积分变换学习笔记

合集下载

复变函数与积分变换知识点总复习

复变函数与积分变换知识点总复习

解析函数 f (z) 的导数仍为解析函数, 它的 n阶
导数为:
f
(n)
( z0
)
n! 2πi
C
(z
f
(z) z0 )n1
dz
(n 1,2,)
其中C 为在函数 f (z) 的解析区域 D内围绕 z0 的
任何一条正向简单闭曲线, 而且它的内部全含于 D.
8.调和函数与解析函数的关系
调和函数
满足 Laplace
但u iv不是解析函数。
证明:
因为 u x
2x,
2u x 2
2,
u y
2 y,
2u y 2
2,
2u 2u 2 2 0,所以,u是调和函数。 x2 y2
同理 2v 6x2 y 2y3 , 2v 6x2 y 2y3 , x2 (x2 y2 )3 y2 (x2 y2 )3
2v x 2
解:u(x, y) a ln(x2 y2 ),v(x, y) arct an y ,则 x
u 2ax , u 2ay , v y , v x , x x2 y2 y x2 y2 x x2 y2 y x2 y2 在区域x 0内连续,且 u v , v u 在区域x 0上成立时,2a 1, x y x y 即,当a 1 时,函数f (z)在区域x 0内是解析的。
Байду номын сангаас
而 u y2, u 2xy, v 2xy, v x2,在复平面上
x
y
x
y
处处连续,当x y 0时满足C R方程,
故f (z)仅在(0,0)点可导,在复平面上处处不解析。
2)因为f (z) x2 iy,则u(x, y) x2, v(x, y) y,

积分变换学习笔记

积分变换学习笔记

积分变换-意义积分变换无论在数学理论或其应用中都是一种非常有用的工具。

最重要的积分变换有傅里叶变换、拉普拉斯变换。

由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。

通过参变量积分将一个已知函数变为另一个函数。

已知ƒ(x),如果存在(α、b可为无穷),则称F(s)为ƒ(x)以K(s,x)为核的积分变换。

一、傅立叶变换意义尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。

"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇定义f(t)满足傅立叶积分定理条件时,下图①式的积分运算称为f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。

F(ω)叫做f(t)的象函数,f(t)叫做F(ω)的象原函数。

欧拉公式: ∂+∂=∂sin cos i ei二、傅里叶变换与逆变换的性质 1.线性性质:2. 位移性质()1(),22Dirichlet ()()()Fourier ()cos sin 2T T T T T n n n T T f t T f t f t f t t a f t a n t b n t ωω∞=⎡⎤--⎢⎥⎣⎦∙∙=++∑为周期函数,在上满足条件:连续或仅有有限个第一类间断点;仅有有限个极值点则可展开为级数,且在连续点处成立:)]([)]([)]()([)]([)]([)]()([111ωωωωG B F A BG AF t g b t f a t bg t af ---+=++=+F F F F F F 为实常数,则,若00,)()]([ωωt F t f =F3. 相似性:4. 微分性:5、积分性:6、帕塞瓦尔(Parserval)等式-能量积分 设F[f(t)]=F(w),则有()000100[()]()[()]()[()]()j t j tj tf t t eF F ef t ef t F ωωωωωωωω---=-==-,或F F F 1[()]()0,11[()]();[()]()f t F a t f at F F at f a a a aωω-=≠==若,则F F F 则,且若原像函数的微分性:,0)(lim )()]([==+∞→t f F t f t ωF [()]()f t j F ωω'=F [()]()lim ()(0)0,1[()]().tt t f t F f s ds F f s ds F j ωωω-∞→+∞-∞====⎰⎰设,若则F F []221()d ().2f t t F d ωωπ+∞+∞-∞-∞=⎰⎰五个重要的傅里叶变换(所有的傅里叶变换都无须用公式直接计算而可由傅里叶变换的性质导出.)7、卷积与卷积定理卷积的简单性质:022j 04()11()()j 1()j e2()e e t t t t u t u t e βωωββδπδωωβωπδωωπβ---↔↔+↔+↔-↔⎰+∞∞--=*dss t g s f t g f )()()(()()()()()()()()()()()()()()()()f g g ff g h f g f h f g h f g hA f g Af g f Ag A df g t f t g t f t g t dtf t f t f t δδ∙*=*∙*+=*+*∙**=**∙*=*=*''∙*=*+*∙*=*=交换律:加法分配律:结合律:数乘:为常数求导:。

复变函数与积分变换公式笔记

复变函数与积分变换公式笔记

复变函数与积分变换第一章 复数与复变函数1. 任何一个复数 z ≠0 有无穷多个辐角,如θ1是辐角,则有Arg z = 1+2kπ (k =0,±1,±2,…)表示 z 的全部辐角,其中满足-π< 0≤π的辐角 0称为辐角 Argz 的主值, 记为 0=arg z . 2. 棣莫弗公式:(cosθ + sinθ) =cosnθ + sin θ1. 柯西–黎曼方程:第二章 解析函数∂= ∂,∂= −∂ ∂∂∂∂2. 如果二元实函数 ( , )在区域 D 内有二阶连续偏导数,并且满足拉普拉斯方程:∂2 ∂2∂ 2 + ∂ 2 = 0则称 ( , )为区域 D 内的调和函数。

3. 共轭调和函数公式:( , )( , ) = ∫ − ( 0, 0) ∂ ∂d + ∂ ∂d + C其中( 0, 0)为 D 内一个定点,( , )为 D 内任一点,C 为任意常数。

该积分与路径无关。

4. 指数函数的定义5. 指数函数的性质 = + = (cos + sin )2 = 16.ln ,称为 Ln z 的主值,于是有ln = ln | | + arg而其他各支可由下式表达:Ln = ln + 2 ( = ±1, ±2, … )7.余弦函数与正弦函数:cos =sin =8.双曲正弦函数和双曲余弦函数: sh =chz =+ −2 − −2− −2 + −2C C 01. 复积分的计算第三章 复变函数的积分∫ ( )d = ∫ [ ( )] ′( )dC2. 计算:C 为单位圆周| | = 1的上半部分从 1 = 1到 2 = −1的弧。

C 的参数方程为 = (0 ≤ ≤ ),d = d .3. 柯西积分公式:1( 0) = 2 ∮( ) − 0d4. 高阶导数公式:( )∮ C − 0 d = 2 ∙ ( 0)( )(0 !) =2 ( )∮ ( − ) +1d ( = 1,2, ⋯ ).( )∮ d = 2 ( )( ) ( = 1,2, ⋯ ). 0 C( − 0) +1 !1. 幂级数收敛半径公式为第四章级数∞∑=0R = lim ||.2. 幂级数基本展开公式:→∞ +111 −= 1 + + 2 + ⋯ + + ⋯ ,| | < 1; ∞11 += ∑(−1) ,| | < 1; =0 ∞= ∑ =0∞!,| | < +∞;2 +1 sin = ∑(−1) ,| | < +∞;(2 + 1)!=0∞cos = ∑ =0(−1) 2(2 )!,| | < +∞;3. 函数展开结果中可能不含 z 的负幂项,原因在于 ( )在 C 内是解析的。

核心笔记积分知识点总结

核心笔记积分知识点总结

核心笔记积分知识点总结积分是微积分的一个重要概念,是对函数的一种特定运算,它在数学中有着极其重要的地位。

在研究微积分过程的知识时,积分是一个非常关键的知识点。

本文将对积分的基本概念、性质与定理、常见积分表、常见积分方法等知识点进行详细总结。

一、基本概念1. 定积分:用极限的思想来定义定积分2. 不定积分:利用定积分的基本性质,可以得到不定积分的定义3. 定积分的几何意义:用定积分的概念解释曲线下面积4. 不定积分的基本性质:不定积分的线性性、常数乘积法则和分步积分法则二、积分的性质与定理1. 积分的基本定理:积分和微分的关系2. 积分的换元积分法:变量代换在积分中的应用3. 积分的分部积分法:多次使用积分的分部积分法4. 定积分性质:定积分的基本性质,如可加性、保号性、保序性等5. 积分的估值法:用积分估值法求不等式的值三、常见积分表1. 常数函数积分表2. 幂函数积分表3. 指数函数积分表4. 三角函数积分表5. 反三角函数积分表6. 对数函数积分表四、常见积分方法1. 利用换元积分法计算积分2. 利用分部积分法计算积分3. 利用倒代换积分法计算积分4. 利用分式分解积分法计算积分5. 利用换限积分法计算积分五、积分在实际问题中的应用1. 积分在几何学中的应用:计算曲线下面积、曲线的弧长、曲线的旋转体体积2. 积分在物理学中的应用:计算质点的位移、速度、加速度等物理量3. 积分在工程学中的应用:计算物体的质心、转动惯量、容积等六、积分的应用拓展1. 微积分中的应用:积分在微积分中的应用,如面积计算、曲线的弧长计算等2. 泛函分析中的应用:积分在泛函分析中的应用,如函数空间中的积分运算等3. 偏微分方程中的应用:积分在偏微分方程中的应用,如求解偏微分方程的积分形式等综上所述,积分是微积分中的重要概念,它有着广泛的应用,包括在数学、物理、工程等领域中都有着重要的地位。

掌握积分的基本概念、性质与定理、常见积分表、常见积分方法等知识点,对于学习微积分和实际问题的应用都有着重要的意义。

积分变换与场论复习重点

积分变换与场论复习重点

t 0
求拉普拉斯逆变换的方法主要有留数法、部 分分式法、查表法等.
六. 拉氏变换的卷积与卷积定理 (1).定义: f1 (t ) f2 (t ) 0 f1 ( ) f2 (t )d
t
(2)拉氏变换的卷积定理 若 ℒ f1 (t ) F1 (s), ℒ f 2 (t ) F2 (s), 则
f2 (t )

1 F f1 (t ) f 2 (tBiblioteka ) F1 ( ) F2 ( ) 2
六、微分、积分方程的Fourier变换解法 象原函数 (方程的解)
象函数
取Fourier逆变换
解代数 方程 微分积分方程 象函数的 代数方程
取Fourier变换
第二章 拉普拉斯变换
一. 定义式
2). 位移性质:
(1)象原函数的位移性质
若F ( ) =F
f (t ), t 0 为实常数,则
F
f (t t0 ) ei t0 F ()
(2)象函数的位移性质
若F ( ) =F
f (t ), 0 为实常数,则
1
F
F ( 0 ) f (t )ei0t
n (n)
t
设F [ f (t )] F ( ),若 tlim f (t )dt 0, 则
F [
t
1 f (t )dt ] F ( ) . i
五.卷积的概念 1.定义: 若函数 f1 (t ),
f 2 (t ) 定义在 , 上,

函数 f1 (t ), f 2 (t ) 的卷积, f1 (t ) f2 (t ) f1 ( ) f 2 (t )d
(n)

复变函数及积分变换重点公式归纳

复变函数及积分变换重点公式归纳

复变函数及积分变换重点公式归纳复变函数是指定义在复数域上的函数,其自变量和函数值都是复数。

复变函数可以表示为两个实变量的函数,即f(z)=u(x,y)+iv(x,y),其中u(x,y)和v(x,y)是实变量的函数。

复变函数的积分变换是指对复变函数进行积分变换,得到新的复变函数。

在复变函数的积分变换中,有一些重要的公式需要归纳,包括:1.度量公式:对于复变函数f(z)=u(x,y)+iv(x,y),其微分形式为dz=dx+idy。

根据度量公式,有dx=\frac{1}{2}(dz+d\bar{z}),dy=\frac{1}{2i}(dz-d\bar{z})。

2.柯西-黎曼方程:对于复变函数f(z)=u(x,y)+iv(x,y),满足柯西-黎曼方程的充要条件是u_x=v_y和u_y=-v_x。

3.柯西-黎曼积分定理:对于一个闭合曲线C,如果复变函数f(z)在C内解析(即在C内柯西-黎曼方程成立),那么有\oint_C f(z)dz=0。

4.柯西积分公式:对于一个有界区域D和在D内解析的复变函数f(z),柯西积分公式为\oint_C \frac{f(z)}{z-a} dz=2\pi i f(a),其中C是D内包围点a 的闭合曲线。

5.柯西积分公式的推广:对于一个有界区域D和在D内解析的复变函数f(z),柯西积分公式的推广形式为\oint_C \frac{f(z)}{(z-a)^n} dz=2\pi i \frac{f^{(n-1)}(a)}{(n-1)!},其中C是D内包围点a的闭合曲线。

6.柯西积分公式的应用:柯西积分公式可以用于计算复变函数的积分,如计算围道上的积分或者在无穷远处的积分等。

7.柯西主值公式:对于一个有界区域D和在D内解析的复变函数f(z),柯西主值公式为\frac{1}{2\pi i}\int_C \frac{f(z)}{z-a} dz=PV\frac{1}{2\pii}\int_C \frac{f(z)}{z-a} dz=PVf(a)+\frac{1}{2}f(a),其中PV表示柯西主值。

复变函数与积分变换知识点总结

复变函数与积分变换知识点总结

复变函数与积分变换知识点总结本文主要介绍复变函数与积分变换的相关知识点,包括基本概念、公式、定理及其应用。

复变函数是数学中重要的一门学科,它涉及到多种数学领域,如数学分析、微积分、拓扑学、数论等,具有广泛的应用价值和重要性。

一、复变函数和复数复变函数是指将复数作为自变量和函数值的函数,也就是输出值为复数的函数。

在复平面上,复数可以表示为 x+yi 的形式,其中 x 和 y 分别表示实部和虚部,i 是虚数单位。

从图形上看,复数可以看成是在平面坐标系上的点,其中实部 x 对应水平方向,虚部 y 对应垂直方向。

二、重要公式和定理1. 欧拉公式:e^(iθ)=cosθ+isinθ欧拉公式是复数理论中非常重要的公式,它表明了复数极坐标形式和直角坐标形式之间的关系。

欧拉公式常常被用来化简复数幂、求解复数方程等等。

2. 柯西-黎曼条件柯西-黎曼条件是指函数 f(z)=u(x,y)+iv(x,y) 在某一点处可导的充分必要条件。

它包括两个部分:一是实部和虚部的偏导数存在且相等;二是实部和虚部的偏导数在该点处连续。

3. 洛朗级数洛朗级数是指将复变函数在一个环域上展开成为一定形式的级数,它可以看成是泰勒级数的一种推广形式。

洛朗级数可以用来处理复变函数的奇点、留数及边界值等问题。

4. 度量定理度量定理是指一个可积函数的形式化定义,它对于研究函数的特殊性质和进行积分变换有很重要的作用。

度量定理是复变函数理论中的一个基本定理,它可用来刻画单复变函数的局部和全局性质。

三、应用及例子复变函数和积分变换广泛应用于数学、物理、工程、计算机科学等领域。

其中,最为著名的应用包括热传导方程、电动力学、量子力学等等。

下面列举一些具体的例子:1. 应用于调制技术调制技术是指将信息信号通过某种方式转换成为载波信号,以达到传输信号的目的。

而在调制过程中,使用的正交变换中的基函数,就是一种特殊的复变函数。

2. 应用于信号处理信号处理是指对信号进行数字化、滤波、噪声抑制等一系列工作,以提高信号的质量和准确度。

积分变换主要公式超强总结 (1)

积分变换主要公式超强总结 (1)

一、傅里叶变换1、傅里叶积分存在定理:设()f t 定义在(),-∞+∞内满足条件:1)()f t 在任一有限区间上满足狄氏条件; 2)()f t 在(),-∞+∞上绝对可积(即()f t dt +∞-∞⎰收敛;则傅氏积分公式存在,且有()()()()()(),1[]11002,2iw iwt f t t f t f e d e dw f t f t t f t τττπ+∞+∞--∞-∞⎧⎪=-⎨++-⎪⎩⎰⎰是的连续点是的第一类间断点2、傅里叶变换定义式:()[]()()iwt F f t F w f t e dt +∞--∞==⎰ 1-2 傅里叶逆变换定义式:()11[]()()2iwt F F w f t F w e dw π+∞--∞==⎰1-33、常用函数的傅里叶变换公式()1()FFf t F ω-−−→←−− 矩形脉冲函数1,22()sin 20,2F F E t E f t t ττωτω-⎧≤⎪⎪−−→=⎨←−−⎪>⎪⎩1-4 单边指数衰减函数()()1,0110,0tFFe t e t F e t iw j t βββω--⎧≥−−→=⇒=⎡⎤⎨←−−⎣⎦++<⎩ 1-5 单位脉冲函数 ()11FFt δ-−−→←−− 1-6 单位阶跃函数 ()()11FFu t w iwπδ-−−→+←−− 1-7 ()112F Fw πδ-−−→←−− 1-8 ()12F Ft j πδω-−−→'←−− 1-9 ()0102F j t Fe ωπδωω-−−→-←−− 1-10 ()()1000cos FFt ωπδωωδωω-−−→++-⎡⎤←−−⎣⎦1-11()()1000sin F Ft j ωπδωωδωω-−−→+--⎡⎤←−−⎣⎦1-12 4、傅里叶变换的性质设()()[]F f t F w =, ()()[]i i F f t F w =(1)线性性:()()1121()()FFf t f t F F αβαωβω-−−→++←−−1-13 (2)位移性:()()010Fj t Ff t t e F ωω--−−→-←−− 1-14 ()010()F j t Fe f t F ωωω-−−→-←−− 1-15 (3)微分性:()1()FFf t j F ωω-−−→'←−− 1-16 ()()()1()F n n Ff t j F ωω-−−→←−− 1-17 ()()1()FFjt f t F ω-−−→'-←−− 1-18 ()()()()1()Fn n Fjt f t F ω-−−→-←−− 1-19 (4)积分性:()11()tFFf t dt F j ωω--∞−−→←−−⎰ 1-20 (5)相似性:11()FFf at F a a ω-⎛⎫−−→←−− ⎪⎝⎭1-21 (6)对称性:()1()2FFF t f πω-−−→-←−− 1-22 上面性质写成变换式如下面:(1)线性性:[]1212()()()()F f t f t F w F w αβαβ⋅+⋅=⋅+⋅ 1-13-1[]11212()()()()F F w F w f t f t αβαβ-⋅+⋅=⋅+⋅(,αβ是常数)1-13-2(2)位移性:[]0()F f t t -=()0iwt e F w - 1-14()000()()iw t w w w F e f t F w F w w =-⎡⎤==-⎣⎦ 1-15(3)微分性:设+∞→t 时,0→)t (f , 则有[]()()()()[]()F f t iw F f t iw F w '== 1-16()()()()()[]()n n n F f t iw F f t iw F w ⎡⎤==⎣⎦1-17[]()()dF tf t jF w dw= 1-18 ()()nnnn d F t f t j F w dw ⎡⎤=⎣⎦ 1-19(4)积分性:()()tF w F f t dt iw-∞⎡⎤=⎢⎥⎣⎦⎰ 1-20(5)相似性:[]1()()wF f at F a a=1-21-1 翻转性:1=a 时()()w F t f F -=-][ 1-21-2(6)对称性:设 ()()w F t f −→←,则 ()()w f t F π2−→←- 或 ()()2F t f w π←−→- 1-225、卷积公式 :)()(21t f t f *=τττd t f f )()(21-⎰+∞∞-。

积分变换文字总结(精选3篇)

积分变换文字总结(精选3篇)

积分变换文字总结第1篇我们称 \mathcal{L}[f(t)]=F(s)=\int_{0}^{+\infty} f(t)e^{-st}\mathrm{d}t为拉普拉斯变换。

拉普拉斯变换是一个特殊的傅里叶变换。

我们可以直接有定义得出:\mathcal{L}[f(t)]=\mathcal{F}[f(t)u(t)e^{-\beta t}]我们有:拉普拉斯变换也满足如下几个性质:这个微分性质可以用来求一些特殊函数的拉普拉斯变换,比如:f(t)=e^t\Rightarrow f(0)=1,f'(t)=e^t\Rightarrow\mathcal{L}[e^t]=s\mathcal{L}[e^t]-1\Rightarrow(s-1)\mathcal{L}[e^t]=1 所以 \mathcal{L}[e^t]=\frac{1}{s-1}积分性质也能得到一个非常重要的计算反常积分的方法:\mathcal{L}[\frac{f(t)}{t}]=\int_0^{+\infty}\frac{f(t)}{t}e^{-st}\mathrm{d}t=\int_s^{+\infty}F(s')\mathrm{d}s' 取 s=0 有我们还有性质:我们可以由位移性质得到一个比较重要的拉普拉斯变换}}:\mathcal{L}^{-1}[\frac{1}{s+a}]=\mathcal{L}^{-1}[\frac{1}{s-1+(1+a)}]=\mathcal{L}^{-1}\{\frac{1}{[s-(-1-a)]-1}\}=e^{-(1+a)t}e^t=e^{-at}即: \mathcal{L}[e^{at}]=\frac{1}{s-a}不同于傅里叶变换,我们并没有直接给出拉普拉斯逆变换的公式,不过我们说过有\mathcal{L}[f(t)]=\mathcal{F}[f(t)u(t)e^{-\beta t}] 所以我们可以得到:注意奇点和所要用的函数并不一样!我们可以用此性质来求微分方程:如: y''+2y'-3y=e^{-t},y(0)=0,y'(0)=1令 \mathcal{L}[y(t)]=Y(s)\Rightarrow s^2Y(s)-1+2sY(s)-3Y(s)=\frac{1}{s+1}\Rightarrow Y(s)=\frac{s+2}{(s+1)(s-1)(s+3)}\Rightarrow...剩下的就很好处理了。

复变函数与积分变换学习笔记

复变函数与积分变换学习笔记

复变函数与积分变换学习笔记第二章解析函数一、复变函数的导数及微分1、导数的定义2、可导与连续3、求导法则实变函数的求导法则可以不加更改地推广到复变函数中来4、微分的概念与一元实变函数的微分概念完全一致二、解析函数的概念1、解析函数的定义如果函数f(z)在z0及z0的邻域内处处可导,那么称f(z)在z0解析。

如果函数f(z)在区域D内每一点解析,则称f(z)在区域D内解析。

或称f(z)是区域D内的一个解析函数(全纯函数或正则函数)2、奇点的定义如果函数f(z)在z0不解析,那么称z0为f(z)的奇点。

根据定义可知,函数在区域内解析和区域内可导是等价的。

但是,函数在一点处解析和一点处可导是不等价的,即在一点处可导,不一定在该点处解析。

函数在一点处解析比在该点处可导的要求高得多。

定理(1)在区域D内解析的两个函数f(z)和g(z)的和、差、积、商(除去分母为零的点)在D内解析。

(2)设函数h=g(z)在z平面上的区域D内解析,函数w=f (h)在h平面上的区域G内解析。

如果对于D内的每个点z,函数g (z)的对应值h都属于G,那么复合函数w=f|g(z)|在D内解析。

根据定理可知:(1)所有多项式在复平面内是处处解析的。

(2)任何一个有理分式函数P(z)/Q(z)在不含分母为零的点的区域内是解析的,使分母为零的点是它的奇点。

注意:复变函数的导数定义与一元实变函数的导数定义在形式上是完全一样的,它们的求导公式与求导法则也一样,然而复变函数极限存在要求与z趋于零的方式无关,这表明它在一点可导的条件比实变函数严格得多。

第二节、函数解析的充要条件一、主要定理定理一:设函数f(z)=u(x,y)+iv(x,y)定义在区域D内,则f(z)在D内一点z=x+yi 可导的充要条件是:u(x,y)与v(x,y)在点(x,y)可微,并在该点满足柯西-黎曼方程:?u?v?u==-,x?y?y ?vx 。

根据定理一,可得函数f(z)=u(x,y)+iv(x,y)在点z=x+yi处的导数公式:f'(z)u =+ix ?vx1=iu?v+y?y。

积分变换复习提纲(总结)

积分变换复习提纲(总结)

积分变换复习提纲(20学时)——基本内容第一章 Fourier变换(一)目的与要求1.熟悉Fourier积分公式与Fourier积分存在定理,理解Fourier变换与逆变换的概念,单位脉冲函数的概念;2.了解周期函数的Fourier级数及其复数形式,Fourier变换的物理意义-频谱,卷积与卷积定理,单位脉冲函数的性质;3.掌握一些函数的Fourier变换与逆变换的求法,Fourier变换与逆变换的性质。

(二)教学内容第一节Fourier积分1.主要内容:傅里叶积分。

2.基本概念和知识点:Fourier积分公式与Fourier积分存在定理。

3.问题与应用(能力要求):熟悉Fourier积分公式与Fourier积分存在定理.第二节Fourier变换1.主要内容:傅里叶变换.2.基本概念和知识点:傅里叶变换及其逆变换的概念,单位脉冲函数的性质,Fourier变换的物理意义—频谱。

3.问题与应用(能力要求):理解傅里叶变换及其逆变换的概念,了解单位脉冲函数的性质,Fourier变换的物理意义—频谱。

第三节Fourier变换的性质1.主要内容:傅里叶变换的性质。

2.基本概念和知识点:傅里叶变换的性质。

3.问题与应用(能力要求):掌握傅里叶变换的性质,一些函数的Fourier变换与逆变换的求法。

第四节卷积与相关函数1.主要内容:卷积与相关函数。

2.基本概念和知识点:卷积与相关函数的概念,卷积定理。

3.问题与应用(能力要求):了解卷积与相关函数的概念,卷积定理。

第五节Fourier变换的应用1.主要内容:Fourier变换的应用。

2.基本概念和知识点:微分方程的Fourier变换解法。

3.问题与应用(能力要求):掌握一些微分方程的Fourier变换解法。

(三)课后练习;31),3);4;习题二1;31);7;9;12;习题三2;3;4;7;8;10;112),习题一21)2);习题四16) 8);2;52) 4)5)6).习题五1;2;32);42)。

复变函数与积分变换知识点总结

复变函数与积分变换知识点总结

复变函数与积分变换知识点总结复变函数与积分变换是数学中重要的概念和工具,广泛应用于物理、工程、经济等领域。

复变函数是指定义在复平面上的函数,具有复数作为自变量和函数值,积分变换是指通过对函数进行积分操作来获得新的函数。

本文将对复变函数与积分变换的相关知识进行总结,包括复变函数的定义与性质、积分变换的定义与性质、常见的复变函数以及常见的积分变换。

一、复变函数的定义与性质1. 复变函数的定义:复变函数是指定义在复平面上的函数,具有复数作为自变量和函数值。

一般来说,复变函数可以写成f(z)=u(x,y)+iv(x,y),其中z=x+iy表示复平面上的点,u(x,y)和v(x,y)分别是实部和虚部函数。

2.复变函数的性质:(1)连续性:复变函数在复平面上连续,当且仅当实部和虚部函数分别在该点连续。

(2)可微性:复变函数在复平面上可微,当且仅当实部和虚部函数具有一阶连续偏导数,并满足复合函数的求导法则。

(3)调和函数:实部和虚部函数都是二阶偏导数连续的函数,若满足拉普拉斯方程△u=0,则称u(x,y)为调和函数。

二、积分变换的定义与性质1. 积分变换的定义:积分变换是一种将函数通过积分操作转换为另一种函数的方法。

一般来说,积分变换可以写成F(s)=∫f(t)e^(-st)dt,其中s为复变量,f(t)为原函数。

2.积分变换的性质:(1)线性性:积分变换具有线性性质,即对于常数a和b,以及函数f(t)和g(t),有积分变换[a*f(t)+b*g(t)](s)=a*F(s)+b*G(s)。

(2)平移性:若对于函数f(t),其积分变换为F(s),则e^(at)*f(t)的积分变换为F(s-a)。

(3)卷积性:若函数f(t)和g(t)的积分变换分别为F(s)和G(s),则f(t)*g(t)的积分变换为F(s)*G(s)。

三、常见的复变函数1. 复指数函数:复指数函数的表达式为e^(z)=e^(x+iy)=e^x*cos(y)+ie^x*sin(y),其中x和y分别是实部和虚部。

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知识点归纳

复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctan y x之间的关系如下:当0,x >arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二)复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==,则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

复变函数与积分变换 课程笔记

复变函数与积分变换 课程笔记

笔记前言:本笔记的内容是去掉步骤的概述后,视频的所有内容。

本猴觉得,自己的步骤概述写的太啰嗦,大家自己做笔记时,应该每个人都有自己的最舒服最简练的写法,所以没给大家写。

再是本猴觉得,不给大家写这个概述的话,大家会记忆的更深,掌握的更好!所以老铁!一定要过呀!不要辜负本猴的心意!~~~【祝逢考必过,心想事成~~~~】【一定能过!!!!!】复变函数与积分变换第一课一、 复数的加减乘除举例:①(2+3i)+(3+4i)=(2+3)+(3+4)i =5+7i②(3+4i)−(2+3i)=(3−2)+(4−3)i =1+i③(2+3i)×(3+4i)=2×3+2×4i+3i×3+3i×4i =6+8i+9i −12 =−6+17i ④ 2+3i 3+4i=(2+3i)(3−4i)(3+4i)(3−4i)=6−8i+9i+1232−(4i)2=18+i 9+16=1825+125i二、 求复数的实部与虚部例1:已知z=9−10i ,试求Re(z),Im(z)。

Re(z)=9,Im(z)=−10例2:已知z=3+3i ,w=z−1z+i ,试求Re(w),Im(w)。

w=z−1z+i=3+3i−13+3i+i=2+3i 3+4i=1825+125i猴博士爱讲课Re(w)=1825,Im(w)=125三、 求某复数的共轭复数例1:已知z=9−10i ,试求 z̅。

z ̅=9+10i例2:已知z=3+3i ,试求z−1z ̅+7i 。

z−1z̅+7i =3+3i−13−3i+7i =2+3i3+4i =1825+125i四、 求模、辐角和辐角主值例1:已知z=1+i ,试求z 的模、辐角、辐角主值。

∵ Re(z)=1,Im(z)=1 ∴ |z|=√12+12=√2∵ arg(z)∈(−π,π]猴博士爱讲课∴ arg(z)=π4Arg(z)=π4+2kπ,k=0,±1,±2···例2:已知w=−2+2i ,试求w 的模、辐角、辐角主值。

积分变换公式知识点总结

积分变换公式知识点总结

积分变换公式知识点总结一、积分变换的概念积分变换是微积分学中的一个重要概念,它是对函数进行变换的一种方法,通过对函数进行积分变换,可以得到原函数的一些新的性质和特征。

积分变换被广泛应用于信号处理、控制系统、电路分析等领域。

二、常见的积分变换公式1. 恒等式公式1)积分的线性性质:若f(t)和g(t)都在区间[a, b]上可积,则有∫[a, b](af(t) + bg(t))dt = a∫[a, b]f(t)dt + b∫[a, b]g(t)dt。

2)区间可加性:如果函数f(t)在区间[a, c]上可积,那么f(t)在区间[a, b]和区间[b, c]上都可积,并且有∫[a, c]f(t)dt = ∫[a, b]f(t)dt + ∫[b, c]f(t)dt。

3)可积函数的基本性质:若函数f(t)在区间[a, b]上可积,那么f(t)在这个区间的任何子集上也可积,且积分的值是相同的。

2. 基本积分变换公式1)积分的基本性质:∫kf(t)dt = k∫f(t)dt,其中k为常数。

2)换元积分法:∫f(u)du = ∫f(u(t))u'(t)dt。

3)分部积分法:∫udv = uv - ∫vdu。

3. 常用的积分变换公式1)指数函数的积分变换:∫e^x dx = e^x + C。

2)三角函数的积分变换:∫sin(x)dx = -cos(x) + C,∫cos(x)dx = sin(x) + C。

3)对数函数的积分变换:∫1/x dx = ln|x| + C。

三、积分变换的应用1. 信号处理中的应用积分变换在信号处理领域有着重要的应用,特别是在分析和处理一些特殊的信号时,比如正弦信号、脉冲信号等。

通过对这些信号进行积分变换,可以得到它们的频谱特性,从而更好地理解和处理这些信号。

2. 控制系统中的应用在控制系统中,积分变换也有着重要的应用。

例如在PID控制器中,积分环节能够消除系统的静态误差,改善系统的稳定性和精度。

积分变换知识点总结复

积分变换知识点总结复

积分变换知识点总结复一、积分变换的基本概念1.1 定义积分变换是指通过对一个函数进行积分,得到一个新的函数,这个新的函数通常表示原函数在某种意义上的平均值或累积值。

积分变换在数学领域有许多不同的应用,包括微积分、概率统计、信号处理、控制系统等方面。

1.2 基本性质积分变换有许多基本的性质,其中包括线性性质、平移性质、尺度性质等。

线性性质指的是积分变换满足线性运算规律,即对于两个函数f(t)和g(t),有积分变换的线性组合也可以进行积分变换;平移性质指的是如果函数f(t)的积分变换是F(s),那么函数f(t-a)的积分变换就是e^(-as)F(s);尺度性质指的是如果函数f(t)的积分变换是F(s),那么函数af(t)的积分变换就是1/a*F(s)。

这些基本性质是积分变换在数学推导和应用中非常重要的规律。

1.3 常见的积分变换在实际应用中,有一些常见的积分变换形式,包括拉普拉斯变换、傅里叶变换、Z变换等。

这些不同的积分变换形式在不同的领域有着不同的应用,比如在控制系统中常用的拉普拉斯变换,信号处理中常用的傅里叶变换等。

二、积分变换的应用2.1 积分变换在微积分中的应用在微积分中,积分变换可以用来求函数的定积分、不定积分等,这对于解决一些复杂的数学问题非常有用。

比如利用积分变换可以求出函数的面积、体积等,还可以用来解决微分方程等问题。

2.2 积分变换在信号处理中的应用在信号处理中,积分变换可以用来分析和处理信号的频谱、频率等特性,比如在音频、视频等信号的处理和分析中经常会用到傅里叶变换等积分变换方法。

2.3 积分变换在控制系统中的应用在控制系统中,积分变换可以用来分析和设计控制系统的性能、稳定性等。

比如在设计PID控制器时,会用到拉普拉斯变换等积分变换的方法。

2.4 积分变换在概率统计中的应用在概率统计中,积分变换可以用来求解概率密度函数、概率分布函数等,对于分析随机变量的性质和分布有着重要的作用。

积分变换知识点总结

积分变换知识点总结

积分变换知识点总结1. 积分变换的基本概念积分变换是微积分中的一个重要概念,它是对函数进行积分运算,从而得到一个新的函数。

在数学中,积分变换可以分为定积分和不定积分两种,其中定积分是对一个函数在一个区间内的积分,而不定积分是对一个函数的不定积分,即求出函数的原函数。

2. 积分变换的性质在进行积分变换的时候,有一些基本的性质需要了解。

比如,积分的线性性质,即对于两个函数的和的积分等于这两个函数的积分的和;积分的可加性,即对于一个函数的积分再加上另一个函数的积分等于这两个函数的和的积分;积分的常数倍性质,即一个函数乘以一个常数的积分等于这个函数的积分再乘以这个常数。

3. 积分变换的应用积分变换在实际应用中有着广泛的应用。

在信号处理中,积分变换可以用来对信号进行变换,从而得到信号的一些特性;在控制系统中,积分变换可以用来对系统进行建模,从而实现对系统状态的控制;在通信系统中,积分变换可以用来对信号进行编码和解码。

4. 积分变换的计算方法在实际应用中,积分变换的计算方法有很多种,比如换元积分法、分部积分法、定积分法等。

不同的计算方法有不同的适用范围,需要根据实际情况选择最合适的方法进行计算。

5. 积分变换的数学原理积分变换的数学原理是微积分的基础知识,在进行积分变换的时候,需要了解积分的定义、积分的性质、积分的计算方法等。

此外,还需要了解在实际应用中,积分变换的数学原理如何转化为实际问题的解决方法。

6. 积分变换的数学模型在控制系统、信号处理、通信系统等领域中,积分变换可以用来建立数学模型,从而描述系统的行为。

积分变换的数学模型可以是常微分方程、偏微分方程等,通过对数学模型进行求解,可以得到系统的状态和性能等信息。

总的来说,积分变换是微积分中非常重要的概念,它可以应用在各个领域中,对相关问题进行分析和解决。

在实际应用中,通过对积分变换的认识和理解,可以更好地应用积分变换来解决实际问题。

因此,对积分变换的知识点进行总结和理解,对于建立数学模型、解决实际问题都有着重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分变换-意义
积分变换无论在数学理论或其应用中都是一种非常有用的工具。

最重要的积分变换有傅里叶变换、拉普拉斯变换。

由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。

通过参变量积分将一个已知函数变为另一个函数。

已知ƒ(x),如果
存在(α、b可为无穷),则称F(s)为ƒ(x)以K(s,x)为核的积分变换。

一、傅立叶变换
意义
尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。

"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇
定义
f(t)满足傅立叶积分定理条件时,下图①式的积分运算称为f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。

F(ω)叫做f(t)的象函数,f(t)叫做F(ω)的象原函数。

欧拉公式: ∂
+∂=∂
sin cos i e
i
二、傅里叶变换与逆变换的性质 1.线性性质:
2. 位移性质
()
1
(),22Dirichlet ()()()Fourier ()cos sin 2T T T T T n n n T T f t T f t f t f t t a f t a n t b n t ωω∞
=⎡⎤
--⎢⎥⎣⎦
∙∙=++∑为周期函数,在上满足
条件:
连续或仅有有限个第一类间断点;仅有有限个极值点
则可展开为级数,且在连续点处成立:
)]
([)]([)]()([)]([)]([)]()([1
11ωωωωG B F A BG AF t g b t f a t bg t af ---+=++=+F F F F F F 为实常数,则
,若00,)()]([ωωt F t f =F
3. 相似性:
4. 微分性:
5、积分性:
6、帕塞瓦尔(Parserval)等式-能量积分 设F[f(t)]=F(w),则有
()
0001
00[()]()[()]()
[()]()
j t j t
j t
f t t e
F F e
f t e
f t F ωωωωωωωω---=-==-,
或F F F 1
[()]()0,11[()]();[()]()
f t F a t f at F F at f a a a a
ωω-=≠==若,则
F F F 则
,且若原像函数的微分性:
,0)(lim )()]([==+∞
→t f F t f t ωF [()]()
f t j F ωω'=F [()]()lim ()(0)0,1
[()]().
t
t t f t F f s ds F f s ds F j ωωω
-∞
→+∞-∞
====⎰⎰
设,若则
F F []2
2
1
()d ().
2f t t F d ωωπ
+∞
+∞
-∞-∞
=⎰⎰
五个重要的傅里叶变换(所有的傅里叶变换都无须用公式直接计算而可由傅里叶变换的性质导出.)
7、卷积与卷积定理
卷积的简单性质:
02
2
j 04()
1
1
()
()j 1()j e
2()
e e t t t t u t u t e βωωββδπδωωβω
πδωωπβ
---↔↔
+↔
+↔
-↔

+∞

--=
*ds
s t g s f t g f )()()(()()()()()()()()()()()()()
()()()
f g g f
f g h f g f h f g h f g h
A f g Af g f Ag A d
f g t f t g t f t g t dt
f t f t f t δδ∙*=*∙*+=*+*∙**=**∙*=*=*''∙*=*+*∙*=*=交换律:加法分配律:结合律:数乘:为常数求导:。

相关文档
最新文档