数值计算第四章课后习题答案

合集下载

计算机网络课后习题答案(第四章2)

计算机网络课后习题答案(第四章2)

计算机⽹络课后习题答案(第四章2)21某单位分配到⼀个B类IP地址,其net-id为129.250.0.0.该单位有4000台机器,分布在16个不同的地点。

如选⽤⼦⽹掩码为255.255.255.0,试给每⼀个地点分配⼀个⼦⽹掩码号,并算出每个地点主机号码的最⼩值和最⼤值4000/16=250,平均每个地点250台机器。

如选255.255.255.0为掩码,则每个⽹络所连主机数=28-2=254>250,共有⼦⽹数=28-2=254>16,能满⾜实际需求。

可给每个地点分配如下⼦⽹号码地点:⼦⽹号(subnet-id)⼦⽹⽹络号主机IP的最⼩值和最⼤值1: 00000001 129.250.1.0 129.250.1.1---129.250.1.2542: 00000010 129.250.2.0 129.250.2.1---129.250.2.2543: 00000011 129.250.3.0 129.250.3.1---129.250.3.2544: 00000100 129.250.4.0 129.250.4.1---129.250.4.2545: 00000101 129.250.5.0 129.250.5.1---129.250.5.2546: 00000110 129.250.6.0 129.250.6.1---129.250.6.2547: 00000111 129.250.7.0 129.250.7.1---129.250.7.2548: 00001000 129.250.8.0 129.250.8.1---129.250.8.2549: 00001001 129.250.9.0 129.250.9.1---129.250.9.25410: 00001010 129.250.10.0 129.250.10.1---129.250.10.25411: 00001011 129.250.11.0 129.250.11.1---129.250.11.25412: 00001100 129.250.12.0 129.250.12.1---129.250.12.25413: 00001101 129.250.13.0 129.250.13.1---129.250.13.25414: 00001110 129.250.14.0 129.250.14.1---129.250.14.25415: 00001111 129.250.15.0 129.250.15.1---129.250.15.25416: 00010000 129.250.16.0 129.250.16.1---129.250.16.25422..⼀个数据报长度为4000字节(固定⾸部长度)。

数值计算方法第四章第四节 三次样条

数值计算方法第四章第四节 三次样条

yi f (xi )(i 0,1,...,n) 以及边界点上的一阶导数值f '(x0 ), f '(xn). 求一个三次样条函数S( x)使之满足
S(xi ) yi
(i 1,2,...,n 1)
S(xj ) yj , S'(xj ) f '(xj ) ( j 0, n) 8-
三弯矩插值法的基本思想 ( 1)yi'' f''(xi )未知,但可设S''(xi)Mi,
上的一个分划 ,:ax0x1 xn1xnb 给定节点上函数值f(xi),i0,1,2, ,n。 若函数S(x)满足 (1)S(xi ) yi i 0,1, n; (2)S(x)Ck1[a,b],即在整体上是k-1阶连续的; (3)S(x)在每一个小区间[xi, xi1]是k次多项式
(i 0,1, n1) 则称S(x)为k次样条函数。x1,..., xn1称为内节点, x0, xn称为外节点.
2-
样条是绘图员用于描绘光滑曲线的一种机 械器件,它是一些易弯曲材料制成的窄条或棒条. 或接近图 表上确定的描绘点.“样条函数”这个术语意在 点出这种函数的图象与机械样条画出的曲线很 象.
3-
一.k次样条函数的定义
定义 若函数yf(x)在 [a,b]上连续,对于区间[a,b]
( 4 ) 再 由 三 弯 矩 方 程 边 界 条 件 ( 补 充 两 个 方 程 ) 封 闭 的 方 程 组 , 可 求 出 M i,(i 0 ,1 ,2 ,...,n )9-
1、建立三弯矩方程 在[xi,xi1]上,三次样条函数可表示为 Si(x)ai(xxi )3 bi(xxi )2 ci(xxi )di (i 0, 1,,n1)

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。

它包括了从数学理论到计算实现的一系列技术。

数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。

2. 解答:数值分析在实际应用中起着重要的作用。

它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。

数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。

3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。

与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。

数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。

4. 解答:计算误差是指数值计算结果与精确解之间的差异。

在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。

计算误差可以分为截断误差和舍入误差两种。

第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。

例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。

绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。

2. 解答:相对误差是指绝对误差与精确解之间的比值。

对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。

相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。

3. 解答:舍入误差是由于计算机的有限精度而引起的误差。

计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。

舍入误差会导致计算结果与精确结果之间存在差异。

4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。

数值计算方法第四章插值1

数值计算方法第四章插值1

代数插值
代数插值
当f(x)是次数不超过n的多项式时,给定n+1个节点,其n次插值多项式就是f(x)本身.
代数插值几何意义
拉格朗日插值 逐次线性插值 牛顿插值 等距节点插值 反插值 埃尔米特插值 分段插值法 三次样条插值
拉格朗日插值 线性插值
格朗日插值 抛物线插值
基函数之和为1.
拉格朗日插值 n次插值
当插值点x∈(a,b)时称为内插,否则称为外插。
内插的精度高于外插的精度。
拉格朗日插值余项
余项 设函数f(x)在包含节点x0 , x1 ,…, xn的区间[a,b]上有n+1阶导数,则
拉格朗日插值
活动14
写出3次拉格朗日插值多项式及余项
拉格朗日插值
拉格朗日插值
作业5
已知函数表
应用拉格朗日插值公式计算f(1.300)的近似值.
数值计算方法
苏 强
江苏师范大学连云港校区
数学与信息工程学院 E-mail: 412707233@
数值计算方法 第四章 插值与曲线拟合
没有明显的解析表达式
使用不便的解析表达式
简单函数代替
插值问题
插值问题
代数插值 插值函数
被插值函数 插值节点
插值区间
三角多项式插值 有理函数插值
代数插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
拉格朗日插值 n次插值
称为关于节点
的n次插值基函数.
拉格朗日插值n次插值
基函数的个数等于节点数.
n+1个节点的基函数是n次代数多项式 基函数和每一个节点都有关。节点确定,基函数就唯一的确定。 基函数和被插值函数无关

matlab课后习题答案第四章

matlab课后习题答案第四章

第4章数值运算习题 4 及解答1 根据题给的模拟实际测量数据的一组t和)(t y试用数值差分diff或数值梯度gradient指令计算)(t y',然后把)(t y和)(t y'曲线绘制在同一张图上,观察数值求导的后果。

(模拟数据从prob_data401.mat 获得)〖目的〗●强调:要非常慎用数值导数计算。

●练习mat数据文件中数据的获取。

●实验数据求导的后果●把两条曲线绘制在同一图上的一种方法。

〖解答〗(1)从数据文件获得数据的指令假如prob_data401.mat文件在当前目录或搜索路径上clearload prob_data401.mat(2)用diff求导的指令dt=t(2)-t(1);yc=diff(y)/dt; %注意yc的长度将比y短1plot(t,y,'b',t(2:end),yc,'r')grid on(3)用gradent 求导的指令(图形与上相似)dt=t(2)-t(1);yc=gradient(y)/dt;plot(t,y,'b',t,yc,'r')grid on〖说明〗● 不到万不得已,不要进行数值求导。

● 假若一定要计算数值导数,自变量增量dt 要取得比原有数据相对误差高1、2个量级以上。

● 求导会使数据中原有的噪声放大。

2 采用数值计算方法,画出dt tt x y x ⎰=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。

〖提示〗● 指定区间内的积分函数可用cumtrapz 指令给出。

● )5.4(y 在计算要求不太高的地方可用find 指令算得。

〖目的〗● 指定区间内的积分函数的数值计算法和cumtrapz 指令。

● find 指令的应用。

〖解答〗dt=1e-4;t=0:dt:10;t=t+(t==0)*eps;f=sin(t)./t;s=cumtrapz(f)*dt;plot(t,s,'LineWidth',3)ii=find(t==4.5);s45=s(ii)s45 =1.65413 求函数x ex f 3sin )(=的数值积分⎰=π0 )(dx x f s ,并请采用符号计算尝试复算。

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

李庆扬-数值分析第五版第4章习题答案(20130714)

李庆扬-数值分析第五版第4章习题答案(20130714)
如果求积区间中被积函数变化很大有的部分函数值变化剧烈需要使用小不长另一部分函数值变化平缓可以使用大步长针对被积函数在区间上的不同情形采用不同的步长使得在满足精度前提下积分计算工作量尽可能小针对这类问题的算法技巧是在不同区间上预测被积函数变化的剧烈程度确定响应步长
第4章
复习与思考题
习题 1、给出计算积分的梯形公式及中矩形公式,说明它们的几何意义。
(1)
1 0
4
x x2
dx,
n
8
梯形公式
n6
Tn
h[ 2
f
(a)
n1
2
k 1
f
(xk )
f
(b)]
n8
,所以 xk
k 8
,k
0,1, 2,3, 4,5, 6, 7,8
f (x0 ) 0 f (x1) 0.0311 f (x2 ) 0.0615 f (x3) 0.0906 f (x4 ) 0.1176 f (x5 ) 0.1423 f (x6 ) 0.1644 f (x7 ) 0.1836 f (x8 ) 0.200
使得在满足精度前提下积分计算工作量尽可能小,针对这类问题的算法技巧是在不同区间上 预测被积函数变化的剧烈程度确定响应步长。就是自动求积的一般步骤。
12、怎样利用标准的一维求积公式计算矩形域上的二重积分
基本原则:累次积分。
多重积分的辛普森公式:
bd
a c f (x, y)dydx
k[ 6
h n1
n1
n1
S2
6
[f
k 0
(a) 4
k 0
f
(xk1/2 ) 2
k 1
f
(xk )
f
(b)]

数值计算课后习题答案(全)

数值计算课后习题答案(全)

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

数值计算方法(宋岱才版)课后答案

数值计算方法(宋岱才版)课后答案

第一章 绪论一 本章的学习要求(1)会求有效数字。

(2)会求函数的误差及误差限。

(3)能根据要求进行误差分析。

二 本章应掌握的重点公式(1)绝对误差:设x 为精确值,x *为x 的一个近似值,称e x x **=-为x *的绝对误差。

(2)相对误差:r e e x***=。

(3)绝对误差限:e x x ε***==-。

(4)相对误差限:r x x xxεε*****-==。

(5)一元函数的绝对误差限:设一元函数()()()0,df f x f x dx εε***⎛⎫==⋅ ⎪⎝⎭则。

(6)一元函数的相对误差限:()()1r df f x dx f εε****⎛⎫=⋅ ⎪⎝⎭。

(7)二元函数的绝对误差限:设一元函数()()(),0,f f x y f y y εε***⎛⎫∂==⋅ ⎪∂⎝⎭则。

(8)二元函数的相对误差限:()()()1r f f f x y x y f εεε******⎡⎤⎛⎫∂∂⎛⎫⎢⎥=⋅+⋅ ⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦。

三 本章习题解析1. 下列各数都是经过四舍五入得到的近似值,(1)试指出它们有几位有效数字,(2)分别估计1123A X X X ***=及224X A X **=的相对误差限。

12341.1021,0.031,385.6,56.430x x x x ****====解:(1)1x *有5位有效数字,2x *有2位有效数字,3x *有4位有效数字,4x *有5位有效数字。

(2)1111123231312123,,,,A A AA x x x x x x x x x x x x ∂∂∂====∂∂∂由题可知:1A *为1A 的近似值,123,,x x x ***分别为123,,x x x 近似值。

所以()()111rA A Aεε***=()()()12311111123A A A x x x A X X X εεε*******⎡⎤⎢⎥=++⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫∂∂∂ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭43123131212311111010100.215222x x x x x x x x x **-**-**-***⎡⎤=⨯⨯+⨯⨯+⨯⨯=⎢⎥⎣⎦()222222424441,,,X A Ax A X x x x x ∂∂===-∂∂则有同理有2A *为2A 的近似值,2x *,4x *为2x ,4x 的近似值,代入相对误差限公式:()()222rA A Aεε***=()()24212224A A X X A X X εε*****⎡⎤⎢⎥=+⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫∂∂ ⎪ ⎪∂∂⎝⎭⎝⎭()33542224411*********X X X X X **--***⎡⎤⎢⎥=⨯⨯+⨯⨯=⎢⎥⎣⎦2. 正方形的边长大约为100cm ,怎样测量才能使其面积误差不超过21cm ? 解:设正方形的边长为x ,则面积为2S x =,2dsx dx=,在这里设x *为边长的近似值,S *为面积的近似值:由题可知:()()1ds s x dx εε***=≤⎛⎫ ⎪⎝⎭即:()21x x ε**⋅≤ 推出:()10.005200xcm ε*≤=。

《数值分析》第四章答案

《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。

再给13169=建立3次插值公式,给出相应的结果。

解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。

数值计算第四章课后习题答案

数值计算第四章课后习题答案

()()()()()()()()()收敛较慢代入上式得:将解:收敛速度次并分析该迭代公式的迭代的根求方程取试用迭代公式∴≠<<*'*+++-='∴+*+*=*∴=+⋅+⎪⎭⎫ ⎝⎛===++==∴++===-++=++=++014.01022220||102202613381013202132020132010212010220.2.0201021102204.1222222212012123021x x x x x x x x x x x x x x x x x x x x x x x x k k k k k k k ϕϕϕϕϕϕ )))()()()[]()()[])49998.0cos 215.0cos 21,022,00cos 210212,0210,2,0.cos 210sin 211,cos 2113cos 212;1.0cos 212.4120101======->-=<-=-=>+='-===-+x x x x x x x f f x x x f x x f x x x f x x x x k k 则取上有一个根在所以上在为单调递增函数故则令解:位有效数字求出这些根,精确到用迭代公式分析该方程有几个根给定方程ππππ500.0105.0102.0||3412≈*⨯<⨯=---x x x 所以方程的根41444444466666.6663.4kk S S S S s +=+=++++++=+故迭代公式为可知:由解:动点迭代公式:导出下列连根公式的不()()()()()()()()()()()()))()))())()?得到的是什么迭代公式步迭代时选取第?得到的是什么迭代公式选取使收敛速度快;选取的单根附近收敛;,使迭代在选取值写出迭代公式是参数其中的迭代公式给定方程不收敛解:都不收敛于迭代则对任何初值都有数证明:如果对于任何实为一实数设k k k k k k k k k kk k k k k k k k k x f k x f x f x f x x x x x x x G x G x x x x x G x G x x x G x G x G x Gx x x x x x G x x x G x '='==-=∴*-≥≥-≥-=*-∴-≥-∴≥--='*=*≠≥'**=*+++++++++1514302.1.,1.45.41,,1.,4.40101111111100λλλλλλ()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()k k k k k k k k k k k k k k k x f x f x x Newton Newton x f x f x x x f x f x x x f x x f x x f x x x f x f x f x f x f x x f x x f x x x f x x x x x f x x '-='-=∴'-=∴*'==*'*'-=*'∴-=<<*'<*'*'<<>*'∴<*'<∴<*'∴*'-='-=∴-==-=++++101011,541:,013020200201|||1|||2,1即迭代公式得到的是迭代公式即得到的是收敛速度快则令当时当迭代函数为:为参数解:ϕλϕλϕλϕλλλϕλϕλϕλϕϕλλ 230102105.0,15.06.4-⨯=+--=允许误差为的一个实根,选择一种迭代法求方程取初值x x x()()()()000102315.0135.0x f x f x x x x x f x x x f Newton '-=-=∴-='∴+-=时,则当令迭代公式解:利用()()1112x f x f x x '-=()()()()22311233333332330,07.4kk kk k k k k x c x x c x x x x f x f x x x x f cx x f cx c x c c x Newton +=--=∴'-=='∴-==∴=-=-++ 又令解:的迭代公式导出求迭代法于方程应用()()()()()())()())()().21.0,,208.411的收敛性和收敛速度迭代讨论改进是线性收敛迭代公式证明即重根的是设k k k k k k k k m x f x f mx x Newton x f x f x x Newton x q x q x x x f m m x f x '-='-=≠*-=≥=*++()()()()()()()()()()()()[]()()()()()()[]()()()()()[]()()()()()()()()()()[]()[]()()()[]2221121111x f x f x f x f x f x f x f x x f x f x x x f x f x x x q x x x q x q m x x x q x x x m q x x m x f x q x x x m q x x x q x x x q x x m x f x q x x x f k k k k m m m m m m''''='''-'-=''-='-=''*-+'+'*-+'*-+*--=''*-+*-=*-+*-='*-=+----ϕϕ得:由得:由证明:()迭代是线性收敛Newton mx ∴≠-=*'∴011ϕ[]()()[][]()次迭代需要解:利用:需要二分多少次?,那么至少为内的近似根,允许误差在区间若用二分法求方程716min 05.015.1215.1,1,2121||005.05.1,1019.4113=+∴=∴<-∴=-=-≤-*==--++k R b a a b a b x x x x k k k k k ε。

《传热学》课后习题答案-第四章

《传热学》课后习题答案-第四章

t 0 850 C, t f 250 C, h 30W /( m 2 .K )
2
.肋高 H=4cm,纵
剖面面积 AL 4cm , 导热系数 20W /( m.K ) 。 解:对于 2 点可以列出:
t t t1 t 2 3 4 2hx(t1 t 2 ) 0; x x 节点 2: t t x 2 3 h(t f t1 ) 2h (t f t 3 ) 0 x 2 2 节点 3: 。
4
22.28027129 22.28881782 22.290955445
15.20263565 15.20690891 15..20797723
其中第五次与第六次相对偏差已小于10 迭代终止。 4-4、 试对附图所示的等截面直肋的稳态导热问题用数值方 法 求 解 节 点 2 , 3 的 温 度 。 图 中

2hxH 2 t 2 t1 t 3 t f hx 2 h t 3 t 2 t f 2 t f
2hxH 2 2

4.3636 , 2.53 85 1.8336 25 215.05 45.84 t2 59.79 59.8 C 4.3636 4.3636 , 59.8 1.53 25 t3 38.75 38.8 C 2.53 。
n ,i 8.有人对一阶导数 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验 公式及用无穷级数 表示的分析 解,也常用计 算机 来获得数值结果。 试用数值方 法对
t x

i i i 3t n 5t n 1 t n 2 2x 2

数值计算课后全部答案(整合)

数值计算课后全部答案(整合)

目录第一章-----------------------------------------1 第二章-----------------------------------------4 第三章-----------------------------------------9 第四章-----------------------------------------15 第五章-----------------------------------------20 第六章-----------------------------------------27 第七章-----------------------------------------30第一章数值计算中的误差习题一1.1 下列各近似数的绝对误差限是最末位的半个单位,试指出它们各有几位有效数字。

1x =-3.105 , 2x =0.001, 3x =0.100, 4x =253.40, 5x =5000, 6x =5⨯310.答案:4,1,3,6,4,1.1.2 设100>*x >10,x 是*x 的有五位有效数字的的近似数,求x 的绝对误差限。

答案:当10<x<100时,因为有5位有效数字,所以绝对误差限为0.005. 1.3 求下列各近似数的相对误差限和有效数字位数: 1) 123x x x ++,2) 124x x x 3) 24x x 答案:()10.0005e x ≤()20.0005e x ≤()30.0005e x ≤ ()40.005e x ≤ ()50.5e x ≤ ()60.5e x ≤1)()()()()123123e x x x e x e x e x ++=++≤()()()123e x e x e x ++3221.5100.15100.510---≤⨯=⨯≤⨯2123()0.1510x x x ε-++=⨯123123123()()0.0004993...0.0004994r x x x e x x x x x x ε++++==≤++123x x x ++=-3.004 精确到小数点后两位,所以有三位有效数字。

第四章习题答案

第四章习题答案

一、填空题1.几何公差的形状公差有6项,它们的名称和代号分别是〔〕、〔〕、〔〕、〔〕、〔〕和〔〕。

2.几何量公差的跳动公差有2项,它们的名称和代号分别为〔〕和〔〕。

3.端面对轴线的垂直度〔〕于端面圆跳动。

4.某轴尺寸为Φ10 mm ,轴线对基准A 的垂直度公差为Φ0.01 mm ,被测要素给定的尺寸公差和几何公差采用最大实体要求,则垂直度公差是被测要素在〔〕时给定的。

当轴实际尺寸为〔〕mm 时,允许的垂直度误差达最大,可达〔〕mm 。

5.独立原则是指图样上给定的〔〕公差与〔〕公差各自独立,分别满足要求的公差原则。

6.包容要求采用〔最大实体〕边界,最大实体要求采用〔最大实体实效〕边界。

7.某孔尺寸为Φ40○E mm ,实测得其尺寸为Φ40.09 mm ,则其允许的几何误差数值是〔Φ〕mm ,当孔的尺寸是〔Φ〕mm 时,允许到达的几何误差数值为最大。

8.某孔尺寸为Φ40mm ,轴线直线度公差为 Φ0.005 mm ,实测得其局部实际尺寸为Φ40.09mm ,轴线直线度误差为Φ0.003mm ,则孔的最大实体尺寸是〔Φ〕mm ,最小实体尺寸是〔Φ〕mm ,体外作用尺寸是〔Φ〕mm 。

9.假设某轴标注为则该零件的MMS 为〔φ30mm 〕,又称为该零件的〔最大〕极限尺寸;其LMS 为〔φ〕,又称为该零件的〔最小〕极限尺寸;零件采用的公差要求为〔最大实体要求〕,假设加工后测得某孔的实际尺寸为φ,直线度误差为,则该零件〔是〕〔是、否〕合格。

10.假设某孔的尺寸标注为,则该零件采用的公差原则为〔最大实体要求〕,其MMS 为〔Φ20mm 〕,此时的几何公差值为〔Φ〕mm ;其LMS 为〔Φ〕mm ,此时的形位公差值为〔Φ〕mm ;其MMVS 为〔Φ19.98〕mm 。

11.Ф90G7( )的最大实体尺寸为〔Ф〕mm ,最小实体尺寸为〔Ф〕mm 。

12.圆跳动公差根据跳动的方向不同,分为径向圆跳动、端面圆跳动和〔斜向圆跳动〕。

计算物理学(刘金远)第4章-数值微分与积分(课后习题及答案)

计算物理学(刘金远)第4章-数值微分与积分(课后习题及答案)

4.1数值第4章数值微分与积分微分【4.1.1】已知x 2.5 2.6 2.7 2.8 2.9y12.182513.463714.879716.444618.1741(1)用前差、后差和中心差求 2.7x =的一阶导数值(2)用中心差求 2.7x =的二阶导数值【4.1.2】用泰勒展开()()()()()()()2312!3!i i i i i f x f x f x f x f x x x x +¢¢¢¢¢¢=+D +D +D +K\*MERGEFORMAT (1.1)()()()()()()()2312!3!i i i i i f x f x f x f x f x x x x -¢¢¢¢¢¢=-D +D -D +K\*MERGEFORMAT (1.2)(1)推导微分公式()()()()1i i i f x f x f x O x x+-¢=+D D ()()()()1i i i f x f x f x O x x--¢=+D D ()()()()2112i i i f x f x f x O x x+--¢=+D D ()()()()()()1122i i i i f x f x f x f x O x x +--+¢¢@+D D 另外:()()()()()()()()()()111112''2i i i i i i i i i i f x f x f x f x f x f x h h f x h h f x f x f x h +-++-----¢¢»=-+=【4.1.3】采用泰勒展开方法确定下列数值微分公式0000(,)()()(2)x h af x bf x h cf x h f =++++提示:取00(,)'()x h f x f =,00(,)''()x h f x f =【解】2300001()()'()''()()2f x h f x hf x h f x O h +=+++230000(2)()2'()2''()()f x h f x hf x h f x O h +=+++00023000()()(2)1()()(2)'()(2)''()max(,,)()2af x bf x h cf x h a b c f x b c hf x b c h f x a b c O h ++++=+++++++如果:(1)取00(,)'()x h f x f =,则有关系:210; (2)1; (2)02a b c b c h b c h ++=+=+=得到:123,,c b a =-==-(2)取00(,)''()x h f x f =,则有关系:210; (2)0; (2)12a b c b c h b c h ++=+=+=得到:222121,,c b a ==-=【4.1.4】(1)二阶微分写为:11/2211/21/22()2()()''()(/2)()2()()''()(/2)j j j j j j j j f x f x f x f x h f x f x f x f x h +++++-+=-+=\*MERGEFORMAT (1.3)有什么区别(2)1/2111/2211/2()()'(()()/)'()/2''(2)()2()()/2j j j j j j j j j j f x f x f x f x h f f x f x x h hf x f x f x h h ++++++---==-=-+\*MERGEFORMAT (1.4)结果对否,为什么?【解】对于(1.3)式23111()()'()''()'''()26j j j j j f x f x hf x h f x h f x +=++++L \*MERGEFORMAT (1.5)231/2111()()'()(/2)''()(/2)'''()226j j j j j f x f x hf x h f x h f x +=++++L \*MERGEFORMAT (1.6)将2(1.6)(1.5)´-,得,(非对称,一阶精度),对称,二阶精度)对于(1.4)式应该是1/2111/221()()()()'()'()/2''()()2()()/4j j j j j j j j j j f x f x f x f x h f f x f x x hhx f hf f x x h +++++--=--==-+\*MERGEFORMAT (1.7)11'()()()j j j f x f x f x h++=-,即差分定义要围绕j x 点,而(1.4)式中1'()j f x +的下一步定义111/2()('())/2j j j f x f x f x h +++-=与j x 点无关,结果是错的。

数值分析第三版课本习题与答案

数值分析第三版课本习题与答案

数值分析第三版课本习题与答案第⼀章绪论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五⼊得到的近似数,即误差限不超过最后⼀位的半个单位,试指出它们是⼏位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====?4. 利⽤公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多⼤误差?7. 求⽅程25610x x -+=的两个根,使它⾄少具有四位有效数字27.982).8. 当N 充分⼤时,怎样求211Ndx x +∞+?9. 正⽅形的边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝210. 设2⽽相对误差却减⼩.11. 序列{}n y 满⾜递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多⼤?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利⽤下列等式计算,哪⼀个得到的结果最好?3--13.()ln(f x x =,求f (30)的值.若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式ln(ln(x x =-计算,求对数时误差有多⼤?14. 试⽤消元法解⽅程组{101012121010;2.x x x x +=+=假定只⽤三位数计算,问结果是否可靠?15. 已知三⾓形⾯积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c 证明⾯积的误差s ?满⾜.s a b cs a b c ≤++2.2)定义的德蒙⾏列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的⼆次插值多项式.3. 给出f (x )=ln x 的数值表⽤线性插值及⼆次插值计算ln 0.54 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究⽤线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i)()(0,1,,);nkkj jj x l x x k n =≡=∑ii)x l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8maxmax a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若⽤⼆次插值求x e 的近似值,要使截断误差不超过610-,问使⽤函数表的步长h 应取多少?9. 若2n n y =,求4n y ?及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ?=+-,证明()f x 的k 阶差分()(0)kf x k m ?≤≤是m k -次多项式,并且()0(m lf x l +?=为正整数).11. 证明1()k k k k k k f g f g g f +?=?+?.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==?=--?∑∑13. 证明n j n j y y y -=?=?-?∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f及0182,2,,2f.17. 证明两点三次埃尔⽶特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔⽶特插值的误差限.19. 试求出⼀个最⾼次数不⾼于4次的函数多项式()P x ,以便使它能够满⾜以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造⼀个台阶形的零次分段插值函数()n x ?并证明当n →∞时,()n x ?在[],a b 上⼀致收敛到()f x .21.设2()1/(1)f x x=+,在55x-≤≤上取10n=,按等距节点求分段线性插值函数()hI x,计算各节点间中点处的()hI x与()f x的值,并估计误差.22.求2()f x x=在[],a b上的分段线性插值函数()hI x,并估计误差.()f x x=在[],a b上的分段埃尔⽶特插值,并估计误差.24.给定数据表如下:试求三次样条插值并满⾜条件i)(0.25) 1.0000,(0.53)0.6868; S S'='=ii)(0.25)(0.53)0. S S"="=25.若[]2(),f x C a b∈,()S x是三次样条函数,证明i)[][][][] 222()()()()2()()()b b b ba a a af x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-";ii)若f x S x i n==,式中ix为插值节点,且01na x x x b=<<<=,则[][][]()()()()()()()()()b a S x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'.26.编出计算三次样条函数()S x系数及其在插值节点中点的值的程序框图(()S x可⽤(8.7)式的表达式).第三章函数逼近与计算1.(a)利⽤区间变换推出区间为[],a b的伯恩斯坦多项式.(b)对()sinf x x=在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做⽐较.2.求证:(a)当()m f x M≤≤时,(,)≤≤. (b)当()f x x=时,(,)nB f x x=.3.在次数不超过6的多项式中,求()sin4f x x=在[]0,2π的最佳⼀致逼近多项式.4.假设()f x在[],a b上连续,求()f x的零次最佳⼀致逼近多项式.5.选取常数a,使301maxxx ax≤≤-达到极⼩,⼜问这个解是否唯⼀?6. 求()sin f x x =在[]0,/2π上的最佳⼀次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳⼀次逼近多项式. 8. 如何选取r ,使()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x . 11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利⽤插值极⼩化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极⼩化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ?=-----,试将()x ?降低到3次多项式并估计误差. 15. 在[]1,1-上利⽤幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dxπ+-?()(,)()();()(,)()()()();bbaaa f g f x g x dxb f g f x g x dx f a g a =''=''+??问它们是否构成积?19. ⽤许⽡兹不等式(4.5)估计6101x dx x +?的上界,并⽤积分中值定理估计同⼀积分的上下界,并⽐较其结果.20. 选择a ,使下列积分取得最⼩值:1122211(),x ax dx x ax dx----??.21. 设空间{}{}10010121,,,span x span x x 1?=?=,分别在1?、2?上求出⼀个元素,使得其为[]20,1x C ∈的最佳平⽅逼近,并⽐较其结果.22.()f x x =在[]1,1-上,求在{}2411,,span x x ?=上的最佳平⽅逼近.23.sin (1)arccos ()n n x u x +=是第⼆类切⽐雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差.25. 把()arccos f x x =在[]1,1-上展成切⽐雪夫级数.26. ⽤最⼩⼆乘法求⼀个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均⽅误差.28. 在某化学反应⾥,根据实验所得分解物的浓度与时间关系如下:⽤最⼩⼆乘拟合求.29. 编出⽤正交多项式做最⼩⼆乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出⼀记录{}{}4,3,2,1,0,1,2,3k x =,试⽤改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量⾼,并指明所构造出的求积公式所具有的代数精度:。

数值计算引论(第二版)三四五章习题解答

数值计算引论(第二版)三四五章习题解答

close all clear all clc n=10; x=zeros(n+1,1); for k=1:n+1 x(k)=cos((2*k-1)*pi/2/(n+1)); end y=1./(1+25*x.^2); x0=-1:0.1:1; y0=interp1(x,y,x0,'spline'); plot(x0,y0,'r')
h2 1.5, h3 0.5, h4 1.5, h5 0.5
b [0
h2 h3 3 h3 A 6 0 h3 6 h3 h4 3 h4 6
2
0]
0
T
2 3 h4 1 12 6 h4 h5 0 3
(d)样条函数插值具有比较好的数值稳定性。 √
习题
3.以0.1,0.15,0.2为插值节点,计算 f ( x ) x 的二次Lagrange插值多 项式 P2 ( x ) ,比较 P2 (0) 和 f (0) ,问定理4.1的结果是否适用于本问题。 解答: 首先构造二次Lagrange插值多项式
R=chol(A)
0 -0.8165 1.1547 0 0 0 -0.8660 1.1180
-0.7071 1.2247 0 0
方法2: 利用Cholesky定义求解
6.矩阵
1 A1 1 2 2 1 2
2 2 1 , A2 2 1 1
2 2 0
(B) 0 1
2 1 2
Gauss-Seidel迭代
0 1 M (D L) U 0 0
(M ) 2 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

()()()()()()()()()收敛较慢
代入上式得:将解:
收敛速度次并分析该迭代公式的迭代的根求方程
取试用迭代公式∴≠<<*'*+++-='∴+*+*=*∴=+⋅+⎪⎭
⎫ ⎝⎛===++=
=∴++=
==-++=++=++014.01022220||10
2202613381013202132020
132010212010220.
2.0
20102110220
4.1222
222212012123021x x x x x x x x x x x x x x x x x x x x x x x x k k k k k k k ϕϕϕϕϕϕ )))()()()[]()()[])49998.0cos 215.0cos 2
1,022,00cos 2
102
12,0210,2,0.cos 2
10sin 2
11,cos 2
113cos 2
12;
1.0cos 2
12.4120101====
==->-=<-=-=>+='-===-+x x x x x x x f f x x x f x x f x x x f x x x x k k 则
取上有一个根在所以上在为单调递增函数故则令解:
位有效数字求出这些根,精确到用迭代公式分析该方程有几个根给定方程ππππ
500
.0105.0102.0||3412≈*⨯<⨯=---x x x 所以方程的根
41444444466666.6663.4k
k S S S S s +=+=++++++=+故迭代公式为可知:
由解:
动点迭代公式:导出下列连根公式的不Λ
ΛΛΛ()()()()()()()()()()()()))()))()
)()?得到的是什么迭代公式步迭代时选取第?得到的是什么迭代公式选取使收敛速度快;
选取的单根附近收敛;
,使迭代在选取值写出迭代公式是参数其中的迭代公式
给定方程不收敛
解:
都不收敛于迭代则对任何初值都有数证明:如果对于任何实为一实数设k k k k k k k k k k
k k k k k k k k k x f k x f x f x f x x x x x x x G x G x x x x x G x G x x x G x G x G x Gx x x x x x G x x x G x '='==-=∴*-≥≥-≥-=*-∴-≥-∴≥--='*=*≠≥'**=*+++++++++1514302.
1.
,
1.45.41
,,1.,4.40101111111100λλλλλλΛΛ。

相关文档
最新文档