六年级奥数举一反三第9周设数法解题
举一反三解题方法与步骤
小学六年奥数举一反三中经典习题解题方法与步骤一、简便运算。
1、加法运算定律:交换律(a+b=b+a)、结合律(a+b+c=a+(b+c))。
2、乘法运算定律:交换律(a×b=b×a)、结合律(a×b×c=a×(b×c))、分配律【(a×(b+c) =a×b+a×c)、变式一:a×(b-c) =a×b-a×c、变式二:a×b+a=a×(b+1)】。
3、减法运算规律:a-b-c=a-(b+c)、a-(b-c)=a-b+c。
4、除法运算规律:a÷b÷c=a÷(b×c)5、平方差公式:=(a+b)(a-b)注意:稍微复杂点题目,变式后,方可运用以上定律进行简算;除此之外,变式后,可抵消,如1/6=1/2-1/3。
1 2 +14+18+116+132+1644445×37 27×1526166120÷41 1998÷199819981999二、面积、表面积、体积计算。
1、三角形面积:s=ah÷2 ;定律:①等底等高的两个三角形面积相等。
②等底(或等高)的两个三角形,高(或底)与面积成正比。
2、长方形面积:s=ab;长方体表面积:s=(ab+ah+bh)×2;体积:v=abh或sh3、正方形面积:s=aa;正方体表面积:s=6aa;体积:v=aaa4、圆的周长:c=πd=2πr;圆面积公式s=πrr;圆柱表面积:s=2πrr+2πrh;圆柱体积:v=sh或πrrh5、圆锥体积:v=1/3πrrh;注意:面积计算时,注意弄清阴影部分面积与正图形之间的关系;表面计算时关键弄清楚计算那几个面的面积;解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
六年级奥数第9讲 设数法解题
第 9 讲设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题 1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
练习 1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。
2、五个人比较身高,甲比乙高 3 厘米,乙比丙矮 7 厘米,丙比丁高 10 厘米,丁比戊矮 5 厘米,甲与戊谁高,高几厘米?1【例题 2】足球门票15 元一张,降价后观众增加一倍,收入增加,问一张门票降价多5少元?练习 2:31、某班一次考试,平均分为70 分,其中及格,及格的同学平均分为80 分,那么不及4格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的 40%,小学生增加百分之几?【例题 3】小王在一个小ft坡来回运动。
先从ft下跑上ft,每分钟跑 200 米,再从原路下ft,每分钟跑 240 米,又从原路上ft,每分钟跑 150 米,再从原路下ft,每分钟跑 200 米,求小王的平均速度。
练习 3:1、小华上ft的速度是每小时 3 千米,下ft的速度是每小时 6 千米,求上ft后又沿原路下ft的平均速度。
2、张师傅骑自行车往返 A、B 两地。
去时每小时行 15 千米,返回时因逆风,每小时只行 10 千米,张师傅往返途中的平均速度是每小时多少千米?1 【例题 4】某幼儿园中班的小朋友平均身高115 厘米,其中男孩比女孩多,女孩平均5身高比男孩高 10%,这个班男孩平均身高是多少?练习 4:1、某班男生人数是女生的2,男生平均身高为 138 厘米,全班平均身高为 132 厘米。
问:3女生平均身高是多少厘米?42、某班男生人数是女生的,女生的平均身高比男生高15%,全班的平均身高是1305厘米,求男、女生的平均身高各是多少?【例题 5】狗跑 5 步的时间马跑 3 步,马跑 4 步的距离狗跑 7 步,现在狗已跑出 30 米,马开始追它。
小学六年级奥数-第9讲 设数法解题后附答案
第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A 、B 两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。
问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数第9讲 设数法解题(含答案分析)
第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A 、B 两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。
问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数举一反三PPT课件
32 =3 ×25 +25.4×6.4+12.5×6.4
55
=(3.6+6.4)×25.4+12.5×8×0.8
=254+80
CHENLI
22
【练习4】
CHENLI
23
【例题5】 计算81.5×15.8+81.5×51.8+67.6×18.5 原式=81.5×(15.8+51.8)+67.6×18.5 =81.5×67.6+67.6×18.5 =(81.5+18.5)×67.6 =100×67.6 =6760
x⊙16=4x-2×16+1/2×x×16
=12x-32
12x-32 = 34
12x= 66
x=5.512x-32 = 34,求出x的值。列算式为
CHENLI
12
【练习5】 1.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。
2 . 对 两 个 整 数 a 和 b 定 义 新 运 算 “ △” : a△b= , 求 6△4+9△8。
CHENLI
3
【例题1】 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】
这题的新运算被定义为:a*b等于a和b两数之和加上两数之 差。这里的“*”就代表一种新运算。在定义新运算中同样规 定了要先算小括号里的。因此,在13*(5*4)中,就要先算 小括号里的(5*4)。
【思路导航】这题的新运算被定义为:@ = (a-1)×a× (a+1),据此,可以求出1/⑥-1/⑦ =1/(5×6×7)-1/ (6×7×8),这里的分母都比较大,不易直接求出结果。 根据1/⑥-1/⑦ =1/⑦×A,可得出A = (1/⑥-1/⑦)÷1/⑦ = (1/⑥-1/⑦)×⑦ = ⑦/⑥ -1。即
小学六年级奥数《第9讲 设数法解题》
第9讲设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?1,问一【例题2】足球门票15元一张,降价后观众增加一倍,收入增加5张门票降价多少元?练习2:3及格,及格的同学平均分为801、某班一次考试,平均分为70分,其中4分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A、B两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?1,【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多5女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:2,男生平均身高为138厘米,全班平均身高为1、某班男生人数是女生的3132厘米。
问:女生平均身高是多少厘米?4,女生的平均身高比男生高15%,全班的平均2、某班男生人数是女生的5身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
【最新】举一反三六年级奥数
【 练 习 1 】 1. 将 新 运 算 “ *” 定 义 为 : a*b=(a+b)×(a-b). 。 求 27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
5
【例题2】 设p、q是两个数,规定:p△q=4×q-(p+q)÷2。 求3△(4△6)。 【思路导航】根据定义先算4△6。在这里“△”是新的运算符 号。3△(4△6) =3△【4×6-(4+6)÷2】 =3△19 =4×19-(3+19)÷2 =76-11 =65
原式=1×1111+2×1111+3×1111+4×1111 =(1+2+3+4)×1111 =10×1111 =11110
28
【练习1】 1.23456+34562+45623+56234+62345
2.45678+56784+67845+78456+84567
3.124.68+324.68+524.68+724.68+924.68
经过观察,可以发现本题的新运算“*”被定义为。因此
7*4=7+77+777+7777=8638 210*2=210+210210=210420
8
【练习3】1.如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222,3*3=3+33+333,……那么 4*4=________。
A =(1/⑥-1/⑦)÷1/⑦ =(1/⑥-1/⑦)×⑦ = ⑦/⑥-1 =(6×7×8)/(5×6×7)-1 = 1 又 3/5-1 = 3/5
小学奥数(六年级)举一反三
小学奥数举一反三(六年级)1-20第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学奥数训练第9周设数法解题
第9周设数法解题专题简析在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解。
但仔细分析就会发现,题目中缺少的条件,对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,假设一个数代入(当然假设的这个数要尽量方便计算),然后进行解答。
王牌例题1如果那么个△。
【思路导航】由第。
个等式可以设△=3,□= 2,代人第二个等式得☆=5,再代人第三个等式左边是12,所以右边括号内应填4。
说明:本题如果不用设数代入法,直接用图形互相替换,显然要麻烦得多。
举一反三11. 已知,问 ()个〇。
2. 五个人比身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米。
甲与戊相比谁高?高几厘米?3. 甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多,哪个最少,最多的比最少的多多少吨?王牌例题2足球赛门票原来15元一张,降价后观众增加了一倍,收入增加了1/5,每张门票降价多少元?【思路导航】初看题目似乎缺少观众人数这个条件,实际上观众人数与答案无关,我们可以任意假设一个观众人数。
为了计算方便,假设原来只有一个观众,收人为15元,那么降价后有两个观众,收人为 = 18(元),则降价后每张票价为18 ÷ 2 =9(元),每张票降价15—9=6(元)。
即=6(元)答:每张票降价6元。
说明:如果设原来有a名观众,则每张票降价:举一反三21. 某班一次考试,平均分为70分,其中3/4的同学及格,及格的同学平均分为80分。
那么不及格的同学平均分是多少?2. 参加游泳比赛的学生中,小学生占30%,又来了一批学生后,学生总数增加了 20%,小学生占学生总数的40%。
小学生增加了百分之几?3. 五年级三个班的人数相等。
一班的男生人数和二班的女生人数相等,三班的男生人数是全部男生人数的2/5。
小学六年级奥数 第9讲 设数法解题
第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A 、B 两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。
问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
六年级奥数第9讲 设数法解题
第9讲设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?1【例题2】足球门票15元一张,降价后观众增加一倍,收入增加,问一张门票降价多5少元?练习2:31、某班一次考试,平均分为70分,其中及格,及格的同学平均分为80分,那么不及4格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A、B两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?1【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多,女孩平均5身高比男孩高10%,这个班男孩平均身高是多少?练习4:21、某班男生人数是女生的,男生平均身高为138厘米,全班平均身高为132厘米。
问:3女生平均身高是多少厘米?42、某班男生人数是女生的,女生的平均身高比男生高15%,全班的平均身高是1305厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数-第9讲 设数法解题
小学奥数发散思维-掌握解题技巧-提高运算效率和准确率第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A 、B 两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。
问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学奥数举一反三(六年级)1-20周
六年级数学奥数培训资料- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
六年级奥数举一反三第9讲 设数法解题含答案
第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A 、B 两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。
问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
六年级奥数分册第9周 设数法解题-名师推荐
第九周 设数法解题专题简析:在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
例题1。
如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
解: 由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。
说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。
练习11. 已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2. 五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3. 甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨、例题2。
足球门票15元一张,降价后观众增加一倍,收入增加15,问一张门票降价多少元? 【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。
为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+15)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。
即:15-15×(1+15)÷2=6(元) 答:每张票降价6元。
说明:如果设原来有a 名观众,则每张票降价:15-15a ×(1+15)÷2a =6(元) 练习21. 某班一次考试,平均分为70分,其中34及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2. 游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?3. 五年级三个班的人数相等。
小学奥数六年级举一反三6-10标准答案改良
小学奥数六年级举一反三6-10标准答案改良第六周转化单位“1”(一)专题简析:把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。
如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的b a ;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =adbc 。
例题1。
乙数是甲数的23 ,丙数是乙数的45 ,丙数是甲数的几分之几?23 ×45 =815 练习11. 乙数是甲数的34 ,丙数是乙数的35,丙数是甲数的几分之几?2. 一根管子,第一次截去全长的14 ,第二次截去余下的12,两次共截去全长的几分之几?3. 一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。
他醒来时,发现剩下的路程是他睡着前所行路程的14 。
想一想,剩下的路程是全程的几分之几?他睡着时火车行了全程的几分之几?练1 1、=920 2、=58 3、=18 =38例题2。
修一条8000M 的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45 ,第二周修了多少M ?解一:8000×14 ×45 =1600(M )解二:8000×(14 ×45 )=1600(M )答:第二周修了1600M 。
练习2用两种方法解答下面各题:1. 一堆黄沙30吨,第一次用去总数的15 ,第二次用去的是第一次的114 倍,第二次用去黄沙多少吨?2. 大象可活80年,马的寿命是大象的12 ,长颈鹿的寿命是马的78 ,长颈鹿可活多少年?3. 仓库里有化肥30吨,第一次取出总数的15 ,第二次取出余下的13 ,第二次取出多少吨?练2 1、=7.5(吨) 2、=35(年) 3、=8吨例题3。
晶晶三天看完一本书,第一天看了全书的14 ,第二天看了余下的25 ,第二天比第一天多看了15页,这本书共有多少页?解:15÷【(1-14 )×25 - 14 】=300(页)答:这本书有300页。
六年级奥数 第9讲 设数法解题
第9讲设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?1,问一张门票降价多【例题2】足球门票15元一张,降价后观众增加一倍,收入增加5少元?练习2:3及格,及格的同学平均分为80分,那么不1、某班一次考试,平均分为70分,其中4及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A、B两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?1,女孩平均【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多5身高比男孩高10%,这个班男孩平均身高是多少?练习4:2,男生平均身高为138厘米,全班平均身高为132厘米。
1、某班男生人数是女生的3问:女生平均身高是多少厘米?4,女生的平均身高比男生高15%,全班的平均身高是1302、某班男生人数是女生的5厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
教案:六年级奥数举一反三第9周设数法解题
第9周设数法解题志成教育中心韩钰教学目的:能解决一些看起来缺少条件的,按常规解法似乎无解的题目重点:假设的这个数要尽量方便计算难点:明白在什么条件下可以设数解决问题教学过程:例题一:(纯图形的等式问题,把其中的一个图形假设成一个数,要比直接用图形代换少费周折,使学生体会设数法的方便、快捷)疯狂操练11、与例题相似,一般找第一个等式,按两个图形个数的比恰当赋予他们的值。
2、在题目中的第一个条件里找出单位“1”所代表的量,根据题意设一个恰当的数,解决问题。
3、与第二题类似,题目中有相同的量,根据题意设一个恰当的数,解决问题。
例题二:(题目中缺少观众人数这个条件,其实与答案无关设原观众数为1个)疯狂操练21、与例题相似,题目中缺少学生人数,恰好这个条件在题目中又是以分数形式变化,设这个量为4人。
2、缺少学生总数这个条件,恰好这个条件在题目中又是以百分数形式变化,设这个量为10人或100人。
3、设全部男生为5人,或10人,在运用设数法的时候,人数可以是小数或分数。
例题三:(题目里出现了四个速度,但是缺少单程的路程,设路程是这四个数的最小公倍数)疯狂操练31、与例题相似2、与例题相似3、本题已知了平均速度和其中的一个速度,同样求这两个已知量的最小公倍数,做此类题忽略平均速度,按速度对待例题四:(题目缺少的是人数,因为女孩的人数是单位“1”,先设女孩的个数,是对应分数分母的倍数,通常就设成分母本身,再把男孩的身高看做单位“1”计算)疯狂操练41、设女生人数是3人2、设女生人数是5人,类似例题3、先把题目中的10%化到最简分数110,再设边长为10例题五:(先根据第二个条件设出狗跑一步为7,马跑一步为4;再根据第一个条件设出马跑三步和狗跑五步的时间都为1;再推出狗和马的速度比)速度和步长问题,较难疯狂操练51、与例题相似2、与例题相似3、先算狗和兔的速度,再从狗算出A、B间的路程,再算兔的时间,再转换成兔的步数,用兔的步数减狗的步数教学反思:1、图形问题的设数要根据等式两边图形的个数比,了解个数比与它们所代表的值成倒数关系。
六年级奥数分册:第9周 设数法解题
第九周設數法解題專題簡析:在小學數學競賽中,常常會遇到一些看起來缺少條件的題目,按常規解法似乎無解,但仔細分析就會發現,題目中缺少的條件對於答案並無影響,這時就可以採用“設數代入法”,即對題目中“缺少”的條件,隨便假設一個數代入(當然假設的這個數要儘量的方便計算),然後求出解答。
例題1。
如果△△=□□□,△☆=□□□□,那麼☆☆□=()個△。
解:由第一個等式可以設△=3,□=2,代入第二式得☆=5,再代入第三式左邊是12,所以右邊括弧內應填4。
說明:本題如果不用設數代入法,直接用圖形互相代換,顯然要多費周折。
練習11.已知△=○○□□,△○=□□,☆=□□□,問△□☆=()個○。
2.五個人比較身高,甲比乙高3釐米,乙比丙矮7釐米,丙比丁高10釐米,丁比戊矮5釐米,甲與戊誰高,高幾釐米?3.甲、乙、丙三個倉庫原有同樣多的貨,從甲倉庫運60噸到乙倉庫,從乙倉庫運45噸到丙倉庫,從丙倉庫運55噸到甲倉庫,這時三個倉庫的貨哪個最多?哪個最少?最多的比最少的多多少噸、例題2。
足球門票15元一張,降價後觀眾增加一倍,收入增加15,問一張門票降價多少元?【思路導航】初看似乎缺少觀眾人數這個條件,實際上觀眾人數於答案無關,我們可以隨便假設一個觀眾數。
為了方便,假設原來只有一個觀眾,收入為15元,那麼降價後有兩個觀眾,收入為15×(1+15)=18元,則降價後每張票價為18÷2=9元,每張票降價15-9=6元。
即:15-15×(1+15)÷2=6(元) 答:每張票降價6元。
說明:如果設原來有a 名觀眾,則每張票降價:15-15a ×(1+15)÷2a =6(元) 練習21. 某班一次考試,平均分為70分,其中34及格,及格的同學平均分為80分,那麼不及格的同學平均分是多少分?2.游泳池裏參加游泳的學生中,小學生占30%,又來了一批學生後,學生總數增加了20%,小學生占學生總數的40%,小學生增加百分之幾?3.五年級三個班的人數相等。
六年级奥数分册第9周 设数法解题-名校密卷
第九周 设数法解题专题简析:在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
例题1。
如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
解: 由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。
说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。
练习11. 已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2. 五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3. 甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨、例题2。
足球门票15元一张,降价后观众增加一倍,收入增加15,问一张门票降价多少元? 【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。
为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+15)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。
即:15-15×(1+15)÷2=6(元) 答:每张票降价6元。
说明:如果设原来有a 名观众,则每张票降价:15-15a ×(1+15)÷2a =6(元) 练习21. 某班一次考试,平均分为70分,其中34及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2. 游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?3. 五年级三个班的人数相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数举一反三第9周设数法解题
专题简析;
在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
例题1。
如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
解; 由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,
所以右边括号内应填4。
说明;本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。
练习1
1,已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2,五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?
3,甲·乙·丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨·
例题2。
足球门票15元一张,降价后观众增加一倍,收入增加15
,问一张门票降价多少元? 〔思路导航〕初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便
假设一个观众数。
为了方便,假设原来只有一个观众,收入为15元,那么降
价后有两个观众,收入为15×(1+15
)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。
即;
15-15×(1+15
)÷2=6(元) 答;每张票降价6元。
说明;如果设原来有a 名观众,则每张票降价;
15-15a ×(1+15
)÷2a =6(元) 练习2
1,某班一次考试,平均分为70分,其中34
及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?
2,游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?
3,五年级三个班的人数相等。
一班的男生人数和二班的女生人数相等,三班的男生是
全部男生的25
,全部女生人数占全年级人数的几分之几?
例题3。
小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
〔思路导航〕题中四个速度的最小公倍数是1200,设一个单程是1200米。
则
(1)四个单程的和;1200×4=4800(米)
(2)四个单程的时间分别是;
1200÷200=6(分)
1200÷240=5(分)
1200÷150=8(分)
1200÷200=6(分)
(3)小王的平均速度为;
4800÷(6+5+8+6)=192(米)
答;小王的平均速度是每分钟192米。
练习3
1. 小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山
的平均速度。
2. 张师傅骑自行车往返A ·B 两地。
去时每小时行15千米,返回时因逆风,每小时只行
10千米,张师傅往返途中的平均速度是每小时多少千米?
3. 小王骑摩托车往返A ·B 两地。
平均速度为每小时48千米,如果他去时每小时行42千
米,那么他返回时的平均速度是每小时行多少千米?
例题4
某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多15
,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?
〔思路导航〕题中没有男·女孩的人数,我们可以假设女孩有5人,则男孩有6人。
(1) 总身高;115×〔5+5×(1+15
)〕=1265(厘米) (2) 由于女孩平均身高是男孩的(1+10%),所以5个女孩的身高相当于5
×(1+10%)=5,5个男孩的身高,因此男孩的平均身高为;
1265÷〔(1+10%)×5+6〕=110(厘米)
答;这个班男孩平均身高是110厘米。
练习4
1,某班男生人数是女生的23
,男生平均身高为138厘米,全班平均身高为132厘米。
问;女生平均身高是多少厘米?
2,某班男生人数是女生的45
,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男·女生的平均身高各是多少?
3,一个长方形每边增加10%,那么它的周长增加百分之几?它的面积增加百分之几?
例题5
狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
问狗再跑多远,马可以追到它?
〔思路导航〕马跑一步的距离不知道,跑3步的时间也不知道,可取具体数值,并不影响解
题结果。
设马跑一步为7,则狗跑一步为4,再设马跑3步的时间为1,则狗跑5步的时间为1,
推知狗的速度为20,马的速度为21。
那么,
20×〔30÷(21-20)〕=600(米)
答;狗再跑600米,马可以追到它。
练习5
1,猎狗前面26步远的地方有一野兔,猎狗追之。
兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离。
问兔跑几步后,被狗抓获?
2,猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。
已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔再跑多远,猎狗可以追到它?
3,狗和兔同时从A 地跑向B 地,狗跑3步的距离等于兔跑5步的距离,而狗跑2步的时间等于兔跑3步的时间,狗跑600步到达B 地,这时兔还要跑多少步才能到达B 地?
答案;
练1
1·=8
2 ·设戊是100厘米高,可推出甲是101厘米高。
3·乙仓最多,丙仓最少,设甲·乙·丙三个仓库原来各有100吨,可推出这时乙有115吨,丙有90吨。
练2
1·设考试总人数为4人,70×4-80×3=40(分)
2·设游泳池里原有学生总数是100人。
〔(100+20)×40%-30〕÷30=60%
3·设全年级男生总人数为50人。
三班的男生为;50×25
=20(人) 一·二两班的男生,也是一个班的总人数为;
50-20=30(人)
三班女生为;30-20=10(人)
(10+30)÷(30×3)=49
练3
1·设一个单程是12千米
12×2÷(12÷3+12÷6)=4(千米)
2·设一个单程为30千米
30×2÷(30÷15+30÷10)=12(千米)
3·由于48和42的最小公倍数为336,设一个单程为336千米。
336÷(336×2÷48-336÷42)=56(千米)
练4
1·设全班共有5人。
(132×5-138×2)÷3=128(厘米)
2·设女生有5人,男生有4人,男生的身高为单位“1”,则女生的身高为(1+15%) 男;130×(4+5)÷〔4+5×(1+15%)〕=120(厘米)
女;120×(1+15%)=138(厘米)
3·〔(1+10%)×4-1×4〕÷(1×4)=10%
〔(1+10%)×(1+10%)-1×1〕÷(1+1)=21%
练5
1·解法一;设兔的步长为1,则狗的步长为94
,兔跑一步的时间为1,则狗跑一步的时间为85。
26×94 ÷(94 ÷85
-1)=144(步) 解法二;设狗的步长为1,则兔的步长就是49
,设兔跑一步的时间为1,则狗跑一步的时间为1,则狗跑一步的时间为85。
26÷(1÷85 -49
)=144(步) 2·设狗的步长为7,则兔的步长为4,再设过跑2步的时间为1,则兔跑3步的时间也为1,推出狗的速度是14,兔的速度是12。
12×〔40÷(14-12)〕=240(米)
3·设狗的步长为1,狗跑一步的时间也为1。
600×53 -600×32
=100(步)。