浅谈电力电子技术的发展及应用
电力电子技术的发展与应用
电力电子技术的发展与应用一、电力电子技术的发展概述电力电子技术是一种学科交叉的综合性技术,它的发展和应用有着广泛的领域和深远的影响。
作为目前工业和生活中必不可少的电能变换技术之一,电力电子技术已经成为了电力及相关领域中的重要研究方向。
二、电力电子技术的分类按功能划分,主要有电能变换器、电能调节器、电力调控器、电力系统保护器等。
1. 电能变换器:将交流电源或者直流电源转换成其他形式的交、直流电源。
2. 电能调节器:通过调节电源电压、电流等参数,实现电力负载的调节。
3. 电力调控器:通过调节电力负载,使得系统性能得到最优化的调节器。
4. 电力系统保护器:通过各种防护手段,保护电力系统的安全运行。
三、电力电子技术的应用领域随着技术的不断变化和进步,电力电子技术不仅应用于传统的电力领域,而且渗透到了新兴的领域,如新能源、轨道交通、航空航天等。
下面列举几个重要的应用领域。
1. 电力变换:通过电像变换器将交流电源或直流电源变换为符合实际需要的形式,如医疗领域、电焊、电炉、电动机等等。
2. 电力调节:通过电力整流装置将交流电源转换成直流电源,再通过直流调节器控制输出直流电源的大小和电压,实现电力负载的调整,如电动车、风电、太阳能电池板等。
3. 电力保护:通过各种保护手段,为电力系统进行保护,如地震保护、电源重合保护、电源短路保护、限流保护等手段。
四、电力电子技术的未来发展方向随着社会的不断发展和变化,电力电子技术也在迎合着这些变化,不断地进行着改善和创新。
1. 碳中和:在全球的气候变化问题中,电力电子技术具有非常重要的作用。
可以通过电力电子技术设计出碳中和的解决方案,以减少碳排放。
2. 数字化:如今,数字化是一种不可避免的趋势。
电力电子技术可以与数字技术结合,形成数字化电力系统,提高电力系统的效率和安全性。
3. 智能化:随着智能化的发展,电力电子技术需要能够适应一种智能化的环境,实现智能交流和转换。
总之,电力电子技术的发展和应用是多方面的,广泛的应用在工业和生活中。
电力电子技术的发展与应用
电力电子技术的发展与应用电力电子技术是电气工程领域中的一个重要分支,它涉及到电力转换、控制和调节等方面的研究与应用。
随着科技的不断进步和社会的不断发展,电力电子技术在能源转换、电力传输和工业自动化等领域的应用日益广泛,对于提高能源利用效率、改善电力质量和保障电力系统的稳定运行起到了关键作用。
一、电力电子技术的发展历程电力电子技术的发展可以追溯到20世纪60年代,当时主要用于直流输电和高压直流变压器的研究。
随着功率半导体器件的发展,如晶闸管、功率MOSFET和IGBT等,电力电子技术得以迅速发展。
在20世纪80年代,随着功率半导体器件的性能不断提高,电力电子技术逐渐应用于交流输电、电力变换和电机控制等领域。
到了21世纪,随着新型功率半导体器件的出现,如SiC和GaN等,电力电子技术迎来了新的发展机遇。
二、电力电子技术的应用领域1. 可再生能源发电系统随着可再生能源的快速发展,如风能、太阳能和潮汐能等,电力电子技术在可再生能源发电系统中的应用越来越重要。
电力电子技术可以实现可再生能源的高效转换和稳定输出,提高发电系统的可靠性和稳定性。
2. 电力传输与配电系统电力电子技术在电力传输与配电系统中的应用主要包括柔性交流输电、高压直流输电和智能配电网等。
柔性交流输电技术可以提高电力系统的稳定性和可靠性,高压直流输电技术可以实现长距离大容量的电力传输,智能配电网可以实现电力系统的自动化和智能化管理。
3. 电机控制与驱动系统电力电子技术在电机控制与驱动系统中的应用主要包括变频调速技术和电力电子变压器技术等。
变频调速技术可以实现电机转速的无级调节和高效能量转换,提高电机的运行效率和控制精度。
电力电子变压器技术可以实现电力系统的电压和频率调节,提高电力系统的稳定性和可靠性。
三、电力电子技术的未来发展趋势1. 高效能量转换技术随着能源短缺和环境保护的要求,电力电子技术将继续朝着高效能量转换的方向发展。
新型功率半导体器件的应用和拓扑结构的优化将进一步提高电力电子系统的能量转换效率。
电力电子技术的发展与其运用
电力电子技术的发展与其运用电力电子技术是指利用半导体器件和电子技术来实现电力传输、转换、控制和调节的一种技术。
随着电力工业的快速发展和需求的增加,电力电子技术逐渐成为电力系统中的重要组成部分。
本文将从电力电子技术的发展历程、应用领域和未来发展方向等方面进行详细介绍。
电力电子技术的发展可以追溯到19世纪末的发电机技术。
当时,发电机是通过机械力来驱动运转的,效率较低且限制了电力系统的规模和传输距离。
随着二十世纪的到来,随着人们对电力能源的追求和应用需求的增加,电力电子技术迅速发展起来。
20世纪50年代初,晶闸管的发明标志着电力电子技术的重大突破。
晶闸管的应用使得电力系统能够实现无级调速、互感器耦合的传输和电能的恢复等功能,大大提高了电力系统的效率和可靠性。
此后,随着功率半导体器件技术的不断创新,如可控硅、继电器和IGBT等,电力电子技术得到了进一步的发展。
电力电子技术在电力系统中的运用涉及到各个领域。
在能源转换方面,电力电子技术可以实现从交流到直流的变换(整流)、从直流到交流的变换(逆变)以及交流与交流之间的变换(变频)。
这样可以实现电能的输送、转换和利用等功能。
在电机驱动方面,电力电子技术可以实现电机的速度、转矩和位置等参数的控制和调节,提高了电机的性能和效率。
在电力系统稳定性控制方面,电力电子技术可以实现高压直流和柔性交流输电技术,提高了系统的稳定性和可靠性。
电力电子技术还被广泛应用于电力负荷控制、电能质量改善、电网接口的优化设计和智能电力系统等领域。
电力电子技术的发展仍然面临一些挑战和问题。
随着电力系统规模的不断扩大和电力设备功率的提高,电力电子器件的功率密度和可靠性要求更高。
电力电子技术的应用需要大量的电力电子器件和电源,对原材料和能源的需求也越来越大。
电力电子技术在实际应用中还存在一些安全隐患和环境问题,需要进一步加强研究和探索。
未来,电力电子技术将继续发展。
在新能源和可再生能源的大力推广和应用下,电力电子技术将发挥更大的作用。
电力电子技术的发展与应用
电力电子技术的发展与应用电力电子技术是指利用电力电子器件和电力电子系统来转换和控制电能的技术。
随着科技的发展和人们对电力需求的不断增长,电力电子技术在能源转换、电力传输、能效提升等方面起着重要的作用。
本文将详细介绍电力电子技术的发展与应用,并分点列出相关步骤。
一、电力电子技术的发展历程1. 从早期的整流器到现代的逆变器- 20世纪初,电力电子技术主要用于电力系统中的整流器,将交流电转换成直流电;- 随着电力电子器件的发展,逆变器成为新的研究方向,可以将直流电转换成交流电。
2. 电力电子器件的发展- 二极管、晶闸管、可控硅等电力电子器件的问世,为电力电子技术的应用提供了重要基础;- 随着半导体材料和工艺的不断改进,新型电力电子器件的性能得到提升,如功率场效应管(IGBT)、金属氧化物半导体场效应管(MOSFET)等。
3. 电力电子系统的发展- 从单个电力电子器件到集成电路的应用,电力电子系统的规模不断扩大;- 电力电子技术在交通运输、工业生产、能源管理等领域得到广泛应用。
二、电力电子技术的应用1. 新能源发电系统- 光伏发电系统:光伏逆变器将光能转换成电能,并通过电网馈送;- 风力发电系统:风力逆变器将风能转换成电能,实现风电接入电网。
2. 电动交通工具- 电动汽车:电力电子技术用于电动汽车的驱动系统,实现电能转化和控制;- 城市轨道交通:地铁、轻轨等城市轨道交通系统中广泛应用电力电子技术。
3. 变频调速控制- 工业生产中的电机控制:电力电子变频器用于控制电机的转速和运行状态,提高能源利用效率和生产效率;- 家电领域:变频空调、洗衣机等家电产品通过电力电子技术实现节能和控制。
4. 电力传输与配电- 高压直流输电技术:通过高压直流逆变器实现交流与直流电能的互相转换;- 电力系统中的谐波控制:电力电子技术用于控制电网中的谐波,确保电力质量。
三、电力电子技术的应用步骤1. 系统需求分析- 根据电力应用的需求,确定需要进行能量转换和控制的电路系统。
浅析电力电子技术的发展与应用
浅析电力电子技术的发展与应用【摘要】电力电子技术是电工电子学的一个重要分支,应用广泛。
本文从电力电子技术的历史发展入手,介绍了其在能源转换、电力系统和工业控制领域的应用。
未来发展趋势方面,着重探讨了电力电子技术在智能化、绿色化等方面的发展方向。
电力电子技术在现代社会中具有重要意义,可以提高能源利用效率,改善电力系统稳定性,推动工业自动化等。
未来的应用前景十分广阔,有望在更多领域发挥作用。
电力电子技术的发展与应用对社会经济发展具有重要意义,有望在未来取得更大的成就。
【关键词】电力电子技术、发展、应用、能源转换、电力系统、工业控制、未来发展趋势、现代社会、重要性、应用前景、总结。
1. 引言1.1 电力电子技术的定义电力电子技术是一门研究如何将电能转换成各种形式的电子技术,通过控制电流、电压和频率等参数,实现电能的有效转换和调控。
电力电子技术是实现能源优化利用和环境保护的重要技术手段,广泛应用于电力系统、工业控制、航空航天、交通运输等领域。
在电力电子技术中,通过半导体器件如晶闸管、可控硅、功率场效应晶体管等实现对电能的调节和控制。
这些器件可实现直流到交流的转换、交流到直流的转换、交流到交流的变换等功能,为电力系统的可靠运行和高效运行提供了技术支持。
电力电子技术还可以实现各种功率控制和能量转换功能,为各种工业设备的精密控制和高效运行提供了技术保障。
电力电子技术是一门涉及电力、电子、控制等多个领域知识的交叉学科,以提高能源利用效率、降低能源消耗为目标,是当今电力领域中至关重要的技术之一。
在不断发展和创新的过程中,电力电子技术将继续发挥重要作用,推动电力领域的发展和进步。
1.2 电力电子技术的重要性电力电子技术的重要性体现在多个方面。
电力电子技术可以有效地提高能源利用率,降低能源消耗,有助于节能减排。
电力电子技术可以提高电力系统的稳定性和可靠性,增强系统的灵活性和控制能力,有助于提高电力系统的运行效率。
电力电子技术还能够实现能源的有效转换和传输,促进能源的分布式利用,推动清洁能源的发展和利用。
浅析电力电子技术的发展与应用
浅析电力电子技术的发展与应用电力电子技术是指利用电子器件和电力电子技术理论实现能量的转换和控制的技术。
它的发展受到电子器件的进步和技术的不断创新的推动,应用范围越来越广泛,深刻影响着电力系统、工业控制、交通运输、新能源等领域。
电力电子技术在电力系统中的应用越来越广泛。
在输电、配电和用电过程中,电力电子技术可以用于提高能量传输和转换的效率,提供更稳定的电力质量。
采用变频调速系统,可以实现电机的高效率运行,节约能源;采用电力电子开关技术,可以实现电力系统的有源无功补偿,提高系统的功率因数,提高电网的稳定性。
电力电子技术在工业控制中有着广泛的应用。
电力电子器件和技术可以实现对电能的精确控制,满足不同工业过程的需求。
交流调速器可以实现对交流电动机的调速控制,广泛应用于机床、风电、制造业等领域;电力电子器件还可以实现对照明设备、电炉、焊接设备等的电能控制,提高生产效率和能源利用率。
电力电子技术在交通运输中的应用越来越重要。
交流调速技术可以实现电动汽车的精确控制,提高动力系统的效率和稳定性;电力电子技术也可以实现对火车、轨道交通等交通系统的牵引、信号控制和能量回馈等功能,提高交通系统的安全性和能源利用率。
随着新能源的快速发展,电力电子技术在新能源领域的应用越来越广泛。
太阳能发电和风能发电都需要电力电子技术来实现对能量的转换和控制,将新能源转化为可用的电能;电力电子技术也可以实现对能源的储存和管理,提高能源的利用效率。
电力电子技术的发展与应用在现代社会中具有重要意义。
它可以提高能源利用效率,改善电力系统的质量,节约资源;可以实现对工业过程的精确控制,提高生产效率;可以改善交通运输系统的安全性和能源利用率;可以促进新能源的发展和利用。
随着技术的不断进步,电力电子技术的应用将会越来越广泛,对社会经济的可持续发展起到重要的支撑作用。
电力电子技术的应用与发展
电力电子技术的应用与发展一、电力电子技术概述电力电子技术是将半导体器件应用于电力系统的控制和变换技术,通过改变电路的拓扑结构和控制策略,实现电力信号的变换和控制,从而满足不同电力系统的要求。
近年来,随着能源危机的日益严峻,电力电子技术的应用与发展变得越来越重要。
二、电力电子技术的应用1. 高压直流输电技术高压直流输电技术是一种利用半导体器件实现电力直流输送的技术,具有输电长距离、损耗小等优点,适用于电压等级高、距离远的场合。
2. 电力电子变频技术电力电子变频技术是一种将交流电转换为可调频率的交流电的技术。
它可以适应不同频率的电力输入,控制输出电力的频率、电压、相位等参数,具有广泛的应用前景。
3. 电力电子调速技术电力电子调速技术是一种通过改变电机输入电压的大小和相位,改变电机的转速,从而实现电机调速的技术。
电力电子调速技术具有调速精度高、动态响应快等优点,被广泛应用于工业生产中。
4. 电力电子换流技术电力电子换流技术是一种利用电力电子器件控制交流电的电压和电流方向,实现交流电变换为直流电或直流电变换为交流电的技术。
它被广泛应用于大型高压电力变电站和电网中。
三、电力电子技术的发展趋势随着科技进步和社会需求的不断增加,电力电子技术也在不断发展。
未来电力电子技术的发展趋势主要体现在以下几个方面:1. 高压高功率电力电子器件的研发现有的电力电子器件能够承受的电压和功率有限,限制了电力电子技术的应用范围。
因此,研发高压高功率电力电子器件是电力电子技术未来的发展方向。
2. 电力电子技术的智能化发展智能化是时代的发展趋势,电力电子技术也不例外。
未来电力电子技术将会更加智能化,如利用人工智能技术优化电力系统的控制和调节。
3. 电力电子技术的集成化发展电力电子技术是由多个电力电子器件组成的,未来电力电子技术将会向器件集成的方向发展,达到更小、更轻、更节能的效果。
四、总结电力电子技术的应用和发展是推动电力系统进步的重要因素之一。
电力电子技术的发展与其运用
电力电子技术的发展与其运用电力电子技术是指应用电子器件和电力系统来转换、控制和传递电能的一门技术。
它在电力系统中起着举足轻重的作用,广泛应用于能源的转换、电力质量的提高以及节能减排等方面。
随着现代电力系统的发展,电力电子技术在功率电子器件、拓扑结构、控制策略等方面不断创新,应用范围也越来越广泛。
电力电子技术的发展源于20世纪80年代的电力电子变频技术和短路电压源变流技术。
通过电力电子器件和控制技术,电能可以进行直流和交流之间的相互转换,实现电力负荷的调节和电力系统的稳定运行。
近年来,随着电力电子技术的不断创新,各种新型的电力电子器件不断涌现。
IGBT(Insulated Gate Bipolar Transistor)器件、SiC(Silicon Carbide)器件和GaN(Gallium Nitride)器件等,具备功率大、效率高、体积小等特点,可以更好地满足电力系统对功率电子器件的要求。
电力电子技术在电力系统中的应用非常广泛。
电力电子变频技术被广泛应用于交流电机的调速控制和电力传输中。
通过变频器可以调节电机的转速和负载,提高电机的效率和运行稳定性。
电力电子技术还被应用于电力系统的无功补偿和谐波抑制中。
通过STATCOM (Static Synchronous Compensator)和APF(Active Power Filter)等装置,可以补偿电网中的无功功率,提高电力系统的功率因数,降低电力系统的谐波含量。
电力电子技术还被用于电力传输中的高压直流输电(HVDC)和电动汽车充电桩等领域。
电力电子技术的发展给电力系统带来了许多好处。
电力电子技术可以提高电力系统的稳定性和可靠性。
通过电力电子器件和控制技术,可以实现对电网的快速响应和精确控制,降低电力系统的故障率。
电力电子技术可以提高电力系统的效率和节能减排效果。
传统的电力系统中,能量的转换和传输会导致能量的损耗和环境污染,而电力电子技术可以提高能量的转换效率和控制精度,减少能量的浪费和污染排放。
电力电子技术的应用与发展
电力电子技术的应用与发展电力电子技术是一种应用广泛的技术,它可以将电能转化为机械能、化学能、光能等其他形式的能量,同时也能实现电能的变频调节和优化管理。
近年来,随着电力行业的快速发展和智能化趋势的不断深入,电力电子技术的应用与发展也变得越来越重要。
一、电力电子技术的应用领域电力电子技术广泛应用于工业、交通、医疗、军事等领域。
其中,工业领域主要应用于变频调速、数控系统、电力质量改善、恒功率限流、电气传动、节能降耗等方面。
例如,变频调速技术可以实现电机的高效控制,降低运行成本;电力质量改善技术可以有效提高电网稳定性和供电质量;恒功率限流技术则可以避免电源过载和短路现象等问题。
交通领域方面,电力电子技术主要应用于电动车、高速铁路、轨道交通、电动轮船、电动飞机等领域。
电动化产业在过去几年中增速迅猛。
据有关资料统计,2016年,全球新能源汽车累计销售量近60万辆,同比增幅达到70%,其中电动汽车销量达到40.5万辆。
在医疗领域,电力电子技术主要应用于医疗成像、生命支持等方面。
例如,医疗成像技术中,电子管、固态探测器、数字处理技术等电力电子技术的应用,不仅提高了成像质量,而且极大地提高了医生的诊断效率。
在军事领域,电力电子技术主要应用于电力后勤保障、弹药控制、火炮控制等方面。
电子战、雷达等现代军事技术的发展,离不开电力电子技术的支持。
二、电力电子技术的发展趋势随着科技的不断进步和人类对电力需求的不断增长,电力电子技术也在不断发展。
未来,电力电子技术将面临以下发展趋势:1. 多能电源技术将成为电力电子技术的重要发展方向。
其实现方式是将传统图极交替转换电源的电力电子技术与可再生能源、蓄电池等多种能源整合。
未来可以期待的是,针对电力供应系统的特点和要求,构建具有高效、可靠、透明性强的多能源供应系统,为业主提供更高品质的电力服务。
2. 智能化电力电子装置的研究发展将成为关键。
随着大数据、人工智能等技术的不断发展,智能化电力电子装置的可靠性、效率、功能、安全性等方面将得到极大提升。
电力电子技术的发展和应用
电力电子技术的发展和应用随着电力电子技术的快速发展,它在能源转换、电力调节、能量存储等方面的应用日益广泛,并成为当今工业制造业中不可或缺的一环。
本文将从发展历程、技术分类、应用领域等方面来探讨电力电子技术的发展和应用。
一、发展历程电力电子技术是在运用电子技术将交流电转换为直流电的过程中逐渐形成的。
由于交流电源在供应长距离输电时,无法达到高效稳定的要求,而直流电源更适合远距离输电,且易于调节电压和电流。
自20世纪60年代开始,电力电子技术逐步发展成熟,进入了成熟发展阶段。
20世纪30年代,晶体管被发明出来,从而奠定了电力电子技术的基础。
自此以后,电力电子技术在电源和驱动技术、变频技术、电力控制等方面获得了广泛的应用,特别是随着半导体技术、微电子技术、数字控制等技术的快速发展,电力电子技术得到了更为广泛的应用。
二、技术分类电力电子技术可分为直流电源技术、交流电源技术、变频技术、电力控制技术、光电转换技术等多个方面。
1. 直流电源技术直流电源技术主要应用于直流电驱动领域,包括直流电机、直流电动车辆、电力机车等领域。
2. 交流电源技术交流电源技术是将交流电转换为直流电的技术。
常用于电气设备的稳定供电,如电脑、电视、冷气等家用电器。
在高压输电系统中,电力电子变流器已成为控制能量流的关键技术。
3. 变频技术变频技术主要针对交流电源,并可以调节电源的频率与电压,以达到更好的能耗效率,因此被广泛应用在空调、电风扇、冰箱等家电上,以及工业生产中的变频控制系统,如水泵、电机、压缩机等。
4. 电力控制技术电力控制技术主要涉及电力电子设备的关键芯片、组件和系统的设计、制造、选择和运行。
电力控制技术的发展促进了节能减排,提高了电能利用率,减少了损耗,节约了成本。
5. 光电转换技术光电转换技术是将光能转化成电能的技术,是电力电子技术的重要分支之一,主要应应用于能量采集和存储等环节,如太阳能电池板、光伏电站、数码相机等。
三、应用领域1. 能源转换电力电子技术在能源转换方面的应用越来越广泛。
电力电子技术的发展与应用
电力电子技术的发展与应用电力电子技术是指通过电子元器件的放大、开关、调节等功能,将电能进行变换、控制、调节和保护的技术。
它从诞生到成熟,经历了漫长的历史过程,如今已广泛应用于各个领域,为人们的生活和工作提供了诸多便捷和效益。
一、电力电子技术的发展历程电力电子技术的起源可以追溯到20世纪初。
当时,人们对电子元器件和电力系统的相互作用有了更深入的认识和研究,先后出现了半导体整流器、大功率晶闸管、可控硅等电子元器件,为电力电子技术的发展提供了坚实的基础。
20世纪50年代,电力电子技术迎来了飞速发展的阶段。
当时,欧洲和美国率先开展了电力电子技术的研究和应用,涌现出了直流输电、交流输电、成组技术等一系列创新,为电力系统提供了更高效、更先进的技术手段。
20世纪70年代,电力电子技术成为了电力工业最具活力和潜力的领域之一。
当时,先进国家开始着手开发和应用交流电势能转换、电荷-电流倍增和电荷-电压倍增等技术,推动了电力电子技术的跨越式发展。
21世纪以来,随着信息技术、通信技术、能源技术等各个领域的快速发展,电力电子技术也开始向高效、智能、节能、环保等方向进军,不断推动电力工业的创新和升级。
二、电力电子技术的应用领域现代社会中,电力电子技术已经渗透到了各个领域。
以下是其中的几个典型应用领域:1. 电压变换器:电压变换器是电力电子技术的一个典型应用,它可以将一种电压转换为另外一种电压,并在电网上进行无级调节。
电压变换器一般应用于高压直流输电、列车牵引、风力发电等领域,为这些领域提供了高效、稳定的电力支持。
2. 电力电子器件:电力电子器件是电力电子技术的核心部件,它包括可控硅、晶闸管、新型功率半导体等等。
这些电子器件被广泛应用于电磁炉、变频空调、UPS电源等家用电器中,可以实现节能、环保的效果。
3. 电力器件保护:电力电子技术不仅可以进行电力转换和控制,还可以实现电力器件的保护。
例如,钳式电流互感器可以保护晶闸管,降低其损坏的风险;电力电容器则可以有效防止设备的故障和损坏。
浅谈电力电子技术发展与应用
浅谈电力电子技术发展与应用摘要:电力电子技术的发展经历了整流器时代、逆变器时代、变频器时代,其应用范围十分广泛,渗透到各个领域,对它的研究具有十分重要的意义。
关键词:电力电子技术发展应用0、前言电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。
电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。
1、电力电子技术的发展现代电力电子技术的发展方向是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。
电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。
八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1.1、整流器时代大功率的工业用电由工频50Hz交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。
大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。
目前全国许多制造硅整流器的半导体厂家就是当时的产物。
1.2、逆变器时代七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。
变频调速的关键技术是将直流电逆变为0~100Hz的交流电。
在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。
浅析电力电子技术的发展与应用
浅析电力电子技术的发展与应用电力电子技术是指运用电子器件和电子电路实现对电力的控制、变换和调节的技术。
随着现代电气化和信息化的发展,电力电子技术在能源变换、传输、储存和利用等方面发挥着越来越重要的作用。
本文将对电力电子技术的发展与应用进行浅析。
一、电力电子技术的发展历程电力电子技术的发展可以追溯到20世纪初,当时主要是利用二极管和晶闸管等元件进行整流、逆变和调压等基本电力电子功能。
20世纪60年代,随着功率场效应晶体管(MOSFET)和可控硅(SCR)等功率半导体器件的问世,电力电子技术进入了快速发展的阶段。
在此后的几十年里,IGBT(绝缘栅双极型晶体管)、MOSFET、GTO(门极可控晶闸管)等功率半导体器件得到了广泛应用,电力电子技术的功能和性能都得到了大幅度提升。
进入21世纪以后,随着SiC(碳化硅)和GaN(氮化镓)等新型功率半导体器件的问世,电力电子技术又迎来了一次技术革新的机遇。
这些新型器件具有高频、高温、低损耗等特点,可以有效提高电力电子系统的效率和可靠性,在电动汽车、可再生能源、工业自动化等领域都具有广阔的应用前景。
1. 可再生能源领域随着风能、太阳能等可再生能源的快速发展,电力电子技术在可再生能源领域的应用也日益广泛。
逆变器、变流器等电力电子设备可以将风力发电机、光伏发电板等可再生能源装置输出的电能进行有效控制和整流,符合电网接口和供电要求。
电力电子技术还可以实现储能设备与可再生能源装置的有效耦合,提高可再生能源的利用效率和可靠性。
2. 电动汽车领域随着环保意识的加强和新能源汽车政策的推动,电动汽车正逐渐成为汽车市场的主流产品。
而电力电子技术作为电动汽车的核心技术之一,可以实现电池充放电管理、电动机控制、快速充电等功能。
通过电力电子技术的应用,可以提高电动汽车的能量利用率、行驶里程和安全性,为汽车行业的可持续发展提供技术支持。
3. 工业自动化领域在工业生产过程中,电力电子技术可以实现对电机的调速、频率变换和功率因数校正等功能,为工业生产提供节能、高效、稳定的电力支持。
电力电子技术的发展与其运用
电力电子技术的发展与其运用电力电子技术是指将电力与电子技术相结合,将交流电变换为直流电或改变交流电的频率、电压和波形等特性的技术。
它是电力系统中的重要组成部分,广泛应用于电力传输、电力供应、工业生产以及家用电器等领域。
电力电子技术的发展和应用具有重要的意义,在提高能源利用效率、改善电力质量、促进能源转型等方面发挥着重要作用。
电力电子技术的发展经历了几个重要的阶段。
最早的电力电子器件是电子管和晶体管,它们被广泛应用于电力变频调速、电力转换和电力控制等领域。
20世纪60年代,随着大功率半导体器件的出现,如晶闸管和可控硅等,电力电子技术得到了进一步发展。
这些器件具有较高的功率密度和频率响应,可以实现快速开关和调节,使得电力电子技术在电力系统中应用更加广泛。
随着电力电子器件的不断发展,电力电子技术的应用领域也在不断扩大。
在电力传输领域,交流输电线路中的换流变电站采用了大量的电力电子设备,通过将交流电转换成直流电输送,在提高输电能力和降低输电损耗方面发挥重要作用。
在电力供应领域,电力电子技术广泛应用于电力系统的调节和控制,如电力负荷的均衡分配、电力频率的稳定和电压的调节等。
在工业生产领域,电力电子技术被广泛应用于电机的变频调速、电力传动和电焊等领域,提高了工业生产的效率和质量。
在家用电器领域,电力电子技术也被广泛应用于家电设备的控制和调节,如空调、电冰箱和电视等家电产品。
电力电子技术的发展和应用给能源领域带来了重要的机遇和挑战。
一方面,电力电子技术可以提高能源的利用效率和节能减排,实现可持续发展。
通过电力电子技术,可以将再生能源如风能、太阳能等转换为电能供应给电力系统,减少对传统能源的依赖。
电力电子技术的应用也带来了电力系统的稳定性和电磁兼容等方面的问题。
一些电力电子设备的开关操作和电磁干扰对电力系统的稳定性产生了一定的影响,需要采取相应的措施进行调节和控制。
为了推动电力电子技术的发展和应用,需要加强相关技术的研发和创新。
浅谈电力电子技术的发展与应用
浅谈电力电子技术的发展与应用【摘要】新时期,伴随着科技飞速发展,计算机应用技术不断创新以及电力电子技术的广泛传播,相关行业对于电力电子技术的期望值也越来越高。
在我国供电需求量不断增加的背景下,我国的电力系统也将承担更大责任。
电力电子技术为我国当代电力系统提供了先进的技术服务,创建了良好的技术支撑平台。
【关键词】电力电子;电力系统;发展;作用电力电子技术是一门新兴的应用于电力领域的电子技术。
简单的说,电力电子技术就是通过计算机技术将强电和弱电进行有效的组合。
随着近年来经济飞速发展,巨大的电力需求与当前电力系统电力缺口的矛盾日益显现,使得电力电子技术在电力系统中的需求相应增加,伴随而来的是我国电力电子技术面临着宝贵的发展机遇。
1 电力电子技术的发展电力电子技术起始于五十年代末六十年代初的硅整流器件,现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。
其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。
八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
目前,电力电子技术正向着以高频技术处理问题为主的现代电力电子技术方向发展。
在实现高频技术的基础上,更增加了节能、环保、自动化、自能化等特点。
2 电力电子技术在电力系统中的应用2.1电力电子技术在发电环节中的应用。
主要体现在发电机组的励磁控制和变频调速上。
在我国范围内乃至全球范围内的各个大型电厂发电机组中,运用的最为普遍的就是静止励磁系统,电力电子技术的发展,使电子技术取代了励磁控制中的励磁机环节,使静止励磁实现了简单的控制构造和高性能低成本的运作。
同时由于电子技术代替了励磁机的环节,使静止励磁能够对自身进行迅速有效的调节,提高电力系统的运作效率。
电力电子技术的应用和发展
电力电子技术的应用和发展电力电子技术是指将电力进行电子化,为现代能源转换和控制提供了技术支持。
电力电子技术的应用范围非常广泛,从电源调节器到变频电机驱动器,从光伏发电到风力发电,从家电到交通运输,几乎所有领域都离不开电力电子技术的应用。
本文将从应用现状、技术特点、发展趋势等方面进行探讨。
一、应用现状电力电子技术应用的领域非常广泛,其中最广泛的莫过于家电。
电视、空调、洗衣机、吸尘器等大部分家电都采用了电力电子技术,使得家电的效率、安全性、精度等各方面都有了质的提升。
此外,电力电子技术的应用也渗透到了交通运输领域,比如地铁、高铁、汽车等。
特别是在新能源汽车领域,电力电子技术更是不可或缺的一环。
此外,电力电子技术的应用还包括:航空领域、军事领域、工业控制领域、医疗设备领域等。
二、技术特点电力电子技术的技术特点主要表现在以下几个方面:(一)高效率。
电力电子器件的特殊结构和工作原理,使得电能的损耗非常小。
相比于传统电力系统,电力电子技术能够提高电能的利用率,从而提高能源的利用效率。
(二)高精度。
电力电子技术利用数字信号或者模拟信号进行控制,具有高精度的调节能力,可以实现对电流、电压等参数进行精确控制。
(三)节能环保。
电力电子技术能够实现能量的可控转换和调节,从而能够有效地控制电能的损耗,降低能耗,减少环境污染。
(四)可靠性高。
由于电力电子器件带有宽带放大和负反馈控制等技术,使得电力电子系统更加稳定可靠,有效地减少了电力系统的故障率。
三、发展趋势在当前以及未来的一段时间内,电力电子技术的发展趋势主要表现在以下几个方面:(一)智能化。
随着人工智能技术的发展,电力电子技术也将进入智能化时代。
未来,电力电子系统将更加智能化和自动化,能够实现实时在线监测、控制与管理。
(二)高集成度。
未来电力电子系统将更加注重系统的集成度,降低整个系统的复杂度和成本。
此外,高度集成的系统还将更加适合于多功能和应用场景复杂的环境。
(三)高可靠性。
浅析电力电子技术的发展与应用
浅析电力电子技术的发展与应用
电力电子技术是指利用半导体器件,将直流电能转换为可控交流电以及改变交流电的频率、形状、电压等参数的技术。
其主要发展历程可以分为以下几个阶段:
第一阶段:早期阶段
20世纪30年代,电力电子技术开始出现并逐渐发展起来。
当时的主要应用领域为轨道交通控制系统、工业生产自动化,以及医疗设备等。
第二阶段:静态功率电子变换器阶段
20世纪60年代开始,随着功率半导体器件技术的成熟,静态功率电子变换器逐渐得到应用。
其主要应用领域为变频调速、有源滤波、静态无功补偿等。
同时,电力电子也开始被应用于开展环保节能工作,主要体现在改善电力系统的质量和节约能源上。
20世纪80年代,随着智能化、化工、航天等领域的需求增加,动态功率电子变换器逐渐得到应用。
此时,电力电子技术已经成为一种独立的工程学科,逐步被应用于大规模工业、交通、国防等领域,同时也进入普通民用领域。
此时电力电子技术的主要应用领域为UPS、电动车、新能源等。
第四阶段:综合应用阶段
21世纪初,随着计算机、通讯技术、智能控制技术的迅速发展,电力电子技术逐步被应用于更广阔的领域。
例如,智能电网、微电网、电能质量提升、交通运输等。
此时电力电子技术成为了不可或缺的技术之一。
总的来说,电力电子技术的应用领域包括工业、控制、通信、医疗、军事、航天、交通、新能源等领域。
从技术发展角度看,电力电子技术的发展趋势是向集成化、智能化和高功率密度化方向发展。
未来,电力电子技术将不断推进科技创新,着重于新材料、新器件、新结构、新控制技术及新型电力电子产品、系统等的研发,为经济发展和能源保障做出更大的贡献。
电力电子技术的发展与其运用
电力电子技术的发展与其运用电力电子技术是指利用半导体器件将电能转换为所需的形式和水平的技术。
它已经广泛应用于电力系统中,成为现代电力系统的重要组成部分。
随着科技的不断发展,电力电子技术在运用中不断取得新的突破和进展。
本文将结合电力电子技术的发展,探讨电力电子技术在运用中的应用。
一、电力电子技术的发展电力电子技术的发展可以分为三个阶段:第一阶段是"机械时代",第二阶段是"硅时代",第三阶段是"智能时代"。
1.机械时代:20世纪初,电力系统仍然是以机械转变为主导,像水力发电、蒸汽发电、风力发电等方式都是以机械原理来实现的,这是电力电子技术最初的阶段。
2.硅时代:20世纪60年代出现了最初的电力电子器件——晶闸管、可控硅、快速恢复二极管等。
这些器件的出现大大推动了电力电子技术的发展,使得电力电子技术逐步成熟,并得以应用到许多领域。
3.智能时代:21世纪初,随着微处理器技术和数字信号处理技术的发展,电力电子技术进一步迈入了"智能时代"。
电力电子装置不再是单纯的电子器件,更加注重控制和计算能力,大大提高了其运用的智能化水平。
二、电力电子技术在运用中的应用电力电子技术在运用中具有广泛的应用,不同的应用需要不同的电力电子器件和电路组成。
1.变频器变频器是电力电子技术最广泛的应用之一。
它采用电力电子器件控制交流电机的电压和频率,从而实现了交流电机的调速控制。
运用变频技术可以大大改善交流电机的性能、减少噪音和能耗,提高系统的运行效率。
2.逆变器逆变器是将直流电转变为交流电的电力电子装置。
它可以通过PWM技术将直流电转变为波形质量高的交流电。
逆变器广泛应用于太阳能电池、风力发电等领域。
3.电能质量调节器电能质量调节器是调节和改善电能质量的电力电子器件。
通过它可以处理电网中的异常电压、电流、谐波等问题,保证安全可靠的供电。
4.有源滤波器有源滤波器是一种能够滤除电网中的谐波的电力电子装置。
浅析电力电子技术的发展及应用
分析其在现 实社会 中的应 用情况
上述的逆 变时代 ,虽然完成 了逆变和整流 的功能,但是其工作频率相对来说 比较低 ,满 足不 了人们逐 渐扩大 的需求。所 以,到 8 0年 代后期出现了集成 电路。这种大规模的集成电 路主要特点是将高压大电流技术和精细加 工技 术融为一体 ,标志着现代 电力电子变频器时代 的到来 ,标志着传 电力 电子技术的升级。这 时期的 电力电子器件走复合化的道路,各器件 的结构也越来越紧密,因为结合了各类器件 的 优 点,显得功能也越来越 强大 。纵观世界现状 , 电力电子技术 的发展方 向将是高频化 。
2 . 4 一般 工 业
现代化 的工 厂 中随处 可见 自动 化的机 器 设备,这就需要强大的 电力系统 ,所 以各工厂 几乎都采用交直流电动机供 电,尤其是交流电 机,已经逐渐 占据各工厂的主导地位了 。不管 是多大的 电都可 以使用 电力 电子调速技术 ,一 些低技术的设备 比如大型鼓风机,也可通过采 用变频 装置来提 高性 能和效率。
2 . 5 电 力 系统
电力 系统 的发 展能 够推 动 国家 的发展 , 电力系统也需要 电力 电子技术 ,所 以,当前 的 【 关键 词】发展 电子 电力 技 术 我 国正在 由 “ 工业 经济 ”模 式 向 “ 信 息 电力系统广泛采用该技术 。配 电系统的不稳定 经济”模式转变过程 中,在转变中 电子技术的 为我们带来很大的烦恼, 电力 电子装置可 以在 因为高新技术的发 发生意外的情况下有效的控制电能质量,达到 随着 高新技 术 的发 展, 电力 电子 技术 的 发展将起到了基石的作用 改善电力系统供电质量的 目的。 发展也为 电力行业带来 了新鲜血液 ,为 电力行 展需要 电子技术。它将传统产业和信息产业结 合起来 ,促进 了信息业的飞速前进 如今,很 业 朝着更高方 向发展提供 了基础。但它不仅仅 3 结 语 多高性能的 电力变流装置 已经被人们接纳,并 只是应 用于电力行业 ,由于时代科技的发展, 总 而 言 之 , 电 力 电子 技 术 是 一 个 有 着 极 各学科间的边缘越来越模糊,由此也决定了电 且广泛的投入 使用。这不仅 促进电子行业 的发 展,而且还有 利于促进 其他 相关行业 发展 ,比 大发展潜力的朝阳产业 ,自上世纪 以来经历 了 力 电子 技术并不是一个完全独立的学科技术, 如前面所讲的 自动控 制技术,就能够 为其 发展 五十多年的发展历程 ,在其理论研 究及现实应 与它关联的有材料科学、微电子技 术及控制 理 论等,也就是说电力 电子技术已经慢慢地 渗透 提供便利。未来的 电力 电子技术的应用领域还 用领域 已经取得 了一定的效果 ,也具有 了一定 会拓宽 ,并将在经济发展中 占据不可忽视的地 的生产规模。 以 “ 变频技术 ”的为核心 电力 电 进 各个 工 业 部 门 。 位。下面,笔者将从五个方面分析电力电子技 子技术的广泛运用为人们带来了极大的便利 , 1电力电子技 术的发展历程 术在现实社会 中的应用 。 极大限度的拉动了国民经济的增长 。可想而知 的是,在 不久 的将来,电力 电子技术将如太阳 . 1传 统 改造 业 如果说 晶体 管 的诞生标 志着 固态 电子 时 2 样普照世 界。 代 的来 临,那么晶闸管的问世就把 电子技术带 在 传 统产业 的环 境 中,有很 多不 利于 人 上 了飞速 发展的轨道 随着高技术的发展,电 体健康 的因素,人们 往往要 在恶劣 的环境 中进 参考文献 力 电子 技术发展速度 也越来越快,更 多的领域 1 ]张 为佐 .电力 电 子技 术 的二 十 年及 其 未 行高强度 的工作 。电力 电子技 术的出现大大 的 [ 开始应用这 一技 术,其作用可 以从我 国经济 的 来 一一思 考走 向 信 息 时代 的 电力 电子 学 改善 了这 一状 况 ,它 能把 电 能转 化 成 劳 动 力 , 发展看 出。纵观 电力 电子技术 的发展史 ,我们 [ J ] .电 源技 术应 用 , 2 0 0 1 ( Z 1 ) . 可 以看 出其经 历了三个阶段:晶闸管 时代 、逆 把智能工作室 带进工厂 ,减轻工人们 的工作 负 2 ]俞 勇祥 .电力 电子 技 术的 应 用概 况 【 J 】 . 担 。像化石燃料 电站类 的行业 ,工人们通 常都 [ 变 时代 、变频 时代。接 下来 ,笔者将从这三个 新 技 术新 工 艺 , 2 0 0 0 ( 1 0 ) . 是在危 险的环境 中作业 , 电力电子 行业 的出现 , 阶段分别进行描述 。 [ 3 】马克 刚 .现代 电力电子器件 及其应 用 [ J ] . 给此类行业的工作带来 了极大的便利。 世 界 电子 元 器件 , 2 0 0 0 ( 0 7 ) . 1 ・ 1晶闸管 时代 2 . 2 家用 电器 [ 4 ]张为 佐 .电 力 电子 技 术 的应 用和 发 展 … . 晶闸管 时代 也称 晶 闸管 整流 时代 ,晶 闸 江 苏机 械 制 造 与 自动 化 , 1 9 9 8( 0 2 ) . 电力 电子技 术也逐 渐 的普 及 到各家 各户 管 整流 管在 2 0世 纪 6 O和 7 0年 代得 到了长 足 【 5 ]张玉 芬 .电 力 电子技 术的新 发展 [ J ] .微 中,如变频 空调 、荧光灯等等 。这些家用 电器 的发展 ,当时都是通过 5 0 HZ的交流发 电机来 电 子技 术 , 1 9 9 7 ( 0 6 ) . 为家庭生活带来极大 的便利 的同时也相对 的节 提供较大功率 的工业用 电,其 中直流形式 的电 [ 6 ]万遇 良 . 电力 电子技 术的发展趋 势及应 用 约 了家庭开支 。比如 ,变频 空调能够节约 百分 能消费 占了百分之二十 。在 当时,我 国很 多电 【 J ] .电 工 电 能新 技 术 , 1 9 9 5 ( 0 2 ) . 之三十 的电量 。除了这些之外 ,居 民家 中的电 厂都需要把交流 电转化为直流 电,这就催生 了 【 7 ]肖元真 ,张 良 .我 国电力电子技 术发展 展 器 , 比如 冰 箱 等 都 需要 电力 电子 技 术 。 电力 电 大功率硅整流器和 晶闸管 ,它能高效 的完成直 望 [ J ] .中国科技信 息 , 1 9 9 4 ( O 3 ) . 子技术为 人人们 带来 更多的空余时间去享 受生 流 电的转变。这也造就 了晶闸管整流时代 。 【 8 】张 超 .电 力 电 子 技 术 的 发 展 及 在 电 力 活。 系统 中应 用 【 J ] . 企 业 家 天地 ( 理 论
论电力电子技术的发展与应用前景
论电力电子技术的发展与应用前景近年来,随着人们生活水平的不断提高,电力电子技术日益得到广泛应用。
它是现代电气技术和信息技术相结合的产物,使得电力系统更加智能化、高效化和安全可靠,是实现能源转型和绿色发展的核心技术之一。
本文旨在探讨电力电子技术的发展与应用前景。
一,电力电子技术的发展历程电力电子技术,又称为能量电子技术,其诞生可以追溯到20世纪60年代。
20世纪70年代,我国开始研制大功率半导体器件,并于80年代初成功研制出全国第一台百万瓦级大型水平轴风力发电机组,标志着我国电力电子技术走上了一个新的高度。
随着半导体材料和制造工艺的不断完善,大功率寿命的提高,电力电子产品的性能不断刷新,逐渐得到广泛应用。
目前,电力电子技术已经进入了一个全新的发展阶段,使得电力变换器、电力控制器等成为电力系统的核心部件。
在全球经济一体化的背景下,电力电子技术正处于一个高速发展的时期。
二,电力电子技术的优势1.提高电源利用率。
电力电子技术克服了传统电力交换方式所存在的很多问题,它具有快速开关、大功率密度、高效性等优势,这些特点使得电力系统的变换效率得到了提高,能够更加高效的利用电能。
2.提高产品的可靠性。
电力电子技术产生的电能比传统技术产生的电能更加可靠,因为它单个单元失效,整个系统不会失灵,从而大幅度提高了电力系统的可靠性。
3.提高电路系统的安全性。
电力电子技术制造的电路系统能够实现快速切换,从而避免传统电路系统所遇到的振荡问题,并且具有过流、过电压保护,为电力系统的安全运行提供了保障。
三,电力电子技术的应用前景1. 新能源发电系统在新的经济环境下,传统化石燃料的资源越来越紧缺,新能源发电逐渐受到各个国家的重视。
而电力电子技术对于新能源发电系统的建设起到了重要的作用。
如风力发电、太阳能发电等,这些能源的输出电压是阶段性的和不连续的,需要通过电力电子技术进行变换,以适应现代电气系统的要求。
2.交通运输电力电子技术也可以应用于交通运输中,如:高速火车、磁悬浮列车等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈电力电子技术的发展及应用
发表时间:2017-11-06T13:35:33.807Z 来源:《电力设备》2017年第18期作者:王鹏
[导读] 摘要:文章从电力电子技术的相关概念及其发展历程出发,就此项技术在交通运输、家电、电力节能等方面的具体应用展开探究。
(南瑞集团公司(国网电力科学研究院)国电南瑞科技股份有限公司江苏省南京市 210000)
摘要:文章从电力电子技术的相关概念及其发展历程出发,就此项技术在交通运输、家电、电力节能等方面的具体应用展开探究。
关键词:电力电子技术;发展;具体应用
1电力电子技术的相关概念
电力电子技术又称为功率电子技术,主要是对各种电子电力器件,以及与之构成的可控制、转换电能的相关装置及电路展开研究。
此技术不仅是电工学在电子领域或弱电中的分支,同时也是电子学在电动领域或强电中的分支,总体来说,是结合强弱电的一门新型学科。
当前,我国科技发展迅猛,电力电子技术也愈发重要,其可优化电能的使用情况,达到高效节能的目的。
除此之外,通过应用电力电子技术,可有效改造相关传统产业,促进机电一体化发展,并且还能统一功率及信息化处理,在有机结合微电子技术的基础上,促进电子技术的进一步改革与发展。
2电力电子技术的发展历程
自上世纪五十年代诞生第一只晶闸管以来,电力电子技术就获得了显著发展,并在电气传动技术领域占据了重要的一席之地。
以下就电力电子技术的发展历程展开探究。
2.1晶闸管整流时代
工频(也即50Hz)交流发电机为大功率工业用电的主要来源,在实际应用过程给中,以直流形式消费的电能约占20%,例如牵引(包括地铁机车、电气机车、城市无轨电车等)、直流传动(造纸及轧钢)、电解(包括化工原料及有色金属)等领域。
为将工频交流电高效率地转变为直流电,就需要应用到大功率的硅整流器。
在20世纪60、70年代,人们加大了大功率硅整流器的开发及应用力度,国内还曾掀起开办硅整流器厂的热潮,现阶段我国大部分的硅整流器制造厂就是于那个时代建成的,那一时期也被称为电力电子技术晶闸管时代。
2.2逆变时代
自20世纪70年代以后,自关断器件被制造出来并投入实际应用中,此时,电力电子技术便进入到逆变时代。
当时,在世界范围内爆发了能源危机,而具备显著节能效果的交流电机变频调速因此获得了迅速的发展。
其中,将直流电逆变为频率为0至100Hz的交流电为变频调速的关键性技术,而应用在大功率逆变中的晶闸管、门极可关断晶闸管、巨型功率晶体管等便迅速成为当时众多电力电子技术的主要组成部分。
尽管当时电力电子技术已实现逆变以及整流等功能,但工作频率比较低,且只是在中低频率的范围内。
2.3现代变频器时代
自20世纪80年代以后,人们加大了大规模集成电路技术的应用力度,这为电力电子技术的发展奠定了扎实的基础。
在集成电路技术中,高压大电流以及精细加工两种技术得到了有机结合。
其中,传统采用低频技术处理问题为主的电力电子学,以及集大电流、高压、高频于一身的,以功率IGBT与MOSFET为代表的功率半导体复合器件,均朝着以高频处理问题为主的现代电力电子学方向进行转变。
此种现象显示,当时已进入到了电力电子的现代变频器时代。
在此时期,集成电路技术被大规模应用在各种新型的器件中,并不断朝着模块化及复合化的方向发展,不但有效缩小了电力电子器件的体积,使其结构更加紧凑,而且还能将不同器件的优点进行综合。
总体而言,随着这些新型器件的飞速发展,交流电机变频调速的频率更高,性能也更加可靠、完善,这为电力电子技术的高频发展,以及用电设备的小型轻量化、节材节能高效化、机电一体化提供了非常重要的基础支持。
3电力电子技术的具体应用
3.1在交通运输中的具体应用
随着时代的进步与发展,电力电子技术在众多领域得到了非常广泛的应用,例如在电气化铁道交通中,电气机车中的交流机车便应用到了变频装置,而直流机车则应用到了整流装置。
同时,在磁悬浮列车中的牵引电机传动以及各种辅助电源等方面,也应用到了电子电力技术,可以说,磁悬浮列车的顺利运行离不开电力电子技术的支持。
除此之外,在电动汽车的电机方面,为了发挥出控制驱动的作用,同样需要对电子装置展开合理应用。
而在飞机、船舶等交通运输工具方面,其对电源的应用也存在着不小的差异,因此,科学应用电力电子技术就具有关键性的作用。
3.2在家电中的具体应用
在人们日常生活中的各种家电方面,电力电子技术也得到了较为广泛的应用,给人们的生活带来了极大的便利。
例如,生活中常见的洗衣机,通过应用电力电子技术,便可有效替代手工劳动,人们只需在洗衣机中放入脏衣服,再按下按钮,便可借助电力电子技术的相关功能完成洗衣服的整个过程。
其次,厨房中常见的洗碗机,其应用电力电子技术的原理与洗衣机的应用原理大致相同;而空调器通过应用电力电子技术,可起到显著的节能效果,经大量实践研究证明,其节约的电能约占30%及以上;在工作效率方面,电频荧光灯要明显高于平常使用的普通白炽灯。
3.3在发电环节中的具体应用
经分析得知,我国经济快速发展离不开能源的支持,在经济建设不断深入的大背景下,消耗了大量的能源,特别是电能。
现阶段,经济发展的一项关键条件便是有机结合电力与工业,正是由于电能具有利用率高、稳定性高等显著优势,因而其消耗量呈现出不断增加的趋势。
分析我国工业发展的整体情况可知,当前的工业用电还存在一系列不了合理的情况,导致电力能源的严重浪费。
随着可持续发展理念的提出与实行,人们对节约电能也愈发重视。
而通过应用电力电子技术,便可有效节约原材料,优化各种电力设备的性能,最终充分降低电能的消耗程度。
3.4在电力节能中的具体应用
近些年来,我国不断加大对水力发电、风力发电等新能源的开发及利用力度,其中涉及到发电机电流频率的转换。
具体来说,水头的流量及压力对水力发电的功率起到了决定性的作用,而这会影响到机组最佳转速的变化。
此时,为实现有效功率的最大化,就需要对转子励磁电流频率进行调整,从而实现机组的变速运行。
此外,在大型发电机中,也应用到了晶闸管整流自并励的方式来实现相对静止励磁的
控制,将励磁机惯性中间环节省去,充分促进工作效率的提高。
4结语
综上所述,在当前经济显著发展的形势下,电力电子技术有着巨大的发展潜力。
通过科学应用电力电子技术,可有效提升我国的科学水平及经济建设的整体发展水平,并且在不断的发展进程中,还会促进生产效率的提高以及电力能源的节约,进而为现代化发展提供最大化的动力支持。
参考文献:
[1]田海涛,梁建宾.电力电子技术的应用及发展前景探究[J].电子测试,2013,7(14):27-28.
[2]韩建设.浅谈电力电子技术的发展及应用[J].硅谷,2010,8(03):2-3.。