数字信号基带传输
通信原理 第6章_数字信号的基带传输
功率谱密度为:
T P(f) S
Sa2
fT
(S
)
S
4
2
0.6 0.4 0.25 0.2
0
2.0
单极性不归零
1.5
P= 0.5
1.0
0.5
0.4 0.8 1.2 1.6 2.0 f/fb
0
双极性不归零 P= 0.5
0.4 0.8 1.2 1.6 2.0 f/fb
0.12
0.08 0.0625
0.04
单极性归零 0.0507 半占空P= 0.5
1
Sa2 (m
)
(
f
16
2
16 m
2
mfs )
TS Sa2 (fTS ) 1 ( f ) 1 Sa2 (m ) ( f
16
2 16
16 m奇数
2
mfs )
4、双极性归零码
∵ g1(t)= Gτ(t), g2(t)= - Gτ(t),τ=TS /2,
∴
,G2(f)=- G1(f)
且当信源等概 p=1/2时,单双极性归零码的
差分码或相对码(Differential encoding): 差分码又称为相对码,特征是:不用电平的绝对值 而用电平的相对变化传0、1符号。
原始代码 1 1 0 1 0 0 1
传号差分码
“1变0不变”,
TS
空号差分码
“0变1不变”
TS
多电平波形
0 0 0 1 0 1 10 0 0 1 1 11
Ts Ts
习题6-1
设二进制符号序列为110010001110,试以 矩形脉冲为例,分别画出相应的单极性波 形,双极性波形,单极性归零波形,双极 性归零波形,二进制差分波形及八电平波 形。
数字信号的基带传输
B 2
H(ω)
0 -
ω0
0
B 2
ω
(a)低通滤波器
(b)带通滤波器
A H ( ) 0
0 B other
A H ( ) 0
B B 0 0 2 2 other
15
无失真系统是否为线性系统?
(1)是否具有齐次性?
幅度。
(4) 时隙(Slot):一个时隙一个数据位逐个进行。 码元
5
基本概念
二、基带传输与频带传输
数字基带信号:未经调制的数字信号,它所占据的频谱是从零
频或很低频率开始的。
基带传输:将数字基带信号通过基带信道(传递函数为低通型)传
输 —— 信号频谱不搬移,直接传送。
同轴电缆,双绞线 频带信号:数字基带信号经正弦波调制的带通信号 频带传输:将数字带通信号通过带通信道传输
振幅失真:
是信号各个频率分量的振幅值随频率发生了不同变化。
由传输设备和线路引起的衰损造成的
延迟失真:
是信号各频率分量的传播速度不一致所造成的失真。
12
基本概念
三、信号通过系统 3、无失真系统
如果信号通过系统后各个频率分量的振幅和延迟改变 都是相同的,则称信号不失真。能够使信号不失真的系 统称为不失真系统。
假定通过系统前的信号为X(t),通过系统后的信号为Y(t),
不失真系统只能导致信号如下改变:
Y (t ) kX (t t 0 )
13
系统对信号的作用如下:
输入信号
系统
输出信号
Y ( ) X ( ) H ( )
不失真系统信号输出:
X(t )
h(t )
6-数字信号的基带传输-3
x(t)
y(t)
信道
C( ω)
n(t)
接收滤波器
+
成型网络
R( ω)
判决 {an}
S(t)
基带传输模型
数字基带传输模型
z {an}为发送滤波器的输入符号序列,二进制时符号an的取 值为0、+1、-1,此序列对应的基带信号x(t):
∞
∑ x(t) = anδ (t − nTs ) n=−∞
z 此信号激励发送滤波器产生信号y(t):
(3)传输二进制码元时,求信息频带利用率ηb。
解 (1)将该系统的传递函数H(f)以2f0为间隔切割,然后分段 沿f轴平移到[-f0,f0]区间内进行叠加,如图6-19(b)所示。 叠加后的传输特性为
H
(
f
)
=
⎪⎧1, f ≤ ⎪⎩⎨0 ,其它
f
0
由于叠加后的传输特性符合等效理想低通特性,所以该系
统能够实现无码间串扰的传输。
z 则接收滤波器的输出信号S(t):
∞
∑ S(t) = ans(t − nT ) + nR (t) n=−∞
式中,s(t)与S(ω)互为傅里叶变换对;
∫ s(t) = 1 ∞ S(ω)e jωtdω
2π −∞
nR(t)为n(t)通过接收滤波器后的波形 S(t)送入抽样判决电路,进行抽样判决。
数字基带传输模型
z 抽样判决器:对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 z 同步提取:用同步提取电路从接收信号中提取定时脉冲
基带系统各点波形:
(a)
(b) (c)
(d )
(e) (f)
(g)
输入信号 t 码型变换后
第五章数字信号的基带传输
第五章 数字信号的基带传输基带传输系统频带传输系统(调制传输系统)数字基带信号:没有经过调制的原始数字信号。
(如各种二进制码PCM 码,M ∆码等)数字调制信号:数字基带信号对载波进行调制形成的带通信号。
5.1、基带信号的码型一、数字基带信号的码型设计原则:1. 对传输频带低端受限的信道,线路传输的码型的频谱中应该不含有直流分量;2.信号的抗噪声能力强;3.便于从信号中提取位定时信息;4.尽量减少基带信号频谱中的高频分量,节省传输频带、减小串扰; 5.编译码设备应尽量简单。
二、数字基带信号的常用码型。
1、单极性不归零码NRZ (Non Return Zero )脉冲宽度τ等于码元宽度T特点:(1)有直流,零频附近的低频分量一般信道难传输。
(2)收端判决门限与信号功率有关,不方便。
(3)要求传输线一端接地。
(4)不能用滤波法直接提取位定时信号。
2、双极性非归零码(BNRZ )T =τ,有正负电平特点:不能用滤波直接提取位定时信号。
⎩⎨⎧数字通信系统3、单极性归零码(RZ)τ<T特点:(1)可用滤波法提取位同步信号(2)NRZ的缺点都存在4、双极性归零码(BRZ)特点:(1)整流后可用滤波提取位同步信号(2)NRZ的缺点都不存在5、差分码电平跳变表1,电平不变表0 称传号差分码电平跳变表0,电平不变表1 称空号差分码特点:反映相邻代码的码元变化。
6、传号交替反转码(AMI)τ)归零码表0用零电平表示,1交替地用+1和-1半占空(T5.0=示。
优点:(1)“0”、“1”不等概时也无直流(2)零频附近低频分量小(3)整流后即为RZ码。
缺点:连0码多时,AMI整流后的RZ码连零也多,不利于提取高质量的位同步信号(位同频道抖动大)应用:μ律一、二、三次群接口码型:AMI加随机化。
7、三阶高密度双极性码()3HDBHDB3码编码步骤如下。
①取代变换:将信码中4个连0码用取代节000V或B00V代替,当两个相邻的V码中间有奇数个1码时用000V代替4个连0码,有偶数个1码时用B00V代替4个连0码。
第5章 数字信号的基带传输系统
HDB3码: -1000 -V +1000 +V -1 +1 -B00 -V +1 —1
虽然HDB3码的编码规则比较复杂,但译码比较简单。从上述 原理看出,每一个破坏符号V总是与前一非“0”符号同极性(包括
B符号在内),故从收到的符号序列中可以容易地找到破坏点V,
从而断定V符号及其前面的3个符号必是连“0”符号,然后恢复4个
一、单极性不归0二进制脉冲序列的功率谱密度数字 基带信号单个波形的频谱:
(设“1”、“0”码等概率出现,码元宽度)。
19
天津电子信息职业技术学院
20
天津电子信息职业技术学院
二、单极性归零二进制码序列的功率谱密度:
g1(t)
g2 (t )
A
Ts 2 Ts
2Ts 3Ts t
(a) 单极性归0二进制序列
6
天津电子信息职业技术学院
占空比指的是脉冲宽度τ与码元宽度Tb之比τ/Tb。单极性RZ码 的占空比为50%。
4.双极性归零(RZ)码 双极性归零码的构成原理与单极性归零码相同,如图5-1d)。 每一个码元被分成两个相等的间隔,“1”码是在前一个间隔为正 电平而后一个间隔回到零电平,而“0”码则是在前一个间隔内为 负电平而后一个间隔回到零电平。
1
1…
AMI码: +100 —1 +1000 -1 +1 -1 …
第5章数字信号的基带传输
(5.2 - 23)
Pu
(
f
)
lim
N
(2N
1)P(1 P) G1( f (2N 1)Ts
)
G2
(
f
)
2
fs P(1 P) G1( f ) G2 ( f ) 2
(5.2 - 24)
交变波的的功率谱Pu(f)是连续谱,它与g1(t)和g2(t)的 频谱以及出现概率P有关。根据连续谱可以确定随机
抽样判决器
在传输特性不理想及噪声背景下,在规定时刻 (由位定时脉冲控制)对接收滤波器的输出波形 进行抽样判决,以恢复或再生基带信号。而用来 抽样的位定时脉冲则依靠同步提取电路从接收信 号中提取,位定时的准确与否将直接影响判决效 果。
(a)基带信号; (b)码型变换后; (c) 对 (a) 进 行 了 码 型 及波形的变换,适合 在信道中传输的波形;
m
fs )
(5.2 - 28)
(1) g(t)为单极性不归零矩形脉冲
g
(t)
1,
0,
t Ts 2
其它
G(
f
)
Ts
s
in
f
f Ts Ts
Ts Sa(
f
Ts )
m 有直流分量
m 0 : G(m fs ) TsSa(m ) 0 离散谱均为零,因而无定时信号。
g2(t+ 4Ts) g1(t+ 3Ts) g1(t+ 2Ts) g2(t+Ts)
g (t) g1 (t)
g2(t- 2Ts)
g2(t-Ts)
(a)
-Ts O Ts
t
2
2
v(t)
(b)
-Ts -Ts O Ts Ts
数字信号的基带传输
,图
5 - 4(c)画出了
ut ut
下面我们根据式(5.2 - 5)和式(5.2 - 8), 分别求出稳
态波 V t 和交变波 ut 的功率谱,然后根据式(5.2 -
6)的关系,将两者的功率谱合并起来就可得到随机基
带脉冲序列 S t 的频谱特性。
1. V的功t 率谱密度
Pv f
由于 是以 为周期的周期信号,
另一种比较简单的方法是以随机过程功率谱的原始定义为出发点,求出数字随机序列的 功率谱公式。
设二进制的随机脉冲序列如图 5 - 4(a)所示,其中,假设
表示“0”码, 表示“1”码。 和 在实际中可以是任意的脉冲,但为了便于在
图上g1区分t ,这里我们把
g画2成宽t 度为Ts的方波,把 g1 画t 成宽度g为2 Tst的三角波。
g
t
A t
2
0 t 其它值
T 22
T
22
其频谱为:G
A
Sa
2
4 2
2 4
此双极性信号的功率谱密度为:
PS
1 TS
G 2
1 TS
A2
2
Sa2
2
A2TS 4
Sa2
TS
4
近似带宽可视为:
BS
4
TS
2 2 1 TS
TS 2
8 4
TS
TS
4 8
TS
TS
(2) 若 g t 为单极性信号,则:
数字基带信号是随机的脉冲序列,没有确定的频谱函数, 所以只能用功率谱来描述它 的频谱特性。方法有二:
1:由随机过程的相关函数去求随机 过程的功率(或能量)谱密度就是一种典型 的分析广义平稳随机过程的方法。但这 种计算方法比较复杂。
数字信号的基带传输
(c) 当 AMI 中出现长连“ 0”时, AMI码中长时间无电平 跳变,致使定时信号难以提取。 为了克服这个缺点,提出了HDB3码。
2.三阶高密度双极性码(HDB3码) HDB3码是一种AMI码的改进型,又称四连“0”取代码, 在 AMI 码中,如果连续较长的一段序列为“ 0” 码,则在接 收端会因为长时间无变化波形的控制而丢失同步信号。 为了克服传输波形中出现长连“ 0” 的情况,而设计了 AMI码的改进码型 HDB3码。HDB3码就是码型中最长连“0” 数不超过3个的高密度双极性码。 (1) 构成规则 在消息的二进制代码序列中, ①当连“0”码个数不大于 3时,HDB3编码规律与AMI码相 同,即“1”码变为“+1”、“-1”交替脉冲;
(2) 特点 (a)不存在直流分量。 (b)具有频繁出现的电平跳变,有利于接收端提取位定时 信号。 (c) 具有内检错能力 ,这是因为“ 1” 码相当于“ 00” 或 “11”两位码组,而“0”码相当于“01”码组,在正常情况下, 序列中无“10”码组出现,且无“00”或“11”码组连续出现, 这种相关性可用来检测因干扰而产生的部分错码。 三种常见传输码型的应用场合是:对于程控数字交换系 统中数字用户线上所传送的基本速率 (2B+D)数字信号码型, 选用 AMI 码、 HDB3 码。在数字中继线或光纤传输系统的接 口上,一般采用HDB3或CMI接口码型,
δt
∞,t =0
0,t≠0
单位冲激函数及其频谱如图4.8所示。
图4.8 单位冲激函数及其频谱
二、信道限带传输对信号波形的影响
任一信道的频带宽度都是有限的。当无限带宽的信号通 过有限带宽的信道时,必然会使信号的频谱受到一定损失, 结果使到达接收端的信号波形发生变化。
第5章 数字信号基带传输.
第5章数字信号基带传输知识点:(1 信号设计——码型、波形是数字编码传输的基础;(2 随机数字波形序列的功率谱特性;(3 数字基带信号传输系统构成及其主要知识;(4 消除符号间干扰理论——Nyquist 准则基本原理及实施技术;(5 均衡的基本概念。
知识点层次:(1 掌握主要码型如双极性不归零码、AMI 、差分码等构成特点,理解其他码型特征;(2 理解功率谱构成特征,掌握决定功率谱的主要参量;(3 掌握奈氏第一准则及有关参数、关系,理解第二准则基本思想;(4 了解均衡目的及主要做法;(5 掌握并理解各典型例题及简答填空内容。
第五章数字信号基带传输返回本章讨论了三个问题:(1)发送信号的码型与波形选择及其功率谱特征;(2)符号间干扰及奈奎斯特准则——关于ISI 的产生机理与消除ISI 的基本原理;(3)作为消除ISI 及其它噪声、干扰影响,进行的接收波形均衡,以及直观评价接收效果的方法(眼图)。
现分别总结如下:1. 数字基带信号码型与波形设计(选择),首先应适于通信传输的基本要求,尽可能保证较高的可靠性及带宽利用率。
常用码型针对不同的要求,各有不同特点。
就二元信号来说,NRZ 、AMI 、CMI 、差分码等各有优势,并有很好的功率谱特性。
HDB 3码多用于PCM 基群线路码型,以及A 律PCM 各次群。
从减少平均误差来看,自然码不如格雷码。
用什么形状的波形表示各种码型,也需考究。
通常为便于介绍原理,多利用方波,这样单符号能量似乎最大。
从减少ISI 及适应限带信道特性系统来看,方波并不是最佳的。
另外,还应考虑二元或多元符号波形之间的正交性,以利较佳接收,如NRZ 、AMI 、CMI 等,均具有正交性或变相正交,抗干扰能力强。
数字基带信号的传输系统,较多为收发同步模式。
便于收端提取同步,往往是选择码型的主要考虑之一。
2. 数字基带信号作为随机信号采样,它具有具体的自相关函数及相互确定的功率谱。
它完全取决于三原则先验概率、码型波形形状及传输速率或码间间隔。
第五章 数字信号的基带传输(1)
第5章数字信号的基带传输••••5.1引言5.2数字基带信号波形及其功率谱密度¾数字PAM信号是以脉冲载波的幅度携带数字信息。
5.2.1 数字脉冲幅度调制(PAM)¾MPAM 信号的时域表示式可写为: ()()1,2,...,0i i T ss t ag t i M t T ==≤≤MPAM 信号波形也可表示为另一形式:()()n T s n s t a g t nT ∞=−∞=−∑5.2.2 常用的数字PAM信号波形(码型)1. 单极性不归零码(NRZ)2. 双极性不归零码3. 单极性归零码(RZ)4. 双极性归零码5. 差分码(相对码)6. 多电平的PAM信号波形(MPAM)第5章数字信号的基带传输2 双极性不归零码{}:1110010n b 10n A a A +⎧=⎨−⎩12b t rect T ⎛⎞−⎜⎟⎝⎠0t()T g t 1b T3 单极性归零码(RZ)t()T g t 12b T 1()2T t g t rect τ⎛⎞=−⎜⎟⎝⎠{}:1110010n b②差分译码1n n na b b −=⊕习题5.2(p186)已知信息代码1 1 1 0 0 1 0 1(1)写出相对码(初始值为1);(2)画出相对码的波形图(单极性矩形不归零码)5.2.3 数字PAM 信号的功率谱密度计算¾如何求PA M信号的功率谱密度–证明随机过程的平稳性–对于循环平稳过程求其平均自相关函数–通过平均自相关函数求功率谱密度()()n T s n s t a g t nT ∞=−∞=−∑2(1/)22(1/)()()s ssj f T mT a s a m j fmT j ma m P f T R m eR m eeπππ∞−+=−∞∞−−=−∞+==∑∑∵∴P a (f )是f 的周期函数,周期为1/T s 。
其傅氏级数形式为=12()()sj fmT a a m R m eP f π∞−=−∞==∑2()()sj fmT a am P f R m eπ∞−=−∞=∑1/221/2()()sssT j fmT a s a T R m T P f edfπ−=∫系数为[][]{}()()()n n m n n n m n m Cov a a E a E a a E a +++=−⋅−2[][]()[][][]an n m a n n m n n m E a E a R m E a a E a E a σ+++⎧+==⎨⎩设广义平稳随机序列{a n } 是实的且互不相关22200a aam m mm σ⎧+==⎨≠⎩20[][][]0an n m n n m m E a a E a E a m σ++⎧==−=⎨≠⎩例5.2.10二进制信息序列{b n }的取值为+1或-1,m b =0,方差为1,各符号之间互不相关,序列a n =b n +b n-1(算术加)。
《数字信号基带传输》课件
采样
将连续时间信号转换为离散时间序列。
编码
将量化信号编码为数字产生
基带信号可通过数学函数、数字信号处理等方法生 成。
描述
基带信号可以使用时域波形、频谱图、功率谱密度 等方式进行描述。
传输中的基带噪声和失真
1 噪声
传输过程中的噪声会引起信号的质量下降和误码率的增加。
《数字信号基带传输》 PPT课件
数字信号基带传输是将数字信号直接传输至接收端的一种通信方式。本课程 将探讨其原理、应用场景、噪声和失真、调制技术等内容。
什么是数字信号基带传输?
数字信号基带传输是将数字信号的原始形式直接传输至接收端,不进行模拟 信号的调制过程,具有高带宽利用率和抗干扰能力强的特点。
调相(PM)
将数字信息调制至载波的相位。
链路预算和误码率分析
链路预算
计算信号在传输中所能承受的衰减、噪声等因素。
误码率分析
评估信号在传输中的错误概率,确定合适的编码和 调制方案。
2 失真
信号在传输过程中可能遭受幅度、相位、频率等方面的失真。
信道编码技术
前向纠错编码
通过添加冗余来提高抗噪声和纠错能力,如海明码、RS码。
调制编码
将数字信息直接映射到模拟载波上,如PSK、QAM。
调制技术和调制方法
调幅(AM)
将数字信息调制至载波的振幅。
调频(FM)
将数字信息调制至载波的频率。
数字信号基带传输的应用场景
LAN网络
基带传输常用于局域网 (LAN)中,例如以太网。
数字音视频
基带传输可用于将数字音视 频信号传输至显示屏、音响 设备等。
计算机数据传输
基带传输可用于计算机之间 的数据传输,如USB、HDMI 接口。
第4章数字基带信号及其传输
T
B Rb 2
H ( )
1
h(t ) 2B
T
0
T
3T 2T T 0 T 2T 3T t
如果信号经传输后整个波形发生变化,但只要其特定点的抽
样值保持不变,那么用再次抽样的方法,仍然可以准确无误地恢
复原始信码。这就是奈奎斯特第一准则的本质。
h(t)
h(t)
h(t-Tb)
t 0
-Tb
B (1 )RB 2
频带利用率为(1~2) Baud/Hz。可以看出 越大,“尾部”
衰减越快,带宽越宽,频带利用率越低。
几种常用的无码间串扰传输特性
名称和传输特性H(f)
冲击响应h(t)
理想低通
余弦滚降 w1
H(f)
f
0 w1
H(f)
Sa(2W1t) Sa(2W1t)
1/2
2 WC
WC
SaWC (t td )
用代替(t- )
y( )
WC
Sa(WC )
y(τ)
0
τ
2π π
WC
WC
π 2π
WC
WC
Sa(WC ) -采样函数,LPF 输出具有很长的拖尾,幅度逐渐衰 减,有许多零点。第一个零点在 WC 处,以后各零点间
基带信号
H(ω )
x(t)
y(t)
采样 判决
输出
系统的总传输函数: H () H i ()H chH r ()
假定 H ()是个理想低通滤波器(LPF),则:
H ( )
k e jtd 0 ,
,
WC WC
信号的传输方式
信号的传输方式
信号的传送方式主要有以下三种:
1基带传输:直接在信道上传输基带信号,这种信号可以是数字信号或者是模拟信号。
基带信号的基本频带可以从直流成分到数兆赫兹,但当其频带较宽时,传输线路上的电容电感等因素会对信号波形产生较大衰减,因此传输距离通常不会超过2km。
如果需要更长的传输距离,可能需要加入中继器来放大信号。
2频带传输:将基带信号转换为频率表示的模拟信号来进行传输。
例如,当我们使用电话线进行远程数据通信时,会先将数字信号转换成音频信号再进行传输。
在接收端,这些音频信号会被再次解调回数字信号。
3宽带传输:将信道分成多个子信道,分别传送音视频和数字信号,这种方式的传输介质具有较宽的频带宽度,通常在300~400MHz左右。
系统设计时会将这个频带分割成若干个子频带,并采用“多路复用”技术。
此外,信息还可以通过有线方式和无线方式进行传播,其中有线方式包括电缆和光缆,而无线方式则是利用电磁波。
数字信号的基带传输 (2)
21
b. 无在线检错能力
双极性信号
在正逻辑中: 二进制 “1”——〉+AV 二进制 “0”——〉 - A V
优点: a. 如果0、1等概,则无直流分量
b. 抗干扰能力比单极性信号强 缺点: a.需要两种电源 b. 无在线检错能力
应用 : 机内码,近距离接口码
5
基本概念
二、基带传输与频带传输
数字基带信号:未经调制的数字信号,它所占据的频谱是从零
频或很低频率开始的。
基带传输:将数字基带信号通过基带信道(传递函数为低通型)传
输 —— 信号频谱不搬移,直接传送。
同轴电缆,双绞线 频带信号:数字基带信号经正弦波调制的带通信号 频带传输:将数字带通信号通过带通信道传输
(1)齐次性
若 x(t ) T y(t )
则x(t ) T y(t )
(2)可叠加性
y1 t T x1 t ,
y2 t T x2 t
yt T x1 (t ) x2 (t ) T x1 (t ) T x2 (t )
假定通过系统前的信号为X(t),通过系统后的信号为Y(t),
不失真系统只能导致信号如下改变:
Y (t ) kX (t t 0 )
13
系统对信号的作用如下:
输入信号
系统
输出信号
Y ( ) X ( ) H ( )
不失真系统信号输出:
X(t )
h(t )
Y( t )
Y ( t ) kX( t t0 )
光纤, 无线
6
基带和频带传输模型
数字信号 码型生成器 数字信道 接收 滤波器 抽样判决器
数字 信号的基带传输
符号与信息
定义:
1比特信息等于“一个等概的二进制符号平均 携带的信息量”。
信息的度量与符号的概率相关 通常,对于一个M进制等概符号,每个符号平
均携带的信息量为log2M(比特)
符号速率与信息速率
符号速率Rs
单位:波特(Baud),表示平均每秒钟符号产 生的个数
信息速率Rb
t
t kTs
dt
1 Ts
Ra
k
k
t
t
kTs
dt
1 Ts
Ra
k
k
kTs
Pa
f
Ra
e j2 f d 1
Ts
k
Rakຫໍສະໝຸດ kTse j2 f d
1
Ts
k
Ra
k
e j2 kTs
所以,PAM信号的功率谱密度为
Ps
f
1 Ts
k
Ra k e j2 fkTs G f 2
ang t nTs
n
g(t)
n
PAM信号的功率谱密度
假设信源产生的数字序列是平稳的,则根 据平稳信号经过线性系统其功率谱密度的 关系
Ps f Pa f G f 2
Ra
t,
t
E
n
an* t nTs
m
am t mTs
E an*am t nTs t mTs nm
• 其特征是有限集
• 数字符号发生的概率
• 不见得符号集中的每个符号是等概发生的。如英文书中字母“e” 出现的概率比“z”出现的概率大
• 数字符号前后之间的关系
数字信源
通常可以用一个随机数字序列来表示
如:二进制独立等概信源可表示成
数字基带信号的传输
影响信噪比的因
04 数字基带信号的传输系统
传输系统的组成
调制器
将数字基带信号转换为适合传 输的调制信号。
解调器
将传输的调制信号还原为原始 的数字基带信号。
信号源
产生需要传输的数字基带信号, 可以是数据、图像、音频等。
信道
传输调制信号的媒介,可以是 光纤、无线电波、电缆等。
目的地
接收并处理还原后的数字基带 信号。
数字基带信号的传输
目录
CONTENTS
• 数字基带信号的概述 • 数字基带信号的调制与解调 • 数字基带信号的传输性能 • 数字基带信号的传输系统 • 数字基带信号的传输协议 • 数字基带信号的传输案例分析
01 数字基带信号的概述
定义与特点
定义
数字基带信号是指在基本频带内传输 的数字信号,不经过调制直接发送或 传输。
传输系统的性能指标
传输速率
单位时间内传输的数据量,通常以比特率表 示。
信噪比
信号与噪声之间的功率比,影响传输质量。
误码率
传输过程中出现错误的概率,是衡量数据传 输质量的重要指标。
带宽
信道能够传输信号的频率范围,影响传输速 率和抗干扰能力。
传输系统的优化方法
01
信道编码
通过增加冗余信息来提高数据传输 的可靠性。
HDLC协议概述
HDLC(High-Level Data Link Control) 是一种高级数据链路控制协议,用于在点 对点通信链路上进行可靠的数据传输。
• 同步传输
HDLC采用同步传输方式,数据在固定的 时间间隔内以固定的格式发送。
• 效率高
HDLC采用零比特插入技术,避免了比特 插入和删除的过程,提高了数据传输效率 。
通信原理 数字信号的基带传输
2018年10月22日
20
2018年10月22日
21
二进制信息
1
1
0
1
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
1
AMI码
B+
B-
0
B+
0
0
0
V+
0
0
0
B-
0
0
B+
B-
0
0
V-
0
0
B+
HDB3码
B+
B-
0
B+
0
V+
B-
0
V-
B+
0
B-
0
0
B+
0
V+
B-
0
V-
B+
B-
B6ZS码
三元码波形
2018年10月22日
n
PG1 (nf s)+(- 1 P)G2 (nf s ) ( f nf s )
2
g (t )
是功率信号,将其截短成长度为 T (2N 1)T 的信号 g
s
T
(t )
gT (t )
扣除稳态分量后,剩余的交变分量为
2018年10月22日 18
6.1.3三元码
三元码 -用信号幅度的三种取值表示二进制码 -三元码被广泛地用作PCM的线路传输码型
2018年10月22日
19
6.1.3三元码(1)
传号交替反转码 ——常记作AMI码 ——二进制码0用0电平表示,二进制码1交替地用+1 和-1的半占空归零码表示 ——AMI码中无直流分量,低频分量较小,能量集中 在 1/2码速处 ——利用传号交替反转规则可用作宏观检测
数字基带信号、基带传输以及频带传输及结构
码元间数隔字基带信号、基带传输以及频带
传输和结构
(4) 双极性归零码(BRZ)
它是双极性码的归零形式;每个码元内的脉冲都 回到零点平,即相邻脉冲之间必定留有零电位的 间隔。
1010011 0
数字基带信号、基带传输以及频带 传输和结构
(5) 差分码
不是用码元本身的电平表示消息代码,而是用相 邻码元的电平的跳变和不变来表示消息代码;
E 1 1 00 11 00 0 0 1 1 11
E
由于差分码是以相邻脉冲电平的相对变化来表示代码, 因此称它为相对码,而相应地称前面的单极性或双极性 码为绝对码。
数字基带信号、基带传输以及频带 传输和结构
(6) 多进制码
这种波形的一个脉冲可以代表多个二进制符号,在 码元速率一定时可以提高信息速率,故在高速数 字传输系统中得到广泛应用;
什么是数字基带传输? -数字基带信号在信道中的直接传输,如在某些
具有低通特性的有线信道中,特别是传输距离不 太远的情况下; 什么是数字频带传输?
-数字基带信号经过载波调制,把频谱搬移到 高载波处在带通型信道中的传输; 也称为调制或 载波传输;
数字基带信号、基带传输以及频带 传输和结构
数字基带通信系统模型
t
g1 t 2Tb 2
2 g1 t 2Tb
随机脉冲序列示意图
g1(t )-“0”码,出现概率为p g2(t )-“1”码 ,出现概率为1-p
Tb-码元间隔 f b-码元速率
数字基带信号、基带传输以及频带 传输和结构
二进制随机序列功率谱密度
g1(t )~G1(f )
g2(t) ~G2(f )
成的近程数据通信系统广泛采用了这种传输方 式; 2 数字基带传输中包含频带传输的许多基本问 题,也就是说,基带传输系统的许多问题也是 频带传输系统必须考虑的问题; 3 任何一个采用线性调制的频带传输系统可等 效为基带传输系统来研究;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6 数字基带信号抗噪声性能分析
1.6.1 数字信号的抗噪声性能
❖ 模拟通信:信噪比。 ❖ 数字通信:误码率。 ❖ 二进制数字通信:将0错判为1或将1错判为0的概率。
数字基带信号的噪声模型
1.6.2 二元码的误码率分析
单极性码的概率分声性能分析
基本码型如图所示。
1.1.3 基带数字信号常用码型
在设计和选择实用码型时,一般应注意以下原则: (1)不含直流分量,低频分量尽量少。 (2)包含定时信息,或经简单变换就能提取定时信息。 (3)应具有一定的检错能力。 (4)误码增值要少,避免“一步错,步步错”的危险。 (5)频谱中的高频分量应尽量减少。 如图所示为几种常用的数字信号码型的示意图。
1.4.3 部分响应基带传输系统的一般形式
1.5 眼图和均衡
1.5.1 眼图
一种直接检测数字通信系统的方法,用示波器观测输出信号,图象形如眼睛。
❖ 最佳采样判决时刻,应该选择眼睛张开最大的地方。 ❖ 判决门限应选左右“眼角”的垂直高度。对双极性信号而言即是零电平。 ❖ 噪声容限指的是采样值的振幅与判决电平之间的距离,也就是说当噪声的
h(t)波形点
理想低通滤波器时域图
1.3.4 奈奎斯特第一准则
❖ 当h(t)的频谱能通过周期搬移叠加为理想低通滤波器,称为等效理想低通滤 波器,此时能实现无码间串扰。
等效理想低通滤波器频谱
余弦滚降信号
余弦滚降信号的时域和频域图
1.4 部分响应基带传输系统
❖ 理想低通滤波器的缺点:频谱陡直,拖尾无限。 ❖ 等效理想低通滤波器缺点:带宽增加。 ❖ 部分响应基带传输系统思路:允许串扰,使串扰有规律,可计算消除。 1.4.1 第I类部分响应系统
1.3.1 数字信号的成型网络 数字基带信号的时域特征和频域特征都与其传输滤波器的传输函数有关。
传输滤波器模型
1.3.2 码间串扰
❖ 严格方波信号具有无限频谱带宽 ❖ 有限带宽信号在时间域存在串扰 ❖ 解决思路:只要在采样点不发生串扰即可。
1.3.3 无码间串扰的传输条件
❖ h(t)为理想低通滤波器时,能实现无码间串扰条件
AMI码和HDB3码图 双极性四进制码波形图
1.2 数字基带信号的频谱分析 1.2.1 数字基带信号的频谱和功率谱
❖ 数字信号的频谱分析 确定的信号可以根据傅里叶公式计算得出确定的频域表达式,而对于随机过 程则只能分析其功率谱密度。
❖ 数字基带信号功率谱分析
数字信号的功率谱和带宽
一般二进制随机脉冲序列的功率谱密度函数为
换的误比特率比普通二进制码进一步下降。
小结
❖ 数字信号基带传输是将数字信号码元序列转化为某种波形通过信号进 行传输,在接收端则对接收的波形进行门限判决以恢复码元。
❖ 数字信号传输中,因为信号频域上的带限造成是遇上的无限拓展,这 样会引起马援麦种之间的码间串扰。为了消除码间串扰,可以采用无 码间串扰的波形,使得在信号的采样点码间串扰为0。
Ps ( f ) fb P(1 P) | G1 ( f ) G2 ( f ) |2 fb 2 | PG1 (mf b ) (1 P)G2 (mf b ) |2 ( f mf b ) m
1.2.2 几种常见数字基带信号波形的功率谱密度函数
四种 基本 码型 的能 量谱 密度
1.3 无码间串扰的基带传输
幅度小于这个距离时,噪声叠加后的信号依然不会突破门限造成误判。 ❖ “眼眶”厚度表示信号电平抖动。其中采样时刻厚度称为信号失真量。 ❖ 眼图斜边的斜率反映系统对定时误差的灵敏度。
1.5.2 均衡
❖ 概念:通过可调滤波器校正信号失真。 ❖ 频域均衡:对频域传输函数调整 ❖ 时域均衡:使系统的冲激响应满足无码间串扰条件。 ❖ 时域均衡原理:波形补偿 ❖ 时域均衡的实现方法:横向滤波器
通信 原理
数字信号基带传输
1.1 数字基带信号及其码型
1.1.1 数字基带信号简介
无论是离散信源发出的信号还是将模拟信号进行采样、量化和编码后得到的数 字信号,都是离散的数字码元序列。实际电路中传输数字基带信号以点评的高 低来判断。
实际传输过程中,由于存在衰减、噪声、码间串扰等因素,接收到的信号电平 不可能正好为V或0,故在判定中经常设定一门限电平。如图所示为单极性码的 发送、传输及判定。
❖ 解决方法:传输之前将绝对码x[n]序列变成相对码x1[n]序列,然后对x1[n] 序列生成部分响应波形y(t)。将y(t)传输到接收端后,直接对y(t)的采样值y[n] 进行模二运算,即可得到信号序列x[n]。
❖ 预编码:x1[n]=x[n]⊕x1[n-1]。 ❖ 相关编码:y[n]=x1[n]+x1[n-1] ❖ x1[n]=x[n]⊕x1[n-1],即x[n]=x1[n]⊕x1[n-1]
数字信号在传输过程中常常收到噪声的干扰。如果由于噪声或其他干扰 因素使得传输过程中的信号电平突破了门限,那么接收端会产生误判。 所谓误判,即把发送的“1”判决为“0”,或把发送的“0”判决为“1”。 如图所示为误判示意图。
1.1.2 基带数字信号的基本码型
常见的数字基带信号基本码型有单极性码与双极性码、归零码与非归零码。
第I类部分响应的时域和频域图
1.4.2 差错控制,相关编码和预编码
❖ 第I类部分响应波形,当因为噪声出现个别码元误差,将会对恢复的信号序列 造成严重的错误。
❖ 差错传播:当采用第I类部分响应波形进行编码的时候,一旦发生传输中的差 错,将引起连锁反应,使后面的全部码元都检测、判决错误,直到再次发生 传输差错才会纠正过来。
❖ 多元码定义:一个码元波形幅度,有M种不同的取值(M>2)。通常,这M 种幅度电平均匀取值,且均值为零。
❖ 多元码误码率和误比特率不能混用。
Ps
2(M 1) Q[ M
3S ] (M 2 1) 2
❖ 将多元码转换为二进制码,因为转换的二进制码不同,误码率也有区别。
❖ 转换为普通二进制时,有1/2<Pe/Ps<2/3 ,即误码率有下降。 ❖ 转换为格雷码,有Pe≈Ps/n。因n≥2,故对同样的M进制码元系统,格雷码转