中考数学思想方法专题之整体思想
初中数学常见的思想方法
初中数学常见的思想方法专门与一样的数学思想:关于在一样情形下难以求解的问题,可运用专门化思想,通过取专门值、专门图形等,找到解题的规律和方法,进而推广到一样,从而使问题顺利求解。
常见情形为:用字母表示数;专门值的应用;专门图形的应用;用专门化方法探求结论;用一样规律解题等。
整体的数学思想:所谓整体思想,确实是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。
用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏捷地洞悉问题的本质,有时也不要舍弃直觉的作用,把注意力和着眼点放在问题的整体上。
常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。
分类讨论的数学思想:也称分情形讨论,当一个数学问题在一定的题设下,其结论并不唯独时,我们就需要对这一问题进行必要的分类。
将一个数学问题依照题设分为有限的若干种情形,在每一种情形中分别求解,最后再将各种情形下得到的答案进行归纳综合。
分类讨论是依照问题的不同情形分类求解,它表达了化整为零和积零为整的思想与归类整理的方法。
运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。
分类讨论的原则是:(1)完全性原则,确实是说分类后各子类别涵盖的范畴之和,应当是原被分对象所涵盖的范畴,即分类不能遗漏;(2)互斥性原则,确实是说分类后各子类别涵盖的范畴之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,确实是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。
分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,猎取时期性结果,归纳小结,综合得出结论。
数学思想方法(整体思想、转化思想、分类讨论思想
专题知识突破五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是.思路分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积..考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
整体的思想方法
整体的思想方法一、知识要点概述解数学题时,人们往往习惯于从问题的局部出发,将问题分解成若干个简单的子问题,然后再各个击破、分而治之.但思考方法并非对所有题目都适用,它常常导致某些题解题过程繁杂、运算量大,甚至半途而废.其实,有很多数学问题,如果我们有意识地放大考察问题的“视角”,往往能发现问题中隐含的某个“整体”,利用这个“整体”对问题实施调节与转化,常常能使问题快速获解.一般地,我们把这种从整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题思想方法,称为整体思想方法.在数学思想中整体思想是最基本、最常用的数学思想。
它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。
运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。
它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。
高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。
二、解题方法指导1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。
2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。
3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。
三、整体的思想方法主要表现形式1、整体补形【例1】甲烷分子(CH4)由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都相等的四面体,其中四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中心,它与每个氢原子的距离都相等.若视氢原子、碳原子为一个点,四面体的棱长为a,求碳原子到各个氢原子的距离.S思路:透过局部→整体补形→构建方程解:显然,四面体的四个顶点在以中心(碳原子)为球心,中心到各顶点(氢原子)的距离为半径的球面上.如图,将此四面体ABCD 补成正方体BD’,其中A’,B’,D’也在球面上.设碳原子到每个氢原子的距离为x ,则2x= BD’,B D’、AB (a )、AA’之间的关系是a=AB=2AA’,2x=BD’=3AA’,因此,2x=,23a ⋅a x 46=∴.即碳原子到各个氢原子的距离为a 46. 评注:这里,我们将一个正四面体补成一个正方体,则正四面体的中心与各顶点的距离与正四面体棱长通过正方体的棱长搭桥立即建立联系,局部问题便在正方体这个整体内快速获解,体现了整体补形较高的思维价值.在立几中,我们常常将四面体补成正四面体或平行六四面体、正四面体补成正方体、过同一个顶点的三条棱两两垂直的三棱锥(或四面体)补成长方体、四棱锥补成平行六面体,等等.近几年的高考题或高考模拟题中,经常出现这类问题,试题常常以选择题、填空题的形式出现,具有一定的创新性.复习中大家要注意总结这种问题的补形规律,力争在高考中速战速决.【例2】、如图2,已知三棱锥子P —ABC ,10,PA BC PB AC PC AB ======P —ABC的体积为( )。
人教版九年级数学上册《初中数学思想之整体思想》教学设计
活动三:放开眼界,整体观察例1、(08杭州中考)小张同学根据某媒体上报道的一张条形统计图,在随笔中写道:“今年在我市的中学生艺术节上,参加合唱比赛的人数比去年激增”。
小张同学的这种说法对吗?为什么?师:数学源于生活,又运用于生活。
所以生活中的一些哲理,在数学中也会得到极大的体现。
那么今天我们来研究研究数学中的整体思想,看看是否也能做到放开眼界整体观察呢?老师板书:整体思想老师带领学生一起看题读题,并简单介绍条形统计图。
让学生在讲义的自我思考部分写下自己第一时间的思考结果。
老师在学生间游走,观察学生所得到的思考结果。
比较认同和不认同两种答案,引领学生发现造成两种不同答通过一个简单的统计图观察题调动学生尝试的积极性,并将整体思想从成语故事中的哲理直接联系到数学问题,让学生对数学问题倍感亲切。
最重要的让学生对数路(1、先拆开二次项及一次项2、整体观察,利用完全平方公式运算)进行比较。
老师引导学生给出结论: 1、整体观察出完全平方形式;2、以(x-y )这一共同特征作为局部整体。
眼界,整体观察。
说明普遍数学问题中都蕴含着数学中的整体思想。
活动四:化零为整,整体补形 例3、如图 ,⊙A ,⊙B ,⊙C 两两不相交,半径都是 0.5 cm ,则图中阴影部分的面积是( )212cm A π、28cm B π、师:由上一题,我们可知除了整体观察之外,或许我们处理数学问题的时候,能将有共同特征的局部视为一个整体,从而做到局部分析,整体把握。
让我们再一次回到几何部分,看看整体思想还能不能有更深层次的应用呢? 学生练习2分钟,老师通过上一题,从整体观察上升到局部整体性的应用。
中考数学复习《整体思想解析》
方法技巧专题三整体思想解析在数学思想中整体思想是最基本、最常用的数学思想。
它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。
运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。
它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。
整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一、数与式中的整体思想【例题】(2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【同步训练】(2017湖北江汉)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.二、方程(组)与不等式(组)中的整体思想【例题】先阅读,然后解方程组.解方程组时,可由①得x-y=1, ③然后再将③代入②得4×1-y=5,求得y=-1,从而进一步求得这种方法被称为“整体代入法”, 请用这样的方法解下列方程组解:由①得2x-3y=2, ③把③代入②得,+2y=9,解得y=4,把y=4代入③得,2x-3×4=2,解得x=7,∴原方程组的解为【同步训练】仔细观察下图,认真阅读对话根据对话的内容,试求出饼干和牛奶的标价各是多少元?【考点】一元一次不等式组的应用.【分析】设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,用整体代入的思想求出x的取值,注意为整数且小于10,代入②可求牛奶的价格.【解答】解:设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,由②得y=9.2﹣0.9x③③代入①得x+9.2﹣0.9x>10∴x>8∵x是整数且小于10∴x=9∴把x=9代入③得y=9.2﹣0.9×9=1.1(元)答:饼干的标价是9元/盒,牛奶的标价是1.1元/袋.三、函数与图像中的整体思想【例题】某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求+的值.【考点】平面镶嵌(密铺).【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: ++=360,两边都除以180得:1﹣+1﹣+1﹣=2,两边都除以2得: +=.【点评】本题考查了平面镶嵌(密铺).解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.【同步训练】(2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.四、几何与图形中的整体思想:【例题】小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180 B.210 C.360 D.270【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【同步训练】如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13 .【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【达标检测】1.(2017.江苏宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9 .【考点】33:代数式求值.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:92.已知是方程组的解,则a2﹣b2= 1 .【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.3.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.4.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中, O是对角线BD上任意一点.(如图①)求证:S△OBC •S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.【解析】证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=BO•AE,S△COD=DO•CF,S△AOD=DO•AE,S△BOC=BO•CF,∴S△AOB •S△COD=BO•DO•AE•CF,S△AOD •S△BOC=BO•DO•CF•AE,∴S△AOB •S△COD=S△AOD•S△BOC.;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD •S△BOC=S△AOB•S△DOC,已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD •S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD =DO•AE,S△BOC=BO•CF,S△OAB =OB•AE,S△DOC=OD•CF,∴S△AOD •S△BOC=OB•OD•AE•CF,S△OAB •S△DOC=BO•OD•AE•CF,∴S△AOD •S△BOC=S△OAB•S△DOC.四个.如图所示:。
数学中的整体思想
数学中的整体思想整体思想是数学解题中一种重要的思想方法,在解决某些问题时,从问题的整体特性出发,统筹考虑,全面把握,构建整体结构,利用问题的各方面条件寻求简洁的解法。
有些数学问题中的某些元素虽然是非本质的,但若根据题目需要,设法将其视为对象,从整体上把握,则可化难为易,化繁为简。
一、整体代入有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。
例1:一船在静水中的速度是15千米/小时,要经过150千米的河,并且逆流而上(水流速度为5千米/小时),问船往返共用多少时间?分析:此题若从局部考虑,要分顺水、逆水两种情况分别计算,而从整体考虑,因为船速与水速均已知,所以两地之间距离(150千米)也是一个已知量,所以可以省去对其中繁琐细节的研究,直接利用公式解决问题。
设船往返共用x小时。
则根据题意列方程:15x-5x=150解得:x=15二、整体换元有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,视“黑箱”为新元,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。
例2:设a、b是方程2x2-7x+3=0的两根,且a>b>0,求a+b与ab的值。
分析:此题若从局部考虑,要解方程求出a、b的值再代入求值,而从整体考虑,因为a、b是方程2x2-7x+3=0的两根,所以a+b与ab满足一定的等量关系(韦达定理),因此可以省去对其中繁琐细节的研究,直接利用公式解决问题。
因为a、b是方程2x2-7x+3=0的两根,所以有:a+b=-(-7)/2=7/2;ab=3/2三、整体构造有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,根据题目的需要而恰到好处地构造这个“黑箱”,则可以省去对其中繁琐细节的研究,直接利用这些等量关系解题。
例3:已知二次函数y=-x2+mx-m2-0.5m+4的最大值为-18/5,求此函数的解析式。
2021年中考数学专题复习 专题43 整体思想运用(教师版含解析)
专题43 整体思想运用1.整体思想的含义整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
2.整体思想方法具体应用范围(1)在代数式求值中的应用(2)在因式分解中的应用(3)在解方程及其方程组中的应用(4)在解决几何问题中的应用(5)在解决函数问题中的应用【例题1】(2020•成都)已知a=7﹣3b,则代数式a2+6ab+9b2的值为.【答案】49.【解析】先根据完全平方公式变形,再代入,即可求出答案.∵a=7﹣3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49【对点练习】(2019内蒙古呼和浩特)若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x22﹣4x12+17的值为( )A.﹣2 B.6 C.﹣4 D.4【答案】D.【解析】∵x1,x2是一元二次方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,x12+x1=3,∴x22﹣4x12+17=x12+x22﹣5x12+17=(x1+x2)2﹣2x1x2﹣5x12+17=(﹣1)2﹣2×(﹣3)﹣5x12+17=24﹣5x22=24﹣5(﹣1﹣x1)2=24﹣5(x12+x1+1)=24﹣5(3+1)=4【例题2】(2020•衢州)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为.【答案】x2﹣1.【解析】根据规定的运算,直接代值后再根据平方差公式计算即可.根据题意得:(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.【对点练习】分解因式:a2﹣2a(b+c)+(b+c)2【答案】(a﹣b﹣c)2.【解析】分解因式:a 2﹣2a (b +c )+(b +c )2=[a ﹣(b +c )]2=(a ﹣b ﹣c )2.【例题3】(2020•天水)已知a +2b =103,3a +4b =163,则a +b 的值为 .【答案】1【分析】用方程3a +4b =163减去a +2b =103,即可得出2a +2b =2,进而得出a +b =1. 【解析】a +2b =103①,3a +4b =163②,②﹣①得2a +2b =2,解得a +b =1.【对点练习】(2019辽宁本溪)先化简,再求值(﹣)÷,其中a 满足a 2+3a ﹣2=0. 【答案】见解析。
数学思想方法(一) (整体思想、转化思想、分类讨论思想)(无答案)
数学思想方法(一)(整体思想、转化思想、分类讨论思想)考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
例2 如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m2如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为.考点三:分类讨论思想。
分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏.例3 某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?对应训练3.某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案.四、中考真题演练一、选择题1.若a+b=3,a-b=7,则ab=()A.-10 B.-40 C.10 D.402.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π3.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2 B.3 C.4 D.54.CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=8,则BE的长是()A.8 B.2 C.2或8 D.3或7 5.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4C.2cm或4D.2cm或二、填空题6.若a2−b2=16,a−b=13,则a+b的值为.7如图,在Rt△AOB中,,⊙O的半径为1,点P是AB边上的动点,过12.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .13.(2013•三明)如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.(1)判断线段AP与PD的大小关系,并说明理由;(2)连接OD,当OD与半圆C相切时,求»AP的长;(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.。
初中数学思想方法
初中数学思想方法数学思想方法是解决数学问题的灵魂,也是把数学知识转化为数学能力的桥梁。
初中数学中常用的思想方法有:整体思想、分类讨论思想、函数思想、方程思想、转化思想、类比思想、分类讨论思想等。
1、整体思想整体思想是从问题的整体性质出发,通过研究问题的整体形式、整体结构、整体与局部的内在等,找出解决问题的途径。
2、分类讨论思想当一个问题因为某种量或条件的改变,而引起演变结果的改变时,我们就需要对问题从各种不同的角度或分类讨论加以解决。
3、函数思想用运动变化的观点去分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系用函数表示出来。
4、方程思想方程思想就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。
5、转化思想转化思想是将要解决的问题转化成一个或几个已经解决的简单问题。
6、类比思想类比是根据两个具有相同或相似性质的事物之间进行比较,从而找到另外一些具有相同或相似性质的事物。
7、分类讨论思想分类讨论是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。
分类依赖于标准的确定,不同的标准会有不同的分类方式。
总之数学思想方法是分析解决数学问题的灵魂,也是数学知识的精髓,是把数学知识转化为数学能力的桥梁。
一、引言在现今的初中数学教学中,培养学生的数学思想方法已经成为了一个重要的目标。
《初中数学思想方法导引》这本书,以其独特的视角和深入的剖析,成为了初中数学教师的重要参考书籍。
本书主要介绍了初中数学中的各类思想方法,如方程思想、函数思想、化归思想等,对于提高学生的数学素养,增强他们的解题能力,具有极大的指导意义。
二、数学思想方法的重要性数学思想方法是一种对数学规律和数学本质的深刻认识和理解,是对数学知识进行高度概括和抽象的结果。
在初中数学教学中,培养学生的数学思想方法不仅可以提高学生的数学成绩,更重要的是可以培养他们的逻辑思维能力、创新能力和解决问题的能力。
数学思想在解题中的重要作用 二、整体思想
数学思想在解题中的重要作用二、整体思想整体思想就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想.用整体思想解题往往能起到化难为易,化繁为简的作用,甚至有时会绝路逢生,柳暗花明.例1 (山东省枣庄市)如图2,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A .315°B .270°C .180°D .135°分析:根据已知条件,显然无法直接求得∠1,∠2的值,若把∠1+∠2看作一个整体,利用三角形的外角性质和内角和定理问题就容易解决了.解:由三角形外角的性质可得,∠1=∠C+∠4,∠2=∠3+∠C ,所以∠1+∠2=∠C+∠4+∠3+∠C.因为∠C+∠3+∠4=180°,∠C=90°,所以∠1+∠2=180°+90°=270°,故应选B.评注:把∠1+∠2看作一个整体求值,把不易求解的问题简单化,充分体现了整体思想在解题中的作用.此题还可以根据四边形的内角和以及直角三角形两锐角互余求解.借助“整体思想”,加强宏观把握,可以给解题拓宽思路,节约时间.例2.已知24221x y k x y k +=⎧⎨+=+⎩, ,且10x y -<-<,则k 的取值范围为( ) A.112k -<<-;B.102k <<;C.01k <<;D.112k << 析解:常规思路是:解关于x 、y (用含k 的代数式表示),进而得到x-y ,再利用10x y -<-<,求出k ,但通过观察发现②-①式即得x-y ,视(x-y )为整体更妙,②-①,得x-y=1-2k ,所以-1<1-2k <0,112k <<,故选D . 例3. 如图1,在△ABC 中,∠B >∠C ,AD 是BC 边上的高,AE 是∠BAC 的平分线,求证:∠DAE =21(∠B -∠C ). 分析 要证明本题中的结论,由于AE 是∠BAC 的平分线,则有∠CAE =21∠BAC =21(180°-∠B -∠C ),而考虑到∠A +∠B +∠C =180°,即∠B +∠C =180°-∠A ,此时可视∠B +∠C 为一个整体,再由AD 是BC 边上的高,即可证明.① ②证明 因为AE 是∠BAC 的平分线(已知),所以∠CAE =21∠BAC (角平分线的定义), 即∠CAE =21(180°-∠B -∠C )=90°-21∠B -21∠C (三角形内角和定理及整体代换), 又因为AD 是BC 边上的高(已知),所以∠ADC =90°(高的定义),即∠DAC =90°-∠C (直角三角形的两个锐角互余),所以∠DAE =∠DAC -∠CAE =90°-∠C -(90°-21∠B -21∠C )=21(∠B -∠C )(整体代换).F例4. 某学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分.其中三位男生的方差为6(分2),两位女生的成绩分别为17分,15分.求这个学习小组5位同学考试分数的方差分析:要计算这个学习小组5位同学考试分数的方差,根据已知三名男生的方差为6(分2),可设这三名男生的得分分别是x 1,x 2,x 3,根据方差计算可得])16()16()16[(31232221-+-+-x x x =6,由此可得 232221)16()16()16(-+-+-x x x =18,将这个关系式作为一个整体,代入方差的计算公式可计算出5位同学考试分数的方差.解: 设这三名男生的得分分别是x 1,x 2,x 3,则有])16()16()16[(31232221-+-+-x x x =6,由此可得 232221)16()16()16(-+-+-x x x =18, 所以512=S [232221)16()16()16(-+-+-x x x +(17-16)2+(15-16)2]=4, 即这个学习小组5位同学考试分数的方差为4.点评:本题在计算过程中,通过将一个关系式看作一个整体代入计算,使问题得意解决.充分体现了整体思想在解决问题中的重要作用.例5、(芜湖市)已知113x y -=,则代数式21422x xy y x xy y----的值为 . 分析:由已知条件入手确定x 、y 都不等于0,据此利用分式的基本性质将求值式变形为含有已知条件的式子,再将已知条件整体代入求解.解:由已知条件可知x 、y 都不等于0,则xy ≠0,将yxy x y xy x ----22142的分子和分母都除以E D C B A 图1xy 得2)11(7)11(2----xy x y ,再将已知条件代入该式可得2)3(14)3(2----⨯=4. 例6、(赤峰市)已知114a b +=,则3227a ab b a b ab-+=+- . 分析:本题直接由已知求出a 、b 的值很困难,由已知可得a 、b 均不等于0,则根据分式的基本性质将求值式的分子、分母都除以ab 得722131-++-ab a b,再将已知条件整体代入该式即可使问题得解. 解:ab b a b ab a 7223-++-=722131-++-ab a b =74234-⨯-=1.例7.已知411242=++x x x ,求分式2243535x x x +-的值. 分析:由已知条件求出x 的值显然行不通.注意到已知条件的分子是单项式,而分母是多项式,故取倒数后整体代入,则可求解.解:由411242=++x x x 取倒数,得.41224=++xx x 化简,得.3122=+x x 所以原式=2235135xx +-1)1(3522-+=x x =.41335=-⨯= 温馨提示:对于某些条件分式的求值问题,运用整体代换思想,可收到化难为易、出奇制胜的解题效果.。
数学思想方法(整体思想、转化思想、分类讨论思想
数学思想方法(整体思想、转化思想、分类讨论思想专题知识突破五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是.思路分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积..考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
中考数学复习解题思想方法技巧--第一讲:整体思想
中考数学复习解题思想方法技巧第一讲:整体思想整体思想,就是探究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法。
从整体上去认识问题、思考问题,常常能化繁为简、变难为易。
整体思想的表现形式有:整体代入、整体约减、整体换元、整体合并等。
一、整体代入主体思想:求代数式的值时,通常会遇到各种各样关于未知数的关系式的条件,利用常规方法在这些关系式中求出未知数后再代入求值,其计算往往很复杂,甚至有时求不出具体的数值。
这时往往需要研究问题的条件和结论的整体形式,挖掘式子结构上的特征联系,将已知条件进行恰当变形,或把一些已知关系式作为整体,直接代入求值式中计算,过程简洁明了。
例题精析:m=1+,n=1-,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于()A.-5B.5C.-9D.9点拨提示:如果将m,n的值直接代入,运算量很大。
观察含a的方程中,7m2-14m和m=1+隐约有一定的关系,尝试将m=1+变形为m-1=,再两边平方可得m2-2m+1=2,整理得m2-2m=1;所以7m2-14m=7(m2-2m)=7×1=7。
用类似的处理方法整体可得3n2-6n 的值,整体代入即可求出a的值。
参考答案:Ca是方程x2-2011x+1=0的一个根,试求a2-2010a + 的值。
点拨提示:由已知得a2-2011a+1=0,直接解方程会有2个根,需要分别都代入求值,而且运算很大。
观察a2-2011a+1=0和所求代数式中的a2-2010a部分,隐约有一定的关系,尝试整体变形处理后再代入。
解题过程:由a2-2011a+1=0得a2-2010a=a-1①,即a2+1=2011a②,显然a≠0,两边同除以a得a+=2011③,将①、②、③式代入得:原式=a-1+ =a-1+= a+-1=2011-1=2010同步练习:当时,求多项式(4x3-2007x-2004)2004的值。
数学思想方法一整体思想(解析)(自己整理)
数学思想方法一整体思想整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想例1.已知114a b -=,则2227a ab b a b ab---+的值等于 ( ) A.6 B.6- C.125 D.27-分析:根据条件显然无法计算出a ,b 的值,只能考虑在所求代数式中构造出11a b-的形式,再整体代入求解.解:112242b 6112272(4)72()7a ab b a a b ab b a------===-+⨯-+-+说明:本题也可以将条件变形为4b a ab -=,即4a b ab -=-,再整体代入求解.例2.已知代数式25342()2x ax bx cx x dx++++,当1x =时,值为3,则当1x =-时,代数式的值为解:因为当1x =时,值为3,所以231a b c d +++=+,即11a b cd++=+,从而,当1x =-时,原式()21211a b c d-++=+=-+=+例3.已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.分析:要求多项式的值,直接代入计算肯定不是最佳方案,注意到222a b c ab bc ac ++---2221()()()2a b b c c a ⎡⎤=-+-+-⎣⎦,只要求得a b -,b c -,c a -这三个整体的值,本题的计算就显得很简单了.解:由已知得,1a b b c -=-=-,2c a -=,所以, 原式2221(1)(1)232⎡⎤=-+-+=⎣⎦ 说明:在进行条件求值时,我们可以根据条件的结构特征,合理变形,构造出条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化. 二.方程(组)与不等式(组)中的整体思想例4.已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是分析:本题如果直接解方程求出x ,y 再代入03x y <+<肯定比较麻烦,注意到条件中x y +是一个整体,因而我们只需求得x y +,通过整体的加减即可达到目的.解:将方程组的两式相加,得:3()53x y k +=+,所以513x y k +=+,从而50133k <+<,解得3655k -<<例5. 已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩的解为为分析:如果把56x y =⎧⎨=⎩代入3511x ay x by -=⎧⎨+=⎩,解出a ,b 的值,再代入3()()()11x y a x y x y b x y +--=⎧⎨++-=⎩进行求解,应当是可行的,但运算量比较大,相对而言比较繁琐. 若采用整体思想,在方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩中令x y mx y n+=⎧⎨-=⎩,则此方程组变形为3511m an m bn -=⎧⎨+=⎩,对照第一个方程组即知56m n =⎧⎨=⎩,从而56x y x y +=⎧⎨-=⎩,容易得到第二个方程组的解为11212x y ⎧=⎪⎪⎨⎪=-⎪⎩,这样就避免了求a ,b 的值,又简化了方程组,简便易操作.解:11212x y ⎧=⎪⎪⎨⎪=-⎪⎩说明:通过整体加减既避免了求复杂的未知数的值,又简化了方程组(不等式组),解答直接简便.例6.解方程 22523423x x x x+-=+分析:本题若采用去分母求解,过程很复杂和繁冗,根据方程特点,我们采用整体换元,将分式方程转化为整式方程来解.解:设223x x y +=,则原方程变形为54y y-=,即2450y y --=,解得15y =,21y =-,所以2235x x +=或2231x x +=-,从而解得152x =-,21x =,312x =-,41x =-,经检验1x ,2x ,3x ,4x 都是原方程的解.说明:(1)对于某些方程,如果项中含有相同部分(或部分相同)可把它看作一个整体,用整体换元进行代换,从而简化方程及解题过程.当然本题也可以设2234y x x =+-,将方程变形为54y y =+来解. (2)利用整体换元,我们还可以解决形如22315122x x x x -+=-这样的方程,只要设21x y x =-,从而将方程变形为15322y y +=,再转化为一元二次方程来求解. 例7. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?分析:要求的未知数是三个,而题设条件中只有两个等量关系,企图把甲、乙、丙各1件的钱数一一求出来是不可能的,若把甲、乙、丙各1件的钱数看成一个整体,问题就可能解决.解:设购甲、乙、丙各1件分别需x 元、y 元、z 元.依题意,得37315410420x y z x y z ++=++=⎧⎨⎩..,即2331533420()().()().x y x y z x y x y z ++++=++++=⎧⎨⎩解关于x y +3,x y z ++的二元一次方程组,可得x y z ++=105.(元) 答:购甲、乙、丙各1件共需1.05元.第9题YXO 1-14321I HEDBA说明:由于我们所感兴趣的不是x 、y 、z 的值,而是x y z ++这个整体的值,所以目标明确,直奔主题,收到了事半功倍的效果. 三.函数与图象中的整体思想例8.已知y m +和x n -成正比例(其中m 、n 是常数) (1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式. 解:(1)因y m +与x n -成正比例,故可设y m k x n k +=-≠()()0 整理可得y k x k n m =-+()因k ≠0,k 、-+()k n m 为常数,所以y 是x 的一次函数.(2)由题意可得方程组-=--+=-+⎧⎨⎩1517k k n m k k n m ()()解得k =2,k n m +=13. 故所求的函数解析式为y x =-213. 说明:在解方程组时,单独解出k 、m 、n 是不可能的,也是不必要的.故将k n m +看成一个整体求解,从而求得函数解析式,这是求函数解析式的一个常用方法.例9. 若关于x 的一元二次方程22(1)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.分析:此题如果运用根的判别式和韦达定理,解答此题较为困难.整体考虑,把一元二次方程22(1)20x a x a +-+-=与二次函数22(1)2y x a x a =+-+-联系起来,利用二次函数的图象来解题,则显得很直观,也较为容易.解:由题意可知,抛物线与x 轴的交点坐标,一个交点在点(1,0)的右边,另一个交点在点(1,0)-的左边,抛物线图象开口向上,则可得:当1x =时,0y <,当1x =-时,0y <,即2220a a a a ⎧+-<⎨-<⎩,∴20a -<<. 说明:(1)由于当1x =,1x =-时,0y <, 所以解答过程中不必再考虑0∆>了.(2)利用函数与图象,整体考察,是解决涉及方程(不等式)有关根的问题最有效的方法第11题OP FEDCBA在之一,在数学教学中应当引起足够的重视. 四.几何与图形中的整体思想例10.如图,123456∠+∠+∠+∠+∠+∠=分析:由于本题出无任何条件,因而单个角是无法求出的.利用三角形的性质,我们将12∠+∠视为一个整体,那么应与△ABC 中BAC ∠的外角相等,同理34∠+∠,56∠+∠分别与ABC ∠,ACB ∠的外角相等,利用三角形外角和定理,本题就迎刃而解了.解:因为12DAB ∠+∠=∠,34IBA ∠+∠=∠,56GCB ∠+∠=∠,根据三 角形外角定理,得360DAB IBA GCB ∠+∠+∠=°, 所以123456∠+∠+∠+∠+∠+∠=360°.说明:整体联想待求式之间的关系并正确应用相关性质是解决此类问题的关键. 例11.如图,菱形ABCD 的对角线长分别为3和4, P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .解:不难看出,四边形AEPF 为平行四边形, 从而△OAF 的面积等于△OAE 的面积, 故图中阴影部分的面积等于△ABC 的面积, 又因为12ABC ABCD S S ∆=1134322=⨯⨯⨯=,所以图中阴影部分的面积为3. 说明:本题中,△OAF 与△OAE 虽然并不全等,但它们等底同高,面积是相等的.因而,可以将图中阴影部分的面积转化为△ABC 的面积.我们在解题过程中,应仔细分析题意,挖掘题目的题设与结论中所隐含的信息,然后通过整体构造,常能出奇制胜.例12.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小关系,并说明理由.解:AF 与BC CF +的大小关系为AF BC CF =+.分别延长AE ,DC 交于点G ,因为E 为BC 边的中点,因而易证△ABE ≌△GCE ,所以AB GC =,并且BAE CGE ∠=∠,AB BC =,从而BC CF GF +=.由于AE 平分BAF ∠,所以BAE FAE ∠=∠,故FAE CGE ∠=∠,即△AFG 为等腰三角形,即AF GF =,所以,AF BC CF =+.说明:证明一条线段等于另外两条线段的和差,常常用截长法或补短法把问题转化为证明两条线段相等的问题,本题中我们利用三角形全等将BC CF +转化为FG 这一整体,从而达到了解决问题的目的.用整体思想解题不仅解题过程简捷明快,而且富有创造性,有了整体思维的意识,在思考问题时,才能使复杂问题简单化,提高解题速度,优化解题过程.同时,强化整体思想观念,灵活选择恰当的整体思想方法,常常能帮助我们走出困境,走向成功.练习一、选择题1. (2011盐城,4,3分)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.52. (2011,台湾省,26,5分)计算(250+0.9+0.8+0.7)2﹣(250﹣0.9﹣0.8﹣0.7)2之值为何?( ) A 、11.52 B 、23.04C 、1200D 、24003. 10(2011山东淄博10,4分)已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a---错误!未找到引用源。
数学思想方法整体思想、转化思想、分类讨论思想
2014年中考数学二轮复习精品资料数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2013•吉林)若a-2b=3,则2a-4b-5= .思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可.解:2a-4b-5=2(a-2b)-5=2×3-5=1.故答案是:1.点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值.对应训练1.(2013•福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.1.1000考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学思想之整体思想
整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.
一.数与式中的整体思想
【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( )
A .18
B .12
C .9
D .7
【例2】.已知114a b -=,则2227a ab b a b ab
---+的值等于( ) A.6 B.6- C.
125 D.27-
【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.
二.方程(组)与不等式(组)中的整体思想
【例4】已知24122x y k x y k +=+⎧⎨
+=+⎩
,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56
x y =⎧⎨=⎩,那么关于x ,
y 的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩
的解为为 【例6】.解方程 22523423x x x x +-=+
三.函数与图象中的整体思想
【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式
四.几何与图形中的整体思想
【例8】.如图, 123456∠+∠+∠+∠+∠+∠=
【例9】.如图,菱形ABCD 的对角线长分别为3和4,
P 是对角线AC 上任一点(点P 不与A ,C 重合)
,且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则
图中阴影部分的面积为 .
【例10】.如图,在正方形ABCD 中,E 为BC 边的
中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小
关系,并说明理由.
【巩固练习】:
1.当代数式a -b 的值为3时,代数式2a -2b+1的值是 ( )
A .5
B .6
C .7
D .8
2.用换元法解方程(x 2+x) 2+2(x 2+x)-1=0,若设y=x 2+x ,则原方程可变形为 ( )
A .y 2+2y+1=0
B .y 2-2y+1=0
C .y 2+2y -1=0
D .y 2-2y -1=0
3.当x=1时,代数式a x 3+bx+7的值为4,则当x=-l 时,代数式a x 3+bx+7的值为
( )
A .7
B .10
C .11
D .12
4.若方程组31,33x y k x y +=+⎧⎨+=⎩
的解x ,y 满足0<x+y<1,则k 的取值范围是 ( ) A .-4<k<0 B .-1<k<0 C .0<k<8 D .k>-4
5.(08芜湖)已知113x y -=,则代数式21422x xy y x xy y
----的值为_________.
6.已知x2-2x-1=0,且x<0,则
1
x
x
-=__________
.
7.如果(a2+b2) 2-2(a2+b2)-3=0,那么a2+b2=_________.
8.如图,在高2米,坡角为30°的楼梯表面铺地毯,则地毯长度至少需________米.
9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和为__________cm2.10.(07泰州)先化简,再求值:2
22
412
4422
a
a a a a a
⎛⎫
-
-÷
⎪
-+--
⎝⎭
,其中a是方程x2+3x+1=0的根.
11.(08苏州)解方程:
()2
2
211
60
x x
x x
++
+-=
.。