《代数式》方法点拨及易错题解析

合集下载

自学初中数学资料 代数式中的易错题分析

自学初中数学资料 代数式中的易错题分析

自学资料一、代数式【知识探索】1.字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数.总之,字母可以简明地将数量关系表示出来.【注意】(1)在省略乘号时,要把数字写在字母的前面;(2)当数字是带分数时,常写成假分数;(3)数字和字母之间的乘号用“· ”或省略不写;(4)数字和字母的除法通常用“”表示;(5)是数字不是字母.【错题精练】例1.已知x2+3x+5的值是7,那么多项式3x2+9x-2的值是()A. 6B. 4C. 2D. 0第1页共10页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训例2.如图是2007年5月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A. 27B. 36C. 40D. 54例3.已知香蕉,苹果,梨的价格分别为a,b,c(单位:元/千克),用20元正好可以买三种水果各1千克;买1千克香蕉,2千克苹果,3千克梨正好花去42元,若设买b千克香蕉需w元,则w=.(用含c的代数式表示)例4.某城市自来水费实行阶梯水费,收费标准如下表:超过20吨的部分月用水量不超过12吨的部分超过12吨不超过20吨的部分收费标准(元/吨)a a+14(1)某用户十二月份用水30吨,用含a的代数式表示该用户十二月份所交的水费;(2)若a=1.5元,某用户十二月份交了30元水费,求该用户十二月份的用水量.例5.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).例6.如图是由边长分别为a和b的两个正方形组成的图形.(1)请用含a、b的代数式表示阴影部分的面积.(2)若a=6,b=1.5,则阴影部分的面积为多少?第2页共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【举一反三】1.某企业今年1月份产值为x万元,2月份比1月份增加了10%,3月份比2月份减少了20%,则3月份的产值是()万元.A. (1+10%)(1−20%)x;B. (1+10%+20%)x;C. (x+10%)(x−20%);D. (1+10%−20%)x.2.若x=3时,代数式ax3+2x2+bx+5的值为2017;则x=-3时,求此代数式的值.3.我国出租车收费标准因地而异.甲市为:起步价(行驶路程不超过3千米)6元,3千米后每千米(不足1千米,按1千米计算)价格1.5元;乙市为:起步价10元,3千米后每千米价格1.2元.(1)试问在甲、乙两市乘坐出租车s(s>3)千米的价钱差是多少元?(2)如果在甲、乙两市乘坐出租车的路程都是10千米,那么哪个市的收费标准高?高多少?4.某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型2530乙型4560(1)若商场购进的甲型节能灯500只,则购买甲、乙两种节能灯共需多少元?(2)若商场购进甲型节能灯x只,则购买甲、乙两种节能灯共需______元;(用含x的代数式表示)(3)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?5.如图,长为50cm,宽为xcm的大长方形被分割为8小块,除阴影A,B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.(1)从图可知,每个小长方形较长一边长是______cm(用含a的代数式表示).第3页共10页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训(2)求图中两块阴影A,B的周长和(可以用含x的代数式表示).6.“囧”(jiǒng)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示下图中“囧”的面积;(2)当y=6,x=8时,求此时“囧”的面积.二、整式【知识探索】1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即;.这两个公式叫做完全平方公式.2.两个数的和与这两个数的差的乘积等于这两个数的平方差,即.这个公式叫做平方差公式.【说明】公式中的、可以是任意的数或代数式.3.去括号法则:括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号.【注意】如果括号前是“﹣”号,那么去括号时,括号内的每一项都要改变符号.第4页共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【错题精练】例1.已知x和y的多项式ax2+2bxy-x2-2x+2xy+y合并后不含二次项,求3a-4b的值.例2.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)会存在第n个图形中有且只有2014颗黑色棋子吗?若存在,请求出n的值;若不存在,请说明理由.【举一反三】1.若要使代数式2x4-2mx2-x2+3合并同类项后不再出现含x2的项,计算m的值.2.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.那么需要多少张餐桌拼在一起可坐90人用餐?若设需要这样的餐桌x张,可列方程为______.三、因式分解【知识探索】1.由平方差公式反过来可得:.这个公式叫做因式分解的平方差公式.由完全平方公式反过来可得:,.这两个公式比较作因式分解的完全平方公式.【错题精练】例1.下列提取公因式分解因式中,正确的是()第5页共10页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训A. 2x2-4xy=x(2x-4y)B. a3+2a2+a=a(a2+2a)C. -2a-2b=2(a+b)D. -a2+a=-a(a-1)例2.下列多项式不能用平方差分解的是()a2−b2 C. -a2+25b2 D. -4-b2A. 25a2-b2B. 14例3.因式分解:(a−b)2−(b−a)=.例4.计算:a−3a=.例5.分解因式:(1)25-26a+a2;(2)a2-9ab+14b2;(3)x2-3xy+2y2;(4)y2-13yb+36b2.【举一反三】1.(浙江杭州市中考12)分解因式:__________ .2.因式分解a3−a= .3.分解因式:ax2−4ax+4a= .4.用十字相乘法分解因式:(1)x2+9x+20;(2)x2-7x+12;(3)x2-7x-8;(4)x2+3x-18;(5)a2+7ab+12b2;(6)(a+b)2-5(a+b)-14.第6页共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第7页共10页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训2.式子-√−ax3(a>0)化简的结果是()A. x√−axB. -x√−axC. x√axD. -x√ax3.把代数式(a-1)√11−a中的a-1移到根号内,那么这个代数式等于()A. -√1−a B. √a−1 C. √1−a D. -√a−1 4.下列运算结果正确的是()A. √(−9)2=-9B. (−√2)2=2C. √6÷√2=3D. √25=±55.计算:(3√18+16√72−4√18)÷4√2.1.设m2+m-1=0,则m3+2m2+1997=______.2.若代数式2ax2y+3xy-4-5x2y-7x-7ax2y+m中,化简后不含x2y项,则a2010-4=______.3.一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为______元.4.如图图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,第8页共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训(1)按此规律,图案⑦需______根火柴棒;第n个图案需______根火柴棒.(2)用2017根火柴棒能按规律拼搭而成一个图案?若能,说明是第几个图案:若不可能,请说明理由.5.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A. 2a-3bB. 4a-8bC. 2a-4bD. 4a-10b6.若√a3+a2=-a√a+1,那么实数a的取值范围是()A. a≥-1B. a≤1C. 0<a≤1D. -1≤a≤07.某市为了鼓励节约用水,对居民生活用水实行阶梯水价.收费标准如下:超过24吨的部分月用水量16吨及以下部分超过16吨不超过24吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份用水21吨.则该用户5月份应缴的水费是多少?(2)某用户8月份缴水费为55元,则该用户8月份的用水量是多少?(3)若某用户的月用水量为a吨,用含a的代数式表示该用户所缴纳的水费.8.把下列各式因式分解(1)-5a2+25a;(2)a2-9b2;(3)2x(a-3)-y(3-a);(4)3x3-12x2y+12xy2.第9页共10页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第10页共10页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训。

代数式易错题(Word版 含答案)

 代数式易错题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(易错题精选)初中数学代数式技巧及练习题附答案解析

(易错题精选)初中数学代数式技巧及练习题附答案解析

(易错题精选)初中数学代数式技巧及练习题附答案解析一、选择题1.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ). A .1 B .-1 C .2 D .-2【答案】B 【解析】 【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解. 【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c ∵a +b +c =1 ∴1+=-a b c ∴()()221+=-a b c ∴()2222+=+-a b a b 展开得222222++=+-a b ab a b ∴1ab =- 故选B . 【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.2.下列各运算中,计算正确的是( ) A .2a•3a =6a B .(3a 2)3=27a 6 C .a 4÷a 2=2a D .(a+b)2=a 2+ab+b 2【答案】B 【解析】试题解析:A 、2a •3a =6a 2,故此选项错误; B 、(3a 2)3=27a 6,正确; C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误; 故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D 【解析】 【分析】本题主要考查的就是同底数幂的计算法则 【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a . 【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.4.下列运算正确的是( ). A .()2222x y x xy y -=-- B .224a a a += C .226a a a ⋅= D .()2224xy x y =【答案】D 【解析】 【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案. 【详解】解:A.、()2222x y x xy y -=-+,故本选项错误; B.、2222a a a +=,故本选项错误; C.、224a a a ⋅=,故本选项错误; D 、 ()2224xy x y =,故本选项正确;故选:D . 【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.5.下列运算或变形正确的是( ) A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C 【解析】 【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答. 【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误; 故选:C . 【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.6.计算 2017201817(5)()736-⨯ 的结果是( ) A .736-B .736C .- 1D .367【答案】A 【解析】 【分析】根据积的乘方的逆用进行化简运算即可. 【详解】2017201817(5)()736-⨯20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯736=- 故答案为:A . 【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.7.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.8.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A选项:2x2·2xy=4x3y,故是错误的;B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;C.选项:x-1÷x-2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.故选D.9.若2m=5,4n=3,则43n﹣m的值是( )A.910B.2725C.2 D.4【答案】B【分析】根据幂的乘方和同底数幂除法的运算法则求解. 【详解】 ∵2m =5,4n =3, ∴43n ﹣m=344n m =32(4)(2)n m =3235=2725故选B. 【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.若35m =,34n =,则23m n -等于( )A .254B .6C .21D .20【答案】A 【解析】 【分析】根据幂的运算法则转化式子,代入数值计算即可. 【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n, 故选:A . 【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【解析】 【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答. 【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2, 故选B . 【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.下列说法正确的是() A .若 A 、B 表示两个不同的整式,则AB一定是分式 B .()2442a a a ÷=C .若将分式xyx y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n-=【答案】C 【解析】 【分析】根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可. 【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称AB是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xyx y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确.D. 若35,34m n ==则()22253332544m nmn -=÷=÷=,故此选项错误. 故选:C 【点睛】本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.13.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a =【答案】D 【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.14.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( ) A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡 D .不购买会员年卡【答案】C 【解析】 【分析】设一年内在该健身俱乐部健身x 次,分别用含x 的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论. 【详解】解:设一年内在该健身俱乐部健身x 次,由题意可知:50≤x≤60 则购买A 类会员年卡,需要消费(1500+100x )元; 购买B 类会员年卡,需要消费(3000+60x )元; 购买C 类会员年卡,需要消费(4000+40x )元; 不购买会员卡年卡,需要消费180x 元;当x=50时,购买A 类会员年卡,需要消费1500+100×50=6500元;购买B 类会员年卡,需要消费3000+60×50=6000元;购买C 类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A 类会员年卡,需要消费1500+100×60=7500元;购买B 类会员年卡,需要消费3000+60×60=6600元;购买C 类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800 综上所述:最省钱的方式为购买C 类会员年卡 故选C . 【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.15.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4 B .﹣4 C .±2 D .±4【答案】D 【解析】 【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可. 【详解】解:∵x 2+mx +4=(x ±2)2, 即x 2+mx +4=x 2±4x +4, ∴m =±4. 故选:D . 【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.16.下列运算正确的是( ) A .236(2)8x x -=- B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=--【答案】A 【解析】解:A . (-2x 2)3=-8x 6,正确; B . -2x (x +1)=-2x 2-2x ,故B 错误; C . (x +y )2=x 2+2xy +y 2,故C 错误; D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误; 故选A .17.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A.42 B.43 C.56 D.57【答案】B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+, ∴数到2019时对应的指头是中指. 故选:B . 【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.19.下列计算正确的是( ) A .236a a a ⋅= B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D 【解析】 【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断. 【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意, 故选:D . 【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.20.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b - B .29bC .29aD .22a b -【答案】B 【解析】 【分析】根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.。

专题16代数式(4个知识点2种题型1个易错点1个中考考点)(原卷版)

专题16代数式(4个知识点2种题型1个易错点1个中考考点)(原卷版)

专题16代数式(4个知识点2种题型1个易错点1个中考考点)【目录】 倍速学习四种方法【方法一】 脉络梳理法知识点1.代数式的概念(重点) 知识点2.列代数式表示数量关系(重点)(难点)知识点3.代数式表示的实际意义 【方法二】 实例探索法题型1.用代数式表示面积题型2.列代数式表示实际问题【方法三】差异对比法易错点: 列代数式时对题目中的数量关系理解有误,弄错运算顺序 【方法四】 仿真实战法考法. 列代数式【方法五】 成果评定法【学习目标】1. 了解代数式的概念,会用代数式表示简单的数量关系。

2. 能解释一些简单代数式的实际背景或几何意义。

3. 能分析实际问题中的数量关系,并用代数式表示,提高数学应用意识。

【倍速学习五种方法】【方法一】脉络梳理法知识点1.代数式的概念(重点)如:16n ,2a+3b ,34 ,2n ,2)(b a 等式子,它们都是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的,像这样的式子叫做代数式,单独的一个数或一个字母也是代数式.【例1】下列是代数式的是( )A .02<B .210xC .3-D .1x y +=【变式】(2023上·福建南平·七年级统考期中)下列说法中不能表示代数式“5x ”意义的是( ) A .x 的5倍 B .5个x 相乘 C .5个x 相加 知识点2.列代数式表示数量关系(重点)(难点)【例2】(2023上·山西运城·七年级统考期中)由白色小正方形和灰色小正方形组成的图形如图所示,则知识点3.代数式表示的实际意义 生活中我们常用图形或字母表示一些特定含义,比如停车场P ,KFC 等,数学中可用字母表示未知数,数学公式,运算律,数量关系等,复习常见小学所学规则图形的面积(三角形,正方形,长方形,平行四边形,梯形,圆,后续会用到:将不规则面积转化为规则图形面积)【例3】(2023上·河北石家庄·七年级石家庄市第四十一中学校考期中)代数式3x -的意义可以是( ) A .3-与x 的和 B .3-与x 的差 C .3-与x 的积 D .3-与x 的商【变式】(2023上·河南濮阳·七年级统考期中)请仔细分析下列赋予4a 实际意义的例子,其中错误的是( )A .若a 表示一个正方形的边长,则4a 表示这个正方形的周长B .若一个两位数的十位数字是4,个位数字是a ,则4a 表示这个两位数C .若阳光玫瑰的价格是4 元/千克,则4a 表示购买a 千克该种阳光玫瑰的金额D .若一辆汽车行驶速度是a 千米/小时,则4a 表示这辆汽车行驶4小时的路程【方法二】实例探索法题型1.用代数式表示面积1.(2023上·广东河源·七年级校联考期中)如图是一个长方形,分别以它的两个顶点为圆心以b 为半径作两个四分之一圆:(1)用代数式表示阴影部分的面积;(2)当10a =,4b =时,求阴影部分的面积(结果保留π).2..(湖南省娄底市20232024学年七年级上学期期中数学试题)如图,四边形ABCD 是一个长方形.(1)DF = (用含x 的代数式)(2)根据图中数据,用含x 的代数式表示阴影部分的面积S ;(3)当2x =时,求S 的值.题型2.列代数式表示实际问题3.(2023上·辽宁鞍山·七年级统考期中)某服装店新进一款服装,第一天销售了m 件,第二天的销售量是第一天的2倍少3件,第三天比第二天少销售5件,则第三天的销售量是( )A .()5m -件B .()22m -件C .()28m -件D .()22m +件4.(2023上·吉林松原·七年级统考期中)如图,一个窗户的上部为半圆形,下部是由边长为cm a 的4个小正方形组成的大正方形,求这个窗户的外框总长.【方法三】差异对比法易错点: 列代数式时对题目中的数量关系理解有误,弄错运算顺序1.(2023上·安徽安庆·七年级安徽省安庆市外国语学校校考期中)今年春季,果园喜获丰收,某批发公司组织10辆汽车装运甲,乙两种水果去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种水(1)求这10辆汽车共装运水果的数量(用含有x 的式子表示);(2)求销售完装运的这批水果后所获得的总利润(用含有x 的式子表示);(3)现为了促销,公司决定甲种水果每吨让利m 元,乙种水果每吨利润不变,若无论装运甲种水果的汽车为多少辆,这10辆车装运的水果销售完后,总利润都保持不变,求m 的值.【方法四】 仿真实战法考法. 列代数式1.(2023·吉林长春·统考中考真题)2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x 公里的速度跑了10分钟,此时他离健康跑终点的路程【方法五】 成果评定法一、单选题1.(2023上·辽宁鞍山·七年级统考期中)用含有字母的式子表示下列数量关系“a 的3倍与b 的差的平方”,正确的是( )A .23a b -B .()23a b -C .()23a b -D .()23a b - 2.(2023上·湖南怀化·七年级统考期中)一台学习机的成本价是a 元,销售价比成本价增加了25%,因库存积压,所以就按销售价降价30%出售,那么每台学习机的实际售价是( ) A .(125%30%)a +-元B .30%(125%)a -元C .(125%)(130%)a ++元D .(125%)(130%)a +-元4.(2023上·广东广州·七年级校联考期中)火车站和机场为旅客提供大包服务,如果长、宽、高分别为x ,y ,z 的箱子按如图的方式打包,则打包带的长至少为( )A .4410x y z ++B .23x y z ++C .246x y z ++D .686x y z ++6.(2023上·四川宜宾·七年级校联考期中)a 是三位数,b 是一位数,如果把b 放在a 的左边,那么所成的四位数应表示为( )A .baB .100b a +C .10b a +D .1000b a +7.(2023上·山西晋中·七年级统考期中)某商场书包原价为m 元,在9月份开学之季,商家开展优惠活动,现售价为()0.830m -元,则下列说法中,符合题意的是( )A .原价减30元后再打8折B .原价打8折后再减30元C .原价打2折后再减30元D .原价减30元后再打2折8.(2023上·湖北十堰·七年级校考期中)十堰市出租车的收费标准是:起步价6元(含3千米),当路程超过3千米时,超过部分每千米收费1.5元.如果某出租车行驶路程为P 千米()3P >,则司机应收费为(单位:元)( )A .6 1.5P +B .6 1.5P -C .1.5 1.5P +D .()6 1.53P --9.(2023上·内蒙古包头·七年级包钢第三中学校考期中)小兰房间窗户的装饰物如图所示,该装饰物由两10.(2023上·广东广州·七年级广州市骏景中学校考期中)用代数式表示语句“比x 的2倍大3的数”正确的是( )A .23x +B .23x -C .26x -D .23x > 二、填空题11.(2023上·安徽合肥·七年级合肥市五十中学西校校考期中)甲、乙两地相距200km ,汽车从甲地到乙三、解答题19.(2023上·江西萍乡·七年级校考期中)根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1, 2.5-,3-,观察数轴,A ,B 两点之间的距离为________.(2)若将数轴折叠,使得点A与点C重合,则与点B重合的点表示的数是________;若此数轴上M,N两点之间的距离为2023(M在N的左侧),且当点A与点C重合时,点M与点N也恰好重合,则点M表示的数是________,点N表示的数是________.(3)若数轴上P,Q两点间的距离为a(P在Q的左侧),表示数b的点到P,Q两点的距离相等,将数轴折叠,当点P与点Q重合时,点P表示的数是________,点Q表示的数是________(用含a,b的式子表示).20.(2023上·河南商丘·七年级统考期中)某校计划在元旦期间举办一场以“红色文化”为主题的元旦晚会,并打算为参加红歌大合唱的学生订购表演服装(包含服装和帽子),已知该服装每套定价80元,帽子每个定价10元某服装店向该校提供两种优惠方案:①买一套服装送一个帽子;②服装和帽子都按定价的80%付款.x>)现统一要到该服装店购买服装30套,帽子x个(30(1)若该校按方案①购买,需付款元(用含x的代数式表示);若该校按方案②购买,需付款元(用含x的代数式表示);(2)若30x=,通过计算说明此时按哪种方案购买较为合算?21.(2023上·四川自贡·七年级校考期中)小方家的住房户型呈长方形,长为22,宽为18,平面图如下(单位:米).现准用木地板铺设卧室.(1)求a的值;(2)铺设卧室地面需要木地板多少平方米?(用含x的代数式表示)(3)按市场价格,木地板单价为300元/平方米.装修公司有活动方案:木地板打八折,总安装费2000x=,则小方家铺设卧室地面总费用(含材料费及安装费)多少?元.已知622.(2023上·湖北十堰·七年级校考期中)如图,一扇窗户如图①,所有窗框(包含内部框架和外部框架)为铝合金材料,其下部是边长相同的四个小正方形,上部是半圆形,已知下部小正方形的边长是a 米,窗户(包括上部和下部)全部安装透明玻璃,现在按照图②的方式,在阴影部分的位置上全部安装窗帘,图②中窗帘下部分是两个以a米为直径的半圆形,没有窗帘的部分阳光可以照射进来.(本题中π取3,长度单位为米).(1)一扇这样窗户一共需要铝合金多少米?(用含a的代数式表示,π取3)(2)求照进阳光的面积是多少平方米?(用含a的代数式表示,π取3)(3)某公司需要购进20扇窗户,按照图②的方式安装窗帘,厂家报价:铝合金每米100元,窗帘每平方米40元,透明玻璃每平方米90元,当1a =时,计算该公司总花费多少元?23.(2023上·广东汕头·七年级林百欣中学校考期中)如图,四边形ABCD 和四边形ECGF 都是正方形,边长分别为a 和6,点D 在边EC 上.求阴影部分图形的面积.(用含a 的代数式表示)24.(2023上·陕西榆林·七年级统考期中)将每张长为40cm ,宽为15cm 的长方形白纸,按如图所示的方法黏合起来,黏合重叠部分的宽为5cm .(1)分别求出5张白纸和10张白纸黏合后的总长度;(2)求出n 张白纸黏合后的总长度.(用含n 的代数式)25.(2023上·江苏盐城·七年级校考期中)已知图① 、图② 分别由两个长方形拼成.(1)用含a ,b 的代数式表示这两个图形的面积:图① :_____,图② :_____;(2)由(1)可以得到等式:_______;(3)请运用上述发现计算:2220242023-26.(2023上·江西赣州·七年级统考期中)已知一个三角形的第一条边长为(3)a b +厘米,第二条边比第一条边短(1)b -厘米,第三条边比第二条边要长3厘米,请用式子表示该三角形的周长.。

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析
数学是中考必考科目之一,其中代数式是数学中一个重要的概念。

在代数式求值方面,有一些常见的试题可以帮助我们复习和总结知识,下面就来逐一进行归纳和易错分析。

一、基础代数式求值
1. 计算一元一次代数式的值,如:
①x+3,当x=5时,该式的值是多少?
解:直接带入x=5,得到x+3=5+3=8,因此该式的值是8。

易错点:在计算中注意符号的处理,尤其是代数式中有多个符号时,需要进行加减乘
除的运算,避免漏掉符号。

易错点:在计算中若出现分数,需要将分子、分母约分后再进行计算,特别是当分母
为0时,要判断是否有未定义现象。

易错点:在计算中若出现乘方、开方等数学符号,需要进行相应的运算,将代数式转
化为数值式进行计算。

易错点:在计算中注意各个项的系数和符号,避免漏掉或计算错误。

二、代数式间的运算
①(3x²+2x+1)+(5x²-3x+2)
解:将两个代数式中对应项相加,得到(3+5)x²+(2-3)x+(1+2)=8x²-x+3,因此
代数式的和为8x²-x+3。

②(4x²-6x+1)÷(2x-1)
解:先对被除数进行二次式乘法,得到4x²-2x-x+1=4x²-3x+1,然后将得到的式子除
以除数,得到商式2x-1,余数为0,因此代数式的商为2x-1。

易错点:在计算中要注意除法的运算规则,特别是除数为0的情况要特别注意,并且
要进行相关的化简和约分。

以上就是关于中考常见代数式求值试题归纳及易错分析的总结,希望对同学们的复习
有所帮助。

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析◆题型一:直线定点和代数式的值和某字母无关一次函数y=mx+m-1过定点【解析】一次函数过定点问题和整式中和某字母取值无关是同一类题:一次函数过定点实质上指的是和m的取值无关。

按照这种思路过可以解决很多的定点问题。

把一次函数解析式变形:y=m(x+1)-1,我们把(x+1)看作m的系数,若和m的取值无关,则系数(x+1)=0,即x=1,此时y=-1.因此,此一次函数过定点(-1,-1)。

1. 2022·江苏泰州·三模)小明经探究发现:不论字母系数m 取何值,函数()224365y x m x m =−+++的图像恒过一定点P ,则P 点坐标为______. 【答案】3,142⎛⎫− ⎪⎝⎭【分析】根据不论字母系数m 取何值图像恒过一定点P ,取值与m 无关,则字母m 的系数为0,进而可得答案.【详解】解:()224365y x m x m =−+++()224635y x x m x =+−++当46=0x +,即32x =−时,14y =, 所以无论字母系数m 取何值时,图像恒过一定点P 3,142⎛⎫− ⎪⎝⎭. 【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m 的系数为0时,才与m 的取值无关.2. 整式(ax 2+bx -1)-(4x 2+3x )的最后结果与x 的取值无关,求a ,b 的值。

解:由(1)(ax 2+bx-1)-(4x 2+3x )化简的结果是(a-4)x 2+(b-3)x-1,得a=4,b=3.1.(2022·重庆八中二模)对于五个整式,A :2x 2;B :x +1;C :﹣2x ;D :y 2;E :2x-y 有以下几个结论:①若y 为正整数,则多项式B ⋅C +A +B +E 的值一定是正数;②存在实数x ,y ,使得A+D+2E 的值为-2;③若关于x 的多项式M =3(A −B)+m ⋅B ⋅C (m 为常数)不含x 的一次项,则该多项式M 的值一定大于-3.上述结论中,正确的个数是( )A .0B .1C .2D .3 【答案】B【分析】根据整式的四则运算法则逐个运算即可判断.【详解】解:对于①:B ⋅C +A +B +E =(x +1)(−2x)+2x 2+x +1+2x −y =x −y +1,显然当x =−100,y =1时代入化简后的式子中结果为负数,故①错误;对于②:A +D +2E =2x 2+y 2+2(2x −y)=2x 2+y 2+4x −2y =−2时,整理得到:2(x +1)2+(y −1)2−1=0,显然当x =−1,y =2时代入化简后式子中满足,故②正确;对于③:M =3(A −B)+m ⋅B ⋅C =3(2x 2−x −1)+m(x +1)(−2x)=(6−2m)x 2−(3+2m)x −3, ∵不含x 的一次项,∴320m +=,解出m =−32,此时M =9x 2−3≥−3,即M 的值一定大于等于-3,故③错误;故选:B .【点睛】本题考查了整式的四则运算,属于基础题,熟练掌握整式的四则运算法则是解题的关键. 2.(2022·重庆市育才中学二模)已知多项式A =x 2+2y +m 和B =y 2−2x +n (m ,n 为常数),以下结论中正确的是( )①当2x =且m +n =1时,无论y 取何值,都有A +B ≥0;②当m =n =0时,A ×B 所得的结果中不含一次项;③当x y =时,一定有A ≥B ;④若m +n =2且A +B =0,则x y =;⑤若m =n ,A −B =−1且x ,y 为整数,则|x +y |=1.A .①②④B .①②⑤C .①④⑤D .③④⑤ 【答案】B【分析】主要是运用整式的运算法则及因式分解等知识对各项进行一一判断即可.【详解】①当2x =且m +n =1时,A+B=4+2y +m +y 2−4+n =y 2+2y +1=(y +1)2,∵无论y 取何值,总有(y +1)2≥0,∴无论y 取何值,都有A +B ≥0,故①正确;②当m =n =0时,A ×B =(x 2+2y )(y 2−2x )=x 2y 2−2x 3+2y 3−4xy ,∴A ×B 所得的结果中不含一次项;故②正确;③当x y =时,A −B =x 2+2y +m −(y 2−2x +n )=x 2+2x +m −x 2+2x −n =4x +m −n , 其结果与0无法比较大小,故③错误;④若m+n=2且A+B=0,则A+B=x2+2y+m+y2−2x+n=x2+y2+2y−2x+2=0,变形得:(x−1)2+(y+1)2=0,∴x=1,y=-1,∴x=-y,故④错误;⑤若m=n,A−B=−1且x,y为整数,则A−B=x2+2y+m−(y2−2x+n)=x2+2y−y2+2x=−1x2−y2+2x+2y+1=0变形得:(x+1)2−(y−1)2=−1,因式分解得:(x+y)(x−y+2)=−1,∵x,y为整数,则必有|x+y|=1.故⑤正确;故选:B【点睛】本题主要考查的是整式运算及因式分解的应用,解决本题的关键是熟练掌握运用乘法公式进行计算及因式分解.3.(2022·江苏泰州·三模)小明经探究发现:不论字母系数m取何值,函数y=2x2+(4m−3)x+6m+5的图像恒过一定点P,则P点坐标为______.,14)【答案】(−32【分析】根据不论字母系数m取何值图像恒过一定点P,取值与m无关,则字母m的系数为0,进而可得答案.【详解】解:y=2x2+(4m−3)x+6m+5y=2x2+(4x+6)m−3x+5时,y=14,当4x+6=0,即x=−32,14).所以无论字母系数m取何值时,图像恒过一定点P(−32【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m的系数为0时,才与m的取值无关.4.(2021·河北唐山·一模)老师写出一个整式(ax2+bx-1)-(4x2+3x)(其中a、b为常数,且表示为系数),然后让同学给a 、b 赋予不同的数值进行计算,(1)甲同学给出了一组数据,最后计算的结果为2x 2-3x -1,则甲同学给出a 、b 的值分别是a =_______,b =_______;(2)乙同学给出了a =5,b =-1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果. 【答案】(1)6、0(2)241x x −−(3)丙同学的计算结果是-1.【分析】(1)将所求式子化简,然后根据计算的结果为2x2-3x-1,即可得到a 、b 的值;(2)将a 、b 的值代入(1)中化简后的结果,即可解答本题;(3)根据(1)中化简后的结果和题意,可以写出丙同学的计算结果.【详解】(1)解:(ax2+bx-1)-(4x2+3x )=ax2+bx-1-4x2-3x=(a-4)x2+(b-3)x-1,∵甲同学给出了一组数据,最后计算的结果为2x2-3x-1,∴a-4=2,b-3=-3,解得a=6,b=0,故答案为:6,0;(2)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∴当a=5,b=-1时,原式=(5-4)x2+(-1-3)x-1=x2-4x-1,即按照乙同学给出的数值化简整式结果是x2-4x-1;(3)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∵丙同学给出一组数,计算的最后结果与x 的取值无关,∴原式=-1,即丙同学的计算结果是-1.【点睛】本题考查整式的加减,解答本题的关键是明确题意,计算出相应的结果.5.(2021·河北唐山·一模)定义:若A−B=m,则称A与B是关于m的关联数.例如:若A−B=2,则称A与B是关于2的关联数;(1)若3与a是关于2a的关联数,则a=__________.(2)若(x−1)2与x+1是关于-2的关联数,求x的值.(3)若M与N是关于m的关联数,M=2mn−n+3,N的值与m无关,求N的值.【答案】(1)1(2)x1=1,x2=2(3)2.5【分析】(1)直接利用关联数列出方程进行计算即可;(2)直接利用关联数列出方程进行计算即可;(3)直接利用关联数列出M-N=m的方程,将M=3mn+n+3代入,用m、n的式子表示出N,再利用N的值与m无关进行计算即可.(1)解:∵3与a是关于2a的关联数,∴3-a=2a,∴a=1,故答案为:1(2)解:(x−1)2−(x+1)=−2,整理得x2−3x+2=0则(x−2)(x−1)=0解得:x1=1,x2=2.∴x的值为1或2;(3)解:(2mn−n+3)−N=m,N=2mn−m−n+3=m(2n−1)−n+3,∵N的值与m无关,∴2n−1=0,∴n=0.5,∴N=2.5.【点睛】本题考查了新型定义题型,解一元一次方程、解一元二次方程,整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.6.(2021·浙江·杭州育才中学二模)已知多项式M=(2x2+3xy+2y)−2(x2+x+yx+1).(1)当|x−1|+(y−2)2=0,求M的值;(2)若多项式M与字母x的取值无关,求y的值.【答案】(1)M=2(2)y=2【分析】(1)先化简M,进而根据非负数的性质求得x,y的值,进而代入求解即可;(2)根据(1)中M的化简结果变形,令含x项的系数为0,进而求得y的值【详解】(1)解:M=(2x2+3xy+2y)−2(x2+x+yx+1)=2x2+3xy+2y−2x2−2x−2yx−2=xy+2y−2x−2|x−1|+(y−2)2=0∴x=1,y=2原式=1×2+2×2−2×1−2=2(2)∵M=xy+2y−2x−2=(y−2)x+2y−2与字母x的取值无关,∴y−2=0解得y=2【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.◆题型二:特殊代数式求值①若m,n是方程2x2−4x−7=0的两个根,则2m2−3m+n的值为【解析】一次代入无法求得结果,出现这种情况,我们可以从先代高次再代低次!把2m2=4m+7代入,原式=m+n+7,然后用韦达定理即可求值。

中考数学易错题系列之代数运算解析式运算常见错误

中考数学易错题系列之代数运算解析式运算常见错误

中考数学易错题系列之代数运算解析式运算常见错误代数运算是中考数学中的一大重点考点,也是容易出错的部分。

在解析式运算中,同学们经常会犯一些常见的错误。

本文将针对这些常见错误进行分析和解决,帮助同学们在中考数学中避免这些错误。

一、符号的使用错误在解析式运算中,同学们常常会犯到符号的使用错误,如混淆加法和乘法的符号,或者忽略括号的作用。

这些错误会导致最终答案出错。

在解析式运算中,加法的符号是"+",乘法的符号是"×",并且乘法在运算优先级中大于加法。

因此,同学们在运算时要注意区分加法和乘法的符号,不要混淆使用。

同时,在运算中,使用括号可以改变运算的优先次序,从而避免错误。

同学们要养成使用括号的习惯,根据运算顺序正确地使用括号,确保运算的准确性。

二、未化简算式在解析式运算中,同学们有时候会在得到结果后未进行进一步的化简,从而导致答案出错。

化简算式是指将算式中的项合并简化,去除冗余部分。

同学们要在得到结果后,仔细检查算式中是否还有合并简化的余地,并及时进行化简。

这样可以避免答案冗杂,提高解答的准确性。

三、代数式求值错误在解析式运算中,同学们有时候会在代数式求值的过程中出错,导致最终结果错误。

代数式求值是指根据给定的数值,将代数式中的未知数替换为具体的数值,计算得出结果。

在进行代数式求值时,同学们要仔细阅读题目,正确把握数值的取值范围,准确替换未知数,并进行正确的计算。

只有在求值上下文下,代数式才能得到准确的结果。

四、未列清楚步骤在解析式运算中,同学们有时候会在列式子的过程中步骤不清晰,从而导致结果错误。

在进行解析式运算时,同学们要养成规范列式子的习惯,确保每一步都清晰可读。

可以使用等号对齐、竖式计算等方式,使得列式子过程清晰明了。

这样不仅可以减少错误的发生,还有助于提高解答的整体逻辑性和可读性。

五、对常见公式理解不深在解析式运算中,同学们应掌握一些常见的代数运算公式,如乘法分配律、加法结合律等。

(易错题精选)初中数学代数式全集汇编及解析

(易错题精选)初中数学代数式全集汇编及解析

(易错题精选)初中数学代数式全集汇编及解析一、选择题1.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.2.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】 根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.4.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.5.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.如图,两个连接在一起的菱形的边长都是1cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是()A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.9.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.10.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.11.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.12.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.13.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .14.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.15.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .16.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.17.计算1.252 017×2?01945⎛⎫⎪⎝⎭的值是( )A.45B.1625C.1 D.-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+,∴数到2019时对应的指头是中指.故选:B .【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.19.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.20.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅==()22224a a a ⨯== 325a a a += ()3263a b a b = 故选B .。

【解析版】中考数学常考易错点:1.2《代数式》(原创)

【解析版】中考数学常考易错点:1.2《代数式》(原创)

代数式易错清单1. 在规律探索问题中如何用含n的代数式表示.【例1】(2018·湖北十堰)根据如图中箭头的指向规律,从2018-2019再到2018,箭头的方向是以下图示中的( ).【解析】观察不难发现,每4个数为一个循环组依次循环,用2018除以4,根据商和余数的情况解答即可.∵2018÷4=503…1,∴2018是第504个循环组的第2个数.∴从2018-2019再到2018,箭头的方向是.【答案】 D【误区纠错】本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.2. 求代数式的值时,一般应先化简再代入求值.【误区纠错】在计算括号内的分式加减法时,通分出错,或者分子加减时出错.【误区纠错】本题易错点一是化简时没注意运算顺序;易错点二是去掉分母计算.名师点拨1. 能用字母表示实际意义,正确解释代数式的含义.2. 会用数字代替字母求代数式的值.3. 能用数学语言表述代数式.提分策略1. 列代数式的技巧.列代数式的关键是正确理解数量关系,弄清运算顺序和括号的作用.掌握文字语言和、差、积、商、倍、分、大、小、多、少等在数学语言中的含义,此外还要掌握常见的一些数量关系,如行程、营销利润问题等.【例1】通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是元.【解析】设原收费标准每分钟是x元,则(x-a)(1-20%)=b,解得x=a+1.25b.【答案】a+1.25b2. 求代数式的值的方法.求代数式的值的一般方法是先用数值代替代数式中的每个字母,然后计算求得结果,对于特殊的代数式,也可以用以下方法求解:①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入求值;②给出代数式中所含几个字母间的关系,不直接给出字母的值,该类题一般是把代数式通过恒等变形,转化成为用已知关系表示的形式,再代人计算;③在给定条件中,字母间的关系不明显,字母的值含在题设条件中,该类题应先由题设条件求出字母的值,再代人代数式的值.【例2】按照如图所示的操作步骤,若输入的值为3,则输出的值为.【解析】由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.【答案】553. 列代数式探索规律.根据一系列数式关系或一组相关图形的变化规律,从中总结通过图形的变化所反映的规律.其中以图形为载体的数式规律最为常见.猜想这种规律,需要把图形中的有关数量关系式列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论.【例3】观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有个★.【解析】观察发现:相邻的下一个图形比这个图形多3个“★”,由此得第n个图形★的个数为3n+1,故第9个图形★的个数为3×9+1=28.【答案】28专项训练一、选择题1. (2018·甘肃天水一模)下列运算中正确的是( ).A. 3a-2a=1B. a·a2=3a3C. (ab2)3=a3b3D. a2·a3=a52. (2018·福建岚华中学)下列运算正确的是( ).A. a3÷a3=aB. (a2)3=a5C. D. a·a2=a33. (2018·山东东营模拟)下列运算正确的是( ).4. (2018·广西钦州四模)下列二次三项式是完全平方式的是( ).A. x2-8x-16B. x2+8x+16C. x2-4x-16D. x2+4x+165. (2018·江苏东台第二学期阶段检测)下列运算中正确的是( ).A. 3a+2a=5a2B. 2a2·a3=2a6C. (2a+b)(2a-b)=4a2-b2D. (2a+b)2=4a2+b26. (2018·浙江宁波北仑区一模)对任意实数x,多项式-x2+6x-10的值是( ).A. 负数B. 非负数C. 正数D. 无法确定二、填空题7. (2018·湖北黄石模拟)化简÷的结果为.8. (2018·山东聊城模拟)下面是用棋子摆成的“上”字:(第8题)如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用枚棋子.9. (2018·山西太原模拟)计算:(x+3)(x-3)= .10. (2018·天津塘沽区一模)计算(a2)3的结果等于.11. (2018·河北廊坊模拟)计算:x3·x3+x2·x4= .12. (2018·河北唐山二模)随着电子技术的发展,手机价格不断降低,某品牌手机按原价降低m元后,又降低20%,此时售价为n元,则该手机原价为元.13. (2018·浙江杭州拱墅一模)计算:3a·(-2a)= ;(2ab2)3= .14. (2018·江苏南京一模)课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的,该推导过程的第一步是:(a-b)2= .三、解答题15. (2018·江苏无锡港下初中模拟)化简:16. (2018·北京平谷区模拟)已知a2+2a=3,求代数式2a(a-1)-(a-2)2的值.17. (2018·浙江金华6校联考)先化简,再求值:(a+2)(a-2)+4(a-1)-4a,其中a=-3.18. (2018·北京龙文教育一模)已知x2+3x-1=0,求代数式的值.参考答案与解析1. D [解析]3a-2a=a;a·a2=a3;(ab2)3=a3b6.3. C [解析]3x3-5x3=-2x3,6x3÷2x-2=3x5,-3(2x-4)=-6x+12.4. B [解析]根据完全平方公式:(a±b)2=a2±2ab+b2,对各选项分析判断后利用排除法求解.5. C [解析]3a+2a=5a;2a2·a3=2a5;(2a+b)2=4a2+4ab+b2.6. A [解析]原式=-(x-3)2-1.8. 4n+2 [解析]第一个“上”字需要6(=4×1+2)个棋子,第二个“上”字需要10(=4×2+2)个棋子,第三个“上”字需要14(=4×3+2)个棋子,∴第n个“上”字需用4n+2个棋子.9. x2-9 [解析]考查平方差公式.10. a6[解析]a2·a3=a5,(a2)3=a6.11. 2x6[解析]原式=x6+x6=2x6.13. -6a28a3b6[解析]3a·(-2a)=-6a2;(2ab2)3=23a3b6=8a3b6.14. [a+(-b)]2(注:写a2+2a·(-b)+(-b)2也可)16. 原式=2a2-2a-(a2-4a+4)=2a2-2a-a2+4a-4=a2+2a-4.∵a2+2a=3,∴原式=3-4=-1.17. 原式=a2-4+4a-4-4a=a2-8. 当a=-3时,原式=1.。

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析
1. a+b+c+d,其中a=4,b=-2,c=5,d=-3。

2. 3x-5,其中x=-2。

二、易错分析
1. 计算过程中,漏加或漏减符号。

解决方法:在计算时要反复核对符号,避免因符号的错误而导致答案出错。

2. 未将代数式中的各个变量分别代入,而是把代数式看做一个整体直接求值。

解决方法:要将代数式中的各个变量分别代入,以免漏算错算。

3. 在使用“互为相反数”的概念时,未对有符号数进行分析,计算出的结果出现了不合理的情况。

解决方法:要对有符号数进行分析,比较大小,避免出现不合理的结果。

4. 在使用“分配律”、“交换律”等运算规律时,未正确理解规律的意义和应用。

解决方法:要仔细理解运算规律的意义和应用,熟练运用各种运算规律来简化计算。

5. 在计算过程中,过于追求速度,没有认真思考问题,犯了低级错误。

解决方法:要认真思考问题,反复核对计算过程,以免犯低级错误。

(易错题精选)初中数学代数式知识点总复习含答案解析

(易错题精选)初中数学代数式知识点总复习含答案解析

(易错题精选)初中数学代数式知识点总复习含答案解析一、选择题1.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个( )A .400B .401C .402D .403 【答案】D【解析】【分析】 由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n 个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.【详解】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n 个图形边长为1的小正方形有9+5×(n-1)=5n+4个,当5n+4=2019时,解得n=403所以第403个图形中边长为1的小正方形的个数为2019个.故选:D .【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.4.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235a a a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.5.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A.0 B.23C.﹣23D.﹣32【答案】C【解析】试题解析:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=23 ,故选C.8.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.9.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a -÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a =【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.13.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.14.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED=11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.15.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.16.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.19.若x+y=3+22,x﹣y=3﹣22,则22x y-的值为()A.42B.1 C.6 D.3﹣22【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=3+22,x﹣y=3﹣22,∴22()()(322)(322)-=+-=+-=1.x y x y x y故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(-10%)(+15%)万元B.(1-10%)(1+15%)万元C.(-10%+15%)万元D.(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a万元,用a把4月份的产值表示出来a(1-10%),从而得出5月份产值列出式子a1-10%)(1+15%).故选B.。

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析求值是初中数学中一个非常重要的考点,也是很多同学在中考数学考试中易错的地方。

其中,代数式的求值试题是中考数学试卷的常客,因此,在备考中,我们需要认真掌握代数式的求值方法,同时注意一些易错点,以减少失分的可能性。

一、代数式的求值方法代数式的求值,就是指将代数式中的字母用给定的数值代入,计算代数式的值。

下面,我们梳理一下代数式求值的一般步骤:1. 将字母用给定的数值代入代数式中;2. 将代入后的表达式化成算术式,并按照运算优先级计算。

在求值的过程中,需要注意一些特殊情况,如符号相反、分数运算等,下面我们将逐一介绍。

1. $2a+b$,$a=3$,$b=4$,则代数式的值为:$2 \times 3 + 4 = 10$$\frac{6}{2}+\frac{9}{3} = 3 + 3 = 6$$4^2-2^2 = 16-4 = 12$三、代数式求值易错点1. 注意符号相反的情况有时候,求值的过程中会出现符号相反的情况,这时候我们需要仔细计算符号,避免出错。

2. 注意分数运算例如:$\frac{a+b}{a-b}$,$a=2$,$b=-4$,则代数式的值为$\frac{2+(-4)}{2-(-4)} = -\frac{1}{2}$在代数式的计算中,需要注意运算优先级,尤其是括号、指数、乘除运算的优先级。

例如:$5a^2-3a+1$,$a=-2$,则代数式的值为$5 \times (-2)^2 - 3 \times (-2)+ 1 = 25$四、总结代数式的求值试题在中考数学试卷中出现的频率较高,因此,我们需掌握代数式的求值方法,同时注意一些易错点,避免出现不必要的失分情况。

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析
【导语】代数式的求值题是中学数学中的重要内容之一,也是中考试题中较为常见的题型。

掌握常见的代数式求值方法和易错点对学生解题能力的提高非常有帮助。

下面将就中考常见的代数式求值试题归纳及易错分析进行探讨。

一、常见的代数式求值方法归纳
1.代入法:将给定的数值代入到代数式中,计算得到结果。

这种方法适用于各种类型的代数式求值题。

例题1:已知代数式 a=2x+3,求 a,当 x=4 时。

解法:将 x=4 代入 a=2x+3 中,得到a=2×4+3=8+3=11。

故 a=11。

二、常见的易错点分析
1.注意运算符号的运用。

在进行代数式求值计算时,要注意各项符号的使用,特别是加法和减法的运用。

容易出错的地方是符号相反的项没有进行合并,从而导致计算错误。

例题5:已知 a=3b+5-b,求 a,当 b=7 时。

解法:将 b=7 代入 a=3b+5-b 中,得到a=3×7+5-7=21+5-7=19。

故 a=19。

代数式求值题在中考试题中较为常见,掌握常见的代数式求值方法和易错点对学生解题能力的提高具有重要意义。

只有通过大量的练习和积累,加深对代数式求值的理解和掌握,才能在考试中运用自如,获得较好的分数。

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析代数式是初中数学中的重要内容之一,其中求值是代数式的一个核心技能。

中考中常见的代数式求值试题主要涉及四则运算、整式的加减乘除、分配律、因式分解等知识点。

掌握这些知识点对于学生来说非常重要,因为代数式求值试题往往会在中考中占据相当大的比重。

针对中考常见的代数式求值试题,本文将对其中常见的类型进行归纳并加以易错分析,希望能够帮助同学们更好地掌握代数式求值的技巧。

一、整式的加减法整式的加减法是代数式求值中最基础的部分,也是其他代数式求值试题的基础。

在中考中,整式的加减法试题通常会涉及到同类项的合并、去括号、消元等操作。

例如:例题1:已知a=3,a=−2,求表达式a+2a−a的值。

解析:首先根据已知条件将表达式中的a和a代入,得到:3+2×3−(−2)=3+6+2=11。

易错点分析:在这个例题中,易错点主要在于对于同类项的识别和加减操作的粗心。

学生在计算过程中可能会忽略掉负号或者忘记合并同类项,从而导致最终结果错误。

例题2:计算(a+1)(a−2)。

解析:利用分配律展开括号,得到a2+x−2,即为最终的结果。

易错点分析:整式的乘法在展开括号的过程中,学生容易出现疏漏或者运算错误。

特别是对于含有负号的情况,更容易出错。

整式的除法是中学代数中较为复杂的部分,中考中出现的频率相较于加减法和乘法要少一些。

整式的除法试题通常会涉及到因式分解、多项式除法等内容。

例如:解析:利用多项式除法的原理,首先将除式化为首项系数为1的形式,然后进行长除法操作,得到结果为4a2−2a−1。

易错点分析:整式的除法在多项式长除法的过程中,学生容易漏写系数或者运算错误,导致最终结果错误。

四、代数式的综合运用代数式的综合运用试题是中考中比较常见的一种题型,通常会综合运用代数式的加减乘除、分配律、因式分解等多个知识点。

例如:易错点分析:代数式的综合运用试题往往需要对多个知识点进行综合运用,容易出现漏写或者计算错误。

中考数学常考易错点:1-2《代数式》

中考数学常考易错点:1-2《代数式》

代数式易错清单1.在规律探索问题中如何用含n的代数式表示.【例1】(2014·湖北十堰)根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的().【解析】观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.∵2013÷4=503…1,∴2013是第504个循环组的第2个数.∴从2013到2014再到2015,箭头的方向是.【答案】 D【误区纠错】本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.2.求代数式的值时,一般应先化简再代入求值.【误区纠错】在计算括号内的分式加减法时,通分出错,或者分子加减时出错.【误区纠错】本题易错点一是化简时没注意运算顺序;易错点二是去掉分母计算.名师点拨1.能用字母表示实际意义,正确解释代数式的含义.2.会用数字代替字母求代数式的值.3.能用数学语言表述代数式.提分策略1.列代数式的技巧.列代数式的关键是正确理解数量关系,弄清运算顺序和括号的作用.掌握文字语言和、差、积、商、倍、分、大、小、多、少等在数学语言中的含义,此外还要掌握常见的一些数量关系,如行程、营销利润问题等.【例1】通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是元.【解析】设原收费标准每分钟是x元,则(x-a)(1-20%)=b,解得x=a+1.25b.【答案】a+1.25b2.求代数式的值的方法.求代数式的值的一般方法是先用数值代替代数式中的每个字母,然后计算求得结果,对于特殊的代数式,也可以用以下方法求解:①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入求值;②给出代数式中所含几个字母间的关系,不直接给出字母的值,该类题一般是把代数式通过恒等变形,转化成为用已知关系表示的形式,再代人计算;③在给定条件中,字母间的关系不明显,字母的值含在题设条件中,该类题应先由题设条件求出字母的值,再代人代数式的值.【例2】按照如图所示的操作步骤,若输入的值为3,则输出的值为.【解析】由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.【答案】553.列代数式探索规律.根据一系列数式关系或一组相关图形的变化规律,从中总结通过图形的变化所反映的规律.其中以图形为载体的数式规律最为常见.猜想这种规律,需要把图形中的有关数量关系式列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论.【例3】观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有个★.【解析】观察发现:相邻的下一个图形比这个图形多3个“★”,由此得第n个图形★的个数为3n+1,故第9个图形★的个数为3×9+1=28.【答案】28专项训练一、选择题1. (2014·甘肃天水一模)下列运算中正确的是().A. 3a-2a=1B. a·a2=3a3C. (ab2)3=a3b3D. a2·a3=a52. (2014·福建岚华中学)下列运算正确的是().A. a3÷a3=aB. (a2)3=a5C. D. a·a2=a33. (2014·山东东营模拟)下列运算正确的是().4. (2013·广西钦州四模)下列二次三项式是完全平方式的是().A. x2-8x-16B. x2+8x+16C. x2-4x-16D. x2+4x+165. (2013·江苏东台第二学期阶段检测)下列运算中正确的是().A. 3a+2a=5a2B. 2a2·a3=2a6C. (2a+b)(2a-b)=4a2-b2D. (2a+b)2=4a2+b26. (2013·浙江宁波北仑区一模)对任意实数x,多项式-x2+6x-10的值是().A. 负数B. 非负数C. 正数D. 无法确定二、填空题7. (2014·湖北黄石模拟)化简÷的结果为.8. (2014·山东聊城模拟)下面是用棋子摆成的“上”字:(第8题)如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用枚棋子.9. (2014·山西太原模拟)计算:(x+3)(x-3)= .10. (2014·天津塘沽区一模)计算(a2)3的结果等于.11. (2014·河北廊坊模拟)计算:x3·x3+x2·x4= .12.(2013·河北唐山二模)随着电子技术的发展,手机价格不断降低,某品牌手机按原价降低m元后,又降低20%,此时售价为n元,则该手机原价为元.13. (2013·浙江杭州拱墅一模)计算:3a·(-2a)= ;(2ab2)3= .14. (2013·江苏南京一模)课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的,该推导过程的第一步是:(a-b)2= .三、解答题15. (2014·江苏无锡港下初中模拟)化简:16. (2014·北京平谷区模拟)已知a2+2a=3,求代数式2a(a-1)-(a-2)2的值.17. (2014·浙江金华6校联考)先化简,再求值:(a+2)(a-2)+4(a-1)-4a,其中a=-3.18. (2013·北京龙文教育一模)已知x2+3x-1=0,求代数式的值.参考答案与解析1. D[解析]3a-2a=a;a·a2=a3;(ab2)3=a3b6.3. C[解析]3x3-5x3=-2x3,6x3÷2x-2=3x5,-3(2x-4)=-6x+12.4. B[解析]根据完全平方公式:(a±b)2=a2±2ab+b2,对各选项分析判断后利用排除法求解.5. C[解析]3a+2a=5a;2a2·a3=2a5;(2a+b)2=4a2+4ab+b2.6. A[解析]原式=-(x-3)2-1.8.4n+2[解析]第一个“上”字需要6(=4×1+2)个棋子,第二个“上”字需要10(=4×2+2)个棋子,第三个“上”字需要14(=4×3+2)个棋子,∴第n个“上”字需用4n+2个棋子.9.x2-9[解析]考查平方差公式.10.a6[解析]a2·a3=a5,(a2)3=a6.11. 2x6[解析]原式=x6+x6=2x6.13.-6a28a3b6[解析]3a·(-2a)=-6a2;(2ab2)3=23a3b6=8a3b6.14. [a+(-b)]2(注:写a2+2a·(-b)+(-b)2也可)16.原式=2a2-2a-(a2-4a+4)=2a2-2a-a2+4a-4=a2+2a-4.∵a2+2a=3,∴原式=3-4=-1.17.原式=a2-4+4a-4-4a=a2-8.当a=-3时,原式=1.。

(易错题精选)初中数学代数式知识点总复习含解析

(易错题精选)初中数学代数式知识点总复习含解析

(易错题精选)初中数学代数式知识点总复习含解析一、选择题1.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.2.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.3.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.4.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.5.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )A .19cmB .20cmC .21cmD .22cm【答案】B【解析】【分析】 根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.6.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.7.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.8.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.9.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】 分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,故选:A .【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.已知多项式x-a与x2+2x-1的乘积中不含x2项,则常数a的值是()A.-1 B.1 C.2 D.-2【答案】C【解析】分析:先计算(x﹣a)(x2+2x﹣1),然后将含x2的项进行合并,最后令其系数为0即可求出a的值.详解:(x﹣a)(x2+2x﹣1)=x3+2x2﹣x﹣ax2﹣2ax+a=x3+2x2﹣ax2﹣x﹣2ax+a=x3+(2﹣a)x2﹣x﹣2ax+a令2﹣a=0,∴a=2.故选C.点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42 B.43 C.56 D.57【答案】B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.14.计算1.252 017×2?01945⎛⎫⎪⎝⎭的值是( )A.45B.1625C.1 D.-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.15.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.考点:规律型:数字的变化类.16.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.17.若(x +4)(x ﹣1)=x 2+px +q ,则( )A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.18.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.x2•x3=x5,故选项A不合题意;(ab)3=a3b3,故选项B符合题意;(2a)3=8a6,故选项C不合题意;3−2=19,故选项D不合题意.故选:B.【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为()A .31n -B .3nC .31n +D .32n +【答案】C【解析】【分析】 根据前4个图形中五角星的个数得到规律,即可列式得到答案.【详解】观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+,第2个图形中一共是7个五角星,即7321=⨯+,第3个图形中一共是10个五角星,即10331=⨯+,第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +,故选:C.【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.。

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析
1. 代数式的基本性质:
代数式是由数字、字母和运算符号组成的式子,代表运算关系。

代数式的求值就是根据给定的字母取值,将字母代入代数式中,计算出结果的过程。

2. 常见的代数式求值类型:
(1) 一次代数式:
一次代数式是只有一次幂的代数式,例如2x+3等。

求一次代数式的值只需要将给定的字母取值代入到式子中,计算出结果即可。

3. 常见的易错点:
(1) 括号的运算规则:
在代数式中,括号是优先级最高的运算符号,需要先计算括号内的式子,再进行其他运算。

容易出错的情况包括忽略括号、将括号当作乘法等错误。

(2) 幂次的计算:
在计算代数式的值时,幂次的计算需要按照幂次大小依次进行,容易出错的情况包括忘记计算某一项、幂次计算错误等。

(3) 字母取值范围的注意:
在代数式求值时,需要注意字母的取值范围,特别是分式和根式中的字母取值需要排除使分母或被开方数为0的情况。

4. 常见的代数式求值试题:
(1) 试题1:已知二次代数式x^2+3x+2,求当x=2时的值。

解析:将x=2代入到式子中,得到2^2+3*2+2=4+6+2=12,所以当x=2时,代数式的值为12。

通过对中考常见的代数式求值试题的归纳和易错点的分析,希望能够帮助同学们更好地理解代数式的求值过程,提高解答代数式求值题的能力。

(易错题精选)初中数学代数式知识点总复习有答案解析

(易错题精选)初中数学代数式知识点总复习有答案解析

(易错题精选)初中数学代数式知识点总复习有答案解析一、选择题1.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a -÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.2.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.3.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.4.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .5.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2【答案】C【解析】试题解析:A.a 2与a 3不是同类项,故A 错误;B.原式=a 5,故B 错误;D.原式=a 2b 2,故D 错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.6.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.7.计算 2017201817(5)()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.8.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .9.若2m =5,4n =3,则43n ﹣m 的值是( )A .910B .2725C .2D .4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m =5,4n =3,∴43n ﹣m =344n m =32(4)(2)n m =3235=2725 故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯== 325a a a += ()3263a b a b = 故选B .11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误;235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.13.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )A .-1B .1C .2D .-2【答案】C【解析】分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.15.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.16.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.19.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.。

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析

中考常见代数式求值试题归纳及易错分析
代数式的求值是中考数学中的一个重要考点,而且在实际生活中也有广泛的应用。


下是中考常见的代数式求值试题归纳及易错分析。

一、单项式求值
1. 试题:已知x=2,求3x的值。

解析:将x=2代入3x中,得到3*2=6,所以3x的值是6。

四、配方法求值
易错分析:
1. 在代入值时要注意符号,特别是负号的运用。

如题:已知x=-2,求3x的值。

答案是-6,因为-2乘以3等于-6。

2. 在计算过程中要注意计算的先后顺序,特别是括号运算和乘除运算。

如题:已知
x=4,求2(x+1)的值。

解析:先计算括号内的值,得到2(4+1)=2*5=10。

4. 在求分式值时,要注意被除数不能为0。

如题:已知x=0,求1/(2x)的值。

解析:由于2x=2*0=0,被除数为0,所以1/(2x)的值不存在。

五、解答归纳
在解答代数式求值试题时,要注意以下几点:
1. 仔细理解题意,确定代入的值。

2. 确定计算的顺序,特别是加减和乘除的运算符。

3. 正确计算各项和括号内的值,避免计算错误。

4. 最后检查计算结果,确定答案是否与题目要求一致。

中考常见的代数式求值试题归纳及易错分析主要包括单项式求值、多项式求值、分式
求值和配方法求值等方面。

在解答时要注意符号运用、计算顺序、被除数不能为0等问题,同时要认真阅读题目,仔细计算,确保答案的准确性。

希望以上内容对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.
a ,a-b. b
7.a+b 的相反数为 8.a 与 b 的商为
; ;a 与 b 的差为
.
例 3.4,12,24; 1 ×4=1×2( 1 +1) , 2 ×6=2×2( 2 +1) , 3 ×8=3×2( 3 +1) , ………… 所以, 当边长为 n 根火柴棍时, 摆出的正方形所用的火柴棍的 根数为 n×2(n+1) ; 即 S=2n(n+1). 9.列表分析: 图的 1 2 3 个数 棋子 4 4+3 4+6 个数 4+3(2-1) 4+3 (3-1) 解:⑴第 4 个图形中棋子的个 数为:4+3(4-1)=13; ⑵第 n 个图形的棋子个数为: 4+3(n-1)或(3n+1); 3 当 n=20 时, 3n+1=3× 20+1=61 , 所 以,第 20 个图形需棋子 60 个. 10.列表分析: 序号 1 2 3 4 5 6 线段 2 1 3 2 4 3 长度 从表中可以得到,当序号为奇 数 1、3、5……时,线段的长 度为 2、3、4……的连续正整 数,如果设 n 为自然数,则当 线段的长度为 n 时,对应的序 号为:2n-3. 当 2n-3=25,即 n=14 时,长度 为 25. 11.解: (1)1 条金鱼,8 根; 2 条金鱼, (8+6)根; 3 条金鱼, (8+2×6)根; 4 条金鱼, (8+3×6)根=26 根; (2)n 条金鱼,[8+6(n-1)]= (6n+2)根; (3)当 n=100 时, 6n+2=6×100+2=602 根. 点评:从以上各题的解答过程 可以看出,关系是要寻找结论 与自然数 1、2、3…的关系. 新的数学方法和概念, 常 常比解决数学问题本身更 重要。 ——华罗庚
例 4.2x -3xy+x , 2 2 2 2xy-2x +3xy-x ,5xy-3x ; 1 1 2 (- ),(-3),(- ) ; 3 3 1 14 5, , ; 9 3 2 2 点评:2xy-[2x -(3xy-x ) ] 的化简也可以这样进行,将 2 (3xy-x )看成一个整体,则 2 中括号中含有两项,即 2x 和2 (3xy-x ). 2 2 2xy-[2x -(3xy-x ) ] 2 2 =2xy-2x +(3xy-x ) 2 2 2 =2xy-2x +3xy-x =5xy-3x . 注意画横线的部分,小括号内 部并没有变化. 例 5.m-n, (m-n) ; (m-n) , (m-n) , (m-n) ,-2,5. 12. 3,2π ; 点评:π是一个数,它的指数 不参与单项式次数的计算.
在数学的领域中, 提出问 题的艺术比解答问题的艺 术更为重要。 康扥尔
(6)去括号时,要同时去掉它 前面的符号, 当去掉 “( ) ” , 括号内的各项都要变号, -(x+5)去括号后 x 与 5 都要 变号,即-(x+5)=-x-5 所以, 正确的答案是:x-1-x-5; (7)当去掉“+( ) ”时, 括号内的各项都不变;正确答 2 案是 a -2a+3. 16. 解: 2A - B =2(y+1)-(x-3y) =2y+2-x+3y=5y-x+2; 点评:在进行整式的加减运算 时,一定要有整体意识,代入 多项式时要用括号表示这个多 项式为一个整体.如本题中, 求 A 与 B 的差,则列式为 (y+1)-(x-3y),然后去括号, 合并同类项. 错误解法: 2A-B =2y+1-x-3y=-y-x+1. 2 2 例 6.-3x ,nx ,-3,n, mx,-x,m,-1; -3+n,m-1; 解: 因为代数式的值与 x 无关, 所以,合并同类项后,x 的二 次项和一次项系数都为 0, 即:-3+n=0,m-1=0,即 n=3,m=1 当 m=1,n=3 时,代数式的值与 x 无关. 17.解:三角形 DGF 的面积为: 1 GF·DG= 1 b(a-b) 2 2 三角形 BGF 的面积为: 1 DF·EF= 1 b2 2 2 故阴影部分的面积: 1 b(a-b)+ 1 b2. 2 2 18.阴影部分的面积为: 1 (a+b)h-ah, 6. 2 点评:18 题直接求,19 题间接 求阴影部分的面积. 19.⑴b=0.8(220-14)=164.8 答: 正常情况下,在运动时一个 14 岁的少年所能承受的每分钟 心跳的最高次数 164 次. ⑵b=0.8(220-45)=140, ∵22×6=132 132<140 ∴他没有危险. 数学是各式各样的证明 技巧。 ——维特根斯坦
2 13. ,4; 5 2xy 2 z 可改写成 点评:
2
2
2
5 2 2 xy z,x 、z 的指数是1. 5
1 14.多项式 2a2b- a2b2+ab-6 是 3 ,常数项是 . 的项是
六、同类项及整式的加减应注意的事项: ①.字母相同,同一字母的指数也相同的项就是同类项;同 类项可以进行加减运算,即合并同类项;系数相加作为和的系 数,字母和字母的指数不变;不是同类项的不能合并. ②.去括号时,必须连同括号前的符号一起去掉;去掉 “( ) ”时,各项都要变号;去掉“+( ) ”时,各项都不变. 做一做: 15.判断下列说法是否正确. (1)3a-2b=5ab ( )
《代数式》方法点拨及易错题解析
一、表示代数式时应该注意的几个方面: 代数式的书写必须遵循下列规则: (1)数字与字母、字母与字母相乘时,乘号可以省略不写或 用“· ”代替,省略乘号时,数字因数应写在字母因数的前面, 数字是带分数时要改写成假分数,数字与数字相乘时仍要写 “×”号. (2)代数式中出现除法运算时,一般要写成分数的形式. (3)用代数式表示某一个量时,代数式后面带有单位,如果 代数式是和、差形式,要用括号把代数式括起. 做一做: ; 1.上底为 a,下底为 b,高为 h 的梯形的面积为 2. (a+b)的 2 倍 . 3. 某商店上月收入 a 元, 本月收入比上月的 22 倍还多 10 元, 元. 本月收入 二、列代数式应遵循的原则: (1)正确理解和、差、积、商(以及今后所要学的乘方、开 方) 、多、少、倍、分等数学术语的意义. (2)要分清数量关系中的运算层次与运算顺序,必要时,要 正确地添加括号,即口诀是:先读必先写,升级添括号.“与” 字两头挑,符号莫混淆.另外常见的六种运算分为三级,按由低 到高的排序为:低级为加、减;中级为乘、除;高级为乘方、 开方.“升级”就是指后面的运算比前面的级别要高.如“a 与 b 的和的 3 倍” ,显然是先加后乘, “升级”了应添括号,把 a 与 b 的和看成一个整体括起来再乘以 3,即为 3(a+b). (3)分析语句所表达的数量关系时,除了要注意大、小、和、 差等词语的意义外,还应弄清楚语句中的数量关系是以哪个为 基准的. (4) 探索数量关系, 运用符号表示规律,通过运算验证规律, 再用代数式表示简单问题中的数量关系,利用合并同类项,去 括号等法则验证所探索的规律. 例 1.某书店出售图书的同时,推出一项租书业务,每租看 1 本书,租期不超过 3 天,每天租金 a 元;租期超过 3 天,从第 4 天开始每天另加收 b 元.如果租看 1 本书 7 天归还,那么租金 为___元. 例 2.今年全省参加七年级期末考试的同学约有 15 万人. 其 中男生约有 a 万人, 则女生约有 万人. 做一做: 4.一个两位数,个位上的数是 a,十位上的数是 b,则这个数 ; 表示成 5.用代数式表示 a、b 的平方和: ; a、b 的和的平方: ; 6.a、b 的倒数和 ; a、b 的和的倒数 ;
1条
2条
3条
四、求代数式的值的技巧与注意事项: ①.代数式能化简的要先化简,再代入求值; ②.将字母的值原原本本地代入化简后的代数式,同一字母 用同一数字代入,切不可张冠李戴.有乘方运算时,代入负数和
加入 QQ 群 279399648 下载更多数学学习资料
分数都要加上括号;当代入负数后如果与运算符号混淆时也要 加上括号; 例 4.先化简再求值,求 2xy-[2x2-(3xy-x2) ]的值.其中 x 1 =- ,y=-3. 3 解:原式=2xy-[ ] (去小括号) = (去中括号) = ; (合并同类项) 1 当 x=- ,y=-3 时,原式=5xy-3x2=5× × -3× 3 = -3× = . 试一试:把小括号的多项式当作一个整体,先去中括号再去 小括号化简. ③.要逐步培养自己的整体意识: 例 5.已知 m-n=-2,求 2(m-n)-m+n+7 的值. 互为相反数,因此-m+n=, 分析:-m+n 与 解:2(m-n)-m+n+7 =2(m-n)+7 (把(-m+n)用(m-n)的代数式表示) = +7, (把(m-n)当作整体合并同类项) +7= +7= . 当 m-n=-2 时,原式= 五、单项式和多项式概念的应用要注意的事项: ①.单项式的次数是指字母的指数和,与数无关; ②.因为“几个单项式的和叫多项式”.因此,减号都要当成 负号; ③.多项式的次数是这个多项式里次数最高的项的次数,特 别地,常数项的次数为 0. 做一做: 12.单项式 2π2a2b 的次数是 ,系数是 ; 13. 2 xy 2 z 的系数是 5 ,次数是 次 ; 项式,次数最高
加入 QQ 群 279399648 下载更多数学学习资料
1 2 2 14.4,4,- a b ,-6; 3 1 2 2 点评: 次数最高的项是- a b , 3 1 2 2, 而不是 a b 常数项是-6,而 3 不是 6. 15.(1)~(7)题的答案分 别是:×,×,×,√,×, ×,×. 点评: (1)题不能计算;不是 同类项的不能进行加减运算; (2) 题没有保持字母和它的指 2 数不变,正确的答案是 9y ; (3) 题不是同类项, 不能合并; (5)题按乘法的分配律, -1 也要乘以 3,正确答案是: x+3x-3;
相关文档
最新文档