2013年中考数学答案
2013成都中考数学试题及答案
成都市二O 一三年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( )(A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-14.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3(C )4 (D )55.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C )32-=6 (D )0)2013(-=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )1.3×510 (B )13×410 (C )0.13×510 (D )0.13×6107.如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点'C 重合,若AB=2,则'C D 的长为( )(A )1 (B )2 (C )3(D )48.在平面直角坐标系中,下列函数的图像经过原点的是( )(A )y=-x +3 (B )y=x5(C )y=x 2 (D )y=722-+-x x9.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根(C )只有一个实数根 (D )没有实数根10.如图,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( )(A )40° (B )50° (C )80°(D )100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式312>-x 的解集为_______________.12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD,则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米.三.解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+- (2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:等级 成绩(用s 表示) 频数频率 A 90≤s ≤100 x0.08B 80≤s <9035 y C s <8011 0.22 合 计501请根据上表提供的信息,解答下列问题:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式;(2)结合图像直接比较:当0>x 时,1y 和2y 的大小. 20.(本小题满分10分) 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值;ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________.24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当33k =-时,2BP BO BA =⋅;○4PAB ∆面积的最小值为46.其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:62sin15cos 754-==,62cos15sin 754+==)二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ;(2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3tan 4ADB ∠=,4333PA AH -=,求BD 的长;(3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q .i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q、、三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii )取BC 的中点N ,连接,NP BQ .试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.成都市二O 一三年高中阶段教育学校统一招生考试数学答案A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、10015.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122=19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <;当x=1时,21y y =;当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ; (2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE ,∴QH AP PH AD =, ECQHBC BH =;设AP=x ,QH=y ,则有53yBH =∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x ,∴053=-x y 即xy 53=∴53==y x PQ DP(3)3342B 卷21.31-22.11723.3 24.③④25.c b ±2,c b 21322-+或c b --22626. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒27.(1)如图,连接DO 并延长交圆于点E ,连接AE ∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k34∴∠P=30°,∠PDH=60°∴∠BDE=30° 连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k)又∵PCPA PD ⨯=2∴)]4325(3434[)334()8(2k k k k -+⨯-=解得k=334-∴AC=7324)4325(343+=-+k k∴S=23175900)7324(3252121+=+⨯⨯=•AC BD28.(1)12212-+-=x x y(2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQNP BQ+的最大值是510。
2013年上海市中考数学试卷-答案
【提示】根据中位数和平均数的定义求解即可.【考点】中位数,加权平均数.5.【答案】A【解析】解:∵35ADDB =::,∴:58BD AB =:,∵DE BC ∥,∴::5:8CE AC BD AB ==, ∵EF AB ∥,∴::5:8CF CB CE AC ==,故选A .【提示】先由:3:5AD DB =,求得:BD AB 的比,再由DE BC ∥,根据平行线分线段成比例定理, 可得::CE AC BD AB =,然后由EF AB ∥,根据平行线分线段成比例定理,可得::CF CB CE AC =, 则可求得答案.【考点】平行线分线段成比例.6.【答案】C【解析】解:A .∵BDC BCD ∠=∠,∴BD BC =,根据已知AD BC ∥不能推出四边形ABCD 是等腰梯形,故本选项错误;B .根据ABC DAB ∠=∠和AD BC ∥不能推出四边形ABCD 是等腰梯形,故本选项错误;C .∵ADB DAC AD BC ∠=∠,∥,∴ADB DAC DBC ACB ∠=∠=∠=∠,∴OA OD OB OC ==,, ∴AC BD =,∵AD BC ∥,∴四边形ABCD 是等腰梯形,故本选项正确;D .根据AOB BOC ∠=∠,只能推出AC BD ⊥,再根据AD BC ∥不能推出四边形ABCD 是等腰梯形,故本选项错误,故选:C .【提示】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.【考点】等腰梯形的判定.二、填空题7.【答案】(1)(1)a a +-【解析】解:21(1)(1)a a a -=+-.【提示】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:22()()a b a b a b -=+-.【考点】因式分解.8.【答案】1x >【解析】解:1023x x x ->⎧⎨+>⎩①②,由①得,1x >; 由②得,3x >-,故此不等式组的解集为:1x >.【提示】分别求出各不等式的解集,再求出其公共解集即可.【考点】分式的乘除法.+2a b++=-+=+.2()32232a b b a b b a b 【提示】先去括号,然后进行向量的加减即可.45OB AC OB ==1x +,将A xcos AE AEH ∠∴栏杆EF 段距离地面的高度为: 1.20.96 2.16 2.2AB EH +≈+=≈(米).cos AE AEH ∠∴1DCB B ∠=∠=∠,∵1A ADG ∠+∠=∠,∴A G B ∠+∠=∠.11(2)当P与Q相外切时,如图1所示:(3)按照题意画出图形,如图2所示,连接QE.。
2013年福建省福州市中考数学试卷及答案
福建省福州市2013年中考数学试卷一.选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2013福州)2的倒数是()A.B.﹣ C.2 D.﹣2考点:倒数.分析:根据倒数的概念求解.解答:解:2的倒数是.故选A.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2013福州)如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°考点:余角和补角.分析:根据互余两角之和为90°即可求解.解答:解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.点评:本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键.3.(2013福州)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.解答:解:7 000 000=7×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(2013福州)下列立体图形中,俯视图是正方形的是()A.B. C.D.考点:简单几何体的三视图.分析:俯视图是从上面看所得到的视图,结合选项进行判断即可.解答:解:A.俯视图是带圆心的圆,故本选项错误;B.俯视图是一个圆,故本选项错误;C.俯视图是一个圆,故本选项错误;D.俯视图是一个正方形,故本选项正确;故选D.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.5.(2013福州)下列一元二次方程有两个相等实数根的是()A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x﹣1)=0考点:根的判别式.专题:计算题.分析:根据计算根的判别式,根据判别式的意义可对A、B、C进行判断;由于D的两根可直接得到,则可对D进行判断.解答:解:A.△=0﹣4×3=﹣12<0,则方程没有实数根,所以A选项错误;B.△=4﹣4×0=4>0,则方程有两个不相等的实数根,所以B选项错误;C.x2+2x+1=0,△=4﹣4×1=0,则方程有两个相等的实数根,所以C选项正确;D.x1=﹣3,x2=1,则方程有两个不相等的实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(2013福州)不等式1+x<0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:求出不等式的解集,即可作出判断.解答:解:1+x<0,解得:x<﹣1,表示在数轴上,如图所示:故选A点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(2013福州)下列运算正确的是()A.a•a2=a3B.(a2)3=a5C. D.a3÷a3=a考点:分式的乘除法;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.专题:计算题.分析:A.原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B.原式利用幂的乘方运算法则计算得到结果,即可作出判断;C.原式分子分母分别乘方得到结果,即可作出判断;D.原式利用同底数幂的除法法则计算得到结果,即可作出判断.解答:解:A.a•a2=a3,本选项正确;B.(a2)3=a6,本选项错误;C.()2=,本选项错误;D.a3÷a3=1,本选项错误,故选A点评:此题考查了分式的乘除法,同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.(2013福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB 长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为()A.2.5cm B.3.0cm C.3.5cm D.4.0cm考点:平行四边形的判定与性质;作图—复杂作图.分析:首先根据题意画出图形,知四边形ABCD是平行四边形,则平行四边形ABCD的对角线相等,即AD=BC.再利用刻度尺进行测量即可.解答:解:如图所示,连接BD、BC、AD.∵AC=BD,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.测量可得BC=AD=3.0cm,故选:B.点评:此题主要考查了复杂作图,关键是正确理解题意,画出图形.9.(2013福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上考点:可能性的大小.分析:根据取到白球的可能性交大可以判断出白球的数量大于红球的数量,从而得解.解答:解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.点评:本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.(2013福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0 B.a<0 C.b=0 D.ab<0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.解答:解:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确,故选B.点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力.二.填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.(2013福州)计算:= .考点:分式的加减法.专题:计算题.分析:因为分式的分母相同,所以分母不变,分子相减即可得出答案.解答:解:原式==.故答案为.点评:本题比较容易,考查分式的减法运算.12.(2013福州)矩形的外角和等于度.考点:多边形内角与外角.分析:根据多边形的外角和定理解答即可.解答:解:矩形的外角和等于360度.故答案为:360.点评:本题考查了多边形的外角和,多边形的外角和与边数无关,任何多边形的外角和都是360°.13.(2013福州)某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.考点:加权平均数.分析:根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.解答:解:根据题意得:(13×4+14×7+15×4)÷15=14(岁),故答案为:14.点评:此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.14.(2013福州)已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3(a﹣b)3的值是.考点:幂的乘方与积的乘方.专题:计算题.分析:所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值.解答:解:∵a+b=2,a﹣b=5,∴原式=[(a+b)(a﹣b)]3=103=1000.故答案为:1000点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.15.(2013福州)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.考点:正多边形和圆.分析:延长AB,然后作出C所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.解答:解:延长AB,然后作出C所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,相邻的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.点评:本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键.三.解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(2013福州)(1)计算:;(2)化简:(a+3)2+a(4﹣a)考点:整式的混合运算;实数的运算;零指数幂.分析:(1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项化为最简二次根式,计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算即可得到结果.解答:解:(1)原式=1+4﹣2=5﹣2;(2)原式=a2+6a+9+4a﹣a2=10a+9.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.(2013福州)(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?考点:全等三角形的判定与性质;一元一次方程的应用.分析:(1)求出∠CAB=∠DAB,根据SAS推出△ABC≌△ABD即可;(2)设这个班有x名学生,根据题意得出方程3x+20=4x﹣25,求出即可.解答:(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名小学生.点评:本题考查了全等三角形的性质和判定,一元一次方程的应用,主要考查学生的推理能力和列方程的能力.18.(2013福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图;中位数;众数.专题:图表型.分析:(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.解答:解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)400×+380×(25%+15%)=180+152=332(人).答:估计该校身高在160≤x<170之间的学生约有332人.故答案为(1)B,C;(2)2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(2013福州)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD 关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.考点:旋转的性质;等边三角形的性质;轴对称的性质;平移的性质.专题:计算题.分析:(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.解答:解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为2;y轴;120.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质.20.(2013福州)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB 于点E,且ME=1,AM=2,AE=(1)求证:BC是⊙O的切线;(2)求的长.考点:切线的判定;勾股定理的逆定理;弧长的计算;解直角三角形.分析:(1)欲证明BC是⊙O的切线,只需证明OB⊥BC即可;(2)首先,在Rt△AEM中,根据特殊角的三角函数值求得∠A=30°;其次,利用圆心角、弧、弦间的关系、圆周角定理求得∠BON=2∠A=60°,由三角形函数的定义求得ON==;最后,由弧长公式l=计算的长.解答:(1)证明:如图,∵ME=1,AM=2,AE=,∴ME2+AE2=AM2=4,∴△AME是直角三角形,且∠AEM=90°.又∵MN∥BC,∴∠ABC=∠AEM=90°,即OB⊥BC.又∵OB是⊙O的半径,∴BC是⊙O的切线;(2)解:如图,连接ON.在Rt△AEM中,sinA==,∴∠A=30°.∵AB⊥MN,∴=,EN=EM=1,∴∠BON=2∠A=60°.在Rt△OEN中,sin∠EON=,∴ON==,∴的长度是:•=.点评:本题综合考查了切线的判定与性质、勾股定理的逆定理,弧长的计算,解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21.(2013福州)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD 的面积为,设AB=x,AD=y(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB•PC的值;(3)若∠APD=90°,求y的最小值.考点:相似形综合题.专题:综合题.分析:(1)如图1,过A作AE垂直于BC,在直角三角形ABE中,由∠B=45°,AB=x,利用锐角三角函数定义表示出AE,三角形PAD的面积以AD为底,AE为高,利用三角形面积公式表示出,根据已知的面积即可列出y与x的函数关系式;(2)根据∠APC=∠APD+∠CPD,以及∠APC为三角形ABP的外角,利用外角性质得到关系式,等量代换得到∠BAP=∠CPD,再由四边形ABCD为等腰梯形,得到一对底角相等及AB=CD,可得出三角形ABP与三角形PDC相似,由相似得比例,将CD换为AB,由y的值求出x的值,即为AB的值,即可求出PB•PC的值;(3)取AD的中点F,过P作PH垂直于AD,由直角三角形PF大于等于PH,当PF=PH时,PF最小,此时F与H重合,由三角形APD为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于AD的一半,表示出PF即为PH,三角形APD面积以AD为底,PH为高,利用三角形面积公式表示出三角形APD面积,由已知的面积求出y的值,即为最小值.解答:解:(1)如图1,过A作AE⊥BC于点E,在Rt△ABE中,∠B=45°,AB=x,∴AE=AB•sinB=x,∵S△APD=AD•AE=,∴•y•x=,则y=;(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP,∠APD=∠B=45°,∴∠BAP=∠CPD,∵四边形ABCD为等腰梯形,∴∠B=∠C,AB=CD,∴△ABP∽△PCD,∴=,∴PB•PC=AB•DC=AB2,当y=1时,x=,即AB=,则PB•PC=()2=2;(3)如图2,取AD的中点F,连接PF,过P作PH⊥AD,可得PF≥PH,当PF=PH时,PF有最小值,∵∠APD=90°,∴PF=AD=y,∴PH=y,∵S△APD=•AD•PH=,∴•y•y=,即y2=2,∵y>0,∴y=,则y的最小值为.点评:此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013福州)我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a= ;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.考点:二次函数综合题.分析:(1)利用顶点坐标公式(﹣,)填空;(2)首先,利用配方法得到抛物线的解析式y=a(x+)2﹣,则易求该抛物线的顶点坐标(﹣,﹣);然后,把该顶点坐标代入直线方程y=kx(k≠0),即可求得用含k的代数式表示b;(3)根据题意可设可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.所以由正方形的性质推知点D n的坐标是(2n,n),则把点D n的坐标代入抛物线解析式即可求得4n=3t.然后由n、t的取值范围来求点A n的坐标,即该正方形的边长.解答:解:(1)∵顶点坐标为(1,1),∴,解得,,即当顶点坐标为(1,1)时,a=1;当顶点坐标为(m,m),m≠0时,,解得,则a与m之间的关系式是:a=﹣或am+1=0.故答案是:﹣1;a=﹣或am+1=0.(2)∵a≠0,∴y=ax2+bx=a(x+)2﹣,∴顶点坐标是(﹣,﹣).又∵该顶点在直线y=kx(k≠0)上,∴k(﹣)=﹣.∵b≠0,∴b=2k;(3)∵顶点A1,A2,…,A n在直线y=x上,∴可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.∵四边形A n B n C n D n是正方形,∴点D n的坐标是(2n,n),∴﹣(2n)2+22n=n,∴4n=3t.∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9.∴满足条件的正方形边长是3,6或9.点评:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答(3)题时,要注意n的取值范围.。
2013年福建泉州中考数学试题及答案(解析版)
2013年福建省泉州市初中毕业、升学考试(满分:150分;考试时间:120分钟)友情提示:所有答案必须填写到答题卡相应的位置上. 毕业学校 姓名 考生号一、选择题(每小题 3分,共21 分):每小题有四个答案,其中有且只有一个答案是正确的. 请答题卡上相应题目的答题区域内作答.答对的得3分,答错或不答一律得0分. 1.(2013福建泉州,1,3分)4的相反数是( ) A. 4 B. -4 C.14 D. 14- 【答案】 B2.(2013福建泉州,2,3分)在△ABC 中,∠A = 20°,∠B = 60°,则△ABC 的形状是( ) A. 等边三角形 B. 锐角三角形 C. 直角三角形 D. 钝角三角形 【答案】 D3.(2013福建泉州,3,3分)如下左图是由六个完全相同的正方体堆成的物体,则这一物体的正视图是( )【答案】 A4.(2013福建泉州,4,3分)把不等式组2,26x x ≥-⎧⎨<⎩的解集在数轴上表示出来,正确的是( )【答案】 A5.(2013福建泉州,5,3分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是 9.3环,方差如下表:则这四人中成绩发挥最稳定的是( )A. 甲B. 乙C. 丙D. 丁 【答案】 B 6.(2013福建泉州,6,3分)已知⊙O 1 与⊙O 2相交,它们的半径分别是4、7,则圆心距O 1O 2可能是( ) A. 2 B. 3 C. 6 D. 12 【答案】 C7.(2013福建泉州,7,3分)为了更好保护水资源,造福人类. 某工厂计划建一个容积V (m 3)一定的污水处理池,池的底面积S (m 2)与其深度h (m)满足关系式:V = Sh (V ≠0),则S 关于h 的函数图象大致是( )【答案】C二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答.8.(2013福建泉州,8,4分)18的立方根是 . 【答案】129.(2013福建泉州,9,4分)因式分解:21x -= . 【答案】(1)(1)x x +-10.(2013福建泉州,10,4分)地球绕太阳每小时转动经过的路程约为110 000千米,将 110 000用科学计数法表示为 . 【答案】51.110⨯11.(2013福建泉州,11,4分)如图,∠AOB = 70°,QC ⊥OA 于C ,QD ⊥OB 于D ,若QC = QD ,则 ∠AOQ = °.【答案】3512.(2013福建泉州,12,4分)九边形的外角和为 °. 【答案】 36013.(2013福建泉州,13,4分)计算:2111n n n -+++= . 【答案】 114.(2013福建泉州,14,4分)方程组3,1x y x y +=⎧⎨-=⎩的解是 .【答案】2,1x y =⎧⎨=⎩15.(2013福建泉州,15,4分)如图,顺次连结四边形 ABCD 四边的中点 E 、F 、G 、H ,则四边形 EFGH的形状一定是 .【答案】 平行四边形16.(2013福建泉州,16,4分) 如图,菱形ABCD 的周长为AC 和BD 相交于点O ,AC :BD = 1:2,则AO :BO = ,菱形ABCD 的面积S = .【答案】1:2;1617.(2013福建泉州,17,4分)有一数值转换器,原理如图所示,若开始输入 x 的值是7,可发现第 1 次输出的结果是 12,第2次输出 的结果是6,第3次输出的结果是 ,依次继续下去…,第2013次输出的结果是 .【答案】3; 3三、解答题(共89分):在答题卡上相应题目的答题区域内作答.18.(2013福建泉州,18,9分)计算:01(4)|2|164π--+--⨯【答案】解:原式= 1+2-4+2=119.(2013福建泉州,19,9分)先化简,再求值:2(1)(2)x x x -++,其中x =【答案】解:原式=22212x x x x -+++ =221x +当x ==221⨯+= 2×2 +1= 5.20.(2013福建泉州,20,9分)如图,已知AD 是△ABC 的中线,分别过点B 、C 作BE ⊥AD 于点E ,CF ⊥AD 交AD 的延长线于点F . 求证:BE = CF .【答案】证明:∵AD 是△ABC 的中线 ∴BD = CD∵BE ⊥AD , CF ⊥AD∴∠BED = ∠CFD =90° ∵∠BDE = ∠CDF ∴△DBE ≌△CDF ∴BE = CF .21.(2013福建泉州,21,9分)四张小卡片上分别写有数字 1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字 3的概率;(2)随机地从盒子里抽取一张,将数字记为 x ,不放回再抽取第二张,将数字记为y . 请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x ,y )在函数2y x=图象上的概率. 【答案】解:(1)P (抽到数字3)=14(2)解法一:画树状图由树状图可知,共有12种机会均等的情况,其中满足点(x ,y)在函数2y x=图象上的情况有2种,∴P (点在函数的图象上)=21.126= 法二:列表由列表可知,共有12种机会均等的情况,其中满足点(x ,y )在函数2y x=图象上的情况有2种, ∴P (点在函数的图象上)=21.126= 22.(2013福建泉州,22,9分)已知抛物线2(3)2y a x =-+经过点( 1,-2). (1)求a 的值;(2)若点A (m ,y 1,)、B (n ,y 2)(m < n < 3)都在该抛物线上,试比较y 1与y 2 的大小. 【答案】解:(1)∵抛物线2(3)2y a x =-+经过点(1,-2) ∴2(13)2=2a -+- ∴ a =-1.(2)解法一:由(1)得a =-1 <0,抛物线的开口向下 在对称轴x = 3的左侧,y 随 x 的增大而增大 ∵m < n < 3∴y 1 <y 2 解法二:由(1)得2(3)2y x =--+ ∴当 x = m 时,21(3)2y m =--+ 当 x = n 时,22(3)2y n =--+2212(3)(3)y y n m -=--- ()(6)n m m n =-+-∵ m <n <3∴n -m >0,m +n <6,即m +n -6<0 ∴(n -m )(m +n -6)<0 ∴y 1 <y 223.(2013福建泉州,23,9分)某校开展“中国梦·泉州梦·我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目.该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度,请你把条形统计图补充完整;(2)经研究,决定拔给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费?(第 23题图)【答案】解: (1)200,36 补全条形统计图如图所示:(2) 10×296 + 12×80 + 15×200 + 12×224 = 9608(元) 答:学校开展本次活动共需9608元.24. (2013福建泉州,24,9分)某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏型.如图所示,甲、乙两点分别从直径的两端点 A 、B 以顺时针、逆时针的方向同时沿圆周运动. 甲运动的路程l (cm)与时间t (s)满足关系:21322l t t =+(t ≥0),乙以4 cm/s 的速度匀速运动,半圆的长度为 21 cm.(1)甲运动 4 s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间? (3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?【答案】解:(1)当t =4时,213441422l =⨯+⨯=(cm) 答:甲运动 4 s 后的路程是14 cm(2)设它们运动了ms 后第一次相遇,根据题意,得:213()42122m m m ++= 解得13m =,214m =- (不合题意,舍去)答:甲、乙从开始运动到第一次相遇时,它们运动了3s. (3)设它们运动了ns 后第二次相遇,根据题意,得:213()421322n n n ++=⨯解得17n =,218n =-(不合题意,舍去)答:甲、乙从开始运动到第二次相遇时,它们运动了 7 s .25.(2013福建泉州,25,12分)如图,直线y =+分别与x 、y 轴交于点B 、C ,点A (- 2,0),P 是直线BC 上的动点. (1)求∠ABC 的大小;(2)求点P 的坐标,使∠APO =30°;(3)在坐标平面内,平移直线BC ,试探索:当BC 在不同位置时,使∠APO = 30°的点P 的个数是否保持不变?若不变,指出点 P 的个数有几个?若改变,指出点 P 的个数情况,并简要说明理由.(第 25 题图)【答案】解:(1)∵直线y =+分别与x 、y 轴交于点 B 、C∴当x =0时,y =y =0 时,x =2∴OB = 2, OC =在Rt △COB 中∵tan ∠ABC =OC OB ==∴∠ABC = 60°(2)解法一: 如图1,连结AC由(1)知:B (2,0),C (0,,AO = OB =2在Rt △COB 中,由勾股定理得,4BC ===∵AB =BC =4,∠ABC =60° ∴△CAB 是等边三角形 ∵CO ⊥AB ∴∠ACO =30°取 BC 的中点P 2, 连结OP 2 ,易得P 2(1则 OP 2∥AC∴∠AP 2O =∠CAP 2=12∠CAB =30°∴点P 的坐标为(0,或(第25 题图1) 注:则AP2⊥BC,连结OP2∴OP2= OA=OB∴∠AP2O=12∠BAP2=12∠CAB=30°∴点P的坐标为(0,23)或(1,3)解法二:如图2,以AC为直径作圆与直线BC的两个交点即为符合条件的点P.(第25 题图2)(解法参照解法一)(3)当BC在不同位置时,点 P的个数会发生改变,使∠APO = 30°的点P的个数情况有四种:1个、2个、3个、4个.以AO为弦,AO所对的圆心角等于 60°的圆共有两个,不妨记为⊙Q、⊙Q′,点Q、Q′关于x轴对称.∵直线BC与⊙Q、⊙Q′的公共点P都满足∠APO=12∠AQO =12∠AQ′O = 30°点 P的个数情况如下:i)有1 个:直线BC与⊙Q(或⊙Q′)相切;ii)有2个:直线BC与⊙Q(或⊙Q′)相交;iii)有3个:直线BC与⊙Q(或⊙Q′)相切,同时与⊙Q′(或⊙Q)相交;直线BC过⊙Q与⊙Q′的一个交点,同时与两圆都相交;iV)有4个:直线BC同时与⊙Q、⊙Q′都相交,且不过两圆的交点.(第25 题图3)或利用y b =+中 b 的取值范围分情况说明.26.(2013福建泉州,26,14分)如图1,在平面直角坐标系中,正方形OABC 的顶点A (- 6,0),C(0,6),过点E(-2.0)作EF ∥AB ,交BO 于F . (1)求EF 的长;(2)过点 F 作直线 l 分别与直线AO 、直线BC 交于点 H 、G . ①根据上述语句,在图1上画出图形,并证明OH EOBG AE=; ②过点 G 作直线GD ∥AB ,交x 轴于点D ,以 O 为圆心,OH 长为半径在x 轴上方作半圆(包 括直径两端点),使它与GD 有公共点P ,如图2所示,当直线l 绕着点F 旋转时,点P 也随之运动.证明:12OP BG =,并通过操作、观察,直接写出BG 长度的取值范围(不必说理);(3)在(2)中,若点M (2,探求:2PO +PM 的最小值.(第 26 题图 1) (第 26题图2) 【答案】 (1)解法一:在正方形OABC 中, ∠FOE =∠BOA =12∠COA = 45° ∵EF ∥AB∴∠FEO =∠BAO =90° ∴∠EFO = ∠FOE =45° 又E (-2,0) ∴EF = EO = 2解法二:∵A (-6,0),C (0,6),E (-2,0) ∴OA =AB =6,EO =2 ∵ EF ∥AB ∴EF OEAB OA=∴EF =266⨯= 2 (2)①解:画图,如图 1 所示 证明:∵四边形OABC 是正方形 ∴ OH ∥BC∴△OFH ∽△BFG ∴OH OFBG BF=(第26题图1)又由(1)EF ∥AB ,得OF OEFB EA = ∴OH OEBG EA= ②证明:∵半圆与GD 交于点 P ∴OP =OH 由①得,OP OH OEBG BG EA== 又 AE =AO -EO =4 ∴12OP OE BG EA == 通过操作、观察可得,4≤BG ≤12. (3)解:由(2)可得12OP BG = ∴2OP + PM = BG + PM如图2所示,过点M 作直线MN ⊥AB 于点N ,交GD 于点 K ,则四边形BNKG 为矩形(第26题图2)∴NK =BG∴2PO + PM = BG + PM =NK + PM ≥NK + KM当点P 与K 重合,即P 在直线MN 上时,等号成立 又∵ NK +KM ≥MN = 8当点K在线段MN上,等号成立∴当点P在线段MN上时,2PO + PM的值最小.最小值为 8.四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况. 如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过 90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.1. (5分)方程x+1= 0的解是 .【答案】x=-12. (5分)如图,∠AOB = 90°,∠BOC = 30°,则∠AOC = °.【答案】 60。
2013年湖南常德中考数学试题及答案(解析版)
2013年湖南省常德市中考数学试卷一.填空题 (本大题8个小题 ,每小题3分满分24分) 1.(2013湖南常德,1,3)-4的相反数是 . 【答案】4 2. (2013湖南常德,2,3)打开百度搜索栏,输入“数学学习方法”,百度为你找到的相关信息有12 000 000条.请用科学记数法表示12 000 000= . 【答案】71.210⨯3. (2013湖南常德,3,3)因式分解2x x +=_______. 【答案】()1x x +4. (2013湖南常德,4,3)如图1,已知a∥b 分别相交于点E 、F ,若∠1=30,则∠2=_______. 【答案】30°图121F Eb a5. (2013湖南常德,5,3)请写一个图象在第二,第四象限的反比例函数解析式:_________. 【答案】答案不唯一,如1y x-=6. (2013湖南常德,6,3)如图2,已知⊙O 是△ABC 的外接圆,若∠BOC=100°,则∠BAC=___图2O CBA【答案】50°7. (2013湖南常德,7,3)分式方程312x x=+的解为_________. 【答案】1x =8. (2013湖南常德,8,3)小明在做数学题时,发现下面有趣的结果:321876541514131211109242322212019181716-=+--=++---=+++----= 根据以上规律可知第100行左起第一个数是_________. 【答案】10200二.选择题(本大题8个小题,每个小题3分,满分24分)9. (2013湖南常德,9,3)在图3中,既是中心对称图形又是轴对称图形的是( )【答案】B10. (2013湖南常德,10,3)函数31x y x +=-中自变量的取值范围是( ) A. 3x ≥- B. 3x ≥ C. 0,1x x ≥≠且 D. 3,1x x ≥-≠且【答案】D 11. (2013湖南常德,11,3)小伟5次引体向上的测试成绩(单位:个)分别为:16,18,20,18,18,对此成绩描述错误的是( )A. 平均数为18B. 众数为18C. 方差为0D. 极差为4 【答案】C12. (2013湖南常德,12,3)下面计算正确的是( )A. 330x x ÷= B. 32x x x -= C. 236x x x = D. 32x x x ÷= 【答案】D13. (2013湖南常德,13,3)下列一元二次方程中无实数解的方程是( ) A. 2210x x ++= B. 210x += C. 221x x =- D. 2450x x --= 【答案】B14. (2013湖南常德,14,3)计算32827⨯+-的结果为( )A. -1B. 1C. 433-D. 7 【答案】B 15. (2013湖南常德,15,3)如图4,将方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在D ′ 处,若AB =3,AD =4,则ED 的长为( )A.32 B. 3 C. 1 D. 43【答案】A16. (2013湖南常德,16,3)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图5(扇形、菱形、直角梯形、红十字图标)中“直径” 最小的是( )【答案】C 三.(本大题2个小题,每个小题5分,满分10分)17. (2013湖南常德,17,5)计算:()()2020131212π-⎛⎫--- ⎪⎝⎭【答案】1214 =2=+---解:原式18. (2013湖南常德,18,5)求不等式组21025x x x +>⎧⎨>-⎩的正整数解.【答案】解:由不等式①得12x >-由不等式②得5x <则不等式组的解集为152x -<<∴此不等式组的正整数解为1,2,3,4.四.(本大题2个小题,每个小题6分,满分12分)19. (2013湖南常德,19,6)先化简再求值:222222322a bb b a a ab b a b a b-+⎛⎫+÷⎪-+--⎝⎭,其中5, 2.a b == 【答案】()()()()()()()()()()()223223223321a b ba b a b a b b aa b a b b a b a b a b a b a b b a a b a b a b a b b aa b ⎡⎤--=+⎢⎥+-+-⎢⎥⎣⎦⎡⎤+-=+⎢⎥+-+-+⎣⎦+-=+-+=+解:原式 当5,2a b ==时,原式=17五.(本大题2个小题,每个小题7分,满分14分)20. (2013湖南常德,20,6)某书店参加某校读书活动,并为每班准备了A ,B 两套名著,赠予各班甲、乙两名优秀读者,以资鼓励,。
2013年河北中考数学试题及标准答案
,.2013年河北省初中毕业生升学文化课考试数 学 试 卷一、选择题(~6小题,每小题2分;7~16小题,每小题3分,共42分.)1. 气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃2. 截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A .0.423×107B .4.23×106C .42.3×105D .423×104 3.下列图形中,既是轴对称图形又是中心对称图形的是4.下列等式从左到右的变形,属于因式分解的是A .a (x -y )=ax -ayB .x 2+2x +1=x (x +2)+1C .(x +1)(x +3)=x 2+4x +3D .x 3-x =x (x +1)(x -1)5.若x =1,则||x -4=A .3B .-3C .5D .-5 6.下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D .2-1=127.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10 B .120x =100x +10 C .120x -10=100x D .120x +10=100x8.如图1,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为 A .40海里 B .60海里 C .70海里D .80海里9.如图2,淇淇和嘉嘉做数学游戏:,.假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y = A .2 B .3 C .6 D .x +310.反比例函数y =mx 的图象如图3所示,以下结论:① 常数m <-1;② 在每个象限内,y 随x 的增大而增大; ③ 若A (-1,h ),B (2,k )在图象上,则h <k ; ④ 若P (x ,y )在图象上,则P ′(-x ,-y )也在图象上. 其中正确的是A .①②B .②③C .③④D .①④ 11.如图4,菱形ABCD 中,点M ,N 在AC 上,ME ⊥AD ,NF ⊥AB . 若NF = NM = 2,ME = 3,则AN = A .3 B .4 C .5 D .612.如已知:线段AB ,BC ,∠ABC = 90°. 求作:矩形ABCD .以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对13.一个正方形和两个等边三角形的位置如图6所示,若∠3 = 50°,则∠1+∠2 = A .90° B .100° C .130° D .180° 14.如图7,AB 是⊙O 的直径,弦CD ⊥AB ,∠C = 30°,CD = 23.则S 阴影=A .πB .2πC . 23 3 D .23π15.如图8-1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B = 30°,∠C = 100°,如图8-2. 则下列说法正确的是 A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远16.如图9,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE = EF = FB = 5,DE = 12动点P 从点A 出发,沿折线AD -DC -CB 以每秒1个单位 长的速度运动到点B 停止.设运动时间为t 秒,y = S △EPF , 则y 与t 的函数图象大致是二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上) 17.如图10,A 是正方体小木块(质地均匀)的一顶点,将木块 随机投掷在水平桌面上,则A 与桌面接触的概率是________.18.若x +y =1,且,则x ≠0,则(x +2xy +y 2x ) ÷x +yx 的值为_____________.19.如图11,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC , 则∠B = °. 20.如图12,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2⨯(2-5)+1=2⨯(-3)+1=-6+1=-5(1)求(-2)⊕3的值(2)若3⊕x的值小于13,求x的取值范围,并在图13所示的数轴上表示出来.22.(本小题满分10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图14-1)和条形图(如图14-2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本小题满分10分)如图15,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.24.(本小题满分11分)⌒分别交OA,OB于点如图16,△OAB中,OA = OB = 10,∠AOB = 80°,以点O为圆心,6为半径的优弧MNM,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP = BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧MN⌒上,当△AOQ的面积最大时,直接写出∠BOQ的度数.25.(本小题满分12分)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q = W + 100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.(1)用含x和n的式子表示Q;(2)当x = 70,Q = 450时,求n的值;(3)若n = 3,要使Q最大,确定x的值;(4)设n = 2,x = 40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a)次数n 2 1速度x40 60指数Q421026.(本小题满分14分)一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).探究如图17-1,液面刚好过棱CD,并与棱BB′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图17-2所示.解决问题:(1)CQ与BE的位置关系是___________,BQ的长是____________dm;(2)求液体的体积;(参考算法:直棱柱体积V液= 底面积S BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.[温馨提示:下页还有题!]延伸在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM = 1 dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.。
2013年安徽省中考数学试卷及答案解析
2013年安徽省初中毕业学业考试数学试题(含答案全解全析)(满分150分,考试时间120分钟)第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.-2的倒数是()A.-12B.12C.2D.-22.用科学记数法表示537万正确的是()A.537×104B.5.37×105C.5.37×106D.0.537×1073.如图所示的几何体为圆台,其主(正)视图正确的是()4.下列运算正确的是()A.2x+3y=5xyB.5m2·m3=5m5C.(a-b)2=a2-b2D.m2·m3=m65.已知不等式组{x-3>0,x+1≥0.其解集在数轴上表示正确的是()6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°7.目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年...发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=3898.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时..发光的概率为()A.16B.13C.12D.239.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()图1图2A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC·CF的值增大D.当y增大时,BE·DF的值不变10.如图,点P是等边三角形ABC外接圆☉O上的点.在以下判断中,不正确...的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形第Ⅱ卷(非选择题,共110分)二、填空题(本大题共4小题,每小题5分,满分20分)11.若√1-3x在实数范围内有意义,则x的取值范围是.12.因式分解:x2y-y=.13.如图,P为平行四边形ABCD边AD上一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=2,则S1+S2=.14.已知矩形纸片ABCD中,AB=1,BC=2.将该纸片折叠成一个平面图形,折痕EF不经过A点(E,F是该矩形边界上的点),折叠后点A落在点A'处,给出以下判断:①当四边形A'CDF为正方形时,EF=√2;②当EF=√2时,四边形A'CDF为正方形;③当EF=√5时,四边形BA'CD为等腰梯形;④当四边形BA'CD为等腰梯形时,EF=√5.其中正确的是(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.计算:2sin30°+(-1)2-|2-√2|.16.已知二次函数图象的顶点坐标为(1,-1),且经过原点(0,0),求该函数的解析式.四、(本大题共2小题,每小题8分,满分16分)17.如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标.若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.18.我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3),…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图(1)17图(2)212图(3)317图(4)4………猜想:在图(n)中,特征点的个数为(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为.图(n)五、(本大题共2小题,每小题10分,满分20分)19.如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°.汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.(结果保留根号)20.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.六、(本题满分12分)21.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数.现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.七、(本题满分12分)22.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示.销售量p(件) p=50-x销售单价q(元/件)当1≤x ≤20时,q=30+12x;当21≤x ≤40时,q=20+525x.(1)请计算第几天该商品的销售单价为35元/件? (2)求该网店第x 天获得的利润y 关于x 的函数关系式; (3)这40天中该网店第几天获得的利润最大?最大利润是多少?八、(本题满分14分)23.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD 中,∠B=∠C,E 为边BC 上一点,若AB ∥DE,AE ∥DC.求证:AB DC =BE EC; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E,若EB=EC,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)图1图2图3答案全解全析:1.A ∵-2×(-12)=1,∴-2的倒数是-12.2.C 537万=5 370 000=5.37×106,故选C.评析此题主要考查了科学记数法的定义.3.A 从这个几何体正面看,是上宽下窄的梯形,故选A.4.B A项: 2x与3y不是同类项,不能合并,故本选项错误;B项: 5m2·m3=5m5,故本选项正确;C项:(a-b)2=a2-2ab+b2,故本选项错误;D项:m2·m3= m5, 故本选项错误.故选B.5.D 解不等式x-3>0得x>3,解不等式x+1≥0得x≥-1,∴原不等式组的解集为x>3,在数轴上表示大于3的任何实数.故选D.6.C 如图所示,设AB与CE交于点F.∵AB∥CD,∴∠EFB=∠C,又∵∠EFB=∠A+∠E=75°,∴∠C=75°,故选C.7.B 依题意,得389(1+x)2=438,故选B.8.B 画出树状图.任意闭合其中两个开关的情况共有6种,其中能使两盏灯泡同时发光的情况有2种,故概率.是139.D ∵反比例函数图象过(3,3),,∴y=9x∵△AEF是等腰直角三角形,∴△EBC、△CDF都是等腰直角三角形,A项:在矩形ABCD中,BC=3时,CD=3,此时矩形ABCD是边长为3的正方形,∴当x=3时,EC=EM=3√2,故本选项错误;B项:∵当y=9时,x=1,∴EC=√2,CF=9√2,∴EM=5√2,即EC<EM,故本选项错误;C项:∵EC·CF=√2x·√2y=2xy=18,值不变,故本选项错误;D项:∵BE·DF=xy=9,值不变,故本选项正确.故选D.评析此题主要考查了矩形、等腰直角三角形、反比例函数的性质,是综合性较强的题. 10.C A项:∵弦PB是☉O的直径时最长,此时∠BCP=∠BAP=90°,∴∠ACP=∠CAP=30°,∴△APC是等腰三角形,故本选项正确;B项:若点P与点B不重合,当△APC是等腰三角形时,△PBA≌△PBC,∴∠BAP=∠BCP=90°,∠BPA=∠BPC,∴PB是☉O的直径,又∵∠BPA=∠BPC且AP=CP,∴PB⊥AC,即PO⊥AC,若点P与点B重合,由于△ABC是等边三角形,∴BO⊥AC,即PO⊥AC,故本选项正确;C项:当点P与点B重合时满足PO⊥AC,但此时∠ACP=60°,故本选项错误; D项:当∠ACP=30°时,则∠BCP或∠PBC=90°,∴△BPC一定是直角三角形,故本选项正确.故选C.11.答案x≤13.解析∵1-3x≥0,∴x≤1312.答案y(x+1)(x-1)解析x2y-y=y(x2-1)=y(x+1)(x-1).13.答案8解析∵P为平行四边形ABCD边AD上一点,∴△PDC、△PAB的面积之和与△PBC的面积相等,又∵E、F分别为PB、PC的中点,∴△PEF∽△PBC且相似比为1∶2,∴△PBC的面积是△PEF面积的四倍,∴S1+S2=4S=8.评析此题考查了平行四边形的性质、中位线的性质、相似三角形的性质.14.答案①③④解析①当四边形A'CDF为正方形时,如图1所示,A'是BC的中点,F是AD的中点,因此点E 与点B重合,此时EF=√2,故①正确;②当EF=√2时,除①这种情况外,还有其他情况,如图2所示,四边形A'CDF不一定为正方形,故②错误;③当EF=√5时,如图3所示,EF与BD重合,四边形BA'CD为等腰梯形,故③正确;④当四边形BA'CD为等腰梯形时,只有一种情况,即EF 与BD重合,EF=√5,故④正确.故填①③④.图1图2图3评析此题既考查学生的动手操作能力,又考查学生的推理能力.+1+√2-2=√2.(8分)15.解析原式=2×12评析此题主要考查了特殊角的三角函数值、乘方、绝对值,属基础题.16.解析由题意可设二次函数的解析式为y=a(x-1)2-1(a≠0).∵函数图象经过原点(0,0),∴a·(0-1)2-1=0,∴a=1.∴该函数的解析式为y=(x-1)2-1(或y=x2-2x).(8分)17.解析(1)如图所示.(4分)(2)点B 2的坐标为(2,-1);(6分) h 的取值范围为2<h<3.5.(8分) 18.解析 (1)22;5n+2.(4分) (2)√3;2 013√3.(8分) 19.解析 作AF⊥BC 于F. 在Rt△ABF 中,∠ABF=∠α=60°, AF=AB·sin 60°=20×√32=10√3(m).(5分)在Rt△AEF 中,∵∠β=45°,∴AF=EF.(7分) 于是AE=√AF 2+EF 2=10√6(m). 即坡长AE 为10√6 m.(10分) 20.解析 (1)(4 000+25x)元.(2分)(2)每副乒乓球拍的价格为x 元,则每副羽毛球拍的价格为(x+20)元. 由题意得2 000x=2 000+25x x+20,解得x 1=40,x 2=-40.经检验x 1,x 2都是原方程的根.(8分)但x>0,∴x=40.即每副乒乓球拍的价格为40元.(10分)评析 由题意找出等量关系,把有关量用含有未知数的代数式表示,列出方程是解题的关键所在,本题属于基础题.21.解析 (1)∵把合格品数从小到大排列,第25,26个数都是4,∴中位数为4.(4分)(2)众数的可能值为4,5,6.(7分)(3)这50名工人中,合格品数低于3件的有8人.因为400×850=64,所以该厂约有64人将接受技能再培训.(12分)评析 本题是统计的频数分布直方图问题,解题时要能从所给的统计图中获取有用的信息,难度较小.22.解析 (1)当1≤x≤20时,令30+12x=35,得x=10;当21≤x≤40时,令20+525x=35,得x=35.即第10天或第35天该商品的销售单价为35元/件.(4分) (2)当1≤x≤20时,y=(30+12x -20)(50-x)=-12x 2+15x+500, 当21≤x≤40时,y=(20+525x -20)(50-x)=26 250x-525.∴y={-12x 2+15x +500 (1≤x ≤20),26 250x-525 (21≤x ≤40).(8分)(3)当1≤x≤20时,y=-12x 2+15x+500=-12(x-15)2+612.5. ∵-12<0,∴当x=15时,y=-12x 2+15x+500有最大值y 1,且y 1=612.5.当21≤x≤40时,∵26 250>0,∴26 250x随着x 的增大而减小,∴当x=21时,y=26 250x-525最大.于是,当x=21时,y=26 250x-525有最大值y 2,且y 2=26 25021-525=725.∵y 1<y 2.∴这40天中第21天该网店获得的利润最大,最大利润为725元 .(12分) 评析 此题难点是第(3)问要分别在不同范围内计算函数的最大值,然后再比较这两个最大值,取其中较大的.23.解析 (1)如图所示:(画出其中一种即可)(2)证明:∵AE∥CD,∴∠AEB=∠C,又∵AB∥ED,∴∠B=∠DEC,∴△ABE∽△DEC.∴AECD =BE EC.又∠B=∠C,∴∠B=∠AEB,∴AB=AE.故ABCD =BEEC.(6分)(3)是.理由如下:过E点分别作EF⊥AB,EG⊥AD,EH⊥CD,垂足分别为F,G,H(如图).∵AE平分∠BAD,∴EF=EG,又∵DE平分∠ADC,∴EG=EH,∴EF=EH,又∵EB=EC,∴Rt△BFE≌Rt△CHE,∴∠3=∠4,又∵EB=EC,∴∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC=∠DCB.又∵四边形ABCD为AD截某三角形所得,且AD不平行于BC,∴四边形ABCD为“准等腰梯形”.当点E不在四边形ABCD内部时,有两种情况:当点E在四边形ABCD的边BC上时,如图①所示,四边形ABCD为“准等腰梯形”;当点E在四边形ABCD的外部时,如图②所示,四边形ABCD仍为“准等腰梯形”.图①图②。
2013年河北省中考数学试题及答案
2013年河北省中考数学试题及答案2013年河北省初中毕业生升学文化课考试数学试卷卷I (选择题,共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由﹣1℃上升2℃后是()A.﹣1℃B.1℃C.2℃D.3℃2.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为()A.0.423×107B.4.23×106C.42.3×105D.423×104 3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3﹣x=x(x+1)(x﹣1)5.若x=1,则|x﹣4|=()A.3B.﹣3 C.5D.﹣5 6.下列运算中,正确的是()A.=±3 B.=2 C.(﹣2)0=0 D.2﹣1=7.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里9.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2B.3C.6D.x+3 10.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对13.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°14.如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC.D.π15.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远16.如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD ﹣DC﹣CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S △EPF,则y 与t的函数图象大致是()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.18.若x+y=1,且x≠0,则(x+)÷的值为.19.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.20.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(9分)定义新运算:对于任意实数a,b,都有a⊕b=a (a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.22.(10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(10分)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.24.(11分)如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.25.(12分)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x 的n倍成正比.试行中得到了表中的数据.次数n 2 1速度x 40 60指数Q 420 100(1)用含x和n的式子表示Q;(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax 2+bx+c(a≠0)的顶点坐标是(﹣,)26.(14分)一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是CQ∥BE,BQ的长是3 dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=,tan37°=)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.2013年河北省中考数学参考答案一、选择题1.B;2.B;3.C;4.D;5.A;6.D;7.A;8.D;9.B;10.C;11.B;12.A;13.B;14.D;15.C;16.A;二、填空题17.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.18.若x+y=1,且x≠0,则(x+)÷的值为1.19.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.20.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.三、解答题21.解:(1)∵a⊕b=a(a﹣b)+1,∴(﹣2)⊕3=﹣2(﹣2﹣3)+1=10+1=11;(2)∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,﹣3x<3,x>﹣1.在数轴上表示如下:22.解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②==5.3,估计260名学生共植树5.3×260=1378(颗).23.解:(1)直线y=﹣x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=﹣x+4.(2)当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF中点坐标为(,).直线y=﹣x+b过点(,),则=﹣+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.24.(1)证明:如图1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′,∵在△AOP和△BOP′中∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)解:如图1,连接OT,过点T作TH⊥OA于点H,∵AT与相切,∴∠ATO=90°,∴AT===8,∵×OA×TH=×AT×OT,即×10×TH=×8×6,解得:TH=,即点T到OA的距离为;(3)解:如图2,当OQ⊥OA时,△AOQ的面积最大;理由:∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,当Q点在优弧右侧上,∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ﹣∠AOB=90°﹣80°=10°,综上所述:当∠BOQ的度数为10°或170°时,△AOQ 的面积最大.25.解:(1)设W=k1x2+k2nx,则Q=k1x2+k2nx+100,由表中数据,得,解得:,∴Q=﹣x 2+6nx+100;(2)将x=70,Q=450代入Q得,450=﹣702+6×70n+100,解得:n=2;(3)当n=3时,Q=﹣x 2+18x+100=﹣(x﹣90)2+910,∵﹣<0,∴函数图象开口向下,有最大值,则当x=90时,Q有最大值,即要使Q最大,x=90;(4)由题意得,420=﹣[40(1﹣m%)]2+6×2(1+m%)×40(1﹣m%)+100,即2(m%)2﹣m%=0,解得:m%=或m%=0(舍去),∴m=50.26.解:(1)CQ∥BE,BQ==3;(2)V 液=×3×4×4=24(dm3);(3)在Rt△BCQ中,tan∠BCQ=,∴α=∠BCQ=37°.当容器向左旋转时,如图3,0°≤α≤37°,∵液体体积不变,∴(x+y)×4×4=24,∴y=﹣x+3.当容器向右旋转时,如图4.同理可得:y=;当液面恰好到达容器口沿,即点Q与点B′重合时,如图5,由BB′=4,且PB•BB′×4=24,得PB=3,∴由tan∠PB′B=,得∠PB′B=37°.∴α=∠B′PB=53°.此时37°≤α≤53°;延伸:当α=60°时,如图6所示,设FN∥EB,GB′∥EB,过点G作GH⊥BB′于点H.在Rt△B′GH中,GH=MB=2,∠GB′B=30°,∴HB′=2.∴MG=BH=4﹣2<MN.此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱.∵S △NFM+S MBB′G=××1+(4﹣2+4)×2=8﹣.∴V溢出=24﹣4(8﹣)=﹣8>4(dm3).∴溢出液体可以达到4dm3.。
2013中考数学试题及答案(word完整版)(1)
二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
2013年北京市中考数学试卷及答案
2013年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×103 2. 43−的倒数是 A. 34 B. 43 C. 43− D. 34−答案:D解析:(0)a a ≠的倒数为1a ,所以,43−的倒数是34− 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°答案:C解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。
5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m答案:B解析:由△EAB∽△EDC,得:CE CDBE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
2013年陕西省中考数学试卷含答案-答案在前
3sin 60AO ︒=332CF =,113+222ABD S BD AE BD CF =+=⨯⨯△123为O的直径时,∵O的半径为14.连接OA,OB∠=ACB30ACB∠=260=,∴为等边三角形,OA OB==AB OA故答案为11.5为O的直径时,【考点】垂径定理,三角形中位线定理,圆周角定理x=-【答案】3【解析】解:去分母得:补全统计图,如图所示:【提示】(1)先运用待定系数法求出OA 的解析式,再将0.5x =代入,求出y 的值即可;(2)设AB 段图象的函数表达式为+y k x b =',将A 、B 两点的坐标代入,运用待定系数法即可求解;【解析】解;(1)设A ,B ,C ,D ,E 分别表示大拇指、食指、中指、无名指、小拇指,列表如下:由表格可知,共有25种等可能的结果,甲伸出小拇指取胜只有一种可能,故1()25P=甲伸出小拇指获胜;(2)解:连接OD,则OD BD⊥,过E作EH BC⊥于H,11 / 11【提示】(1)画出互相垂直的两直径即可;(2)连接AC ,BD 交于O ,作直线OM ,分别交AD 于P ,交BC 于Q ,过O 作EF OM ⊥交DC 于F ,交AB 于E ,则直线EF 、OM 将正方形的面积四等份,根据三角形的面积公式和正方形的性质求出即可; (3)当BQ CD b ==时,PQ 将四边形ABCD 的面积二等份,连接BP 并延长交CD 的延长线于点E , 证ABP DEP △≌△求出BP EP =,连接CP ,求出BPC EPC S S =△△,作PF CD ⊥,PG BC ⊥, 由++BC AB CD DE CD CE ===,求出++ABPBPC CQP CPE DEP CQP S S S S S S -=-△△△△△,即可得出ABQP CDPQ S S =四边形四边形即可. 【考点】四边形综合题.数学试卷 第1页(共6页) 数学试卷 第2页(共6页)陕西省2013年中考数学试卷数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列四个数中最小的数是( )A .2-B .0C .13-D .52.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )(第2题图)ABCD3.如图,AB CD ∥,90CED ∠=,35AEC ∠=,则D ∠的大小为( )A .65B .55C .45D .35 4.不等式组10,2123x x ⎧-⎪⎨⎪-⎩><的解集为( )A .12x > B .1x ->C .112x -<<D .12x >-5.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是( )A .71.8B .77C .82D .95.76.如果一个正比例函数的图象经过不同..象限的两点(2,)A m 、(,3)B n ,那么一定有( )A .0,0m n >>B .0,0m n ><C .0,0m n <>D .0,0m n <<7.如图,在四边形ABCD 中,AB AD =,CB CD =.若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对8.根据下表中一次函数的自变量与的对应值,可得的值为( )A .1B .1-C .3D .3-9.如图,在矩形ABCD 中,2AD AB =,点M 、N 分别在边AD 、BC上,连接BM 、DN .若四边形MBND 是菱形,则AMMD 等于( )A .38B .23 C .35D .4510.已知两点12(5)(3)A y B y -,、,均在抛物线2(a 0)y ax bx c =++≠上,点00()C x y ,是该抛物线的顶点,若120y y y >≥,则0x 的取值范围是( )A .05x ->B .01x ->C .051x --<<D .023x -<<第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 11.计算:30(2)1)-+= . 12.一元二次方程230x x -=的根是.13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面直角坐标系中,线段AB 的两个端点的坐标分别为(2,1)(1,3)A B -、将线段AB 经过平移后得到线段A B ''.若点A 的对应点为(3,2)A ',则点B 的对应点B '的坐标是 .B .比较大小:8cos31.(填“>”、“=”或“<”)毕业学校_____________ 姓名________________考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)14.如图,四边形ABCD 的对角线A C B D 、相交于点O ,且BD 平分AC .若86BD AC ==,,120BOC ∠=,则四边形ABCD 的面积为 .(结果保留根号)15.如果一个正比例函数的图象与反比例函数6y x=的图象交于1122(,)(,)A x y B x y 、两点,那么2121(,)x x y y --的值为 .16.如图,AB 是O 的一条弦,点C 是O 上一动点,且30ACB ∠=,点E F 、分别是AC BC 、的中点,直线EF 与O 交于G H 、两点.若O 的半径为7,则GE FH +的最大值为 .三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分5分)解分式方程:22142xx x +=--.18.(本小题满分6分)如图,90AOB ∠=,OA OB =,直线l 经过点O ,分别过A B 、两点作AC l ⊥交l 于点C 、BD l ⊥交l 于点D . 求证:AC OD =.19.(本小题满分7分)我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A —了解很多”,“B —了解较多”,“C —了解较少”,“D —不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生? (2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?被调查学生对“节约教育”内容了解程度的统计图20.(本小题满分8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立时身高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得 1.25m AB =.已知李明直立时的身高为1.75m ,求路灯的高度CD 的长.(结果精确到0.1m )数学试卷 第5页(共6页) 数学试卷 第6页(共6页)21.(本小题满分8分) “五一节”期间,申老师一家自驾游去了离家170千米的某地.下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象. (1)求他们出发半小时时,离家多少千米? (2)求出AB 段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?22.(本小题满分8分)甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指:ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.(1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.23.(本小题满分8分)如图,直线l 与O 相切于点D .过圆心O 作EF l ∥交O 于E F 、两点,点A 是O 上一点,连接AE AF 、.并分别延长交直线l 于B C 、两点. (1)求证:90ABC ACB ∠+∠=;(2)当O 的半径512R BD ==,时,求tan ACB ∠的值.24.(本小题满分10分)在平面直角坐标系中,一个二次函数的图象经过(10)(30)A B ,、,两点. (1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连接AC DE 、和DB .当AOC △与DEB △相似时,求这个二次函数的表达式.25.(本小题满分12分) 问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由. 问题解决(3)如图③,在四边形ABCD 中,AB CD AB CD BC +=∥,,点P 是AD 的中点.如果AB a CD b ==,,且b a >,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.①②③毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2013年江苏省宿迁市中考数学试卷-答案
江苏省宿迁市 2013 年中考数学试卷数学答案分析一、选择题1.【答案】 A【分析】一个正数的绝对值是它自己;一个负数的绝对值是它的相反数.2的绝对值是2,即|2| 2 . 【提示】依据负数的绝对值等于它的相反数解答.【考点】绝对值2.【答案】 C【分析】 a3 a3 2a33 3 93 ?a3 a6,故C正确; a12 a2 a10,故D ,故 A 错误; (a ) a ,故 B 错误;a错误 .【提示】分别依据归并同类项、同底数幂的乘法及除法法例、幂的乘方法例进行计算即可 . 【考点】同底数幂的除法,归并同类项,同底数幂的乘法,幂的乘方与积的乘方3.【答案】 C【分析】从上边看易得第一行有 3 个正方形,第二行有 2 个正方形,如下图,共 5 个正方形,面积为 5.【提示】先得出从上边看所获得的图形,再求出俯视图的面积即可.【考点】简单组合体的三视图4.【答案】 B【分析】由图可得 tan3 AOB. 2【提示】仔细读图,在以AOB 的O为极点的直角三角形里求tan AOB 的值.【考点】锐角三角函数的定义5.【答案】 D【分析】因为方差反应数据的颠簸状况,因此能够刻画一组数据失散程度的统计量是方差. 【提示】依据方差的意义可得答案. 方差反应数据的颠簸大小,即数据失散程度.【考点】统计量的选择6.【答案】 B【分析】去分母得2x x 1 1 ,解得 x 0 ,经查验 x 0 是分式方程的解 .【提示】分式方程去分母转变为整式方程,求出整式方程的解获得x 的值,经查验即可获得分式方程的解.【考点】解分式方程7.【答案】 C【分析】① yx 1 的函数图象,既是轴对称图形,又是中心对称图形;②y1的函数图象,既是轴对称x图形,又是中心对称图形;③yx 2 x 1 的函数图象是轴对称图形,不是中心对称图形;因此,函数图象既是轴对称图形,又是中心对称图形的是①②共2 个 .【提示】依据一次函数图象,反比率函数图象,二次函数图象的对称性剖析判断即可得解 .【考点】二次函数的图象,一次函数的图象,反比率函数的图象,轴对称图形,中心对称图形 8.【答案】 D【分析】①如图,延伸 AC,做 PD BC 交点为 D,PE AC ,交点为 EPCDCBA45 ,, CP ∥AB ,四边形 CDPE 是正方形,则 CDDP PE EC ,在等腰直角 △ ABC 中, AC BC 1, AB AP ,AB12 122,AP2; 在直角222(1 DP 2) DP 2( 2)2 ,△AEF 中,(1 EC )EP =AP解得, DP3 1 ;2②如图,延伸 BC,作 PDBC ,交点为 D ,延伸 CA ,作 PE CA 于点 ECDPE 是正,同理可证,四边形 方 形 ,C DD P P E,同理可得,在直角△AEP2E 22中,(EC 1)PA ,P( PD 1)2 PD 2( 2) 2 ,解得, PD3 1 .2【提示】如图,延伸AC ,做 PD BC 交点为 D , PE AC ,交点为 E ,可得四边形 CDPE 是正方形,则CD DPPE EC ;等腰 Rt △ABC 中, C =90 ,AC 1 ,因此,可求出 AC 1 ,AB 2 ,又 AB AP ,因此,在直角 △ AEF 中,可运用勾股定理求得 DP 的长即为点 P 到 BC 的距离 .【考点】勾股定理,平行线之间的距离,含30 度角的直角三角形,等腰直角三角形二、填空题9.【答案】x 3【分析】如下图,x 3 .【提示】依据不等式的解集在数轴上表示方法即可求出不等式的解集.【考点】在数轴上表示不等式的解集10.【答案】 8 或 2【分析】依据题意,适当两圆外切时,则圆心距O1O2等于3 5 8;当两圆内切时,则圆心距O1O2等于5 3 2.【提示】依据两圆相切,则有外切和内切. 当两圆外切时,圆心距等于两圆半径之和;当两圆内切时,圆心距等于两圆半径之差.【考点】圆与圆的地点关系11.【答案】 40【解析】 C 、 D分别是OA 、 OB的中点,CD是△OAB的中位线,CD 20m ,AB 2CD 2 2040m .【提示】依据三角形的中位线平行于第三边而且等于第三边的一半解答即可.【考点】三角形中位线定理12.【答案】 90【分析】依据对角线相等的平行四边形是矩形,能够获得90 .【提示】依据矩形的判断方法即可求解.【考点】正方形的判断与性质,平行四边形的性质13.【答案】 2【分析】2( 2 3) 6 2 6 6 2【提示】依据二次根式运算次序直接运算得出即可.【考点】二次根式的混淆运算14.【答案】 20【分析】将 l 10π, n 90 代入扇形弧长公式 lπ90πr,解得 r 20 . n r 中,得 10π180 180【提示】圆锥的底面周长即为侧面睁开后扇形的弧长,已知扇形的圆心角,所求圆锥的母线即为扇形的半径,利用扇形的弧长公式求解.【考点】圆锥的计算15.【答案】( 1,0)【分析】由题意可知,当点P 到 A、 B 两点距离之差的绝对值最大时,点P 在直线 AB 上. 设直线 AB 的解析式为 y kx b , A(0,1) , B(1,2)b 1 k 1y x 1 ,令 y 0 ,得 0 x 1,解得,b 2,解得.k b 1x1.点P的坐标是( 1,0).【提示】由三角形两边之差小于第三边可知,当 A、B、P 三点不共线时, |PA﹣ PB|< AB,又因为A(0,1),B(1,2) 两点都在 x 轴同侧,则当 A、B、 P 三点共线时,| PA PB | AB ,即 | PA PB | AB ,因此本题中当点PA B点P在直线AB上 . 先运用待定系数法求出直线AB的分析式,再令到、两点距离之差的绝对值最大时,y0 ,求出x的值即可.【考点】一次函数综合题,三角形三边关系16.【答案】0 或1【分析】①若 m 0 ,则函数 y 2x 1 ,是一次函数,与 x 轴只有一个交点;②若m22x 1 ,0 ,则函数y mx是二次函数 . 依据题意得 4 4m 0 ,解得 m 1 .【提示】需要分类议论:①若m 0 ,则函数为一次函数;②若m 0 ,则函数为二次函数. 由抛物线与x 轴只有一个交点,获得根的鉴别式的值等于0,且 m 不为 0,即可求出 m 的值 .【考点】抛物线与x 轴的交点,一次函数的性质17.【答案】8π3【分析】过点O作 OD BC 于点D,交BCE OC,则点E 是BEC 的中点,由折叠的性质可得于点,连结点 O 为的中点,S弓形BO =S弓形CO,在Rt△BOD 中,1,,,BOC OD =DE R 4 OBD 30R2OB2AOC 60 ,60π 42 8π暗影S扇形AOC. S 360 34/ 10【提示】过点 O 作ODBC 于点 D ,交 BC 于点 E ,则可判断点O 是 BC 的中点,由折叠的性质可得1 1 OBD 30 ,既而得出AOC ,求出扇形 AOC 的面积即可OD= OER 2 ,在 Rt △ BOD 中求出22得出暗影部分的面积 .【考点】扇形面积的计算18.【答案】 1y1x 21 5【分析】 联立两函数分析式得3,消去 y 得26x 15 ,配方得 x 26x 9 24 ,5x 2,即 xy3xx即 ( x 3) 22 63 或 2 6 3(舍去), 一次函数与反比率函数图象交点的横坐标为24 ,解得 x x 0 2 6 3 ,即 k 2 6 3 k 1 ,则整数 k 1 .【提示】联立两函数分析式,求出交点横坐标x 0,代入 k < x 0<k 1 中,估量即可确立出k 的值 .【考点】反比率函数与一次函数的交点问题三、解答题19.【答案】 0【分析】原式 =11 2 11 221 2 1【提示】本题波及零指数幂、负整数指数幂、特别角的三角函数值等考点 . 针对每个考点分别进行计算,然后依据实数的运算法例求得计算结果.【考点】实数的运算,零指数幂,负整数指数幂,特别角的三角函数值20.【答案】 4x 2 ( x 1)(x 1)【分析】原式x 1 ( x 2)2x 1x2当 x3 时,原式3 1 4【提示】原式括号中两项通分并利用同分母分式的减法法例计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分获得最简结果,将x 的值代入计算即可求出值.【考点】分式的化简求值21.【答案】【分析】在 Rt△ PBC 中, PC PB sin PBA 4 sin302m ,在 Rt△APC 中,PA PC sin PAB 2 sin159.5m .【提示】依据题意,先在Rt△PBC 中,利用三角函数的关系求得PC 的长,再在Rt△ APC 中,利用三角函数的关系求得PA的长.【考点】解直角三角形的应用,坡度和坡角问题22.【答案】(1) 100(2) 3010144(3) 200【分析】( 1)察看统计图知:喜爱乒乓球的有20 人,占 20%,故被检查的学生总数有20 20%100 人,喜爱跳绳的有 100 30 20 10 40 人,条形统计图为:( 2) A 组有 30 人,D 组有 20 人,共有 100 人, A 组所占的百分比为:30%,D 组所占的百分比为10%,m 30 , n 1040360 144 ;;表示地区 C 的圆心角为1003全校共有2000人,喜爱篮球的占10%,喜爱篮球的有 2000 10% 200人.()【提示】( 1)用 B 组频数除以其所占的百分比即可求得样本容量;( 2)用 A 组人数除以总人数即可求得m 值,用 D 组人数除以总人数即可求得n 值;(3)用总人数乘以 D 类所占的百分比即可求得全校喜爱篮球的人数;【考点】条形统计图,用样本预计整体,扇形统计图23.【答案】(1)如下图( 2)证明:BE 均分ABC ,ABE EAF ,EBF AEB ,ABE AEB , AB AE ,AOB FBOAO BE ,BO EO ,在△ABO 和△ FBO 中,BO BO ,△ ABO≌△ FBO( ASA) ,AOB BOFAO FO ,AF BE,BO EO, AO FO ,∴四边形ABFE为菱形.1ABC 的均分线即可;【提示】()依据角均分线的作法作出( 2)第一依据角均分线的性质以及平行线的性质得出ABE AEB ,从而得出△ABO≌△FBO,从而利用 AF BE,BO EO , AO FO ,得出即可.【考点】菱形的判断,平行四边形的性质,基本作图124.【答案】(1)3(2)115【分析】( 1)她吃到肉馅的概率是 23 1 ;1 2 3( 2)如下图:依据树状图可得,一共有15 种等可能的状况,两次都吃到肉馅只有一种状况,她吃到的两个都是肉馅的概率是 1 .15【提示】( 1)运用古典概率,有六种相等可能的结果,出现鲜肉馅粽子有两种结果,依据概率公式,即可求解;(2)本题能够以为有两步达成,因此能够采纳树状图法或许采纳列表法;注意题目属于不放回实验,利用列表法即可求解;【考点】列表法与树状图法,概率公式25.【答案】(1)表格分别填入 A 甲种原料 8x, B 乙种原料9(40 x) ;( 2)依据题意得8x 4(40 x) 260 ①25 ,由②得, x 22.5 ,不等式组的解集是5x 9(40 x),由①得, x270 ②22.5 x 25 ,x 是正整数,x 23、24、25 ,共有三种方案:方案一: A 产品23 件,B产品17 件,方案二: A 产品 24 件, B 产品 16 件,方案三: A 产品 25 件,B 产品15 件;(3)y 900x 1100(40 x) 200x 44000 , 200 0 ,y 随 x 的增大而减小,x 23 时, y 有最大值, y最大200 23 44000 39400 元 .【提示】( 1)依据总件数单件需要的原料件数列式即可;( 2)依据两种产品所需要的甲、乙两种原料列出不等式组,而后求解即可;( 3)依据总收益等于两种产品的收益之和列式整理,而后依据一次函数的增减性求出最大收益即可.【考点】一次函数的应用26.【答案】(1)证明:DE 垂直均分 AC,DEC 90,AE CE ,DC 为△DEC外接圆的直径,取 DC 的中点 O,连结 OE,如图,ABC 90 ,BE 为Rt△ABC斜上的中线,EB EC , C 30 ,EBC 30 , EOC 2 C 60 ,BEO 90 ,OD BE ,而BE为⊙O的半径,BE 是△DEC 外接圆的切线;( 2)解:BE 为Rt△ABC斜上的中线,AE EC BE 3 ,AC 2 3 ,ECD BCA ,Rt△ CED∽Rt △ CBA ,CE CD,而 CB CD BD CD 1 ,3 CD2或CD 3 CB CA CD 1 2,解得 CD3(舍去),△DEC 外接圆的直径为 2.【提示】( 1)依据线段垂直均分线的性质由DE 垂直均分 AC 得DEC 90 , AE CE ,利用圆周角定理获得 DC 为△DEC外接圆的直径;取 DC 的中点 O,连结 OE,依据直角三角形斜边上的中线性质得EB EC ,得 C EBC 30 ,则 EOC 2 C 60 ,可计算出BEO 90 ,而后依据切线的判断定理即可获得结论;2 BE CE CD而后利用相像比可计算出△DEC 外接圆的直径CD .【考点】切线的判断a 1 27.【答案】(1)2b2 4( ) t 3 2( ) ta b 3 0a 1 ;【分析】( 1)将点 A 、点 B 的坐标代入可得3b,解得b 29a 3 0( 2)抛物线的分析式为 y x 2 2 x 3 ,直线 y t ,联立两分析式可得 x 2 2x3 t ,即 x 22x3( )t 0,动直线 y t (t 为常数)与抛物线交于不一样的两点,4 4(3 t) 0 ,解得 t4 ;( 3) y22x 3 ( x 1) 2, 抛物线的对称轴为直线x 1 ,当 x0 时, y 3 , C(0, 3) . 设x 4 点 Q 的坐标为 (m,t ) ,则 P( 2 mt,) . 如图,设 PQ 与 y 轴交于点 D ,则 CD t3,DQ m , DPm 2 .PCQ PCD QCD90 , DPC PCD 90 , QCDDPC ,又 PDCQDC 90 ,△ QCD ∽△ CDP , DQDC ,即 m t 3 ,整理得 t26t9 m 2 2m , Q(m,t ) 在抛物线上,DC PDt+3 m 2t m 2 2m 3 , m 2 2m t 3 , t 26t 9 t 3 ,化简得 t 25t6 0 . 解得 t2 或 t3 ,当t3 时,动直线 y t 经过点 C ,故不合题意,舍去 .t2 .【提示】( 1)将点 A 、点 B 的坐标代入二次函数分析式可求出 a 、 b 的值;( 2)依据二次函数及 yt ,可得出方程,有两个交点,可得 0 ,求解 t 的范围即可;( 3)证明 △ PDC ∽△ CDQ ,利用相像三角形的对应边成比率,可求出 t 的值 .【考点】二次函数综合题28.【答案】(1)证明:如图 1, EF ∥AD , A EFB , GFEAMF .△ GFE 与 △BFE 对于 EF 对称, △ GFE ≌△ BFE ,GFEBFE , AAMF , △AMF 是等腰三角形;2013年江苏省宿迁市中考数学试卷-答案( 2)解:如图 1,作 DQ AB 于点 Q ,AQDDQB90 .AB ∥ DC ,CDQ90 .B 90 , 四边形 CDQB 是矩形,CDQB 2,QDCB 6, AQ102 8 .在 Rt △ ADQ 中,由勾股定理得AD6436 10 ,tanA3 tanEFBEB3, FB.44如图 3, EB x , FB4 x ,CE 6x ,AF MF 104x , GM 8x 10 , GD 2x15 ,33 321515 265DE x ,在 Rt △CED 中,由勾股定理得x(6 x) 2 4,解得 x ,∴当 EG 过点 D 时221265 ;x12( 3)解:当点 G 在梯形 ABCD 内部或边 AD 上时, y1 x 4 x2 x 2 ,当点 G 在边 AD 上时,易求得 x15 ,2 3 34此时 0 x 15 ,则当 x15 时, y 最大值为 75 .44828 2S △GMNGM2x 2 yx 10当点 G 在梯形 ABCD 外时,△GMN ∽△ GFE , ,即 33 ,由(2)S △ GFE GF2x 243x3知,65 y2x 220x 75 2( x 5)225 15 x 65 ,当 x 5 时,y 最大值为 25 ,因为 25 75 ,x,22 4 12 2 2 8 12故当 x5时, y 最大值为25.2【提示】( 1)由条件 EF ∥AD 就能够得出 A EFB , GFEAMF ,由 △ GFE 与 △BFE 对于 EF 对称能够得出 GFE BFE ,就能够得出 A AMF ,从而得出结论;(2)当 EG 过点 D时在 Rt △EDC 中由勾股定理成立方程求出其解即可;( 3)分状况议论当点 G 不在梯形外时和点G 在梯形以外两种状况求出x 的值就能够求出 y 与 x 之间的函数关系式,在自变量的取值范围内就能够求出相应的最大值,从而求出结论;【考点】相像形综合题10/10。
2013年江西中考数学真题卷含答案解析
江西省2013年中等学校招生考试数学试题(含答案全解全析)(满分120分,考试时间120分钟)第Ⅰ卷(选择题,共18分)一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-1的倒数是()A.1B.-1C.±1D.02.下列计算正确的是()A.a3+a2=a5B.(3a-b)2=9a2-b2C.a6b÷a2=a3bD.(-ab3)2=a2b63.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数34216316545227163则这组数据的中位数和众数分别是()A.164和163B.105和163C.105和164D.163和164交于A,B两点,则当线段AB的长度取最小值时,a的值为4.如图,直线y=x+a-2与双曲线y=4x()A.0B.1C.2D.55.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()6.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)(x0-x2)<0第Ⅱ卷(非选择题,共102分)二、填空题(本大题共8小题,每小题3分,共24分)7.分解因式x2-4=.8.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.9.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.10.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连结DE和BF,分别取DE、BF的中点M、N,连结AM,CN,MN,若AB=2√2,BC=2√3,则图中阴影部分的面积为.11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有点的个数为(用含n的代数式表示).12.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个..符合题意的一元二次方程.13.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.14.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.三、(本大题共2小题,每小题5分,共10分)并将解集在数轴上表示出来.15.解不等式组{x+2≥1,2(x+3)-3>3x,的直尺16.如图AB是半圆的直径.图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度...按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.17.先化简,再求值:x2-4x+42x ÷x2-2xx2+1,在0,1,2三个数中选一个合适的,代入求值.18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.19.如图,在平面直角坐标系中,反比例函数y=k(x>0)的图象和矩形ABCD在第一象限,AD平x行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:A.全部喝完;B.喝剩约1;C.喝剩约3一半;D.开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升..?(计算结果请保留整数)(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶.?(可使用科学计算器)六、(本大题共2小题,每小题9分,共18分)21.如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB.如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=√32,cos60°=12,tan60°=√3,√721≈26.851,可使用科学计算器)图1图2图322.如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是☉O 外一点,连结AP,直线PB与☉O相切于点B,交x轴于点C.(1)证明PA是☉O的切线;(2)求点B的坐标;(3)求直线AB的解析式.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:作等腰直角三角形,如图在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧..1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连结MD和ME,则下列结论正确的是.(填序号即可)AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:①AF=AG=12在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所..示,M是BC的中点,连结MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程.●类比探究:作等腰直角三角形,如图3所在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧..示,M是BC的中点,连结MD和ME,试判断△MED的形状.答:.24.已知抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系式是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得的线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.答案全解全析:一、选择题(a≠0),∴-1的倒数是-1,选B.1.B ∵a的倒数是1a2.D A项,a3与a2不是同类项,不能相加,故本选项错误;B项,(3a-b)2=9a2-6ab+b2,故本选项错误;C项,两个单项式相除,系数与系数相除,相同的字母相除,a6b÷a2=a4b,故本选项错误;D 项,根据积的乘方知,(-ab3)2=a2b6,故本选项正确,选D.3.A 首先将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据个数为偶数时)就是这组数据的中位数;众数是指一组数据中出现次数最多的那个数,将数据从小到大排序得45,163,163,165,227,342,所以中位数是163+165=164,2众数为163,故选A.4.C ∵y=x+a-2,当a取不同数值时,得到一组平行于y=x的直线.当y=x时,从图形的直观性可得:直线与y=4的两交点A、B之间距离最短.∴a=2,故选C.x5.C A项, 少了上面的一部分,故本选项错误;B项,是坐凳的主视图,故本选项错误;C项,是坐凳的左视图,故本选项正确;D项,既不是主视图,也不是左视图,故本选项错误,故选C.6.D 需要分a>0,a<0两种情况,画出两个草图来分析(见下图).A 项, 抛物线的开口可向上也可向下,故本选项错误;B 项, 抛物线与x 轴有两个不同的交点,则b 2-4ac>0,故本选项错误;C 项, 在图1中,a>0,且有x 1<x 0<x 2,在图2中,a<0,且有x 0<x 1<x 2,故本选项错误;D 项, 在图1中,a>0,且有x 1<x 0<x 2,则a(x 0-x 1)(x 0-x 2)的值为负;在图2中,a<0,且有x 0<x 1<x 2,则a(x 0-x 1)(x 0-x 2)的值也为负,故本选项正确,故选D. 7.答案 (x+2)(x-2)解析 利用平方差公式得x 2-4=(x+2)(x-2). 8.答案 65°解析 ∵∠1=155°,∴∠EDC=25°. 又∵DE∥BC,∴∠C=∠EDC=25°.在△ABC 中,∠A=90°,∴∠B+∠C=90°,∴∠B=65°.评析 本题考查了平行线的性质、邻补角、直角三角形两锐角互余等知识,题目较简单. 9.答案 {x +y =34x =2y +1解析 根据题意可知有两个等量关系:到井冈山的人数+到瑞金的人数=34;到井冈山的人数=到瑞金的人数×2+1,所以可列方程组为{x +y =34,x =2y +1.10.答案 2√6解析 ∵DE、BF 的中点为M 、N,∴AM、CN 分别为Rt△ADE 与Rt△BCF 斜边上的中线, ∴S △AEM =12S △ADE ,S △BCN =12S △BCF .∵点E 、F 分别是AB 、CD 的中点, ∴四边形BEDF 为平行四边形, ∵DE、BF 的中点为M 、N,∴S 四边形DFNM =12S 四边形BEDF ,∴阴影部分的面积就是原矩形面积的一半.∴S 阴影=12×2√3×2√2=2√6.评析 本题考查了阴影部分面积的求法,涉及三角形的性质、平行四边形的性质和判定、矩形的性质、矩形的面积计算等知识,解题方法多样,利用“整体思想”则事半功倍. 11.答案 (n+1)2解析 下列式子是点数的变化规律: 1 1+3=4 2 1+3+5=9 3 1+3+5+7=16 4 1+3+5+7+9=25 ……n 1+3+5+7+…+(2n+1)=(n+1)2由点数的变化规律,可以推出第n 个图形中所有点的个数为(n+1)2. 12.答案 x 2-5x+6=0(答案不唯一)解析 由于直角三角形的面积为3,不妨取两直角边长分别为2、3.设一元二次方程为ax 2+bx+c=0(a≠0),根据一元二次方程根与系数的关系得x 1+x 2=-b a =5,x 1·x 2=ca =6,若a=1,则b=-5,c=6.所以以2、3为根的一元二次方程为x 2-5x+6=0.13.答案 25°解析 ∵平行四边形ABCD 与平行四边形DCFE 的周长相等,且有公共边CD,∴AD=DE. ∵∠BAD=60°,∠F=110°, ∴∠ADC=120°,∠CDE=110°, ∴∠ADE=360°-∠ADC -∠CDE=130°, ∴∠DAE=12(180°-∠ADE)=12×50°=25°.14.答案 2,3,4解析 ∵∠AOB=120°,AO=BO=2,∴△AOB 是顶角为120°、腰长为2的等腰三角形.联想60°与120°互补,60°是120°的一半,可知点C 是△AOB 外接圆上的动点.当点C 在以O 为圆心的优弧AB 上时,总有∠AC 1B=12∠AOB=60°,此时OC 1=OA=2;当点C 在过点A 、O 、B 三点的圆的优弧AB 上时, 总有∠ACB+∠AOB=180°,此时OC 的长随点C 的位置不同而改变,且有OB<OC 2≤OC 3(OC 3为△AOB 外接圆直径),即2<OC≤4, 此时OC 长度的整数值为3或4. 综上,OC 长度的整数值可以是2,3,4. 15.解析 由x+2≥1,得x≥-1,(1分) 由2x+6-3>3x,得x<3,(3分) ∴不等式组的解集为-1≤x<3.(4分)将解集在数轴上表示为:(5分)16.解析 (1)在图1中,点P 即为所求. (2)在图2中,CD 即为所求.17.解析 原式=(x -2)22x·x 2x (x -2)+1(2分)=x -22+1(3分)=x2.(4分)∵分式x 2-2x x 2为除式,∴x≠0且x≠2.当x=1时,原式=12.(6分) 18.解析 (1)A.(2分)(2)依题意可画树状图(下列两种方式均可):图1图2(直接列举出6种可能结果也可)符合题意的只有两种情况:①乙丙甲②丙甲乙(按图1)或①(甲乙),(乙丙),(丙甲);②(甲丙),(乙甲),(丙乙)(按图2).(5分)∴P(A)=26=13.(6分)19.解析 (1)B(2,4),C(6,4),D(6,6).(3分) (2)这两个点是A 、C.(4分)如图,矩形ABCD 平移后得到矩形A'B'C'D',设平移距离为a,则A'(2,6-a),C'(6,4-a). ∵点A',点C'在y=kx 的图象上,∴2(6-a)=6(4-a),(6分) 解得a=3,(7分) ∴点A'(2,3),∴反比例函数的解析式为y=6x .(8分)20.解析 (1)根据所给扇形统计图可知,喝剩约13的人数是总人数的50%, ∴25÷50%=50(人),参加这次会议的总人数为50.(1分) ∵550×360°=36°,∴D 所在扇形的圆心角的度数为36°.(2分) 补全条形统计图如图.(3分)(2)根据条形统计图可得平均每人浪费矿泉水量约为 (25×500×13+10×500×12+5×500)÷50=275003÷50≈183(ml).(6分)(3)该单位每年参加此类会议的总人数约为2 400~3 600人, 则浪费矿泉水约为3 000×183÷500=1 098(瓶).(8分) 21.解析(1)雨刮杆AB旋转的最大角度为180°.(1分)连结OB,过O点作AB的垂线交BA的延长线于E点,∵∠OAB=120°,∴∠OAE=60°.在Rt△OAE中,∵∠OAE=60°,OA=10 cm,∴sin ∠OAE=OEOA =OE 10,∴OE=5√3 cm,(2分)∴AE=5 cm,∴EB=AE+AB=53 cm.(3分)在Rt△OEB中,∵OE=5√3 cm,EB=53 cm,∴OB=√OE2+BE2=√2884=2√721≈53.70(cm).(4分)(2)∵雨刮杆AB旋转180°得到CD,即△OCD与△OAB关于点O中心对称,∴△BAO≌△DCO,∴S△BAO=S△DCO(直接证明全等得到面积相等的也给相应的分值),(7分)∴雨刮杆AB扫过的最大面积S=12π(OB2-OA2)(8分)=1 392π(cm2).(9分)(用OB≈53.70计算得到1 392π的,该步骤也得相应分值)22.解析 (1)证明:依题意可知,A(0,2), ∵A(0,2),P(4,2), ∴AP∥x 轴,(1分)∴∠OAP=90°,且点A 在☉O 上, ∴PA 是☉O 的切线.(2分)(2)解法一:连结OP,OB,作PE⊥x 轴于点E,BD⊥x 轴于点D, ∵PB 切☉O 于点B,∴∠OBP=90°,即∠OBP=∠PEC. 又∵OB=PE=2,∠OCB=∠PCE, ∴△OBC≌△PEC, ∴OC=PC,(3分)(或证Rt△OAP≌Rt△OBP,再得到OC=PC 也可) 设OC=PC=x,则有OE=AP=4,CE=OE-OC=4-x, 在Rt△PCE 中,∵PC 2=CE 2+PE 2, ∴x 2=(4-x)2+22,解得x=52,(4分)∴BC=CE=4-52=32.∵12OB·BC=12OC·BD,即12×2×32=12×52×BD,∴BD=65,(5分) ∴OD=√OB 2-BD 2=√4-3625=85,由点B 在第四象限可知B (85,-65).(7分)解法二:连结OP,OB,作PE⊥x 轴于点E,BD⊥y 轴于点D, ∵PB 切☉O 于点B,∴∠OBP=90°,即∠OBP=∠PEC. 又∵OB=PE=2,∠OCB=∠PCE, ∴△OBC≌△PEC,∴OC=PC(或证Rt△OAP≌Rt△OBP,再得到OC=PC 也可).(3分) 设OC=PC=x,则有OE=AP=4,CE=OE-OC=4-x, Rt△PCE 中,∵PC 2=CE 2+PE 2, ∴x 2=(4-x)2+22,解得x=52,(4分)∴BC=CE=4-52=32.∵BD∥x 轴, ∴∠COB=∠OBD, 又∵∠OBC=∠BDO=90°, ∴△OBC∽△BDO,∴OB BD =CB OD =OCBO,即2BD =32OD =522,∴BD=85,OD=65,由点B 在第四象限可知B (85,-65).(7分) (3)设直线AB 的解析式为y=kx+b,由A(0,2),B (85,-65),可得{b =2,85k +b =-65,(8分) 解得{b =2,k =-2,∴直线AB 的解析式为y=-2x+2.(9分)23.解析 ●操作发现:①②③④.(2分) ●数学思考:MD=ME,MD⊥ME.(3分) 先证MD=ME:如图,分别取AB,AC 的中点F,G,连结DF,MF,MG,EG, ∵M 是BC 的中点, ∴MF∥AC,MF=12AC.又∵EG 是等腰Rt△AEC 斜边上的中线, ∴EG⊥AC 且EG=12AC, ∴MF=EG, 同理可证DF=MG. ∵MF∥AC,∠MFA+∠BAC=180°, 同理可得∠MGA+∠BAC=180°, ∴∠MFA=∠MGA,又∵EG⊥AC,∴∠EGA=90°, 同理可得∠DFA=90°, ∴∠MFA+∠DFA=∠MGA+∠EGA, 即∠DFM=∠MGE,又MF=EG,DF=MG, ∴△DFM≌△MGE(SAS), ∴MD=ME.(7分)再证MD⊥ME:证法一:∵MG∥AB,∴∠MFA+∠FMG=180°,即∠MFA+∠FMD+∠DME+∠EMG=180°,又∵△DFM≌△MGE,∴∠EMG=∠MDF,∴∠MFA+∠FMD+∠DME+∠MDF=180°,其中∠MFA+∠FMD+∠MDF=90°,∴∠DME=90°,即MD⊥ME.(9分)证法二:如图,MD与AB交于点H,∵AB∥MG,∴∠DHA=∠DMG,又∵∠DHA=∠FDM+∠DFH,∴∠DHA=∠FDM+90°,∵∠DMG=∠DME+∠GME,又∵△DFM≌△MGE,∴∠FDM=∠GME,∴∠DME=90°,即MD⊥ME.(9分)●类比探究:等腰直角三角形.(10分)24.解析(1)∵y1=-(x-a1)2+a1与x轴交于点A0(0,0),∴-a12+a1=0,∴a1=0或1,由已知可知a1>0,∴a1=1,(1分)即y1=-(x-1)2+1,令y1=0,代入得-(x-1)2+1=0,∴x1=0,x2=2,∴y1与x轴交于A0(0,0),A1(2,0),∴b1=2.(2分)又∵抛物线y2=-(x-a2)2+a2与x轴交于A1(2,0),∴-(2-a2)2+a2=0,∴a2=1或4,∵a2>a1,∴a2=1(舍去),∴a2=4,抛物线y2=-(x-4)2+4.(3分)(2)(9,9);(n2,n2);y=x.(6分)详解如下:∵抛物线y2=-(x-4)2+4,令y2=0,得-(x-4)2+4=0,∴x1=2,x2=6,∴y2与x轴交于A1(2,0),A2(6,0),又∵抛物线y3=-(x-a3)2+a3与x轴交于A2(6,0),∴-(6-a3)2+a3=0,∴a3=4或9,∵a3>a2,∴a3=4(舍去),∴a3=9,抛物线y3的顶点坐标为(9,9).由y1的顶点坐标为(1,1),y2的顶点坐标为(4,4),抛物线y3的顶点坐标为(9,9), 依次类推抛物线y n的顶点坐标为(n2,n2).∵所有抛物线的顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是y=x.(3)①∵A0(0,0),A1(2,0),∴A0A1=2,(7分)又∵y n=-(x-n2)2+n2,令y n=0,∴-(x-n2)2+n2=0,即x1=n2+n,x2=n2-n,∴A n-1(n2-n,0),A n(n2+n,0),则A n-1A n=(n2+n)-(n2-n)=2n.(9分)②存在,是平行于y=x且过A1(2,0)的直线,其表达式为y=x-2.(12分)。
2013年黑龙江哈尔滨中考数学试题及答案(解析版)
哈尔滨市2013年初中升学考试数学试卷一、选择题(每小题3分,共计30分)1.(2013哈尔滨,1,3分)-13的倒数是( ).A .3B .-3C .-13D .13【答案】B . 2.(2013哈尔滨,2,3分)下列计算正确的是( ).A .a 3+a 2=a 3B .a 3·a 2=a 6C .(a 2)3=a 6D .(a2)2=a 22【答案】 C . 3.(2013哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D . 【答案】 D . 4.(2013哈尔滨,4,3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的).【答案】 A .5.(2013哈尔滨,5,3分)把抛物线y =(x +1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).A .y =(x +2)2+2B .y =(x +2)2-2C .y =x 2+2D .y =x 2-2 【答案】 D .6.(2013哈尔滨,6,3分)反比例函数y =1-2kx的图象经过点(-2,3),则k 的值为( ).A .6B .-6C .72D .-72【答案】 C . 7.(2013哈尔滨,7,3分)如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ).A .4B .3C .52D .2(第7题图) 【答案】 B . 8.(2013哈尔滨,8,3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).A .116B .18C .14D .12【答案】 C . 9.(2013哈尔滨,9,3分)如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). A .12 B .13 C .14 D .23【答案】 B . 10.(2013哈尔滨,10,3分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法: ①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ).A .1个B .2个C .3个D .4个【答案】 D .二、填空题(每小题3分,共计30分) 11.(2013哈尔滨,11,3分)把98000用科学记数法表示为_______________.【答案】9.8×104.12.(2013哈尔滨,12,3分)在函数y =xx +3中,自变量x 的取值范围是_______________. 【答案】x ≠3.13.(2013哈尔滨,13,3分)计算:27-32=__________________. 【答案】523.14.(2013哈尔滨,14,3分)不等式组⎩⎨⎧3x -1<2,x +3≥1的解集是______________.【答案】-2≤x <1.15.(2013哈尔滨,15,3分)把多项式4ax 2-ay 2分解因式的结果是_________________. 【答案】a (2x +y )(2x -y );16.(2013哈尔滨,16,3分)一个圆锥的侧面积是36πcm 2,母线长是12cm ,则这个圆锥的底面直径是___________cm . 【答案】6. 17.(2013哈尔滨,17,3分)如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD =4,则弦AC 的长为__________.【答案】25. 18.(2013哈尔滨,18,3分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为___________. 【答案】20%. 19.(2013哈尔滨,19,3分)在△ABC 中,AB =22,BC =1,∠ABC =45º,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90º,连接CD ,则线段CD 的长为__________. 【答案】5或13. 20.(2013哈尔滨,20,3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin∠BOE 的值为________.EODC B A(第20题图)【答案】35.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分)21.(2013哈尔滨,21,6分)先化简,再求代数式a a +2-1a -1÷a +2a 2-2a +1的值,其中a =6tan30º-2.【答案】解:原式=a a +2-1a -1·(a -1)2a +2=a a +2-a -1a +2=1a +2,∵a =6tan30º-2=3×33-2=23-2, ∴原式=1a +2=1 23-2+2=1 23=36. 22.(2013哈尔滨,22,6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ; (2)请直接写出四边形ABCD 的周长.【答案】:(1)如图:(2)25+5 2 23.(2013哈尔滨,23,6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机制取部分学生进行问卷调查,将调查结果整理后绘成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题:(1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?【答案】解:(1)(11+18+16)÷(1-10%)=50(名),50-11-18-16=5(名),∴在这次调查中,最喜欢新闻类电视节目的学生有5名,补全条形图如图所示:(2)1200×1150=264(名)∴估计全校学生中最喜欢体育类电视节目的学生有264名. 24.(2013哈尔滨,24,6分)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O ,已知AB =8米,设抛物线解析式为y =ax 2-4. (1)求a 的值;(2)点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、BC 、BD ,求△BCD 的面积.【答案】解:(1)∵AB =8,由抛物线的对称性可知OB =4,∴B (4,0),0=16a -4,∴a =14.(2)过点C 作CE ⊥AB 于E ,过点D 作DF ⊥AB 于F ,∵a =14,∴y =14x 2-4.令x =-1,∴m =14×(-1)2-4=-154,∴C (-1, -154).∵点C 关于原点对称点为D ,∴D (1,154),∴CE =DF =154,S △BCD =S △BOD +S △BOC =12OB ·DF +12OB ·CE =12×4×154+12×4×154=15.∴△BCD 的面积为15平方米.25.(2013哈尔滨,25,8分)如图,在△ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD =AE .(1)求证:AB =AC ;(2)若BD =4,BO =25,求AD 的长.【答案】解:(1)证明:连接CD 、BE ,∵BC 为半圆O 的直径,∴∠BDC =∠ECB =90º,∴∠ADC =∠AEB =90º,又∵AD =AE ,∠A =∠A ,∴△ADC ≌△AEB ,∴AB =A C .(2)方法一、连接OD ,∵OD =OB ,∴∠OBD =∠ODB ,∵AB =AC ,∴∠OBD =∠ACB ,∴∠ODB =∠ACB ,又∵∠OBD =∠ABC ,∴△OBD ∽△ABC ,∴BD BC =BO AB ,,∵OB =25,∴BC =25,又BD =4,∴445=25AB ,AB =10,∴AD =AB -BD =6.方法二、由(1)知AB =AC ,∵AD =AE ,∴CD =BD =4,∵OB =25,∴BC =45,在Rt △BCE 中,BE =(45)2-42=8.在Rt △ABE 中,(AD +4)2-AE 2=BE 2,∴(AD +4)2-AD 2=64,解得AD =6. 26.(2013哈尔滨,26,8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同. (1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【答案】(1)解:设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(x +10)天,根据题意得 45x +10=30x,解得x =20, 经检验得x =20是原方程的解,∴x +10=30(天).∴队单独完成此项任务需30天,则甲队单独完成此项任务需20天.(2)设甲队再单独完成此项任务需a 天,330+2a 30≥2×320,a ≥3,∴甲队至少再单独施工3天. 27.(2013哈尔滨,27,10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形)AB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1)求线段BC 的长;(2)连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,将△BEF 绕点B 逆时针旋转得到△BE ′F ′,使点E 的对应点E ′落在线段AB 上,点F 的对应点F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值时,2BQ -PF =33QG ?【答案】(1)解:如图1,∵△AOB 为等边三角形,∴∠BAC =∠AOB =60º,∵BC ⊥AB ,∴∠ABC =90º,∴∠ACB =30º,∠OBC =30º,∴∠ACB =∠OBC ,∴OC =OB =AB =OA =3,∴AC =6,∴BC =32AC =33.(2)解:如图1,过点Q 作QN ∥OB 交x 轴于点N ,∴∠QNA =∠BOA =60º=∠QAN ,∴QN =QA ,∴△AQN 为等边三角形,∴NQ =NA =AQ =3-t ,∴ON =3-(3-t )=t ,∴PN =t +t =2t ,∵OE ∥QN ,∴△POE ∽△PNQ ,∴OE QN =OP PN ,∴OE3-t=12,OE =32-12t ,∵EF ∥x 轴,∴∠BFE =∠BCO =∠FBE =30º,∴EF =BE ,∴m =BE =OB -OE =12t +32(0<t <3).(3)如图2,∵∠BE ′F ′=∠BEF =180º-∠EBF -∠EFB =120º,∴∠AE ′G =60º=∠E ′AG ,∴GE ′=GA ,∴△AE ′G 为等边三角形.∵QE ′=BE ′-BQ =m -t =12t +32-t =32-12t ,∴GE ′=GA =AE ′=AB -BE ′=32-12t =QE ′.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180º,∴∠2+∠3=90º,即∠QGA =90º,∴QG =3AG =323-123t ,∵EF ∥OC ,∴BF BC =BE OB ,∴BF 33=m 3,∴BF =3m =323+123t ,∵CF =BC -BF =323-123t ,CP =CO -OP =3-t ,∴CF CB =323-123t 33=3-t 6=CP AC .∵∠FCP =∠BCA ,∴△FCP ∽△BCA ,∴PF AB =CP AC ,∴PF =3-t 2,∵2BQ -BF =33QG ,∴2t -3-t 2=33×(323-123t ),∴t =1.∴当t =1时,2BQ -PF =33QG .28.(2013哈尔滨,28,10分) 已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 点点G . (1)如图1,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.【答案】(1)证明:如图1,连接FE 、FC ,∵点F 在线段EC 的垂直平分线上,∴EF =FC ,∴∠1=∠2.∵△ABD 和△CBD 关于直线BD 对称,∴AB =CB ,∠4=∠3,BF =BF ,∴ABF ≌△CBF ,∴∠BAF =∠2,FA =FC ,∴FE =FA ,∠1=∠BAF ,∴∠5=∠6.∵∠1+∠BEF =180º,∴∠BAF +BEF =180º,∵∠BAF +∠BEF +∠AFE +∠ABE =360º,∴∠AFE +∠ABE =180º,又∵∠AFE +∠5+∠6=180º,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF =∠AB D .(2)FM =72FN .证明:如图2,由(1)可知∠EAF =∠ABD ,又∵∠AFB =∠GFA ,∴△AFG ∽△BFA ,∴∠AGF =∠BAF .又∵∠MBF =12∠BAF ,∴∠MBF =12∠AGF .又∵∠AGF =∠MBG +∠BMG ,∴∠MBG =∠BMG ,∴BG =MG .∵AB =AD ,∴∠ADB =∠ABD =∠EAF ,又∵∠FGA =∠AGD ,∴△AGF ∽△DGA ,∴GF AG =AG GD =AF AD ,∵AF =23AD ,∴GF AG =AG GD =23,设GF =2a ,AG =3a ,∴CD =92a ,∴FD =52a ,∵∠CBD =∠ABD ,∠ABD =∠ADB ,∴∠CBD =∠ADB ,∴BE ∥AD ,∴BG DG =EGAG,∴EG BG =AG DG =23,设EG =2k ,∴BG =MG =3k ,过点F 作FQ ∥ED 交AE 于Q ,∴GQ QE =FG FD =2a 52-a =45,∴GQ =45QE ,∴GQ =49EG =89k ,∴QE =109k ,MQ =3k +89k =359k ,∵FQ ∥ED ,∴MF FN =MQ QE =72,∴FM =72FN .。
2013年湖北省鄂州市中考数学试题(含答案)
鄂州市2013年初中毕业生学业水平考试数学试题学校:________考生姓名:________ 准考证号: 注意事项:1.本试卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分) 1.2013的相反数是( )A .12013B .12013C .3102D .-20132.下列计算正确的是( )A .4312a a a B .93C .20(1)0xD .若x 2=x ,则x =13.如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( ) (第3题图) A B C D 4.一副三角板有两个直角三角形,如图叠放在一起,则α的度数是( )A .165°B .120°C .150°D .135° (第4题图) 5.下列命题正确的个数是( )①若代数式222xx x有意义,则x 的取值范围为x ≤1且x ≠0. ②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个 ×108元.③若反比例函数myx(m 为常数),当x >0时,y 随x 增大而增大,则一次函数 y =-2 x + m 的图象一定不经过第一象限.④若函数的图象关于y 轴对称,则函数称为偶函数,下列三个函数:y =3,y =2x+1,y = x 2中偶函数的个数为2个.A .1B .2C .3D .46.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
2013年天津市中考数学试卷-含答案详解
2013年天津市中考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 计算(−3)+(−9)的结果等于( )A. 12B. −12C. 6D. −62. tan60°的值等于( )A. 1B. √2C. √3D. 23. 下列标志中,可以看作是中心对称图形的是( )A. B. C. D.4. 中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8210000m2,将8210000用科学记数法表示应为( )A. 821×102B. 82.1×105C. 8.21×106D. 0.821×1075. 七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知( )A. (1)班比(2)班的成绩稳定B. (2)班比(1)班的成绩稳定C. 两个班的成绩一样稳定D. 无法确定哪班的成绩更稳定6. 如图是由3个相同的正方体组成的一个立体图形,它的三视图是( )A. B. C. D.7. 如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( )A. 矩形B. 菱形C. 正方形D. 梯形8. 正六边形的边心距与边长之比为( )A. √3:3B. √3:2C. 1:2D. √2:29. 若x=−1,y=2,则2xx2−64y2−1x−8y的值等于( )A. −117B. 117C. 116D. 11510. 如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为( )A. 0B. 1C. 2D. 3二、填空题(本大题共8小题,共24.0分)11. 计算a⋅a6的结果等于______.12. 一元二次方程x(x−6)=0的两个实数根中较大的根是______.13. 若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是______.14. 如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段.15. 如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为______(度).16. 一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是______.17. 如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为______.18. 如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于______;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)______.三、计算题(本大题共1小题,共6.0分)19. 解不等式组{x−1<22x+9>3.四、解答题(本大题共7小题,共60.0分。
2013年山西省中考数学试题(含答案)
2013年山西省中考试题数学(解析)(满分120分 考试时间120分钟)第I 卷 选择题(共24分)一、选择题(本大题共12小题,每小题2分,共24分。
在每个小题给出的四个选项中,只有一项符合要求,请选出并在答题卡上将该项涂黑) 1.(2013山西,1,2分)计算2×(-3)的结果是( ) A .6 B .-6 C .-1 D .5 【答案】B【解析】异号相乘,得负,所以选B 。
2.(2013山西,2,2分)不等式组35215x x +≥⎧⎨-<⎩的解集在数轴上表示为( )【答案】C【解析】解(1)得:2x ≥,解(2)得:x <3,所以解集为23x ≤<,选C 。
3.(2013山西,3,2分)如图是一个长方体包装盒,则它的平面展开图是( ) 【答案】A【解析】长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B 、C 中两个小的与两个大的相邻,错,D 中底面不符合,只有A 符合。
4.(2013山西,4,2分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S 2甲=36,S 2乙=30,则两组成绩的稳定性:( ) A .甲组比乙组的成绩稳定 B .乙组比甲组的成绩稳定 C .甲、乙两组的成绩一样稳定 D .无法确定 【答案】B【解析】方差小的比较稳定,故选B 。
5.(2013山西,5,2分)下列计算错误的是( )A .x 3+ x 3=2x 3B .a 6÷a 3=a 2C 23D .1133-⎛⎫= ⎪⎝⎭【答案】B 【解析】a 6÷a 3=633aa -=,故B 错,A 、C 、D 的计算都正确。
6.(2013山西,6,2分)解分式方程22311x x x时,去分母后变形为( )A .2+(x+2)=3(x-1)B .2-x+2=3(x-1)C .2-(x+2)=3(1- x )D . 2-(x+2)=3(x-1) 【答案】D【解析】原方程化为:22311x x x +-=--,去分母时,两边同乘以x -1,得:2-(x +2)=3(x -1),选D 。
2013年江苏省南京市中考数学试题及答案
第4题l O 2O 12013年南京中考数学试题一、选择题(本大题共有6小题,共12分,每小题2分.) 1.计算12-7×(-4)+8÷(-2)的结果是A .-24B .-20C .6D .362.计算23)1·a a (的结果是A .aB .5aC .6aD .9a3.设边长为3的正方形的对角线长为a.下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a <4;④a 是18的算术平方根。
其中,所有正确说法的序号是 A .①④ B .②③ C .①②④ D .①③④4.如图,⊙O 1、⊙O 2的圆心O 1、O 2在直线l 上,⊙O 1的半径为2cm ,⊙O 2的半径为3cm ,O 1O 2=8cm 。
⊙O 1以1cm/s 的速度沿直线l 向右运动,7s 后停止运动。
再此过程中,⊙O 1与⊙O 2没有出现的位置关系是A .外切B .相交C .内切D .内含5.在同一直角坐标系中,若正比例函数y=k 1x 的图像与反比例函数xk y 2=的图像没有公共点,则 A .k 1+ k 2<0 B .k 1+ k 2>0 C .k 1k 2<0 D .k 1k 2>06. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是二、填空题(本大题共有10小题,共20分,每小题2分.)7.-3的相反数是 ;-3的倒数是 . 8.计算2123-的结果是 . 第6题A .B .C .D .F E O D CB A 1D'B'C'D CB A 第12题第11题9.使式子111-+x 有意义的x 的取值范围是 . 10.第二节亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务,将13000用科学计数法表示为 .11.如图将矩形ABCD 绕点A 顺时针旋转到AB ’C ’D ’的位置,旋转角α(0°<α<90°).若 ∠1=110°,则∠α= °.如图,将菱形纸片12. ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为2cm ,∠A =120°,则EF = cm .13.△OAB 是以正多边形相邻的两个顶点A 、B 与它的中心O 为顶点的三角形,若△OAB 的一个内角为70°,则该正多边形的边数为 .14. 已知如图所示的图形的面积为24,根据图中的条件,可列出方程 . 15. 如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点P ,已知A (2,3),B (1,1), D (4,3),则点P 的坐标为( , ).16.计算⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛------⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛----51413121615141312116151413121514131211的结果是.三、解答题(本大题共有11小题,共88分.)17.(6分)化简ba a ba b b a +÷⎪⎭⎫ ⎝⎛---221. 18.(6分)解方程x x x --=-2112219.(8分)如图,在四边形ABCD 中,AB =BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N.xx +1 1+xxA DBC P y xO 第14题第15题C N PD M A B (1)求证:∠ADB =∠CDB ;(2)若∠ADC =90°,求证:四边形MPND 是正方形.20.(8分)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个,这些球除颜色外都相同,求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是是红球;(2)某次考题共有6道选择题,每道题所给出的4个选项中,恰有一项是正确的.如果小明从每道题的4个选项中随机的选择一个,那么他6道选择题全部选正确的概率是( )A .41B .641⎪⎭⎫⎝⎛ C .6411⎪⎭⎫ ⎝⎛- D .6431⎪⎭⎫ ⎝⎛-21.(9分)某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查,整理样本数据,得到下列图表:(1)理解画线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图:(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议,如:骑车上学的学生数约占全校的34%,建议学生合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化建议: .22.(8分)已知不等臂跷跷板AB 长4m ,如图①,当AB 的一端A 碰到地面时,AB 与地面的夹角为α;如图②,当AB 的另一端B 碰到地面时,AB 与地面的夹角为β.求跷跷板AB 的支撑点O 到地面的高度OH .(用含α、β的式子表示)某校2000名学生上学方式条形统计图 步行 骑车 乘公共 乘私 其它 上学方式 交通工具 家车 700 600 500 400 300 200 100 0 人数A O BHα ①OA B H β ②23.(8分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定 额后,按下表获得相应返回 额.消费 额(元)300~400 400~500 500~600 600~700 700~900 ··· 返还 额(元)30 60 100 130 150 ··· 注:300~400表示消费 额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如,若购买标价为400元的商品,则消费 额为320元,获得的优惠额为400×(1-80%)+30=110(元)(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?24.(8分)小丽驾车从甲地到乙地,设她出发第x min 时的速度为y km/h ,图中折线表示她在整个驾车过程中第y 与 x 之间的函数关系.(1)小丽驾车的最高速度是 km/h;(2)当20≤x ≤30时,求y 与 x 之间的函数关系式,并求出小丽出发第22min 时的速度; (3)如果汽车每行驶100km 耗油10L ,那么小丽驾车从甲地到乙地共耗油多少升?10 20 30 40 50 x (min) 724824 O y (km/h) A B C D E F G 方法指导 如果物体的运动速度随着时间均匀增加(或减少),那么其在某个时间段内的平均速度为该时间段开始时刻的速度与结束时刻的速度的平均数。
2013年云南省昆明市中考数学试卷及答案(Word解析版)
云南省昆明市2013年中考数学试卷一、选择题(每小题3分,满分24分,在每小题给出的四个选项中,只有一项是正确的。
)2.(3分)(2013•昆明)下面几何体的左视图是()B、、﹣=3=,本选项正确.4.(3分)(2013•昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()5.(3分)(2013•昆明)为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从27.(3分)(2013•昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()8.(3分)(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()PE=EM=PMFP=FN=NPPE=EM=NP OA=二、填空题(每小题3分,满分18分)9.(3分)(2013•昆明)据报道,2013年一季度昆明市共接待游客约为12340000人,将12340000人用科学记数法表示为 1.234×107人.10.(3分)(2013•昆明)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为y=﹣2x.11.(3分)(2013•昆明)求9的平方根的值为±3.12.(3分)(2013•昆明)化简:=x+2.+﹣13.(3分)(2013•昆明)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.AB=2cmOB=cmπr=r=(故答案为.14.(3分)(2013•昆明)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有8个.三、解答题(共9题,满分58分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学参考答案及评分标准 第1页(共4页)
2013年来宾市初中毕业升学统一考试
数学参考答案及评分标准
一、选择题(每小题3分,共36分)
二、填空题(每小题3分,共18分) 13.5-;
14.3
1;
15.x ﹥4 ; 16.9; 17.8;
18.y =x 2-7x +12.
三、解答题(本大题共7小题,共66分)
19.解:(1)原式=1-1+2-3(每个知识点1分) …………………4分
=-1
……………………………6分
(2)去分母,得
2×2x =x +2 ………………………………2分 3x =2 ………………………………3分
32
=
x ………………………………4分 检验:把3
2
=x 代入 2x (x +2) ≠0 ………………………………5分
∴3
2
=x 是原分式方程的解 ………………………………6分
20.解:(1)A 1的坐标是(2,4); ………………………………2分
(画图正确3分,每对一点给1分) ………………………………5分 (2)(画图正确3分,每对一点给1分); ………………………………8分 (画图略)
21.解:(1)80 ………………………………2分
(2)综合 ………………………………4分 (3)(画图略) ………………………………6分 (如果有刻度线或条形图上标有数据且画图正确给满分,否则只画图给1分) (4)105 ………………………………8分
22.解:(1)依题意,得
(360-280)×60=4800 ………………………………2分 故降价前商场每月销售该商品的利润是4800元. ………………3分
(2)设每件商品应降价x 元,依题意,得 ………………………………4分 (360-280-x )(60+5x )=7200 ………………………………6分
数学参考答案及评分标准 第2页(共4页)
整理,得
x 2-68x +480=0
解得 x 1=60,x 2=8 ………………………………7分 因为要更有利于减少库存,所以必须多销售,故取x =60
答:每件商品应降价60元. ………………………………8分
23.解:(1)△AEH ≌△DGH ………………………………1分
△BEF ≌△CGF ………………………………2分 (当只写出四个三角形或两个能全等的三角形只给1分) 【证法一】:∵梯形ABCD 是等腰梯形,AD ∥BC ∴∠A =∠D ,AB=DC
∵E ,F ,G ,H 分别是梯形ABCD 各边的中点
∴AH =DH ,AB AE 2
1=
,CD DG 21
= …………………………3分
∴AE =DG ∴△AEH ≌△DGH ………………………………4分 【证法二】:连接AC ,BD
…………………………3分
∵E ,F ,G ,H 分别是梯形ABCD 各边的中点,
∴AH =DH ,AB AE 21=,CD DG 21=,BD EH 21
=,AC GH 2
1= 又∵梯形ABCD 是等腰梯形 ∴AC =BD ,AE =DG ∴EH =GH
∴△AEH ≌△DGH ………………………………4分 (2)【证法一】:连接AC ,BD ………………………………5分
∵E ,F ,G ,H 分别是梯形ABCD 各边的中点
∴BD EH 21
=,BD FG 21=,AC EF 21=,AC GH 2
1= ………6分 又∵梯形ABCD 是等腰梯形 ∴AC =BD
∴EF =FG =GH =HE ………7分 ∴四边形EFGH 是菱形 ………8分 【证法二】:连接AC ,BD ………5分 ∵E ,F ,G ,H 分别是梯形ABCD 各边的中点 ∴EH ∥BD 且BD EH 21=
,FG ∥BD 且BD FG 2
1
= ∴EH ∥FG 且EH =FG 同理 EF ∥HG 且EF =HG
∴四边形EFGH 是平行四边形 ………………………………6分
又∵梯形ABCD 是等腰梯形
∴AC =BD
H G F
E D C
B
A (第23题图)
数学参考答案及评分标准 第3页(共4页)
∵AC EF 21=
,BD EH 2
1
= ∴EF =EH ………………………………7分 ∴四边形EFGH 是菱形 ………………………………8分 (其它证法参照以上方法步骤给分) 24.(1)解:△BCD 是等腰三角形
…………………2分
(2)证明:作⊙O 的直径AE ,连接DE ………………………3分
∵AE 是⊙O 的直径
∴∠ADE =90° ………………………4分 ∴∠DAE +∠E =90°
又∵∠E =∠ABD ,∠P AD =∠ABD
∴∠E =∠P AD ………………………5分 ∴∠DAE +∠P AD =90° 即∠P AE =90°
∴P A 是⊙O 的切线. ………………………6分
(3)证明:∵∠P AD =∠ABD ,∠ABD =∠ACP
∴∠P AD =∠ACP …………7分 又∵∠P =∠P
∴△APD ∽△CP A …………8分 ∴
AP
DP
CP AP =
∴AP 2=CP ·DP ∴AP 2=(CD +DP )·DP ……9分
∵∠BAC =∠CAD ∴ BC =CD
∴AP 2=(BC +DP )·DP =DP ·BC +DP 2
∴AP 2-DP 2=DP ·BC ………………………10分
25.解:(1)依题意,得A ,B 两点的坐标分别是A (0,6),
B (8,0),设过点A 和点B 的直线表达式是:
y =kx +b ………………1分
∴⎩
⎨⎧=+=086b k b
解得:⎪⎩⎪⎨⎧
=-
=6
43b k
∴直线AB 的表达式是:64
3
+-=x y ………………………2分
(2)设点M 的移动时间为t 秒,△OMN 的面积为S 1平方厘米,△AOB 的面积为S 2平方厘米,四边
形AMNB 的面积为S 平方厘米,得
OM =6-2t ,ON =4t ………………………3分
(第24题图)
数学参考答案及评分标准 第4页(共4页)
15
)23
(441224)26(421
682121
2122
1
2+-=+-=-⨯-⨯⨯=⋅-⋅=
-=t t t t t OM ON OA OB S S S ………………………5分
当23
=
t 时,S 有最小值是15 所以,当点M 移动3
2
秒时,四边形AMNB 的面积最小值是15平方厘米;………7分
(3)存在. ……………………………8分
①设当点M ,N 移动t 1秒时,如果
OB
ON
OA OM =
, 则有△OMN ∽△OAB ∴
8
46261
1t t =
-,解得:2.11=t ∴当点M ,N 移动1.2秒时, OM =6-2t 1=6-2×1.2=3.6, ON =4t 1=4×1.2=4.8
∴点M 和点N 的坐标分别为M (0,3.6),N (4.8,0) …………10分
②设当点M ,N 移动t 2秒时,如果
OA
ON
OB OM =
, 则有△OMN ∽△OBA ∴
6482622t t =
-,解得:11
9
2=t ∴当点M ,N 移动119
秒时,
OM =6-2t 2=6-2×119=1148
,
ON =4t 2=4×119=1136
∴点M 和点N 的坐标分别为M (0,
1148),N (11
36,0) ………11分 综上所述:点M 和点N 的坐标分别为M (0,3.6),N (4.8,0)或 M (0,
1148),N (11
36
,0). ……………………………………12分。