D. (21,1)二、填空题11.第三象限的点y(y,y)且|y|=5,y2=9,则M的坐标是______ .12.若点y(y,y)在第四象限,则点y(y−y,y−y)在第______ 象限.13.在平面直角坐标系中,点P在第二象限内,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为______.14.在平面直角坐标系内,已知点y(2y,y−4)在第四象限,且m为偶数,则m的值为______ .三、计算题15.已知:点y(y−1,2y+4).点P在过y(−3,2)点,且与x轴平行的直线上,求出P点的坐标.16.在同一直角坐标系中分别描出点y(−3,0)、y(2,0)、y(1,3),再用线段将这三点首尾顺次连接起来,求△yyy的面积与周长.17.如图,已知在平面直角坐标系中,△yyy的位置如图.(1)请写出A、B、C三点的坐标;(2)将△yyy向右平移6个单位,再向上平移2个单位,请在图中作出平移后的△,并写出△各点的坐标.(3)求出△yyy的面积.参考答案1. D2. D3. C4. C5. C6. A7. B8. D9. D 10. D11. (−5,−3)12. 二13. (−5,4)14. 215. 解:∵点y(y−1,2y+4).点P在过y(−3,2)点,且与x轴平行的直线上,∴点P的纵坐标是2.∴2y+4=2,解得y=−1,∵y−1=−1−1=−2,2y+4=2×(−1)+4=2,∴y的坐标是(−2,2).16. 解:利用勾股定理得:yy=√32+42=5,yy=√12+32=√10,yy=2−(−3)=5,∴周长为yy+yy+yy=5+5+√10=10+√10;面积=3×5−12×3×4−12×1×3=152.17. 解:(1)y(−1,2),y(−2,−1),y(2,0)(2)y/(5,4),y/(4,1),y/(8,2)(3)7.2 坐标方法的简单应用一、选择题1.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n 能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A.(66,34)B.(67,33)C.(100,33)D.(99,34)2.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点AB.点BC.点CD.点D3.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)4.如图,如果将△ABC向左平移2格得到△A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1)B.(1,1)C.(7,1)D.(3,3)5.如图,是A,B,C,D四位同学的家所在位置,若以A同学家的位置为坐标原点建立平面直角坐标系,那么C同学家的位置的坐标为(1,5),则B,D两同学家的坐标分别为( )A.(2,3),(3,2)B.(3,2),(2,3)C.(2,3),(-3,2)D.(3,2),(-2,3)6.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A.2个B.3个C.4个D.5个7.从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则( )A.小强家在小红家的正东B.小强家在小红家的正西C.小强家在小红家的正南D.小强家在小红家的正北8.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点( )A.(1,3)B.(-2,0)C.(-1,2)D.(-2,2)9.如图,雷达探测器测得六个目标A,B,C,D,E,F出现,按照规定的目标表示方法,目标C、F的位置表示为C(6,120°),F(5,210°),按照此方法在表示目标A,B,D,E的位置时,其中表示不正确的是( ) A.A(5,30°) B.B(2,90°) C.D(4,240°) D.E(3,60°)10.已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为点C(4,7),则点B(-4,-1)的对应点D 的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)11.在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1)二、填空题1.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为__________.2.如图是某学校的平面示意图,在8×8的正方形网格中(每个小方格都是边长为1的正方形),如果分别用(3,1),(3,5)表示图中图书馆和教学楼的位置,那么实验楼的位置应表示为__________.3.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A·B(+1,+4),从B到A记为:B·A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A·C(__________,__________),B·C(__________,__________),C·__________(-3,-4);(2)若贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置点E.4.将点A(-3,1)向右平移5个单位长度,再向上平移6个单位长度,可以得到对应点A′的坐标为__________.5.在平面直角坐标系中,△ABC的三个顶点的横坐标保持不变,纵坐标都减去2个单位长度,则得到的新三角形与原三角形相比向__________平移了__________个单位长度.6.已知△ABC,若将△ABC平移后得到△A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则△ABC是向__________平移__________个单位得到△A′B′C′.7.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为__________.8.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是__________,A1的坐标是__________.三、解答题1.如果规定北偏东30°的方向记作30°,沿这个方向行走50米记作50,图中点A记作(30°,50),北偏西45°记作-45°,沿着该方向的反方向走20米记作-20,图中点B记作(-45°,-20),问:(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).2.如图所示,在△ABC中,任意一点M(x0,y0)经平移后对应点为M1(x0-3,y0-5),将△ABC作同样平移,得到△A1B1C1,求△A1B1C1的三个顶点的坐标.3.如图,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.4.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.参考答案一、1. C 2. B 3. D 4. B 5. D 6. B 7. B 8. B 9. D 10. A 11. C二、1.(2,4) 2.(-3,4) 3.(1)+3 +4 +2 0 A(2)图略.4.(2,7)5.下 26.左 27.(-5,4)8.(3,0) (4,3)三、1.(1)(-75°,-15)表示南偏东75°,15米处,(10°,-25)表示南偏西10°,25米处;(2)图略.2.由M(x0,y0)平移后变为M1(x0-3,y0-5)得到A1(0-3,5-5),B1(-1-3,2-5),C1(5-3,1-5),即A1(-3,0),B1(-4,-3),C1(2,-4).3.(1)三角形ABC向下平移7个单位得到三角形A1B1C1.A1(-3,-3),B1(-4,-6),C1(-1,-5).(2)三角形ABC向右平移6个单位,再向下平移3个单位得三角形A2B2C2.A2(3,1),B2(2,-2),C2(5,-1).4.易知AB=6,A′B′=3,所以a=12.由(-3)×12+m=-1,得m=12.由0×12+n=2,得n=2.设F(x,y),变换后F′(ax+m,ay+n).因为F与F′重合,所以ax+m=x,ay+n=y.所以12x+12=x,12y+2=y.解得x=1,y=4.所以点F的坐标为(1,4).。
人教版七年级下册数学第7章测试题(附答案)
七下数学第七章《平面直角坐标系》单元测试一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>03.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.210.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.311.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.014.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作.17.已知点P(m+2,2m﹣1)在y轴上,则m的值是.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第象限.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是.20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为.21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.参考答案一、选择题(共15小题)1.下列选项中能较为准确描述合肥市大蜀山位置的是()A.东经116°B.北纬32°C.北纬32°,东经116°D.在合肥的西边【分析】根据坐标确定位置的方法逐一判断即可得.【解答】解:能较为准确描述合肥市大蜀山位置的是北纬32°,东经116°,故选:C.2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0B.b≤0C.b≥0D.b>0【分析】第三象限内横纵坐标均为负数,从而可得答案.【解答】解:∵点A(﹣3,b)在第三象限,∴b<0,故选:A.3.将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标是()A.(﹣6,6)B.(2,0)C.(1,﹣1)D.(﹣5,﹣1)【分析】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【解答】解:将点P(﹣2,3)先向下平移4个单位长度,再向右平移3个单位长度后得到点Q,则点Q的坐标为(﹣2+3,3﹣4),即(1,﹣1).故选:C.4.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)【分析】根据点P的位置确定P点坐标即可.【解答】解:∵点P在x轴的下方,到x轴的距离是3,∴P点纵坐标为﹣3,∵P在y轴的左方,到y轴的距离是2,∴P点横坐标为﹣2,∴P(﹣2,﹣3),故选:D.5.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC 先向左平移2个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B'的坐标是()A.(﹣3,0)B.(0,3)C.(﹣3,2)D.(l,2)【分析】将点B的横坐标减去2,纵坐标加上1即可得到点B'的坐标.【解答】解:∵将△ABC先向左平移2个单位,再向上平移1个单位得到△A′B′C′,B(﹣1,1),∴点B的对应点B'的坐标是(﹣1﹣2,1+1),即(﹣3,2),故选:C.6.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【解答】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.7.已知点A(2a+1,b﹣2)在第三象限,则点B(﹣a,3﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用平面直角坐标内点的坐标特点得出a,b的取值范围进而得出答案.【解答】解:∵点A(2a+1,b﹣2)在第三象限,∴2a+1<0,b﹣2<0,解得:a<﹣,b<2,∴﹣a>0,3﹣b>0,则点B(﹣a,3﹣b)在第一象限.故选:A.8.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)【分析】由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019(673,0)则点P2019的坐标是(673,0).故选:D.9.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.2【分析】由平面内点的坐标特点可知,点到x轴的距离是该点纵坐标的绝对值.【解答】解:点P(﹣3,2)到x轴的距离是该点纵坐标的绝对值,即2,故选:D.10.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.3【分析】AB∥x轴,可得A和B的纵坐标相同,即可求出m的值.【解答】解:∵点A(m+1,﹣2)和点B(3,m﹣1),且直线AB∥x轴,∴﹣2=m﹣1∴m=﹣1故选:A.11.将点(﹣3,4)向右平移3个单位、向下平移2个单位后的坐标为()A.(﹣6,0)B.(6,0)C.(0,﹣2)D.(0,2)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:把点(﹣3,4)向右平移3个单位,再向下平移2个单位后所得的点的坐标为:(﹣3+3,4﹣2),即(0,2),故选:D.12.若点P(a,b)满足a2b>0,则点P所在的象限为()A.第一象限或第二象限B.第一象限或第四象限C.第二象限或第三象限D.第三象限或第四象限【分析】根据a2b>0>0可得b>0,可得a>0或a<0,再根据平面直角坐标系中各象限内点的坐标特征可判断出P点所在象限.【解答】解:∵a2b>0,∴b>0,a>0或a<0,当a>0,b>0时,点P所在的象限为第一象限;当a<0,b>0时,点P所在的象限为第二象限;故选:A.13.如图,若将线段AB平移至A1B1,则a+b的值为()A.﹣3B.3C.﹣2D.0【分析】先利用点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【解答】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.14.若点A(m,n)在平面直角坐标系的第三象限,则点B(mn,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴【分析】根据点的坐标特点来确定点所在位置.【解答】解:因为点A(m,n)在平面直角坐标系的第三象限,所以m<0,n<0,所以mn>0,所以点B(mn,0)横坐标是正数,纵坐标是0,符合点在x轴的正半轴上的条件.故选:A.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,﹣1),…,按照这样的运动规律,点P第17次运动到点()A.(17,1)B.(17,0)C.(17,﹣1)D.(18,0)【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,根据该规律即可得出结论.【解答】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵17=4×4+1,∴P第17次运动到点(17,1).故选:A.二、填空题(共6小题)16.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作(3,5).【分析】由于将“7排4号”记作(7,4),根据这个规定即可确定3排5表示的点坐标.【解答】解:∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).17.已知点P(m+2,2m﹣1)在y轴上,则m的值是﹣2.【分析】直接利用y轴上点的坐标特点得出m+2=0,进而得出答案.【解答】解:∵点P(m+2,2m﹣1)在y轴上,∴m+2=0,解得:m=﹣2.故答案为:﹣2.18.已知P(m,n)在第二象限,则Q(﹣n,m)在第三象限.【分析】直接利用第二象限内点的坐标特点得出m,n的符号,进而得出答案.【解答】解:∵P(m,n)在第二象限,∴m<0,n>0,∴﹣n<0,∴Q(﹣n,m)在第三象限.故答案为:三.19.如图是两人正在玩的一盘五子棋,若白棋A所在点的坐标是(﹣3,2),黑棋B所在点的坐标是(﹣1,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是(2,3).【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.【解答】解:由题意可得,如右图所示的平面直角坐标系,故点C的坐标为(2,3),故答案为:(2,3).20.已知点P(3,﹣2),MP∥y轴,MP=5,则点M的坐标为(3,3)或(3,﹣7).【分析】先根据平行于y轴的直线上任意两点横坐标相同得出点M的横坐标是3,再根据MP=5求出点M的纵坐标.【解答】解:∵点P(3,﹣2),MP∥y轴,∴点M的横坐标与点P的横坐标相同,是3,又∵MP=5,∴点M的纵坐标为为﹣2+5=3,或﹣2﹣5=﹣7,∴点M的坐标为(3,3)或(3,﹣7).故答案为(3,3)或(3,﹣7).21.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为2.【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b 的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【解答】解:由题意可知:a=0+(3﹣2)=1;b=0+(2﹣1)=1;∴a+b=2.三.解答题(共5小题)22.如果点B(m﹣1,3m+5)到x轴的距离与它到y轴的距离相等,求点B的坐标.【分析】坐标平面内的点到两轴的距离实际上就是该点两坐标的绝对值.【解答】解:根据题意得,m﹣1=3m+5或m﹣1=﹣(3m+5),解得:m﹣1=3m+5,得m=﹣3,∴m﹣1=﹣4,点B的坐标为(﹣4,﹣4),解得:m﹣1=﹣(3m+5),得m=﹣1,∴m﹣1=﹣2,点B的坐标为(﹣2,2),∴点B的坐标为(﹣4,﹣4)或(﹣2,2).23.已知A(m,6)和点B(3,m2﹣3),直线AB平行于x轴,求m的值.【分析】根据直线平行于x轴的特点解答.【解答】解:∵直线AB平行于x轴,∴点A的纵坐标与点B的纵坐标相等相等,∴m2﹣3=6,m=3或m=﹣3,∵A.B是两个点.∴m≠3,即m=﹣3.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.【分析】(1)利用与x轴平行的直线上点的坐标特征得到a+2=4,求出a得到A、B点的坐标,然后计算它们的横坐标之差得到A、B两点间的距离;(2)利用与x轴垂直的直线上点的坐标特征得|b|=3,解得b=3或b=﹣3,从而得到C点坐标.【解答】解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.如图,在直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位,再向右平移5个单位得到△A′B′C′,并写出C′的坐标.【分析】(1)根据三角形面积求法得出即可;(2)根据已知将△ABC各顶点向下平移2个单位,向右平移5个单位得到各对应点,即可作图;进而得出点C′的坐标.【解答】解:(1)△ABC的面积是:×3×5=7.5;(2)作图如下:∴点C′的坐标为:(1,1).26.如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.【分析】(1)根据平移规律即可得到结论,(2)根据三角形的面积公式即可得到结论.【解答】解:(1)因为△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得所以,△A1B1C1是由△ABC向左平移3个单位,再向上平移1个单位所得A1(﹣1,2),B1(2,4),C1(0,5);(2)如图,△ABC的面积=3×3﹣×1×3﹣×1×2﹣×2×3=3.5.。
人教版数学七年级下册第七章测试卷(含答案)
初中数学人教版七年级下学期第七章测试卷一、单选题(共7题;共14分)1. ( 2分) 根据下列表述,能够确定一物体位置的是( )A. 东北方向B. 萧山歌剧院8排C. 朝晖大道D. 东经20度北纬30度2. ( 2分) 下列说法错误的是()A. 在x轴上的点的坐标纵坐标都是0,横坐标为任意数;B. 坐标原点的横、纵坐标都是0;C. 在y轴上的点的坐标的特点是横坐标都是0,纵坐标都大于0;D. 坐标轴上的点不属于任何象限3. ( 2分) 如图是在方格纸上画出的小旗图案,若用(2,1)表示A点,(2,5)表示B点,那么C点的位置可表示为()A. (3,5)B. (4,3)C. (3,4)D. (5,3)4. ( 2分) 点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()A. (0,-2)B. (4,0)C. (2,0)D. (0,-4)5. ( 2分) 在平面直角坐标系中,将点(1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是()A. (﹣1,﹣1)B. (﹣1,5)C. (3,﹣1)D. (3,5)6. ( 2分) 如图6,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是( )A. 4B. 5C. 6D. 77. ( 2分) 如图,在平面直角坐标系中,已知点A(2,1),点B(3,−1),平移线段AB,使点A落在点A1(−2,2)处,则点B的对应点B1的坐标为()A. (−1,−1)B. (1,0)C. (−1,0)D. (3,0)二、填空题(共3题;共7分)8. ( 1分) 直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3,4,则点P的坐标为________.9. ( 1分) 如图,已知A1(0,1),A2(√32,−12),A3(−√32,−12),A4(0,2),A5(√3,−1),A6(−√3,−1),A7(0,3),A8(3√32,−32),A9(−3√32,−32),…,则点A2010的坐标是________.10. ( 5分) 点P(-5,1)沿x轴正方向平移2个单位,在沿y轴负方向平移4个单位所得的点的坐标为三、解答题(共2题;共15分)11. ( 5分) 如图,平面直角坐标系中,三角形ABC的顶点都在网格点上,平移三角形ABC,使点B 与坐标原点O重合,请写出图中点A,B,C的坐标并画出平移后的三角形A1OC112. ( 10分) 小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).(1)画出平面直角坐标系;(2)求出其他各景点的坐标.四、作图题(共2题;共21分)13. ( 11分) 如图,直角坐标系中,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A,B 的坐标分别是A(3,1),B(2,3).(1)请在图中画出△AOB关于y轴的对称△A′OB′,写出点A′的坐标,点B′的坐标(2)请写出A′点关于x轴的对称点A′'的坐标为________;(3)求△A′OB′的面积.14. ( 10分) 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,已知点A(2,4),B(1,1),C(3,2).(1)将三角形ABC先沿着x轴负方向平移6个单位,再沿y轴负方向平移2个单位得到三角形A1B1C1,在图中画出三角形A1B1C1;(2)直接写出点A1,B1,C1的坐标.五、综合题(共1题;共12分)15. ( 12分) 在图所示的平面直角坐标系中表示下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章平面直角坐标系检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、单选题(每题3分,共30分)1.若点P(a,b)在第二象限,则点Q(b+5,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限2.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)3.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A.(﹣2,0)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣1,0)5. 如图,△PQR是△ABC向左平移2个单位长度,再向上平移3个单位长度得到的,若P、Q、R分别对应A、B、C,则点C的坐标是()A. (-1,4) B.(-3,1) C. (2,-3) D. (3,-2)6.如图1,在5×4的方格纸中,每个小正方形的边长均为1,点O,A,B在方格线的交点(格点)上.在第四象限内的格点上找一点C,使三角形ABC 的面积为3,则这样的点C 共有( )图1A.2个B.3个C.4个D.5个 7.到x 轴的距离等于2的点组成的图形是 ( )A.过点(0,2)且与x 轴平行的直线B.过点(2,0)且与y 轴平行的直线C.过点(0,-2)且与x 轴平行的直线D.分别过点(0,2)和点(0,-2)且与x 轴平行的两条直线8.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( ) A .114m -<<- B .74m -<<-C .7m <-D .4m >-9.点P()在平面直角坐标系的轴上,则点P 的坐标为( ) A .(0,2)B .(2,0)C .(0,-2)D .(0,-4)10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n .则△OA 6A 2020的面积是( )A .5052mB .504.52mC .505.52mD .10102m二、填空题(每题3分,共30分)11.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.12.如图,长方形ABCD 中AB=3,BC=4,且点A 在坐标原点,(4,0)表示D 点,那么C 点的坐标为______.13.将点(2,3)P -先向右平移2个单位,再向下平移3个单位,得到点P ',则点P '的坐标为__________.14.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果“士”所在位置的坐标为()1,2--,“相”所在位置的坐标为()2,2-,那么棋子“炮”的位置的坐标为________________________。
七年级数学下册第七章平面直角坐标系测试卷(附答案)
七年级数学下册第七章平面直角坐标系测试卷(附答案)篇一:七年级数学下册第七章《平面直角坐标系》测七年级数学下册第七章《平面直角坐标系》测试题一、选择题:(每题2.5分,共50分)1、若a?5,b?4,且点M(a,b)在第二象限,则点M的坐标是()A、(5,4)B、(-5,4)C、(-5,-4)D、(5,-4)2、过A(4,-2)和B(-2,-2)两点的直线一定()A、垂直于x轴B、与y轴相交但不平于x轴C、平行于x轴D、与x轴、 y轴平行3、如右图所示的象棋盘上,若帅(1,-2)上,○位于点相○位于点(3,-2)上,则炮○位于点()A、(-1,1)B、(-1,2)C、(-2,1)D、(-2,2)图34、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)5、若x轴上的点P到y轴的距离为3,则点P的坐标为()A、(3,0)B、(3,0)或(–3,0)C、(0,3)D、(0,3)或(0,–3)6、点M(x,y)满足x=0那么点M的可能位置是() yA.x轴上所有的点B.除去原点后x轴上的点的全体C.y轴上所有的点 D.除去原点后y轴上的点的全体7、如果两个点到x轴的距离相等,那么这两个点的坐标必须满足()A横坐标相等 B纵坐标相等C横坐标的绝对值相等 D纵坐标的绝对值相等8、线段CD是由线段AB平移得到的.点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(– 9,– 4)9、已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A、(-2,2),(3,4),(1,7)B、(-2,2),(4,3),(1,7)C、(2,2),(3,4),(1,7)D、(2,-2),(3,3),(1,7)10、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位11、在平面直角坐标系中,点?1,m2?1一定在()A.第一象限B.第二象限 C.第三象限 D.第四象限12、若点P?m,n?在第二象限,则点Q??m,?n?在()A.第一象限 B.第二象限 C.第三象限 D.第四象限13、已知两圆的圆心都在x轴上,A、B为两圆的交点,若点A的坐标为?1,?1?,则点B坐标为()A.?1,1? B.??1,?1? C.??1,1?D.无法求出14、已知点A?2,?2?,如果点A关于x轴的对称点是B,点B关于原点的对称点是C,那么C点的坐标是()A.?2,2? B.??2,2? C.??1,?1?D.??2,?2? ??15、在平面直角坐标系中,以点P?1,2?为圆心,1为半径的圆必与x轴有个公共点()A.0 B.1C.2 D.316、已知点A?3a,2b?在x轴上方,y轴的左边,则点A到x轴.y轴的距离分别为()A.3a,?2b B.?3a,2b C.2b,?3a D.?2b,3ab)17、若点P(a,到x轴的距离是2,到y轴的距离是3,则这样的点P有()A.1个B.2个C.3个D.4个18、点(x,x?1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限19、如果点P(?m,3)与点P1(?5,n)关于y轴对称,则m,n的值分别为()A.m??5,n?3 B.m?5,n?3C.m??5,n??3 D.m??3,n?520、一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B.若以港口O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()A A.50,B.(30, D.30) 50)C. (30,二、填空题:(每空2分,共54分)1、按下列条件确定点P(x,y)的位置:⑴x=0,y<0,则点P在____;⑵xy=0,则点P一定在____;⑶|x|+|y|=0,则点P在____第20题图 x_;⑷若xy>0,则点P在____.2、己知点P(x,y)位于第二象限,并且满足y≤x+4,x、y为整数,写出一个符合上述条件的点P的坐标___。
人教版七年级数学下册第七章测试题(附答案)
人教版七年级数学下册第七章测试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题 1.点M (1,2)关于x 轴对称的点的坐标为( )A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1)2.已知点A (m-1,3)与点B (2,n+1)关于x 轴对称,则m+n 的值为A 、1-B 、7-C 、1D 、73.点P ( 2,-3)关于x 轴对称的点是( )A .(-2, 3)B .(2,3)C .(-2, -3)D .(2,-3)4.在平面直角坐标系中,点P (1,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知点P 坐标为(2﹣a ,3a+6),且点P 到两坐标轴的距离相等,则a 的值是( )A .﹣1或4B .1或4C .1或﹣4D .﹣1或﹣46.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(﹣3,2),(b ,m ),(c ,m ),则点E 的坐标是( )A .(2,﹣3)B .(2,3)C .(3,2)D .(3,﹣2)7.图示为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( )A .△ACD 的外心B .△ABC 的外心C .△ACD 的内心D .△ABC 的内心8.在平面直角坐标系中,已知点A (﹣4,0)和B (0,2),现将线段AB 沿着直线AB 平移,使点A 与点B 重合,则平移后点B 坐标是( )A .(0,﹣2)B .(4,6)C .(4,4)D .(2,4)9.点(﹣2,3)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 10.平面直角坐标系中的点P (2﹣m ,m )在第一象限,则m 的取值范围在数轴上可表示为( )A .B .C .D .11.有理数a ,b ,c 在数轴上的位置如图所示,则a c +-2c b -+3b a +=( )A .-2bB .0C .-4a -b -3cD .-4a -2b -2c12.平面直角坐标系内一点P (﹣2,3)关于原点对称的点的坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)评卷人得分二、填空题13.下面是某医院各部门的示意图,横向表示的是楼层,纵向表示的是门号,例如:院长室在4楼3门,我们用(4,3)来表示其位置,试根据上面方法,结合图形,完成下面问题:(1)儿科诊室可以表示为;(2)口腔科诊室在楼门;(3)图形中显示,与院长室同楼层的有;(4)与神经科诊室同楼层的有;(5)表示为(1,2)的诊室是;(6)表示为(3,5)的诊室是;(7)3楼7门的是.14.点P(﹣2,1)向上平移2个单位后的点的坐标为.15.已知点O(0,0),B(1,2),点A在坐标轴上,且S△OAB=2,则满足条件的点A的坐标为.16.在如图所示的方格中,每个小方格都是边长为1的正方形,△ABC的三个顶点都在格点上.(1)建立平面的直角坐标系,使A(﹣2,﹣1),C(1,﹣1),则B点坐标为.(2)如果△ABC平移后B点的对应点B′的坐标变为(4,2),画出平移后的图△A′B′C′.17.若点P(﹣a,b)在第三象限,则点Q(b,a)在第象限.18.点(﹣3,7)到x轴上的距离是,到y轴上的距离是.19.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(4,2),C(6,0),解答下列问题:(1)请在图中确定该圆弧所在圆心D点的位置,并写出D点坐标为;(2)连结AD,CD,求⊙D的半径(结果保留根号);20.已知点P (2a -6,a +1)在y 轴上,则点P 的坐标为________评卷人得分 三、解答题21.如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC 平移至A′的位置,使点A 与A'对应,得到△A′B′C′;(2)线段AA′与BB′的关系是: ;(3)求△ABC 的面积.22.如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C (3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k )个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E .(1)点D 的坐标为 ,若a=2,b=-3,k=2,则点'D 的坐标为 ;(2)若'A (1,4),'C (6,-4),求点'E 的坐标.23.多多和爸爸、妈妈周末到公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x 轴、y 轴.只知道牡丹园的坐标为(3,3),请你帮他建立平面直角坐标系(画在图中)并求出其它各景点的坐标?答案1.C .2.A3.B4.D .5.D6.C.7.B.8.B9.B10.B11.C12.D13.(1)儿科诊室可以表示为(2,4).(2)口腔科诊室在1楼、7门.(3)图形中显示,与院长室同楼层的有外科.(4)与神经科诊室同楼层的有儿科、妇科.(5)表示为(1,2)的诊室内科.(6)表示为(3,5)的诊室是骨科.(7)3楼7门的是皮肤科.14.(﹣2,3).15.(2,0)或(﹣2,0)或(0,4)或(0,﹣4).16.解:(1)如图,B 点坐标为(0,1),(2)如图,△A′B′C′为所作.17.解:由点P (﹣a ,b )在第三象限,得﹣a <0,b <0.得a >0,b <0,点P (﹣a ,b )在第三象限,18.7,319.(1)、图形见解析;D(2,-2);(2)、25(2)、如图2,过点D 作DE ⊥y 轴,交y 轴于点E ,在Rt △ADE 中,AE=4,DE=2,则524222=+=r ,所以⊙D 的半径为52.考点:(1)、圆的确定;(2)、垂径定理20.(0,4)21.(1)见解析;(2)平行且相等.(3)3.5.解:(1)△A′B′C′如图所示;22.(1)(3,2),(8,-6);(2)E ′(5,2).23.A (0,4);B (﹣3,2);C (﹣2,﹣1);D (2,﹣2).。
七年级下数学第七章测试卷
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. -3.14B. √16C. 0.001001001…D. √-12. 若a=2,b=-3,则a-b的值为()A. 5B. -5C. 0D. 13. 下列各数中,绝对值最大的是()A. -2B. 0.5C. -1.5D. 14. 下列各数中,不是正数的是()A. 1/2B. -1/2C. √4D. 05. 下列各数中,不是实数的是()A. √25B. -√25C. 0.001D. i6. 若a=3,b=-2,则|a-b|的值为()A. 5B. 3C. 1D. 07. 下列各数中,不是有理数的是()A. -√4B. 1/3C. 0.333…D. √-18. 若a=5,b=-10,则a+b的值为()A. 15B. -15C. 0D. 59. 下列各数中,绝对值最小的是()A. -3B. 0.1C. -2.5D. 110. 下列各数中,不是负数的是()A. -2B. 0.5C. -1.5D. 0二、填空题(每题3分,共30分)11. 绝对值最大的有理数是________,绝对值最小的有理数是________。
12. 若a=2,b=-3,则a+b的值为________,a-b的值为________。
13. 下列各数中,绝对值最大的是________,绝对值最小的是________。
14. 若a=5,b=-10,则|a-b|的值为________。
15. 下列各数中,不是有理数的是________。
三、解答题(每题10分,共40分)16. 判断下列各数是有理数还是无理数,并说明理由。
(1)-√9(2)0.333…(3)√-117. 计算下列各式的值。
(1)|-5| + |3| - |2|(2)|2a - 3b|,其中a=4,b=-1(3)|a| + |b|,其中a=-3,b=518. 若a=2,b=-3,求以下代数式的值。
(1)a - b(2)|a + b|(3)a × b四、附加题(10分)19. 小明在一次数学竞赛中,他的成绩比平均分高1.5分,已知平均分为85分,小明的成绩是多少分?答案:一、选择题1. D2. A3. A4. B5. D6. A7. D8. B9. C 10. D二、填空题11. 3 0 12. 1 -5 13. -5 0.1 14. 13 15. √-1三、解答题16. (1)有理数,因为-√9 = -3,是整数。
新人教版七年级数学下册第七章综合检测题含答案
七年级数学下册第七章综合检测题一、选择题(每小题3分,共30分)1.下列数据不能确定物体位置的是( )A.1单元201室B.解放路81号C.北偏东17°D.东经118°,北纬40°2.在平面直角坐标系中,点P 的坐标为(-2,a 2+1),则点P 所在的象限是( )A.第一象限B.第二象限C.第三象限 D 第四象限3.已知点P 在第三象限,且它到x 轴的距离是2,到y 轴的距离是1,那么点P 的坐标为( )A.(2,-1)B.(-1,2)C.(1,2)D.(1,2)4.在平面直角坐标系中,将点A(1,一2)向上平移3个单位长度再向左平移2个单位长度,得到点A ',则点A '的坐标是( )A.(1,1)B.(1,-2)C.(1,2)D.(1,2)5.如图,线段AB 经过平移得到线段A 'B ',其中点A ,B 的对应点分别为点A ',B '这四个点都在格点上.若线段AB 上有一个点P(a ,b),则点P 在A 'B '上的对应点P '的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)6.若点P(m ,1-2m)在第二、四象限的角平分线上,则m 的值为( )A.-1B.1C.-31 D 31 7.有以下三个说法:①坐标的思想是法国数学家笛卡尔首先建立的;①除了平面直角坐标系,我们也可以用方向和距离确定物体的位置:①平面直角坐标系内的所有点都属四个象限其中错误的是( )A.只有①B.只有①C.只有①D.①①①8.在如图所示的平面直角坐标系内有一个四边形ABCD,点A的坐标是(0,2)现将这个四边形平移,使点A落在点A'(5,-1)处,则此平移过程可以是( )A.先向右平移5个单位长度,再向下平移1个单位长度B.先向右平移5个单位长度,再向下平移3个单位长度C.先向右平移4个单位长度,再向下平移1个单位长度D.先向右平移4个单位长度,再向下平移3个单位长度9.如图,网格中每个小正方形的边长为1,已知图中“笑脸”左眼的坐标是(2,3),则将此笑险向右平移3个选择是单位长度后,其右眼的坐标是( )A.(3,3)B.(-3,3)C.(0,3)D.(3,-3)10.如图所示,在平面直角坐标系中,A(1,1),B(-1,1),C(=1,=2),D(1,2),把一条长为2017个单位长度且没有弹性的细线的一端固定在点A处,并按A-B→C→D→A…的规律绕在四边形ABCD的边上(线的粗细忽略不计),则细线另一端所在位置的点的坐标是( )A.(-1,0)B.(1,2)C.(1,1)D.(0,2)二、填空题(每小题3分,共15分)11.电影票上“6排3号”,记作(6,3),则“3排6号”记作__________。
人教版七年级下册数学第七章测试题(附答案)
人教版七年级下册数学第七章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.已知点P(x,y)在第四象限,且,,则P点的坐标是( )A. (-3,-5) B. (5,-3) C. (3,-5) D. (-3,5)2.如图所示,点A的坐标是 ( )A. (3,2)B. (3,3)C. (3,-3)D. (-3,-3)3.在如图所示的平面直角坐标系中,一只蚂蚁从A点出发,沿着A﹣B﹣C﹣D﹣A…循环爬行,其中A点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C的坐标为(﹣1,3),D的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为()A. (1,1)B. (1,0)C. (0,1)D. (1,﹣1)4.A(-3,4)和B(4,-1)是平面直角坐标系中的两点,则由A点移到B点的路线可能是()A. 先向上平移5个单位长度,再向右平移7个单位长度B. 先向上平移5个单位长度,再向左平移7个单位长度C. 先向左平移7个单位长度,再向上平移5个单位长度D. 先向右平移7个单位长度,再向下平移5个单位长度5.已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A. ( 4 , 3 )B. (-5,4)C. (-1,-2)D. (-2,-1)7.在平面直角坐标系中,下列各点在第四象限的是()A. (2,1)B. (2,﹣1)C. (﹣2,1)D. (﹣2,﹣1)8.已知点P的坐标为((2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标为()A. (3,3)B. (3,-3)C. (6,-6)D. (3,3)或(6,-6)9.如图如果规定行写在前面,列写在后面,则A点表示为( )A. (1,2)B. (2 ,1)C. (1 ,2)或(2 ,1)D. 以上都不对10.位于坐标平面上第四象限的点是( ).A. (0,-4)B. (3,0)C. (4,-3)D. (-5,-2)11.在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长为1万米。
新人教版七年级下册数学第七章平面直角坐标系检测试题及答案
人教版七年级下册第七课平面直角坐标系单元综合测试卷一.选择题(共10 小题)1.在直角坐标系中,点A(-6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,点A(-1,2),则点 B 的坐标为()A. .(-2,2)B. .(-2,-3)C. .(-3,-2)D. (-2,-2)3.已知点 A(-3,0),则 A 点在()A. x 轴的正半轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上4.在平面直角坐标系的第四象限内有一点M,点 M 到 x 轴的距离为3,到 y 轴的距离为4,则点 M 的坐标是()A. (3,-4)B.(-4,3)C. (4,-3)D.(-3,4)5.在平面直角坐标系中,将点P(3,2)向右平移 2 个单位长度,再向下平移 2 个单位长度所获得的点坐标为()A. (1,0)B. (1,2)C. (5,4)D. (5,0)6.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.123° ~124° 34′C.福建的正方向D. 123° ~124° 34′ ,北 25° 40′~26° 8.已知点 M(a,1),N(3,1), 且 MN=2 , a 的(A.1 B. 5)C.1 或5D.不可以确立9.如所示是一个棋棋(局部)①的坐是 (-2,-1),白棋③的坐是A. (0,-2) B. (1,-2),把个棋棋搁置在一个平面直角坐系中,白棋(-1,-3),黑棋②的坐是()C. (2,-1)D. (1,2)10.如,在直角坐系中,已知点 A(-3,0)、B(0,4),△ OAB作旋,挨次获得△1、△2、△3、△4、⋯ ,△16的直角点的坐()19 1 9 A. (60,0)B. (72,0)C. 675,5D. 79 5,5二.填空(共 6 小)11.若 4 排3 列用有序数(4,3)表示,那么表示 2 排5 列的有序数.12.在平面直角坐系中,已知点A(2,3),点 B 与点A 对于x 称,点 B 坐是.13.若点P(m+5,m-2)在x 上,m=;若点P(m+5,m-2) 在y 上,m=.14A(-2,3)和B(2,1),那么炸机 C 的平面坐是.15.将点P(x,4)向右平移 3 个单位获得点(5,4),则P 点的坐标是.16.把自然数按如图的序次在直角坐标系中,每个点坐标就对应着一个自然数,比如点(0,0)对应的自然数是1,点 (1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n) 对应的自然数是三.解答题(共 6 小题)17.在平面直角坐标系中,点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,试求m+n 的值.18.已知点P(2m+4,m-1), 请分别依据以下条件,求出点P 的坐标.(1)点 P 在 x 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过点 A(2,-4)且与 y 轴平行的直线上.19.小王到公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如下图,但是她忘掉了在图中标出原点和x 轴、 y 轴,只知道游玩园 D 的坐标为 (2,-2),且一格表示一个单位长度.(1)在原图中成立直角坐标系,求出其余各景点的坐标;(2)在( 1)的基础上,记原点为 0,分别表示出线段 AO 和线段 DO 上随意一点的坐标.20.已知 A(1,0)、 B(4,1)、 C(2,4),△ABC经过平移获得△A′ B′ C′ ,若 A′的坐标为 (-5,-2).(1)求 B′、 C′的坐标;(2)求△ A′B′ C′的面积.21.如图,在平面直角坐标系中,第一次将△OAB 变换成△ OA B,第二次将△ OA B 变换成1111△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0) .( 1 )察看每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则 A4的坐标为 ,B4的坐标为.(2)按以上规律将△ OAB 进行 n 次变换获得△ OA n B n,则 A n的坐标为 ,B n的坐标为 ;(3)△ OA n B n的面积为.22.( 1)在如图直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(9,15)(7,10)(2,8)(7,6)(9,1), 并将各点用线段按序连结起来.(2)给图形起一个好听的名字,求所得图形的面积.(3)假如将原图形上各点的横坐标加2、纵坐标减 5,猜一猜,图形会发生如何的变化?(4)假如想让变化后的图形与原图形对于原点对称,原图形各点的坐标应当如何变化?答案:1-10 BDBCD DDCAA11.(2,5)12.(2,-3)13.-514.( -2, -1)15.(2,4)16.604n2 -2n+117.解:∵点 A(2m-7,n-6) 在第四象限,到x 轴和 y 轴的距离分别为3,1,∴2m-7=1,n-6=-3 ,解得 m=4, n=3,因此 ,m+n=4+3=7.18.解:( 1)∵点 P(2m+4,m-1) 在 x 轴上,∴m-1=0 ,解得 m=1,∴2m+4=2×1+4=6,m-1=0,因此,点P 的坐标为 (6,0);(2)∵点 P(2m+4,m-1)的纵坐标比横坐标大 3,∴m-1-(2m+4)=3 ,解得 m=-8,∴人教版七年级数学下册第七章平面直角坐标系培优稳固检测一.选择题(共10 小题)1.平面直角坐标系内有一点P(-2019,-2019),则点 P 在()A.第一象限B.第二象限C.第三象限D.第四象限2.若点 A(a,b)在第四象限,则点 B(0,a)在()A. x 轴的正平轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上3.已知点 P 的坐标为 (1,-2),则点 P 到 x 轴的距离是()A.1B. 2C. -1D.-24.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)5.已知点 P 位于第二象限,则点P 的坐标可能是()A. (-3,0)B. (0,3)C. (-3,2)D. (-3,-3)6.在直角坐标系中,点 M(-3,-4) 先右移 3 个单位,再下移 2 个单位,则点 M 的坐标变成()A. (-6,-6)B. (0,-6)C. (0,-2,)D.(-6,-2)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.东经 123° ~124° 34′C.福建的正东方向D.东经 123° ~124° 34′ ,北纬 25° 40′~26°8.如图,已知在△AOB 中 A(0,4),B(-2,0),点 M 从点(4,1)出发向左平移,当点M 平移到AB 边上时,平移距离为()A.4.5B. 5C.5.5D. 5.759.已知点M(a,1),N(3,1), 且MN=2 ,则a 的值为()A.1B. 5C.1 或5D.不可以确立10.在平面直角坐标系中,给出三点A,B,C,记此中随意两点的横坐标的差的最大值为a,任意两点的纵坐标差的最大值为h,定义“矩面积”S=ah,比如:给出A(1,2),B(-3,1),C(2,-2),则a=5, h=4, S=ah=20.若 D(1,2),E(-2,1). F(0,t)三点的“矩面积”为18,则 t=()A.-3 或 7B.-4 或 6C.-4 或 7D.-3 或 6二.填空(共 6 小)11.若影票上座位是“ 4 排 5号” 作 (4,5), (8,13)的座位是12.若 P(a-2,a+1)在 x 上, a 的是.13.若 4 排 3 列用有序数(4,3)表示,那么表示 2 排 5列的有序数.14.在平面直角坐系中,将点A(-1,3)向左平移 a 个位后,获得点A′ (-3,3), a 的是15.在平面直角坐系中,点M 在 x 的上方, y 的左面,且点 M 到 x 的距离 4,到y 的距离 7,点 M 的坐是.16.如,在平面直角坐系中,每个最小方格的均1,P2 ,P3,⋯1 个位度, P均在格点上,其序按中“→”方向摆列,如:P1(0, 0), P2 (0, 1), P3(1, 1), P4(1,- 1),P5(- 1,- 1), P6(- 1,2),⋯,依据个律,点P2019的坐三.解答(共 5 小)17.已知平面直角坐系中有一点M(2m-3,m+1) .(1)点 M 到 y 的距离 l , M 的坐?(2)点 N(5,-1)且 MN ∥x , M 的坐?18.六形六个点的坐A(-4,0),B(-2,-2),C(1,-2),D(4,1),E(1,4),F(-2,4).(1)在所坐系中画出个六形;(2)写出各拥有的平行或垂直关系.(不原因.)19.如图,三架飞机 P、 Q、 R 保持编队飞翔, 30 秒后飞机 P 飞到P1的地点,飞机Q、R飞到了新地点 Q1、 R1.在直角坐标系中标出 Q1、 R1,并写出坐标.20.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如下图.但是她忘掉了在图中标出原点和x 轴、y 轴.知道马场的坐标为(-3,-3)、南门的坐标为 (0,0), 你能帮她成立平面直角坐标系并求出其余各景点的坐标?21.如图是由边长为 1 个单位长度的小正方形构成的网格,线段AB 的端点在格点上.(1)请成立适合的平面直角坐标系xOy,使得 A 点的坐标为(-3,-1),在此坐标系下,写出 B 点的坐标;(2)在( 1)的坐标系下将线段B A 向右平移 3 个单位,再向上平移 2 个单位得线段CD,使得 C 点与点 B 对应,点 D 与点 A 对应.写出点C, D 的坐标,并直接判断线段AB 与 CD 之间关系?答案:1-5CCBDC6-10BDCCC11.8排13号12.-113.(2,5)14.215.( -7, 4)16.(505, 505)17.解:( 1)∵点 M ( 2m-3, m+1),点 M 到 y 轴的距离为 1,∴|2m-3|=1 ,解得 m=1 或 m=2,当 m=1 时,点 M 的坐标为( -1, 2),当m=2 时,点 M 的坐标为( 1, 3);综上所述,点 M 的坐标为( -1, 2)或( 1, 3);(2)∵点 M ( 2m-3, m+1 ),点 N ( 5, -1)且 MN ∥ x 轴,∴m+1=-1 ,解得 m=-2,故点 M 的坐标为( -7, -1).18.解:( 1)如下图:(2)由图可得, AB ∥DE, CD ⊥ DE , BC∥EF, CD⊥ AB .19.解:由题意可知:P 的坐标( -1, 1), Q( -3, 1), R(-1, -1)经过 30 秒后 P1的坐标为( 4, 3),∴Q1的坐标( 2,3), R1的坐标为( 4, 1)20.人教版七年级数学下册第7 章平面直角坐标系能力提高卷一.选择题(共10 小题)1.如图,小手遮住的点的坐标可能为()A. (5,2)B.(-7,9)C. (-6,-8)D. (7,-1)2.若线段 AB∥ x 轴且 AB=3,点 A 的坐标为 (2,1), 则点 B 的坐标为()A. (5,1)B.(-1,1)C. (5,1)或 (-1,1)D. (2,4)或 (2,-2)3.若点 A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到 x 轴的距离为()A.5B. -5C. 4D.-45.已知点 A(2x-4,x+2)在座标轴上,则x 的值等于()A.2 或 -2B. -2C. 2D.非上述答案6.依据以下表述,能确立一个点地点的是()A.北偏东 40°B.某地江滨路C.光明电影院 6 排D.东经 116 °,北纬 42°7.如图是某动物园的平面表示图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为 y 轴正方向成立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点 A 的坐标为(2,1),现将线段AB 先向左平移 1 个单位,再向下平移两个单位,则平移后 B 点的坐标为()A. (1,2)B.(1,-4)C. (-1,-1)或 (5,-1)D. (1,2)或 (1,-4)9.课间操时,小明、小丽、小亮的地点如下图,小明对小亮说:假如我的地点用(0,0) 表示,小丽的地点用(2,1)表示,那么你的地点能够表示成()A. (5,4)B. (4,5) C. (3,4) D. (4,3)10.已知点A(-1,2)和点 B(3,m-1),假如直线AB∥ x 轴,那么m 的值为()A.1B. -4C. -1D.3二.填空题(共 6 小题)11.若P(a-2,a+1)在x 轴上,则 a 的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移 4 个单位,获得点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点 Q 的坐标为 (ax+y,x+ay),此中 a 为常数,则称点Q 是点 P 的“ a 级关系点”,比如,点P(1,4)的 3 级关系点”为 Q(3 × 1+4,1+3×即4)Q(7,13),若点 B 的“ 2 级关系点”是 B'(3,3),则点 B 的坐标为;已知点 M(m-1,2m) 的“ -3 级关系点” M′位于 y 轴上,则 M ′的坐标为.14.已知点 A(m-1,-5) 和点 B(2,m+1),若直线 AB∥ x 轴,则线段 AB 的长为.15.小刚家位于某住所楼 A 座 16 层,记为:A16,按这类方法,小红家住 B 座 10层,可记为.16.如图,矩形 BCDE的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作围绕运动,物体甲按逆时针方向以乙按顺时针方向以 2 个单位 / 秒匀速运动,则两个物体运动后的第是.1 个单位2012/ 秒匀速运动,物体次相遇地址的坐标三.解答题(共7 小题)17.如图,在平面直角坐标系中,三角形ABC 的极点 A、 B、 C 的坐标分别为(0,3)、 (-2,1)、(-1,1),假如将三角形ABC先向右平移 2 个单位长度,再向下平移 2 个单位长度,会获得三角形 A′ B′C′ ,点 A'、 B′、 C′分别为点 A、 B、 C 挪动后的对应点.(1)请直接写出点 A′、 B'、 C′的坐标;(2)请在图中画出三角形 A′ B′ C′ ,并直接写出三角形 A′ B′ C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当 m 为什么值时,点 M 到 x 轴的距离为 1?(2)当 m 为什么值时,点 M 到 y 轴的距离为 2 ?19.如图是某个海岛的平面表示图,假如哨所 1 的坐标是 (1,3),哨所 2 的坐标是 (-2,0),请你先成立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的地点.20.已知:点P(2m+4,m-1) .试分别依据以下条件,求出P 点的坐标.(1)点 P 在 y 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过 A(2,-4)点且与 x 轴平行的直线上.21.阅读资料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点 A 位于点 (-4,4),点 B 位于点 (3,1),则“帅”所在点的坐标为;" 马”所在点的坐标为 ;" 兵”所在点的坐标为.(2)若“马”的地点在点 A,为了抵达点 B,请按“马”走的规则,在图上画出一种你以为合理的行走路线,并用坐标表示出来.1m a,1, 此中a、b为常数.f运算22.对有序数对 (m,n) 定义“ f 运算”: f(m,n) =n b22的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的随意一点A(x,y)规定“ F 变换”:点 A(x,y)在 F 变换下的对应点即为坐标为f(x,y) 的点 A′.(1)当 a=0, b=0 时 ,f(-2,4)= ;(2)若点 P(4,-4)在 F 变换下的对应点是它自己,则a=,b =.答案:1-5CCBCA6-10DDDCD11.-112.(-10, 5)13.( 1, 1)( 0, -16)14.915.B1016.( -1, -1)17.解:( 1)依据题意知,点 A′的坐标为( 2,1)、 B' 的坐标为( 0,-1 )、 C′的坐标为(1, -1 );(2)如下图,△A′ B′ C′即为所求,S= × 1×2=1.△A ′B′C′18.解:( 1)∵ |2m+3|=12m+3=1 或 2m+3=-1∴m=-1 或 m=-2;(2)∵ |m-1|=2m-1=2 或 m-1=-2∴m=3 或 m=-1.19.解:成立如下图的平面直角坐标系:小广场( 0, 0)、雷达( 4,0)、营房( 2, -3 )、码头( -1 , -2 ).20.解:( 1)∵点 P( 2m+4, m-1),点 P 在 y 轴上,∴2m+4=0 ,解得: m=-2,则 m-1=-3,故 P( 0, -3);21. 解:( 1)由点 A 位于点( -4 , 4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A、第一象限 B、第二象限 C、第三象限 D、第四象限
5.在平面直角坐标系中,点 B(3, 0)在 ( )
A、第一象限 B、第四象限 C、x 轴上
D、y 轴上
6.在平面直角坐标系中,将点 C(-2, 4 )向右平移 3 个单位后得到 D 点,则 D 点的坐标
是( )
A、(1,4)
B、(5,4)
C、(5、4)
D、(4、5)
3.在平面直角坐标系中,对于坐标 P(2,5),下列说法错误的是( )
A、P(2,5)表示这个点在平面内的位置
B、点 P 的纵坐标是:5
C、点 P 到 x 轴的距离是 5
D、它与点(5,2)表示同一个坐标
4.在平面直角坐标系中,点 A(-1, 1)在 ( )
游乐园
23.(12
分)如图,△ABC
中任意一点
P(
x0
,
y 0
)经平移后对应点为
P1
(
x0
+5,
0
+3),将△ABC 作同样的平移得到△ A1 B1 C1 。
(1)画出△ A1 B1 C1 ,并求 A1 , B1 ,C1 的坐标。 y
(2)求△ABC 的面积。
A(-2,3)
2
1
0
x
C(2,0)
B(-4,-1)
是
,所在象限是
,纵坐标
13、点 A(-1,2)关于 y 轴的对称点坐标是
;点 A 关于 x 轴对称的点的坐
标为
14、已知点 A(2,-3),若将点 A 向左平移 3 个单位得到点 B,则点 B 坐标是
将点 A 向上平移 4 个单位得到点 C,则点 C 坐标是
.
;若
15、点 P(x,y)在第二象限,且|x|=3,|y|=2,则 P 点的坐标是 .
(-4,-1)的对应点 D 的坐标为_______
20、在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于
个单位长度
三 解答题、(共 40 分)
y
21.如图,写出 A、B、C、D、E、F、H 各个点的
B
坐标。(7 分)
4
3F
2
1H A
-4 -3 -2 -1 0 1 2 3 4
与原图形相比(
)
A、向右平移了 3 个单位
B、向左平移了 3 个单位
C、向上平移了 3 个单位
D、向下平移了 3 个单位
9. 在平面直角坐标系中,若以点 A(0,-3)为圆心,5 为半径画一个圆,则这个圆与 y
轴的负半轴相交的点坐标是( )
A、(8,0)
B、( 0,-8) C、(0,8)
D、(-8,0)
16、若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则 a= .
17、点B(-4,-5)到 x 轴的距离为 ;到 y 轴的距离为
18、已知 x 轴上的点 P 到 y 轴的距离是 3,则点 P 坐标是_______ _ 19、线段 CD 是由线段 AB 平移得到的。点 A(–1,4)的对应点为 C(4,7),则点 B
C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0)。
(1)A 点到原点 O 的距离是
。
(2)将点 C 向 x 轴的负方向平移 6 个单位,它与点
重合。
(3)连接 CE,则直线 CE 与 y 轴是什么关系?
(4)点 F 分别到 x 、 y 轴的距离是多少?
望春亭 F C
(2,-2) D
10. 有一个长方形,已知它的三个顶点的坐标分别是(– 1,– 1)、(– 1,2)、
(3,– 1),则第四个顶点的坐标为 ( )
A、(2,2)
B、(3,2)
C、(3,3)
D、(2,3)
二、填空题(本大题共 10 小题,每空 2 分,共 30 分)
11、原点 O 的坐标是
,
12、 在 平 面 直 角 坐 标 系 内 , 点 A( - 2, 3) 的 横 坐 标 是
E
-1
x
-2
C -3
D
-4
22、(本题 8 分)现有一张利用平面直角坐标系画出来的某公园景区地图,如图所示,若
知道游乐园 D 的坐标为(2,-2)。
(1)请按题意建立平面直角坐标系;
(2)写出其他景点的坐标;
B 湖心亭
A 音乐台
E 牡丹园
24、(13 分)在图所示的平面直角坐标系中表示下面各点:A(0,3);B(1,-3);
B、(-5,4)
C、(-2,7) D、(-2,1)
7.如图 3 所示的象棋盘上,若○帅 位于点(1,-2)上,
图
○相 位于点(3,-2)上,则○炮 位于点( )
图
图
A、(-1,1) B、(-1,2) C、(-2,1) D、(-2,2)
图3
8.在平面直角坐标系中,将三角形各点的纵坐标都减去 3,横坐标保持不变,所得图形
人教版七年级下册数学第七章测试题
班级
姓名
分数
一、选择题:(每小题 3 分,共 30 分)
1.如图,点 P 的坐标是( )
A、1
B、2
C、(2,1)
D、(1,2)
y
1
P
0 12 x
2.如果用有序数对(3,2)表示课室里第 3 列第 2 排的座位,则位于第 5 列第 4 排的座
位应记作( )
A、(4,5)