北京市崇文区达标名校2019年高考三月调研数学试卷含解析

合集下载

北京市崇文区达标名校2019年高考三月质量检测物理试题含解析

北京市崇文区达标名校2019年高考三月质量检测物理试题含解析

北京市崇文区达标名校2019年高考三月质量检测物理试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,接在家庭电路上的理想降压变压器给小灯泡L 供电,如果将原、副线圈减少相同匝数,其他条件不变,则()A .小灯泡变亮B .小灯泡变暗C .原、副线圈两端电压的比值不变D .通过原、副线圈电流的比值不变2.我国计划于2020年发射火星探测器,如图是探测器到达火星后的变轨示意图,探测器在轨道Ⅰ上的运行速度为1v ,在轨道Ⅱ上P 点的运行速度为v 2,Q 点的运行速度为3v ,在轨道Ⅲ上P 点的运行速度为v 4,R 点的运行速度为v 5,则下列关系正确的是A .21v v <B .13v v <C .42v v >D .2435v v v v > 3.通信卫星一般是相对地面“静止”的同步卫星,三颗同步卫星就可以实现全球通信。

设地球的半径为R ,地面的重力加速度为g ,地球的自转周期为T 。

则速度为c 的电磁波从一颗卫星直线传播至相邻的另一颗卫星,传播时间为( )A 2232334gR T π B 223234gR T πC 22321334gR T c πD 2232134gR T c π4.一辆F1赛车含运动员的总质量约为600 kg ,在一次F1比赛中赛车在平直赛道上以恒定功率加速,受到的阻力不变,其加速度a和速度的倒数1ν的关系如图所示,则赛车在加速的过程中()A.速度随时间均匀增大B.加速度随时间均匀增大C.输出功率为240 kwD.所受阻力大小为24000 N5.下列关于物质结构的叙述中不正确...的是A.天然放射性现象的发现表明了原子核内部是有复杂结构的B.质子的发现表明了原子核是由质子和中子组成的C.电子的发现表明了原子内部是有复杂结构的D.α粒子散射实验是原子核式结构模型的实验基础6.一质量为M的探空气球在匀速下降,若气球所受浮力F始终保持不变,气球在运动过程中所受阻力仅与速率有关,重力加速度为g。

北京市第四中学2019届高三第三次调研考试数学文科试卷附答案解析

北京市第四中学2019届高三第三次调研考试数学文科试卷附答案解析

北京市第四中学2019年高考第三次调研考试卷文科数学试题一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,且,则可以是A. B. C. D.【答案】C【解析】【分析】因为,所以得到且,根据选项可以确定a的值.【详解】解:因为,且集合,所以且,根据选项情况,由此可以判定只能选择C.【点睛】本题考查了集合间的关系、集合中元素的性质,解题时要注意集合元素的互异性这一隐含的条件.2.下列函数中,与函数的单调性和奇偶性相同的函数是A. B.C. D.【答案】D【解析】【分析】可以判断函数是定义在R上的奇函数、单调增函数,从定义域角度可以分析出选项A、B、C均不能成立,由此可以得出正确选项。

【详解】解:函数的定义域为R,因为,所以得到为奇函数,又因为恒成立,故在R上为单调递增函数,选项A的定义域为,不成立,选项B的定义域为,不成立,选项C的定义域为,不成立,选项D的定义域为R,由于,所以函数为奇函数,又因为,所以为单调增函数,所以,选项D满足题意。

【点睛】本题考查了函数的基本性质,判断函数性质要遵循“定义域优先”的原则,特别是判断函数的奇偶性时,首先要判断定义域是否关于原点对称;函数的单调性则可以通过图像、导数等等方法进行判断。

3.已知分别为三角形ABC三个内角的对边,且,则三角形ABC中为A. B. C. D.【答案】C【解析】因为,所以,即选C.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.4.设满足约束条件则下列不等式恒成立的是A. B.C. D.【答案】C【解析】作出约束条件所表示的平面区域,如图所示,由,解得,同理可得,设目标函数,则,当直线过点时取得最小值,最小值,所以恒成立,故选C.5.等差数列中,前项和为,公差,且,若,则A. B. C.的值不确定 D.【答案】B【解析】因为,所以,即,因为,所以=-6,选B.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于()A. B. C. D.【答案】A【解析】抠点法,在长方体中抠点,1.由正视图可知:上没有点;2.由侧视图可知:上没有点;3.由俯视图可知:上没有点;4.由正(俯)视图可知:处有点,由虚线可知处有点,点排除.由上述可还原出四棱锥,如右图所示,,,故选.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.7.已知直线与圆相交于、两点,是线段的中点,则点到直线的距离的最大值为A. 5B. 4C. 3D. 2【答案】B【解析】【分析】直线经过定点(-4,0),设,则点,将点B代入圆的方程,则得到点M的轨迹方程,分析轨迹方程可知点M的轨迹为圆,然后再利用直线与圆的知识解决问题。

北京市崇文区2019-2020学年中考数学第三次调研试卷含解析

北京市崇文区2019-2020学年中考数学第三次调研试卷含解析

北京市崇文区2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.92.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3则关于这20名学生阅读小时数的说法正确的是()A.众数是8 B.中位数是3C.平均数是3 D.方差是0.343.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣91255,)B.(﹣12955,)C.(﹣161255,)D.(﹣121655,)4.若代数式238M x=+,224N x x=+,则M与N的大小关系是()A.M N≥B.M N≤C.M N>D.M N<5.若关于x 的一元一次不等式组312(1)x xx a-+⎧⎨-⎩pf无解,则a 的取值范围是()A.a≥3B.a>3 C.a≤3D.a<36.tan30°的值为()7.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是()A.1.35×106B.1.35×105C.13.5×104D.135×1038.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个9.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.7cm B.4cm C.5cm D.3cm10.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则BECE的值为()A.3 B3C 33+D3111.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()12.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( )A .a <13,b=13B .a <13,b <13C .a >13,b <13D .a >13,b=13 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.14.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为_____.15.如图,把△ABC 绕点C 顺时针旋转得到△A'B'C',此时A′B′⊥AC 于D ,已知∠A =50°,则∠B′CB 的度数是_____°.16.若关于x 的方程220x x a +-=有两个不相等的实数根,则实数a 的取值范围是______. 17.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠BAD =60°,则∠ACD =_____°.18.因式分解34x x -= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.20.(6分)如图,为了测量建筑物AB 的高度,在D 处树立标杆CD ,标杆的高是2m ,在DB 上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)21.(6分)已知,如图1,直线y=34x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为94,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.22.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.23.(8分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)为圆心,2为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.24.(10分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)判断AE与⊙O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求⊙O的半径.25.(10分)观察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=2,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.26.(12分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?27.(12分)计算:sin30°4(π﹣4)0+|﹣12 |.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 2.B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.解: A 、由统计表得:众数为3,不是8,所以此选项不正确;B 、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C 、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D 、S 2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确; 故选B . 【点睛】本题考查方差;加权平均数;中位数;众数. 3.A 【解析】 【分析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案. 【详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°, ∠1=∠2=∠1, 则△A 1OM ∽△OC 1N , ∵OA=5,OC=1, ∴OA 1=5,A 1M=1, ∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1, 则(1x )2+(4x )2=9, 解得:x=±35(负数舍去), 则NO=95,NC 1=125,故点C 的对应点C 1的坐标为:(-95,125).此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键. 4.C 【解析】∵223824M x N x x =+=+,,∴222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∴M N >. 故选C. 5.A 【解析】 【分析】先求出各不等式的解集,再与已知解集相比较求出 a 的取值范围. 【详解】由 x ﹣a >0 得,x >a ;由 1x ﹣1<2(x+1)得,x <1, ∵此不等式组的解集是空集, ∴a≥1. 故选:A . 【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.D 【解析】 【分析】直接利用特殊角的三角函数值求解即可. 【详解】tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键. 7.B科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:135000=1.35×105故选B.【点睛】此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.9.A【解析】【分析】过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【详解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD =PC =6cm , 则PD 的最小值是6cm , 故选A . 【点睛】考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键. 10.C 【解析】 【分析】连接,,CD BD D 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o ,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,则ACD V ≌BFD △,根据全等三角形的性质可得:,CD FD = ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠ 即120,CDF ADB ∠=∠=o ,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x ==3,tan 30DE CE EF x ===o 即可求出BECE的值.【详解】 如图:连接,,CD BDD 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,,AC BF CAD FBD AD BD =⎧⎪∠=∠⎨⎪=⎩则ACD V ≌BFD △,,CD FD ∴= ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠即120,CDF ADB ∠=∠=o,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x ==,tan 30DE CE EF ===o33BE BF EF CE CE +=== 故选C.【点睛】考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.11.C【解析】【分析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦L 即可得到答案. 【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a , 根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦L =3, 则()()()()22222123122222222n S x a x a x a x a n L ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L =4×3=12,故选C .【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.12.A【解析】试题解析:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选A.考点:1.平均数;2.中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.14.(-23,6)【解析】分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=23,得到答案.详解:连接OB1,作B1H⊥OA于H,由题意得,OA=6,3则tan∠BOA=3 ABOA,∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB 和△HB 1O ,111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△HB 1O ,∴B 1H=OA=6,OH=AB=23,∴点B 1的坐标为(-23,6),故答案为(-23,6). 点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.15.1【解析】【分析】由旋转的性质可得∠A =∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB .【详解】解:∵把△ABC 绕点C 顺时针旋转得到△A'B'C',∴∠A =∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为:1.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.16.a >﹣.【解析】试题分析:已知关于x 的方程2x 2+x ﹣a=0有两个不相等的实数根,所以△=12﹣4×2×(﹣a )=1+8a >0,解得a >﹣. 考点:根的判别式.17.1【解析】【分析】连接BD .根据圆周角定理可得.【详解】解:如图,连接BD .∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠B =90°﹣∠DAB =1°,∴∠ACD =∠B =1°,故答案为1.【点睛】考核知识点:圆周角定理.理解定义是关键.18.()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.﹣1≤x <1.【解析】【分析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x <1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x <1.不等式组的解集在数轴上表示如下:20.建筑物AB 的高度约为5.9米【解析】【分析】在△CED 中,得出DE ,在△CFD 中,得出DF ,进而得出EF ,列出方程即可得出建筑物AB 的高度;【详解】在Rt △CED 中,∠CED=58°,∵tan58°=CD DE, ∴DE=2tan 58tan 58o o CD = , 在Rt △CFD 中,∠CFD=22°,∵tan22°=CD DF, ∴DF=2tan 22tan 22o oCD = , ∴EF=DF ﹣DE=2tan 22o -2tan 58o, 同理:EF=BE ﹣BF=tan 4570o o AB AB tam - , ∴tan 4570o o AB AB tam -=2tan 22o -2tan 58o , 解得:A B≈5.9(米),答:建筑物AB 的高度约为5.9米.【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.21.(1)y=﹣13x 2﹣712x+3;(2)点P 的坐标为(﹣83,1);(3)当AM+CN 的值最大时,点D 的坐标). 【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出点A 、C 的坐标,由点B 所在的位置结合点B 的横坐标可得出点B 的坐标,根据点A 、B 、C 的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P 作PE ⊥x 轴,垂足为点E ,则△APE ∽△ACO ,由△PCD 、△PAD 有相同的高且S △PCD =2S △PAD ,可得出CP=2AP ,利用相似三角形的性质即可求出AE 、PE 的长度,进而可得出点P 的坐标;(3)连接AC 交OD 于点F ,由点到直线垂线段最短可找出当AC ⊥OD 时AM+CN 取最大值,过点D 作DQ ⊥x 轴,垂足为点Q ,则△DQO ∽△AOC ,根据相似三角形的性质可设点D 的坐标为(﹣3t ,4t ),利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之取其负值即可得出t 值,再将其代入点D 的坐标即可得出结论.【详解】(1)∵直线y=34x+3与x 轴、y 轴分别交于A 、C 两点, ∴点A 的坐标为(﹣4,0),点C 的坐标为(0,3).∵点B 在x 轴上,点B 的横坐标为94, ∴点B 的坐标为(94,0), 设抛物线的函数关系式为y=ax 2+bx+c (a≠0), 将A (﹣4,0)、B (94,0)、C (0,3)代入y=ax 2+bx+c ,得: 164081901643a b c a b c c -+=⎧⎪⎪++=⎨⎪=⎪⎩,解得:137123a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, ∴抛物线的函数关系式为y=﹣13x 2﹣712x+3; (2)如图1,过点P 作PE ⊥x 轴,垂足为点E ,∵△PCD 、△PAD 有相同的高,且S △PCD =2S △PAD ,∴CP=2AP ,∵PE ⊥x 轴,CO ⊥x 轴,∴△APE ∽△ACO ,∴13AE PE AP AO CO AC ===, ∴AE=13AO=43,PE=13CO=1, ∴OE=OA ﹣AE=83, ∴点P 的坐标为(﹣83,1); (3)如图2,连接AC 交OD 于点F ,∵AM ⊥OD ,CN ⊥OD ,∴AF≥AM ,CF≥CN ,∴当点M 、N 、F 重合时,AM+CN 取最大值,过点D 作DQ ⊥x 轴,垂足为点Q ,则△DQO ∽△AOC ,∴34OQ CO DQ AO ==, ∴设点D 的坐标为(﹣3t ,4t ).∵点D在抛物线y=﹣13x2﹣712x+3上,∴4t=﹣3t2+74t+3,解得:t1=﹣373+(不合题意,舍去),t2=373-+,∴点D的坐标为(93738-,3732-+),故当AM+CN的值最大时,点D的坐标为(93738-,3732-+).【点睛】本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).22.(1)y=1x﹣1(1)1(3)x>1【解析】试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k 计算出k的值,从而得到一次函数解析式为y=1x﹣1;(1)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x 的值.试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函数解析式为y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),所以S△AOB=×1×1=1;(3)自变量x的取值范围是x>1.考点:两条直线相交或平行问题23.(1)①R ,S;②(4-,0)或(4,0);(2)①33n -≤≤;②m≤1-或m≥1.【解析】【分析】【详解】(1)∵点A 的坐标为(−2,1),∴2+1=4,点R(0,4),S(2,2),T(2,−2)中,0+4=4,2+2=4,2+2=5,∴点A 的同族点的是R ,S ;故答案为R ,S ;②∵点B 在x 轴上,∴点B 的纵坐标为0,设B(x,0),则|x|=4,∴x=±4,∴B(−4,0)或(4,0);故答案为(−4,0)或(4,0);(2)①由题意,直线3y x =-与x 轴交于C (2,0),与y 轴交于D (0,3-).点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为2.即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤.②如图,设P(m,0)为圆心, 2为半径的圆与直线y=x−2相切,2,45PN PCN CPN ︒=∠=∠=Q∴PC=2,∴OP=1,观察图形可知,当m≥1时,若以(m,0)为圆心,2为半径的圆上存在点N ,使得M ,N 两点为同族点,再根据对称性可知,m≤1-也满足条件,∴满足条件的m 的范围:m≤1-或m≥124.(1)AE 与⊙O 相切.理由见解析.(2)2.1【解析】【分析】(1)连接OM ,则OM=OB ,利用平行的判定和性质得到OM ∥BC ,∠AMO=∠AEB ,再利用等腰三角形的性质和切线的判定即可得证;(2)设⊙O 的半径为r ,则AO=12﹣r ,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证△AOM ∽△ABE ,根据相似三角形的性质即可求解.【详解】解:(1)AE 与⊙O 相切.理由如下:连接OM ,则OM=OB ,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE与⊙O相切;(2)在△ABC中,AB=AC,AE是角平分线,∴BE=12BC,∠ABC=∠C,∵BC=6,cosC=14,∴BE=3,cos∠ABC=14,在△ABE中,∠AEB=90°,∴AB=BEcos ABC∠=314=12,设⊙O的半径为r,则AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴OM AO BE AB=,∴r3=12r12-,解得:r=2.1,∴⊙O的半径为2.1.25.(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AM,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.CF DC详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE ∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴MD AM CF DC=,设DC=x,∵∠ACB=45°,2,∴AM=CM=1,MD=1-x,∴11xCF x -=,∴CF=-x2+x=-(x-12)2+14,∴当x=12时有最大值,CF最大值为14.点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质.26.(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.27.1.【解析】分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值.详解:原式=12﹣2+1+12=1.点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.。

北京市东城区达标名校2019年高考三月仿真备考数学试题含解析

北京市东城区达标名校2019年高考三月仿真备考数学试题含解析

北京市东城区达标名校2019年高考三月仿真备考数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1(,0)F c -,2(,0)F c ,以线段12F F 为直径的圆与双曲线在第二象限的交点为P ,若直线2PF 与圆222:216⎛⎫-+= ⎪⎝⎭c b E x y 相切,则双曲线的渐近线方程是( )A .y x =±B .2y x =±C . y =D .y =2.已知倾斜角为θ的直线l 与直线230x y +-=垂直,则sin θ=( )A .BC .D 3.已知复数z 满足()125z i ⋅+=(i 为虚数单位),则在复平面内复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按A ,B ,C 编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母A ,B ,C 的概率为( )A .1721B .1928C .79D .23285.设命题p:n ∃>1,n 2>2n ,则⌝p 为( )A .21,2n n n ∀>>B .21,2n n n ∃≤≤C .21,2n n n ∀>≤D .21,2n n n ∃>≤6.己知集合{|13}M y y =-<<,{|(27)0}N x x x =-,则M N ⋃=( ) A .[0,3)B .70,2⎛⎤ ⎥⎝⎦C .71,2⎛⎤- ⎥⎝⎦D .∅7.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S8.已知A ,B ,C ,D 是球O 的球面上四个不同的点,若2AB AC DB DC BC =====,且平面DBC ⊥平面ABC ,则球O 的表面积为( ) A .203πB .152πC .6πD .5π9.设函数()f x 的定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =--.若对任意(,]x m ∈-∞,都有40()9f x ≤,则m 的取值范围是( ).A .9,4⎛⎤-∞ ⎥⎝⎦B .19,3⎛⎤-∞ ⎥⎝⎦C .(,7]-∞D .23,3⎛⎤-∞ ⎥⎝⎦10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则PN PM -的最大值是( ) A.4+B .9C .7D.211.若函数()ln f x x =满足()()f a f b =,且0a b <<,则224442a b a b+-+的最小值是( )A .0B .1C .32D.12.已知函数()(2)3,(ln 2)()32,(ln 2)xx x e x f x x x ⎧--+≥⎪=⎨-<⎪⎩,当[,)x m ∈+∞时,()f x 的取值范围为(,2]e -∞+,则实数m 的取值范围是( ) A .1,2e -⎛⎤-∞ ⎥⎝⎦B .(,1]-∞C .1,12e -⎡⎤⎢⎥⎣⎦D .[ln 2,1]二、填空题:本题共4小题,每小题5分,共20分。

2019届高三3月份校级一模考试试题数学理试题Word版含答案

2019届高三3月份校级一模考试试题数学理试题Word版含答案

2019届高三3月份校级一模考试试题数学理试题Word版含答案一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数(),2z a i a R z a =+∈=若,则的值为 A .1 BC .1±D .2.己知集合{}{}2=230,2A x x x B x x A B --≤=<⋂=,则A .(1,3)B .(]1,3C .[-1,2)D .(-1,2)3.已知倾斜角为θ的直线l 与直线230x y +-=垂直,则sin θ=A .5-B .5C .5-D .5 4.已知0,1a b c >>>,则下列各式成立的是 A .sin sin a b > B .abcc > C .ccab <D .11c c b a--<5.数列{}na 是等差数列,11a=,公差d ∈[1,2],且4101615a a a λ++=,则实数λ的最大值为A .72B .5319C .2319-D .12- 6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是注:90后指1990年及以后出生,80后指1980—1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多7.设()b<”的,1,a b∈+∞,则“a b>”是“log1aA.充分且不必要条件B.必要且不充分条件C.充分且必要条件D.既不充分也不必要条件8.甲、乙、丙、丁四位同学高考之后计划去A、B、C三个不同社区进行志愿服务活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区,乙不去B社区,则不同的安排方法A .32e e + B .22e e + C .32e e - D .22e e -二、填空题:本大题共4小题,每小题5分,共20分。

北京市丰台区达标名校2019年高考三月大联考数学试卷含解析

北京市丰台区达标名校2019年高考三月大联考数学试卷含解析

北京市丰台区达标名校2019年高考三月大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,若复数12i12iz +=+-,则z = A .9i 5+B .1i -C .1i +D .i -2.已知不同直线l 、m 与不同平面α、β,且l α⊂,m β⊂,则下列说法中正确的是( ) A .若//αβ,则l//m B .若αβ⊥,则l m ⊥ C .若l β⊥,则αβ⊥D .若αβ⊥,则m α⊥3.52mx⎫+⎪⎭的展开式中5x 的系数是-10,则实数m =( )A .2B .1C .-1D .-24.已知数列{}n a 是以1为首项,2为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,设n n b c a =,12n n T c c c =+++()*n ∈N ,则当2020n T <时,n 的最大值是( )A .8B .9C .10D .115.若点(2,k)到直线5x-12y+6=0的距离是4,则k 的值是( ) A .1 B .-3C .1或53D .-3或1736.已知||23z z i =-(i 为虚数单位,z 为z 的共轭复数),则复数z 在复平面内对应的点在( ). A .第一象限B .第二象限C .第三象限D .第四象限7.已知正项等比数列{}n a 中,存在两项,m n a a 13a =,65423a a a =+,则14m n+的最小值是( ) A .32B .2C .73D .948.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3169.已知函数()ln f x x =,若2()()3F x f x kx =-有2个零点,则实数k 的取值范围为( )A .21,06e ⎛⎫- ⎪⎝⎭B .1,06e ⎛⎫-⎪⎝⎭ C .10,6e ⎛⎫ ⎪⎝⎭D .210,6e ⎛⎫ ⎪⎝⎭10.函数ln ||()xx x f x e=的大致图象为( ) A . B .C .D .11.定义运算()()a a b a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ). A . B .C .D .12.下列选项中,说法正确的是( )A .“20000x R x x ∃∈-≤,”的否定是“2000x R x x ∃∈->,”B .若向量a b ,满足0a b ⋅< ,则a 与b 的夹角为钝角C .若22am bm ≤,则a b ≤D .“()x AB ∈”是“()x A B ∈”的必要条件二、填空题:本题共4小题,每小题5分,共20分。

北京市首都师范大学附属中学2019届高三下学期三模数学(理科)试题 Word版含解析

北京市首都师范大学附属中学2019届高三下学期三模数学(理科)试题 Word版含解析

首师大附中高三三模理科试题一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|2,}A x x k k ==∈Z ,2{|5}B x x =≤,那么A B =I ( ) A. {0,2,4} B. {2,0,2}- C. {0,2} D. {2,2}-【答案】B 【解析】 【分析】先求出集合A ,B ,由此能求出A∩B. 【详解】解:∵集合A ={x |x =2k ,k ∈Z },B ={x |x 2≤5}={x |x ≤≤}, ∴A ∩B ={﹣2,0,2}. 故选B .【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题. 2.若复数z 满足112iz i-=+,则z 等于( )A.25 B.35【答案】C 【解析】试题分析:()()()()1121312125i i i z z i i ----==⇒=+-.故应选C . 考点:1、复数的概念;2、复数的运算.3.执行如图所示的程序框图,若输入的m =1,则输出数据的总个数为( )A. 5B. 6C. 7D. 8【答案】B【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得:m=1满足条件m∈(0,100),执行循环体,n=3,输出n的值为3,m=3满足条件m∈(0,100),执行循环体,n=7,输出n的值为7,m=7满足条件m∈(0,100),执行循环体,n=15,输出n的值为15,m=15满足条件m∈(0,100),执行循环体,n=31,输出n的值为31,m=31满足条件m∈(0,100),执行循环体,n=63,输出n的值为63,m=63满足条件m∈(0,100),执行循环体,n=127,输出n的值为127,m=127此时,不满足条件m∈(0,100),退出循环,结束.可得输出数据的总个数为6.故选B.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.设,x y 满足约束条件2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则下列不等式恒成立的是A. 1x ≥B. 1y ≤C. 20x y -+≥D. 360x y --≤【答案】C 【解析】作出约束条件所表示的平面区域,如图所示,由2239x y x y +=⎧⎨-=⎩,解得(3,1)A -,同理可得(0,2),(0,3)B C -,设目标函数z x y =-,则()y x z =+-,当直线()y x z =+-过点B 时取得最小值,最小值min 2z =-, 所以20x y -+≥恒成立,故选C .5.,a b r r 为非零向量,“||||a bb a =r rr r ”为“,a b r r 共线”的()A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 即不充分也不必要条件【答案】B 【解析】 【分析】,a b r r 共线,,a b r r方向相同或相反,共线的单位向量不一定相等,结合充分必要条件的判断,即可得出结论.【详解】,||||a bb a r rr r 分别表示与,a b r r 同方向的单位向量, ||||a bb a =r rr r ,则有,a b r r 共线, 而,a b r r 共线,则,||||a bb a r rr r 是相等向量或相反向量,“||||a bb a =r rr r ”为“,a b r r 共线”的充分不必要条件. 故选:B.【点睛】本题考查命题充分不必要条件的判定,考查共线向量和单位向量的间的关系,属于基础题.6. 一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( ) A. 12种 B. 15种 C. 17种 D. 19种【答案】D 【解析】试题分析:分三类:第一类,有一次取到3号球,共有132212C ⨯⨯=取法;第二类,有两次取到3号球,共有2326C ⨯=取法;第三类,三次都取到3号球,共有1种取法;共有19种取法.考点:排列组合,分类分步记数原理. 7.已知函数21()cos 222xf x x ωω=+-(0)x R ω>∈,,若函数()f x 在区间(,2)ππ内没有零点,则ω最大值是( )A.512 B.56C.1112D.32【答案】C 【解析】 【分析】利用三角恒等变换化简()f x ,结合正弦函数图象,即可求解.【详解】211()cos cos sin()2226xf x x x x x ωπωωωω=+-=+=+, 令()0,(),()66k f x x k k Z x k Z πππωπωω=+=∈=-∈, 函数()f x 在区间(,2)ππ内没有零点,6(1)26k k πππωωπππωω⎧-≤⎪⎪⎨+⎪-≥⎪⎩解得111()6212k k k Z ω+-≤≤-∈, 50,0,012k ωω>∴=<≤,5111,612k ω=<≤ ω的最大值是1112. 故选:C.【点睛】本题考查三角函数恒等变换化简,以及三角函数的性质,意在考查直观想象、逻辑推理能力,属于中档题.8.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.B.C.D.【答案】A 【解析】 【分析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 【详解】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26S ==,故选A. 点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.双曲线2221y x a-=的渐近线为y =,则该双曲线的离心率为________.【解析】 【分析】由双曲线方程和渐近线方程,求出,a b 值,进而求出c ,即可求解. 【详解】设双曲线的焦距为2c ,双曲线2221y x a-=得1b =,渐近线方程的斜率为aa b==2c e ====. 故答案为:2【点睛】本题考查双曲线标准方程、双曲线的简单几何性质,注意焦点的位置,属于基础题.10.在平面直角坐标系xOy 中,直线l的参数方程是1212x y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),以O 为极点,x 轴正方向为极轴的极坐标系中,圆C 的极坐标方程是24cos 30ρρθ-+=.则圆心到直线的距离是________. 【答案】12【解析】 【分析】将直线参数方程化为普通方程,圆C 极坐标方程化为直角坐标方程,应用点到直线距离公式即可求解.【详解】3112x t y t ⎧=+⎪⎪⎨⎪=⎪⎩消去参数化为310x y --=,24cos 30ρρθ-+=化为22430x y x +-+=,即22(2)1x y -+=,圆心(2,0)C , 圆心C 到直线l 的距离为2121(3)=+.故答案为:12. 【点睛】本题考查参数方程与普通方程互化、极坐标方程和直角坐标方程互化、点到直线的距离等知识,属于基础题11.已知某四棱锥的三视图如图所示,则该几何体的体积为________.43【解析】 【分析】根据三视图还原为底面为菱形高为2四棱锥,即可求出结论.【详解】由三视图可知四棱锥的底面为边长为2,有一对角为060的菱形,高为2,所以体积为213432223⎫⨯⨯⨯=⎪⎪⎝⎭. 故答案为43. 【点睛】本题考查三视图求直观图的体积,解题的关键要还原出几何体直观图,属于基础题. 12.在各项均为正数的等比数列{}n a 中,214a =,且4536a a a +=.(1)数列{}n a 通项公式是________.(2)设数列{}2log n a 的前n 项和为n S ,则n S 的最小值是________.【答案】 (1). 42n n a -= (2). 6-.【解析】 【分析】由4536a a a +=求出q ,即可求出{}n a 通项公式,根据等比数列与等差数列的关系,可得{}2log n a 为等差数列,求出所有的负数或0项,即可求出结论.【详解】设等比数列{}n a 的公比为q ,214a =, 24533336,6,0,0n a a a a q a q a a q +=+=>>,260,2q q q +-==或3q =-(舍去), 2422n n n a a q --∴==,24log n a n =-,当224,log 0,5,log 0n n n a n a ≤≤≥>,数列{}2log n a 的前n 项和n S 的最小值是346S S ==-.故答案为:42n n a -=;-6.【点睛】本题考查等比数列的基本量计算、等比数列与等差数列的关系、等差数列前n 项和最小值等知识,属于中档题.13.写出一组使“,,222x y x y x y +∀∈+<R ”为假命题的一组x ,y ________. 【答案】1,1(答案不唯一) 【解析】 【分析】即求命题的否定“,,222xyx yx y +∃∈+≥R ”为真命题的一组,x y 值,可以应用基本不等式求出满足不等式的充分条件,从中取出一组即可. 【详解】“,,222xyx yx y +∀∈+<R ”为假命题,其命题的否定“,,222xyx yx y +∃∈+≥R ”为真命题,12222x yx y+++≥=, 命题的否定为真的充分条件为1,22x yx y x y ++≥++≤, 取1,1x y ==.故答案为:1,1(答案不唯一)【点睛】本题考查全称命题的真假求参数,属于基础题.14.血药浓度(Serum Drug Concentration )是指药物吸收后在血浆内的总浓度(单位:mg/ml ),通常用血药浓度来研究药物的作用强度.下图为服用同等剂量的三种新药后血药浓度的变化情况,其中点i A 的横坐标表示服用第i 种药后血药浓度达到峰值时所用的时间,其它点的横坐标分别表示服用三种新药后血药浓度第二次达到峰值一半时所用的时间(单位:h),点i A 的纵坐标表示第i 种药的血药浓度的峰值.(1,2,3i =)①记V i 为服用第i 种药后达到血药浓度峰值时,血药浓度提高的平均速度,则123V ,V ,V 中最大的是_______;②记i T 为服用第i 种药后血药浓度从峰值降到峰值的一半所用的时间,则123T ,T ,T 中最大的是_______【答案】 (1). 1V (2). 3T 【解析】 【分析】①根据平均的含义进行判断,②根据两次横坐标距离大小确定选择.【详解】①设i i i A x y (,),则V ii iy x =, 由于1230x x x <<<,2310y y y <<<, 所以1212y y x x >,3113y y x x >,即1V 最大; ②根据峰值的一半对应关系得三个点从左到右依次对应A 1,A 2,A 3在第二次达到峰值一半时对应点,由图可知A 3经历的时间最长,所以123T ,T ,T 中最大的是3T .【点睛】本题考查数学实际应用以及图像识别,考查基本分析判断能力,属基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.【答案】(Ⅰ)3π;(Ⅱ)b =【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得tanB =,则B =π3.(Ⅱ)在△ABC 中,由余弦定理可得b 结合二倍角公式和两角差的正弦公式可得()214sin A B -=详解:(Ⅰ)在△ABC 中,由正弦定理a b sinA sinB=,可得bsinA asinB =, 又由π6bsinA acos B ⎛⎫=-⎪⎝⎭,得π6asinB acos B ⎛⎫=- ⎪⎝⎭,即π6sinB cos B ⎛⎫=- ⎪⎝⎭,可得tanB =又因为()0πB ∈,,可得B =π3. (Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有22227b a c accosB =+-=,故b .由π6bsinA acos B ⎛⎫=-⎪⎝⎭,可得sinA =.因为a <c ,故cosA =.因此227sin A sinAcosA ==,212217cos A cos A =-=.所以,()222sin A B sin AcosB cos AsinB -=-=1127-= 点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.16.2019年北京市百项疏堵工程基本完成.有关部门为了解疏堵工程完成前后早高峰时段公交车运行情况,调取某路公交车早高峰时段全程所用时间(单位:分钟)的数据,从疏堵工程完成前的数据中随机抽取5个数据,记为A 组,从疏堵工程完成后的数据中随机抽取5个数据,记为B 组.A 组:128,100,151,125,120B 组:100,102,96,101,a己知B 组数据的中位数为100,且从中随机抽取一个数不小于100的概率是45. (1)求a 的值;(2)该路公交车全程所用时间不超过100分钟,称为“正点运行”从A ,B 两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X ,求X 的分布列及期望; (3)试比较A ,B 两组数据方差的大小(不要求计算),并说明其实际意义. 【答案】(1)100a =;(2)分布列详见解答,期望为45;(3)详见解答. 【解析】 【分析】(1)由已知中位数100,确定a 的范围,再求出不小于100的数的个数,即可求出a ;(2)随机变量X 可能值为0,1,2,根据每组车“正点运行”概率求出X 可能值为0,1,2的概率,即可求出随机变量的分布列,进而求出期望;(3)利用方差表示数据集中的程度,说明疏堵工程完成后公交车的稳定程度. 【详解】(1)B 组数据的中位数为100,根据B 组的数据100a ≤, 从B 组中随机抽取一个数不小于100的概率是45, B 组中不小于100的有4个数,所以100a =; (2)从A ,B 两组数据中各随机抽取一个数据, “正点运行”概率分别为13,55, 从A ,B 两组数据中各随机抽取一个数据, 记两次运行中正点运行的次数为X , X 可能值为0,1,2,428(0)5525P X ==⨯=, 124314(0)555525P X ==⨯+⨯=,133(2)5525P X ==⨯=,X 的分布列为: X12P825 1225 32581434()0122525255E X =⨯+⨯+⨯=, X 期望为45; (3)对比两组数据,B 组数据方差更小,说明疏堵工程完成后公交车运行时间更为稳定. 【点睛】本题考查中位数和概率求参数,考查随机变量的分布列和期望,属于基础题. 17.如图,在四棱锥P -ABCD 中,PBC V 是等腰三角形,且3PB PC ==.四边形ABCD 是直角梯形,//AB DC ,AD DC ⊥,5AB =,4=AD ,3DC =.(1)求证://AB 平面PDC .(2)请在图中所给的五个点P ,A ,B ,C ,D 中找出两个点,使得这两点所在直线与直线BC 垂直,并给出证明.(3)当平面PBC ⊥平面ABCD 时,求直线PC 与平面P AB 所成角的正弦值. 【答案】(1)详见解答;(2)PA BC ⊥,证明见解答;(3)223. 【解析】 【分析】(1)由已知//AB DC ,即可证明结论;(2)根据已知条件排除,,,,AD AB CD PB PC ,只有,PA PD 可能与BC 垂直,根据已知可证PA BC ⊥;(3)利用垂直关系,建立空间直角坐标系,求出PC uuu r坐标和平面P AB 的法向量,即可求解.【详解】(1)//,AB DC AB ⊄平面,PDC CD ⊂平面PDC ,//AB ∴平面PDC ;(2)PA BC ⊥,证明如下: 取BC 中点E ,连,,AC AE PE ,4,3,5,A AD DC AC D DC ⊥==∴==,,AB AC AE BC ∴=∴⊥,,PB PC PE BC =⊥, ,,AE PE E AE PE =⊂I 平面,APE BC ∴⊥平面APE ,AP ⊂平面APE ,BC AP ∴⊥;(3)平面PBC ⊥平面ABCD ,平面PBC ⊥平面ABCD BC =,,PE BC PE ⊥⊂平面,PBC PE ∴⊥平面ABCD ,.四边形ABCD 是直角梯形,//AB DC ,AD DC ⊥,5AB =,4=AD ,3DC =,3,2BC PB PE ∴===以D 为坐标原点,以,DA DC ,过D 点与PE 平行的直线分别为,,x y z 轴, 建立空间直角坐标系D xyz -,则(4,0,0),(4,5,0),(0,3,0),(2,4,2)A B C P ,(2,1,2),(0,5,0),(2,4,2)CP AB AP ===-u u u r u u u r u u u r,设平面PAB 的法向量为(,,)n x y z =r,则00n AB n AP ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,即502420y x y z =⎧⎨-++=⎩,0y ∴=,令1x =,则1z =, 平面PAB 一个法向量为(1,0,1)n =r,设直线PC 与平面P AB 所成角为θ,sin |cos ,|3CP n θ=<>==u u u r r, 直线直线PC 与平面P AB所成角的正弦值为3.【点睛】本题考查线面平行、线线垂直的证明,要注意空间垂直间的转化,考查用空间向量法求线面角,考查计算求解能力,属于中档题.18.已知椭圆C :(222122x y a a +=>2,左、右顶点分别为A ,B ,点M 是椭圆C 上异于A ,B 的一点,直线AM 与y 轴交于点P .(Ⅰ)若点P 在椭圆C 的内部,求直线AM 的斜率的取值范围;(Ⅱ)设椭圆C 的右焦点为F ,点Q 在y 轴上,且∠PFQ =90°,求证:AQ ∥BM . 【答案】(Ⅰ)(-22,0)U (0,22)(Ⅱ)详见解析 【解析】 【分析】(Ⅰ)根据题意可得得c 2=a 2﹣2,由e 22c a ==,解得即可出椭圆的方程,再根据点在其内部,即可线AM 的斜率的取值范围,(Ⅱ)题意F 2,0),设Q (0,y 1),M (x 0,y 0),其中x 0≠±2,则220042x y +=1,可得直线AM 的方程y 002y x =+(x +2),求出点Q 的坐标,根据向量的数量积和斜率公式,即可求出k BM ﹣k AQ =0,问题得以证明【详解】解:(Ⅰ)由题意可得c 2=a 2-2, ∵e=c a =22, ∴a=2,2,∴椭圆的方程为2x 4+2y 2=1,设P (0,m ),由点P 在椭圆C 的内部,得<m, 又∵A (-2,0), ∴直线AM 的斜率k AM =m 002-+=m 2∈(,又M 为椭圆C 上异于A ,B 的一点, ∴k AM ∈(-2,0),(0,2), (Ⅱ)由题意F,0),设Q (0,y 1),M (x 0,y 0),其中x 0≠±2,则20x 4+20y 2=1,直线AM 的方程为y=00y x 2+(x+2),令x=0,得点P 的坐标为(0,02y x 2+), 由∠PFQ =90°,可得PF u u r•FQ =0,∴(,002y x 2+)•(,y 1)=0,即2+02y x 2+•y 1=0, 解得y 1=-200x 2y +, ∴Q (0,-200x 2y +), ∵k BM =00y x 2-,k AQ =-00x 22y +,∴k BM -k AQ =00y x 2-+00x 22y +=0,故k BM =k AQ ,即AQ ∥BM【点睛】本题考查直线与椭圆的位置关系的应用,考查转化思想以及计算能力,属于中档题 19.已知函数()ln f x x x =.(1)已知函数()f x 在点()()00,x f x 处的切线与x 轴平行,求切点的纵坐标. (2)求函数()f x 在区间20,e⎛⎤ ⎥⎝⎦上的最小值;(3)证明:1,0t e ⎛⎫∀∈- ⎪⎝⎭,10,x e ⎛⎫∃∈ ⎪⎝⎭,使得()f x t =. 【答案】(1)1e -;(2)1e-;(3)详见解析. 【解析】 【分析】(1)求()f x 的导函数()f x ',令0()0f x '=,即可求解;(2)求出()f x 在20,e⎛⎤ ⎥⎝⎦单调区间,极值点,即可求解;(3)转化为函数1(),(0,)y f x x e =∈,与直线1,(,0)y t t e=∈-恒有交点,即可证明结论. 【详解】(1)()ln ,()ln 1f x x x f x x '==+, ()f x 在点()()00,x f x 处的切线与x 轴平行,00001()ln 10,ln 1,f x x x x e'=+==-=,011()()f x f e e∴==-;(2)由(1)得1()0f e'=,当20,x e ⎛⎤∈ ⎥⎝⎦时,1()0,0f x x e '<<<,12()0,f x x e e '><<,()f x 递减区间是1(0,)e ,的增区间是12(,)e e,当1x e =时,()f x 取得极小值,也是最小值为1e-,函数()f x 在区间20,e ⎛⎤ ⎥⎝⎦上的最小值1e-;(3)由(2)得()f x 递减区间是1(0,)e,110,()0,()x f x f e e →→=-,110,,()(,0)x f x e e ⎛⎫∈∈- ⎪⎝⎭令(),y f x y t ==,当1,0t e ⎛⎫∀∈- ⎪⎝⎭时,函数()y f x =图像与直线y t =有唯一的交点, 且交点的横坐标10,e x ⎛⎫∈ ⎪⎝⎭,1,0t e ⎛⎫∴∀∈- ⎪⎝⎭,10,x e ⎛⎫∃∈ ⎪⎝⎭,使得()f x t =.【点睛】本题考查导数的几何意义以及导数的综合应用,涉及到函数的单调性、极值最值、零点等知识,意在考查直观想象、逻辑推理能力,属于中档题.20.数列n A :()12,,4n a a a n ≥L 满足:11,n a a m ==,10k k a a +-=或1(1,2,1k n =-L ).对任意,i j ,都存在,s t ,使得i j s t a a a a +=+.,其中,,,i j s t ∈ {}12n L ,,且两两不相等. (I)若2m =.写出下列三个数列中所有符合题目条件的数列的序号; ①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2 (Ⅱ)记12n s a a a =++L .若3m =,证明:20s ≥; (Ⅲ)若2018m =,求n 的最小值.【答案】(Ⅰ) ②③(Ⅱ)见解析(Ⅲ)n 的最小值为2026 【解析】试题分析:(Ⅰ)依据定义检验给出的数列是否满足要求条件.(Ⅱ)当3m =时,1,2,3都在数列中出现,可以证明1,3至少出现4次,2至少出现2次,这样20S ≥. (Ⅲ)设1,2,,2018L 出现频数依次为122018,,,q q q L .同(Ⅱ)的证明,可得:14q ≥,22q ≥,31q ≥,┄,20161q ≥,20172q ≥,20184q ≥,则2026n ≥,我们再构造数列::1,1,1,1,2,2,3,4,,2015,2016,2017,2017,2018,2018,2018,2018n B L ,证明该数列满足题设条件,从而n 的最小值为2026.解析:(Ⅰ)对于①,12121,2a a a a ==+=,对于2s t ≤<,3s t a a +=或4s t a a +=,不满足要求;对于②,若()2i j a a i j +=<,则552i j a a --+=,且,,5,5i j i j --彼此相异,若()3i j a a i j +=<,则993i j a a --+=,且,,9,9i j i j --彼此相异,若()4i j a a i j +=<,则994i j a a --+=,且,,9,9i j i j --彼此相异,故②符合题目条件;同理③也符合题目条件,故符合题目条件的数列的序号为②③.注:只得到 ② 或只得到 ③ 给[ 1分],有错解不给分.(Ⅱ)当3m =时,设数列n A 中1,2,3出现频数依次为,,q q q 123,由题意()11,,2,3i q i ≥=. ① 假设14q <,则有12s t a a a a +<+(对任意2s t >>),与已知矛盾,所以14q ≥.同理可证:34q ≥.② 假设21q =,则存在唯一的{}1,2,3,,k n ∈L ,使得2k a =.那么,对,s t ∀,有112k s t a a a a +=+≠+(,,k s t 两两不相等),与已知矛盾,所以22q ≥.综上:14q ≥,22q ≥,34q ≥,所以4143420S ≥⨯+⨯+=.(Ⅲ)设1,2,,2018L 出现频数依次为122018,,,q q q L .同(Ⅱ)的证明,可得:14q ≥,22q ≥,31q ≥,┄,20161q ≥,20172q ≥,20184q ≥,则2026n ≥.取12018220174,2,1,3,4,5,,2016i q q q q q i ======L 得到的数列为::1,1,1,1,2,2,3,4,,2015,2016,2017,2017,2018,2018,2018,2018n B L下面证明n B 满足题目要求.对{},1,2,3,,2016i j ∀∈L ,不妨令<i j a a , ① 如果1i j a a ==或2018i j a a ==,由于120184q q ==,所以符合条件;② 如果1,2i j a a ==或2017,2018i j a a ==,由于12018220174,4,2,2q q q q ====,所以也成立;③ 如果1,2i j a a =>,则可选取12,s t j a a a -==;同样的,如果2017,2018i j a a <=, 则可选取1,2017s i t a a a =+=,使得i j s t a a a a +=+,且,,,i j s t 两两不相等;④ 如果12018i j a a <≤<,则可选取1,1s i t j a a a a =-=+,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,i j ,总存在,s t ,使得i j s t a a a a +=+,其中{},,,1,2,3,,2026i j s t ∈L 且两两不相等.因此n B 满足题目要求,所以n 的最小值为2026.点睛:此类问题为组合最值问题,通常的做法是先找出变量的一个范围,再构造一个数列,使得前述范围的等号成立,这样就求出了最值.。

北京市崇文区达标名校2019年高考一月调研数学试卷含解析

北京市崇文区达标名校2019年高考一月调研数学试卷含解析

北京市崇文区达标名校2019年高考一月调研数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 满足(1)12i z i +=+,则||z =( )A .2 B .32C .10 D .122.已知函数()()1xf x k xe =-,若对任意x ∈R ,都有()1f x <成立,则实数k 的取值范围是( )A .(),1e -∞-B .()1,e -+∞C .(],0e -D .(]1,1e -3.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A .内切B .相交C .外切D .相离4.数列{}n a 满足:21n n n a a a +++=,11a =,22a =,n S 为其前n 项和,则2019S =( ) A .0B .1C .3D .45.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立D .当6n =时,该命题成立6.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A .1,0a b <-< B .1,0a b <-> C .1,0a b >-<D .1,0a b >->7.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( )A .112⎡⎤⎢⎥⎣⎦,B .112⎛⎫ ⎪⎝⎭,C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭,8.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A .{2}B .{1,0}-C .{}1-D .{1,0,1}-9.已知AB 是过抛物线24y x =焦点F 的弦,O 是原点,则OA OB ⋅=( ) A .-2B .-4C .3D .-310.已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)(0)f a f ->,则a 的取值范围为( ) A .1,2⎛⎫+∞⎪⎝⎭B .()0,1C .1,12⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭11.已知复数31iz i-=-,则z 的虚部为( ) A .i -B .iC .1-D .112.设12F F ,是双曲线()2222100x y a b a b-=>>,的左、右焦点,若双曲线右支上存在一点P ,使()220OP OF F P +⋅=(O 为坐标原点),且123PF PF =,则双曲线的离心率为( )A .212+ B .21+C .31+ D .31+二、填空题:本题共4小题,每小题5分,共20分。

(精校版)2019年北京卷文数高考真题文档版(含答案)

(精校版)2019年北京卷文数高考真题文档版(含答案)

(14)130 15
三、解答题(共 6 小题,共 80 分)
(15)(共 13 分)
解:(Ⅰ)由余弦定理 b2 a2 c2 2ac cos B ,得
b2
32
c2
2 3 c (
1 )

2
因为 b c 2 ,
所以 (c 2)2 32 c2 2 3 c ( 1) . 2
解得 c 5 .
(19)(本小题 14 分) 已知椭圆 C : x2 y2 1 的右焦点为 (1, 0) ,且经过点 A(0,1) . a2 b2 (Ⅰ)求椭圆 C 的方程; (Ⅱ)设 O 为原点,直线 l : y kx t(t 1) 与椭圆 C 交于两个不同点 P,Q,直线 AP 与 x 轴 交于点 M,直线 AQ 与 x 轴交于点 N,若|OM|·|ON|=2,求证:直线 l 经过定点.
一、选择题(共 8 小题,每小题 5 分,共 40 分)
(1)C
(2)D
(3)A
(4)B
(5)D
(6)C
(7)A
(8)B
二、填空题(共 6 小题,每小题 5 分,共 30 分)
(9)8 (11) (x 1)2 y2 4
(10)–3 1 (12)40
(13)若 l m,l ,则 m .(答案不唯一)
(考生务必将答案答在答题卡上,在试卷上作答无效)
6
(精校版)2019 年北京卷文数高考真题文档版(含答案)(word 版可编辑修改)
7
(精校版)2019 年北京卷文数高考真题文档版(含答案)(word 版可编辑修改)
绝密★启用前 2019 年普通高等学校招生全国统一考试 数学(文)(北京卷)参考答案
(7)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足

北京市中国人民大学附属中学2019届高三上学期月考(二)数学理试卷+Word版含解析

北京市中国人民大学附属中学2019届高三上学期月考(二)数学理试卷+Word版含解析

北京市中国人民大学附属中学2019届高三上学期理科月考(二)数学试题(解析版)一、选择题(本大题共8小题)1.函数的值域为A. B.RC. D.【答案】B【解析】【分析】根据函数在定义域上是单调增函数,且满足,判断的值域为R.【详解】解:函数在定义域上是单调增函数,且满足,的值域为R.故选:B.【点睛】本题考查了基本初等函数的单调性与值域应用问题,是基础题.2.若集合,,则是A. B.C. 或D.【答案】C【解析】【分析】化简A,B再根据并集的定义即可求出.【详解】解:由于,即,解得,,由,即,解得或,或,,或,故选:C.【点睛】本题考查集合的并集的运算,解题时要认真审题,熟练掌握并集的概念和运算法则.3.已知是定义在R上的偶函数且以2为周期,则“为上的增函数”是“为上的减函数”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【答案】C【解析】【分析】由题意,可由函数的性质得出在上是减函数,再由函数的周期性即可得出为上的减函数,由此证明充分性,再由为上的减函数结合周期性即可得出为上是减函数,再由函数是偶函数即可得出为上的增函数,由此证明必要性,即可得出正确选项【详解】解:是定义在R上的偶函数,若为上的增函数,则为上是减函数,又是定义在R上的以2为周期的函数,且与相差两个周期,两区间上的单调性一致,所以可以得出为上的减函数,故充分性成立.若为上的减函数,同样由函数周期性可得出为上是减函数,再由函数是偶函数可得出为上的增函数,故必要性成立.综上,“为上的增函数”是“为上的减函数”的充要条件.故选:C.【点睛】本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由哪个条件到哪个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错误.4.设函数一定正确的是()A. B.C. D.【答案】D【解析】对于A选项函数的极大值不一定是函数的最大值,所以错;对于B中的是将的图像关于Y轴对称,所以是其极大值点;对于C中的是将的图像关X轴对称,所以才是其极小值点;而对于D中的是将的图像关原点对称,故是其极小值点,故正确.【考点定位】本题主要考查学生对于函数极值与最值关系及函数图像的变换,牢记几种常见变换.属于难度较大的题目.5.设集合,或. 若,则正实数的取值范围是A. B. C. D.【答案】B【解析】作出不等式或表示的区域,可知要想满足,须满足x<0时,,所以6.设,,均为实数,且,,,则()A. B. C. D.【答案】A【解析】【分析】由题意将,,分别看做是两个函数图象交点的横坐标,故画出函数的图象,利用数形结合进行判断即可.【详解】由题意得,,,分别是函数与图象的交点横坐标.在同一坐标系内作出函数的图象,如图所示,由图可得.故选A.【点睛】本题考查函数图象的应用,即结合函数的图象比较大小,解题的关键是根据题意得到,,的几何意义,然后利用数形结合求解,体现了函数图象在解题中的应用.7.若是的最小值,则的取值范围为().A. [-1,2]B. [-1,0]C. [1,2]D.【答案】D【解析】由于当时,在时取得最小值,由题意当时,应该是递减的,则,此时最小值为,因此,解得,选D.8.据统计某超市两种蔬菜连续天价格分别为和,令,若中元素个数大于,则称蔬菜在这天的价格低于蔬菜的价格,记作:,现有三种蔬菜,下列说法正确的是A. 若,,则B. 若,同时不成立,则不成立C. ,可同时不成立D. ,可同时成立【答案】C【解析】特例法:例如蔬菜连续天价格为,蔬菜连续天价格分别为时,,同时不成立,故选C.点睛:本题主要考查了“新定义”问题,属于中档题.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.在该题中,可以采取特例法,直接根据定义得到结果.二、填空题(本大题共6小题)9.定积分______.【答案】【解析】【分析】直接利用牛顿莱布尼兹公式计算定积分即可.【详解】解:由定积分公式可得,故答案为:.【点睛】本题考查定积分的计算,解决本题的关键在于寻找被积函数的原函数,属于基础题.10.若,,,则a,b,c按从大到小的顺序排列依次为______.【答案】【解析】【分析】可看出,从而比较出a,b,c的大小.【详解】解:,,;.故答案为:.【点睛】本题考查指数函数和对数函数的单调性,根据单调性比较数的大小的方法.11.在平面直角坐标系中,若曲线(为常数)过点,且该曲线在点处的切线与直线平行,则.【答案】【解析】曲线过点,则①,又,所以②,由①②解得所以.【考点】导数与切线斜率.【此处有视频,请去附件查看】12.某食品的保鲜时间(单位:时间)与储存温度(单位:℃)满足函数关系,(为自然对数的底数,,为常数).若食品在℃的保险时间设计小时,在℃的保险时间是小时,该食品在℃的保鲜时间是__________小时.【答案】【解析】分析:利用该食品在℃的保险时间设计小时,在℃的保险时间是小时,可得,解得,进而可得结果.详解:∵某食品的保鲜时间(单位:时间)与储存温度(单位:℃)满足函数关系(,是常数).该食品在℃的保险时间设计小时,在℃的保险时间是小时,∴,解得,∴,∴该食品在℃的保鲜时间.故答案为.点睛:本题主要考查指数函数模型解决实际问题,属于中档题.解答本题的关键是利用待定系数法求得,从而使问题得以解决.13.若不等式对于一切恒成立,则实数a的取值范围为______.【答案】【解析】【分析】分离参数a,得,只需求在的最小值【详解】解:,,在的最小值为,实数a的取值范围为.故答案为.【点睛】此题考查求参数范围,一般用分离参数法,进而求函数的值域.14.已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=,n=,现有如下命题:①对于任意不相等的实数x,x2,都有m>0;1②对于任意的a及任意不相等的实数x,x2,都有n>0;1③对于任意的a,存在不相等的实数x,x2,使得m=n;1④对于任意的a,存在不相等的实数x,x2,使得m=-n.1其中真命题有___________________(写出所有真命题的序号).【答案】①④【解析】对于①,因为f '(x)=2x ln2>0恒成立,故①正确对于②,取a=-8,即g'(x)=2x-8,当x1,x2<4时n<0,②错误对于③,令f '(x)=g'(x),即2x ln2=2x+a记h(x)=2x ln2-2x,则h'(x)=2x(ln2)2-2存在x0∈(0,1),使得h(x0)=0,可知函数h(x)先减后增,有最小值.因此,对任意的a,m=n不一定成立.③错误对于④,由f '(x)=-g'(x),即2x ln2=-2x-a令h(x)=2x ln2+2x,则h'(x)=2x(ln2)2+2>0恒成立,即h(x)是单调递增函数,当x→+∞时,h(x)→+∞当x→-∞时,h(x)→-∞因此对任意的a,存在y=a与函数h(x)有交点.④正确考点:本题主要考查函数的性质、函数的单调性、导数的运算等基础知识,考查函数与方程的思想和数形结合的思想,考查分析问题和解决能提的能力.【此处有视频,请去附件查看】三、解答题(本大题共2小题,共30.0分)15.已知函数.当时,求曲线在处的切线方程;讨论函数的单调性;当时,求函数在区间的最小值.【答案】(1);(2)详见解析;(3)详见解析.【解析】【分析】当时,,求其导函数,得到,又,可得曲线在处的切线方程为;求出原函数的导函数,分,,三类求函数的单调区间;由知,当时,的减区间为,增区间为,然后分,,三类求函数的最小值.【详解】解:当时,,.,又,曲线在处的切线方程为;.当时,,在上为增函数;当时,在上有,当上,有,的减区间为,增区间为;当时,在上有,当上,有,的减区间为,增区间为;由知,当时,的减区间为,增区间为,若,即时,在单调递增,;若,即,在上单调递减,在上单调递增,;若,即时,在单调递减,.综上,.【点睛】本题考查利用导数求过曲线上某点处的切线方程,考查利用导数研究函数的单调性及最值,体现了分类讨论的数学思想方法,是中档题.16.若函数在定义域内存在实数x,满足,则称为“局部奇函数”.已知函数,试判断是否为“局部奇函数”?并说明理由;设是定义在上的“局部奇函数”,求实数m的取值范围;若为定义域R上的“局部奇函数”,求实数m的取值范围.【答案】(1)是“局部奇函数”;(2);(3).【解析】【分析】运用两角和与差的正弦公式,化简,再由由局部奇函数的定义,即可判断;根据局部奇函数的定义,可得方程在上有解,运用换元法,令,则,求出右边的值域即可;根据“局部奇函数”的定义可知,有解即可设,则,即有方程等价为在时有解,设,由对称轴和区间的关系,列出不等式,解出即可.【详解】解:由于,,则,由于,则,当时,成立,由局部奇函数的定义,可知该函数为“局部奇函数”;根据局部奇函数的定义,时,可化为,因为的定义域为,所以方程在上有解,令,则,设,则,当时,,故在上为减函数,当时,,故在上为增函数,所以时,所以,即.根据“局部奇函数”的定义可知,函数有解即可,即,,即有解即可.设,则,方程等价为在时有解,设,对称轴,若,则,即,,此时,若,要使在时有解,则,即,解得,综上得,【点睛】本题考查新定义的理解和运用,考查方程有解的条件及二次函数的图象和性质的运用,以及指数函数的图象和性质的运用,考查运算能力,属于中档题和易错题.。

北京市第四中学2019届高三高考调研卷文科数学试题(一)(解析版)

北京市第四中学2019届高三高考调研卷文科数学试题(一)(解析版)

北京市第四中学2019年高考调研卷文科数学试题本试卷分选择题和非选择题两部分,共20小题,满分150分. 考试用时120分钟.一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则如图中阴影部分所表示的集合为()A. B.C. D.【答案】D【解析】【分析】由图象可知阴影部分对应的集合为,然后根据集合的基本运算求解即可【详解】由Venn图可知阴影部分对应的集合为,或,0,1,,,即,故选:D.【点睛】本题主要考查集合的基本运算,利用图象先确定集合关系是解决本题的关键,比较基础.2.复数的虚部是()A. B. C. D.【答案】D【解析】分析:化简复数z,写出它的虚部即可.详解:∵复数z====﹣i,∴z的虚部是﹣1.故选:D.点睛:复数的运算,难点是乘除法法则,设,则,.3.一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为()A. B. C. D.【答案】A【解析】分析:求出满足条件的正三角形ABC的面积,再求出满足条件正三角形ABC内的点到正方形的顶点A、B、C的距离均不小于2的图形的面积,然后代入几何概型公式即可得到答案.详解:满足条件的正三角形ABC如下图所示:其中正三角形ABC的面积S三角形=×16=4,满足到正三角形ABC的顶点A、B、C的距离至少有一个小于2的平面区域如图中阴影部分所示,则S阴影=2π,则使取到的点到三个顶点A、B、C的距离都大于2的概率是:P=1﹣=1﹣π,故选:A.点睛:几何概型问题时,首先分析基本事件的总体,再找所研究事件的区域,选择合适的度量方式,概率就是度量比,一般是长度、面积、体积.4.阅读如图所示的程序框图,若输入的值为,则输出的k值是()A. 9B. 10C. 11D. 12【答案】B【解析】试题分析:由程序框图知第一次运行;第二次运行;…∴第次运行,当输入时,由得,程序运行了次,输出的值为.考点:程序框图.5.已知三棱柱的底面为等边三角形,且侧棱垂直于底面,该三棱柱截去三个角(如图①所示,,,分别是三边的中点)后得到的几何体如图②,则该几何体的侧视图为()A. B. C. D.【答案】A因为平面平面,所以几何体的左视图为直角梯形,且直角腰在左视图的左侧,故选A.6.中国古代数学著作《算法统宗》巾有这样一个问题:“三百七十八里关,初行健步不为难日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了A. 60里B. 48里C. 36里D. 24里【答案】D【解析】【分析】每天行走的里程数是公比为的等比数列,且前和为,故可求出数列的通项后可得.【详解】设每天行走的里程数为,则是公比为的等比数列,所以,故(里),所以(里),选C.【点睛】本题为数学文化题,注意根据题设把实际问题合理地转化为数学模型,这类问题往往是基础题.7.的内角,,的对边分别为,,,已知,,,则角()A. B. C. D.【答案】D【解析】由正弦定理可得,可得,,由,可得,,由为三角形内角,可得,由正弦定理可得由,可得,故选D.8.已知直线与圆:相交于,两点(为坐标原点),且为等腰直角三角形,则实数的值为()A. 或B. 或C.D.【答案】B∵直线与圆:相交于,两点(为坐标原点),且为等腰直角三角形,到直线的距离为,由点到直线的距离公式可得.故选B.二、填空题:本大题共6小题,每小题5分.9.若变量,满足不等式组则的最大值为__________.【答案】1【解析】表示到的斜率,由可行域可知,过点或时,斜率最大,即。

北京市崇文区达标名校2019年高考三月调研化学试卷含解析

北京市崇文区达标名校2019年高考三月调研化学试卷含解析

北京市崇文区达标名校2019年高考三月调研化学试卷一、单选题(本题包括15个小题,每小题4分,共60分.每小题只有一个选项符合题意)1.已知某饱和NaCl 溶液的体积为VmL ,密度为3ρ g cm -⋅,质量分数为w%,溶液中含NaCl 的质量为m g 。

则下列表达式正确的是 A .ρVn(NaCl)=mol 58.5B .m w=ρVC .-110ρwc(NaCl)=mol L 58.5⋅ D .22.4mV=58.52.下列用品在应用过程中涉及物质氧化性的是( )A .铁红用作颜料B .84消毒液杀菌C .纯碱去污D .洁厕灵除水垢用品主要成分 Fe 2O 3 NaClONa 2CO 3 HCl A .AB .BC .CD .D3.下列关于金属腐蚀和保护的说法正确的是 A .牺牲阳极的阴极保护法利用电解法原理B .金属的化学腐蚀的实质是:M -ne -=M n +,电子直接转移给还原剂C .外加直流电源的阴极保护法,在通电时被保护的金属表面腐蚀电流降至零或接近于零。

D .铜碳合金铸成的铜像在酸雨中发生电化学腐蚀时正极的电极反应为:2H ++2e -=H 2↑4.扁桃酸衍生物是重要的医药中间体,以物质a 为原料合成扁桃酸衍生物b 的过程如下:下列说法正确的是( )A .物质X 是Br 2, 物质a 转化为b 属于取代反应B .lmol 物质a 能与3molH 2反应,且能在浓硫酸中发生消去反应C .物质b 具有多种能与NaHCO 3反应的同分异构体D .物质b 的核磁共振氢谱有四组峰5.将足量CO 2通入下列各溶液中,所含离子还能大量共存的是( ) A .K +、OH ﹣、Cl ﹣、SO 42﹣B.H+、NH4+、Al3+、NO3﹣C.Na+、S2﹣、Cl﹣、SO42﹣D.Na+、C6H5O﹣、CH3COO﹣、HCO3﹣6.ClO2和NaClO2均具有漂白性,工业上由ClO2气体制取NaClO2固体的工艺流程如图所示,下列说法错误的是A.通入的空气可将发生器中产生的ClO2全部驱赶到吸收器中B.吸收器中生成NaClO2的离子方程式为2ClO2+H2O2=2ClO2-+2H++O2↑C.步骤a的操作包括过滤、洗涤和干燥D.工业上将ClO2气体制成NaClO2固体,其主要目的是便于贮存和运输7.锌铜原电池装置如图所示,其中阳离子交换膜只允许阳离子和水分子通过。

北京市达标名校2019年高考五月大联考数学试卷含解析

北京市达标名校2019年高考五月大联考数学试卷含解析

北京市达标名校2019年高考五月大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形ABCD 为朱方,正方形BEFG 为青方”,则在五边形AGFID 内随机取一个点,此点取自朱方的概率为( )A .1637B .949C .937D .3112.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +=( )A .1B .32C .2D .33.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .1B .43C .3D .44.已知关于x 3sin 2x x m π⎛⎫+-= ⎪⎝⎭在区间[)0,2π上有两个根1x ,2x ,且12x x π-≥,则实数m 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .[)1,2C .[)0,1D .[]0,15.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如sin a bx 的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数0.06sin180000y t =构成乐音的是( ) A .0.02sin 360000y t = B .0.03sin180000y t =C .0.02sin181800y t=D .0.05sin 540000y t =6.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2xx xf x e +=-,设(ln (ln2a fb fc f ===,则( ) A .b a c >>B .b a c >=C .a c b =>D .c a b >>7.已知命题:p x R ∀∈,20x >,则p ⌝是( ) A .x ∀∈R ,20x ≤B .0x ∃∈R ,200x ≤.C .0x ∃∈R ,200x >D .x ∀∉R ,20x ≤.8.已知点1F 是抛物线C :22x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F ,2F 为焦点的双曲线上,则双曲线的离心率为( )A B 1C D 19.已知函数()ln x f x x=,()xg x xe -=.若存在()10,x ∈+∞,2x R ∈使得()()()120f x g x k k ==<成立,则221kx e x ⎛⎫ ⎪⎝⎭的最大值为( )A .2eB .eC .24e D .21e 10.已知全集U =R ,集合{}{}237,7100A x x B x x x =≤<=-+<,则()UA B ⋂=( )A .()(),35,-∞+∞B .(](),35,-∞+∞C .(][),35,-∞+∞ D .()[),35,-∞+∞11.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .312.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立D .当6n =时,该命题成立二、填空题:本题共4小题,每小题5分,共20分。

北京市东城区达标名校2019年高考三月适应性考试数学试题含解析

北京市东城区达标名校2019年高考三月适应性考试数学试题含解析

北京市东城区达标名校2019年高考三月适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知幂函数()f x x α=的图象过点(3,5),且1a e α⎛⎫= ⎪⎝⎭,b =,1log 4c α=,则a ,b ,c 的大小关系为( ) A .c a b <<B .a c b <<C .a b c <<D .c b a <<2.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则 ( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l3.下列函数中,在区间()0,∞+上为减函数的是( ) A.y =B .21y x =-C .12xy ⎛⎫= ⎪⎝⎭D .2log y x =4.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( ) A .2728倍 B .4735倍 C .4835倍 D .75倍 5.已知x ,y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为A .1B .2C .3D .46.如图,设P 为ABC ∆内一点,且1134AP AB AC =+,则ABP ∆与ABC ∆的面积之比为A .14B .13 C .23D .167.在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x 轴正半轴,终边与单位圆交于点5,P m ⎛⎫ ⎪ ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( ) A .2B .10 C .7210D .3108.直线20(0)ax by ab ab ++=>与圆221x y +=的位置关系是( ) A .相交 B .相切 C .相离D .相交或相切9.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()A .B .C .D .10.如图在一个60︒的二面角的棱有两个点,A B ,线段,AC BD 分别在这个二面角的两个半平面内,且都垂直于棱AB ,且2,4AB AC BD ===,则CD 的长为( )A .4B .25C .2D .311.设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q =( ) A .4±B .4C .2±D .212.已知m 为实数,直线1l :10mx y +-=,2l :()3220m x my -+-=,则“1m =”是“12//l l ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。

北京市崇文区达标名校2019年高考三月物理模拟试卷含解析

北京市崇文区达标名校2019年高考三月物理模拟试卷含解析

北京市崇文区达标名校2019年高考三月物理模拟试卷一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.一辆F1赛车含运动员的总质量约为600 kg,在一次F1比赛中赛车在平直赛道上以恒定功率加速,受到的阻力不变,其加速度a和速度的倒数1的关系如图所示,则赛车在加速的过程中()A.速度随时间均匀增大B.加速度随时间均匀增大C.输出功率为240 kwD.所受阻力大小为24000 N2.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于A.棒的机械能增加量 B.棒的动能增加量C.棒的重力势能增加量D.电阻R上放出的热量3.北斗三号导航卫星系统由三种不同轨道的卫星组成,其中24颗是地球中圆轨道卫星,其轨道形状为圆形,轨道半径在1000公里与3万公里之间。

地球中圆轨道卫星()A.比地球同步卫星的周期小B.比地球同步卫星的线速度小C.比地球同步卫星的角速度小D.线速度大于第一宇宙速度4.图甲所示的变压器原,副线圈匝数比为3∶1,图乙是该变压器cd输入端交变电压u的图象,L1,L2,L3,L4为四只规格均为“9 V,6 W”的相同灯泡,各电表均为理想交流电表,以下说法正确的是()A.ab输入端电压的瞬时值表达式为U ab=272sin 100πt(V)B.电流表的示数为2 A,且四只灯泡均能正常发光C.流过灯L2的电流每秒钟方向改变50次D.ab输入端输入功率P ab=18 W5.三根通电长直导线平行放置,其截面构成等边三角形,O点为三角形的中心,通过三根直导线的电流大小分别用小I1,I2、I3表示,电流方向如图所示.当I1=I2=I3=I时,O点的磁感应强度大小为B,通电长直导线在某点产生的磁感应强度大小跟电流成正比,则下列说法正确的是()A.当I1=3I,I2=I3=I时,O点的磁感应强度大小为2BB.当I1=3I,I2=I3=I时,O点的磁感应强度大小为3BC.当I2=3I,I1=I3=I时,O点的磁感应强度大小为3 BD.当I3=3I,I1=I2=I时,O点的磁感应强度大小为23B6.一蹦床运动员竖直向上跳起,从离开蹦床算起,上升到最大高度一半所用的时间为,速度减为离开蹦床时速度一半所用的时间为,若不计空气阻力,则与的大小关系为()A.B.C.D.不能确定二、多项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分7.下列有关热力学基本概念、规律与热力学定律的描述正确的是。

北京市崇文区2019-2020学年中考第三次模拟数学试题含解析

北京市崇文区2019-2020学年中考第三次模拟数学试题含解析

北京市崇文区2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A.24π cm2B.48π cm2C.60π cm2D.80π cm22.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°3.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.34B.43C.35D.454.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.B.C.D.5.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数6yx的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.25-B.121-C.15-D.124-6.计算--|-3|的结果是()A.-1 B.-5 C.1 D.57.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB 上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是()A.0 B.1 C.2 D.38.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等9.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm210.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>011.下列图形中,是轴对称图形但不是中心对称图形的是()A.直角梯形B.平行四边形C.矩形D.正五边形12.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1 B.12C.14D.15二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.14.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.15.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上kyx,则k值为_____.16.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.17.因式分解:3x3﹣12x=_____.18.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点D 在O e 的直径AB 的延长线上,点C 在O e 上,且AC=CD ,∠ACD=120°.求证:CD 是O e 的切线;若O e 的半径为2,求图中阴影部分的面积.20.(6分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据. 月份(月) 1 2 成本(万元/件)11 12 需求量(件/月) 120100(1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是否存在某个月既无盈利也不亏损; (3)在这一年12个月中,若第个月和第个月的利润相差最大,求.21.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m= ,n= ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A 、B 两位同学都最认可“微信”,C 同学最认可“支付宝”D 同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.22.(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.23.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.24.(10分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)如图,在菱形ABCD中,BAD∠=α,点E在对角线BD上. 将线段CE绕点C顺时针旋转α,得到CF,连接DF.(1)求证:BE=DF;(2)连接AC,若EB=EC ,求证:AC CF⊥.26.(12分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?27.(12分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米, ).3 1.732参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,故侧面积=πrl=π×6×4=14πcm1.故选:A.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.2.D【解析】【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.A【解析】【分析】根据锐角三角函数的定义求出即可.解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=34 BCAC=.故选A.【点睛】本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.4.C【解析】试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.考点:二次函数图象与几何变换.5.B【解析】【分析】根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.【详解】解:∵矩形OABC,∴CB∥x轴,AB∥y轴.∵点B坐标为(6,1),∴D的横坐标为6,E的纵坐标为1.∵D,E在反比例函数6yx=的图象上,∴D(6,1),E(32,1),∴BE=6﹣32=92,BD=1﹣1=3,∴22BE BD+3132.连接BB′,交ED于F,过B′作B′G⊥BC于G.∵B ,B′关于ED 对称, ∴BF=B′F ,BB′⊥ED , ∴BF•ED=BE•BD ,即3132BF=3×92, ∴BF=13, ∴BB′=13. 设EG=x ,则BG=92﹣x . ∵BB′2﹣BG 2=B′G 2=EB′2﹣GE 2, ∴222299()()()2213x x --=-,∴x=4526, ∴EG=4526,∴CG=4213,∴B′G=5413,∴B′(4213,﹣213),∴k=121-.故选B . 【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键. 6.B 【解析】 【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值. 【详解】 原式故选:B . 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.D【解析】【分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【详解】∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.8.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键. 9.B【解析】试题分析:底面积是:9πcm1,底面周长是6πcm,则侧面积是:12×6π×5=15πcm1.则这个圆锥的全面积为:9π+15π=14πcm1.故选B.考点:圆锥的计算.10.C【解析】【分析】分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.【详解】解:①a>1时,二次函数图象开口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,②a<1时,二次函数图象开口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,综上所述,表达式正确的是a(y1﹣y2)>1.故选:C.【点睛】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.11.D【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;C.矩形是轴对称图形,也是中心对称图形,故此选项错误;D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.12.B【解析】【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,故选B.【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.60%【解析】【分析】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴该地区空闲时段民用电的单价比高峰时段的用电单价低y xy×100%=60%.故答案为60%.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.14.823 3π-【解析】试题解析:连接,CE∵四边形ABCD是矩形,4,2,90 AD BC CD AB BCD ADC∴====∠=∠=o,∴CE=BC=4,∴CE=2CD,30DEC∴∠=o,60DCE∴∠=o,由勾股定理得:23DE=,∴阴影部分的面积是S=S扇形CEB′−S△CDE260π4218223π2 3.36023⨯=-⨯⨯=-故答案为8π2 3. 3-15.1【解析】作DH⊥x轴于H,如图,当y=0时,-3x+3=0,解得x=1,则A(1,0),当x=0时,y=-3x+3=3,则B(0,3),∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAO+∠DAH=90°,而∠BAO+∠ABO=90°, ∴∠ABO=∠DAH , 在△ABO 和△DAH 中AOB DHA ABO DAH AB DA ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABO ≌△DAH , ∴AH=OB=3,DH=OA=1, ∴D 点坐标为(1,1), ∵顶点D 恰好落在双曲线y=kx上, ∴a=1×1=1. 故答案是:1. 16.5200 【解析】设甲到学校的距离为x 米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:7033900420y x y x ⨯=+⎧⎨⨯=⎩解得240030x y =⎧⎨=⎩所以甲到学校距离为2400米,乙到学校距离为6300米, 所以甲的家和乙的家相距8700米. 故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息. 17.3x (x+2)(x ﹣2) 【解析】 【分析】先提公因式3x ,然后利用平方差公式进行分解即可. 【详解】 3x 3﹣12x=3x (x 2﹣4) =3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。

北京市崇文区达标名校2020年高考三月调研数学试卷含解析

北京市崇文区达标名校2020年高考三月调研数学试卷含解析

北京市崇文区达标名校2020年高考三月调研数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线()222:10y C x b b-=>的一条渐近线方程为22y x =,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线C 上,且13PF =,则2PF =( ) A .9B .5C .2或9D .1或52.如图是一个几何体的三视图,则这个几何体的体积为( )A .53π B .2πC .52π D .3π3.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( ) A .20B .50C .40D .604.若双曲线22214x y b -=的离心率7e =) A .23B .2C 3D .15.已知曲线11(0x y a a -=+>且1)a ≠过定点(),k b ,若m n b +=且0,0m n >>,则41m n+的最小值为( ). A .92B .9C .5D .526.已知33a b ==,且(2)(4)a b a b -⊥+,则2a b -在a 方向上的投影为( ) A .73B .14C .203D .77.在空间直角坐标系O xyz -中,四面体OABC 各顶点坐标分别为:22(0,0,0),(0,0,2),3,0,0,3,033O A B C ⎫⎛⎫⎪ ⎪⎭⎝⎭.假设蚂蚁窝在O 点,一只蚂蚁从O 点出发,需要在AB ,AC 上分别任意选择一点留下信息,然后再返回O 点.那么完成这个工作所需要走的最短路径长度是( ) A .22B .1121-C .521+D .238.由曲线3,y x y x ==围成的封闭图形的面积为( )A .512 B .13C .14D .129.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A .每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B .从2014年到2018年这5年,高铁运营里程与年价正相关C .2018年高铁运营里程比2014年高铁运营里程增长80%以上D .从2014年到2018年这5年,高铁运营里程数依次成等差数列10.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线OL 时,表示收入完全平等.劳伦茨曲线为折线OKL 时,表示收入完全不平等.记区域A 为不平等区域,a 表示其面积,S 为OKL △的面积,将Gini aS=称为基尼系数.对于下列说法:①Gini 越小,则国民分配越公平;②设劳伦茨曲线对应的函数为()y f x =,则对(0,1)x ∀∈,均有()1f x x >; ③若某国家某年的劳伦茨曲线近似为2([0,1])y x x =∈,则1Gini 4=; ④若某国家某年的劳伦茨曲线近似为3([0,1])y x x =∈,则1Gini 2=. 其中正确的是: A .①④B .②③C .①③④D .①②④11.函数()231f x x x =-+在[]2,1-上的最大值和最小值分别为( ) A .23,-2 B .23-,-9 C .-2,-9 D .2,-212.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .38243二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市崇文区达标名校2019年高考三月调研数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数24y x =-的定义域为A ,集合(){}2log 11B x x =+>,则A B =( ) A .{}12x x <≤ B .{}22x x -≤≤ C .{}23x x -<< D .{}13x x << 2.函数()2xx e f x x =的图像大致为( ) A . B .C .D .3.若函数32()3f x ax x b =++在1x =处取得极值2,则a b -=( )A .-3B .3C .-2D .24.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )A .35B .710C .45D .9105.在正方体1111ABCD A B C D -中,点P 、Q 分别为AB 、AD 的中点,过点D 作平面α使1//B P 平面α,1//A Q 平面α若直线11B D ⋂平面M α=,则11MD MB 的值为( ) A .14 B .13 C .12 D .236.运行如图所示的程序框图,若输出的i 的值为99,则判断框中可以填( )A .1S ≥B .2S >C .lg99S >D .lg98S ≥7.若直线2y x =-的倾斜角为α,则sin 2α的值为( )A .45B .45-C .45±D .35 8.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ). A .12 B .5 C .5 D .59.复数()1z i i -=(i 为虚数单位),则z 的共轭复数在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x 的值为2,则输出的v 值为( )A .10922⨯-B .10922⨯+C .11922⨯+D .11922⨯- 11.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .612.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是( )A .0B .1C .2D .3二、填空题:本题共4小题,每小题5分,共20分。

13.已知230x dx n =⎰,则(1)n x y ++展开式中2x y 的系数为__ 14.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点和点()2,P a b 为某个等腰三角形的三个顶点,则双曲线C 的离心率为________.15.已知函数()()2cos 10,2f x A x A πωϕωϕ⎛⎫=++>>0,0<< ⎪⎝⎭的最大值为3,()f x 的图象与y 轴的交点坐标为()0,2,其相邻两条对称轴间的距离为2,则()()()122015f f f ++⋅⋅⋅+=16.已知实数0a ≠,对任意x ∈R ,有()52501251ax a a x a x a x -=+++⋅⋅⋅+,且1240a a +=,则0125a a a a +++⋅⋅⋅+=______.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

17.如图,在三棱柱111ABC A B C -中,ABC 是边长为2的等边三角形,1BC BB ⊥,12CC =,16AC =.(1)证明:平面ABC ⊥平面11BB C C ;(2)M ,N 分别是BC ,11B C 的中点,P 是线段1AC 上的动点,若二面角P MN C --的平面角的大小为30,试确定点P 的位置.18.如图,在四棱锥S ABCD -中,平面SAD ⊥平面ABCD ,1SD =,5cos 5ASD ∠=,底面ABCD 是边长为2的菱形,点E ,F 分别为棱DC ,BC 的中点,点G 是棱SC 靠近点C 的四等分点.求证:(1)直线SA 平面EFG ;(2)直线AC ⊥平面SDB.19.(6分)已知函数(R)a ∈. (Ⅰ) 求函数()f x 的单调区间;(Ⅱ) 当0a >时,求函数()f x 在[1,2]上最小值.20.(6分)在平面直角坐标系xOy 中,已知椭圆C 的中心为坐标原点,O 焦点在x 轴上,右顶点()2,0A 到右焦点的距离与它到右准线的距离之比为12. (1)求椭圆C 的标准方程;(2)若,M N 是椭圆C 上关于x 轴对称的任意两点,设()4,0P -,连接PM 交椭圆C 于另一点E .求证:直线NE 过定点,B 并求出点B 的坐标;(3)在(2)的条件下,过点B 的直线交椭圆C 于,S T 两点,求OS OT ⋅的取值范围. 21.(6分)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,焦距为2,且经过点31,2T ⎛⎫-- ⎪⎝⎭,斜率为()0k k >的直线1l 经过点()0,2M ,与椭圆C 交于G ,H 两点. (1)求椭圆C 的方程;(2)在x 轴上是否存在点(),0P m ,使得以PG ,PH 为邻边的平行四边形是菱形?如果存在,求出m 的取值范围,如果不存在,请说明理由.22.(8分)在平面直角坐标系xOy 中,曲线C 的参数方程为1cos ,1sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为02πθαα⎛⎫=<< ⎪⎝⎭,直线l 交曲线C 于,A B 两点,P 为AB 中点.(1)求曲线C 的直角坐标方程和点P 的轨迹2C 的极坐标方程;(2)若||||AB OP ⋅α的值.23.(8分)设函数()2sin |3||1|f x x a a =+-+-.(1)若62f π⎛⎫> ⎪⎝⎭,求实数a 的取值范围; (2)证明:x R ∀∈,1()|3|1f x a a ≥--+恒成立.参考答案一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A【解析】【分析】根据函数定义域得集合A ,解对数不等式得到集合B ,然后直接利用交集运算求解.【详解】解:由函数y =得240x -≥,解得22x -≤≤,即{}22A x x =-≤≤;又()22log 11og 2l x +>=,解得1x >,即{}1B x x =>, 则{}12A B x x ⋂=<≤.故选:A.【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.2.A【解析】【分析】根据()0f x >排除C ,D ,利用极限思想进行排除即可.【详解】解:函数的定义域为{|0}x x ≠,()0f x >恒成立,排除C ,D ,当0x >时,2()xx x e f x xe x==,当0x →,()0f x →,排除B , 故选:A .【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.3.A【解析】【分析】对函数()f x 求导,可得(1)0(1)2f f =⎧⎨='⎩,即可求出,a b ,进而可求出答案. 【详解】 因为32()3f x ax x b =++,所以2()36f x ax x '=+,则(1)360(1)32f a f a b '=+=⎧⎨=++=⎩,解得2,1a b =-=,则3a b -=-.故选:A.【点睛】本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.4.D【解析】【分析】利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,,,,a b c d e ,其中,,a b c 产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有,,,,,,,,,,ab ac ad ae bc bd be cd ce de 共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,,,,,,,,,ab ac ad ae bc bd be cd ce ,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为910m P n ==.故选D . 【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生.5.B【解析】【分析】作出图形,设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,推导出11//B P C G ,由线面平行的性质定理可得出1//C G DF ,可得出点F 为11C D 的中点,同理可得出点E 为11A D的中点,结合中位线的性质可求得11MD MB 的值. 【详解】如下图所示:设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,四边形ABCD 为正方形,P 、G 分别为AB 、CD 的中点,则//BP CG 且BP CG =,∴四边形BCGP 为平行四边形,//PG BC ∴且PG BC =,11//B C BC 且11B C BC =,11//PG B C ∴且11PG B C =,则四边形11B C GP 为平行四边形,11//B P C G ∴,1//B P 平面α,则存在直线a ⊂平面α,使得1//B P a ,若1C G ⊂平面α,则G ∈平面α,又D ∈平面α,则CD ⊂平面α,此时,平面α为平面11CDD C ,直线1A Q 不可能与平面α平行,所以,1C G ⊄平面α,1//C G a ∴,1//C G ∴平面α,1C G ⊂平面11CDD C ,平面11CDD C 平面DF α=,1//DF C G ∴,1//C F DG ,所以,四边形1C GDF 为平行四边形,可得1111122C E DG CD C D ===, F ∴为11C D 的中点,同理可证E 为11A D 的中点,11B D EF M =,11111124MD D N B D ∴==,因此,1113MD MB =. 故选:B.【点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面α与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.6.C【解析】【分析】模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,1i =,lg 2S =;第二次,2i =,3lg 2lglg32S =+=; 第三次,3i =,4lg3lg lg 43S =+=, …;第九十八次,98i =,99lg98lglg9998S =+=; 第九十九次,99i =,100lg99lg lg100299S =+==, 此时要输出i 的值为99.此时299S lg =>.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题. 7.B【解析】【分析】根据题意可得:tan 2α,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将tan 2α代入计算即可求出值.【详解】 由于直线2y x =-的倾斜角为α,所以tan 2α, 则22222sin cos 2tan 224sin 22sin cos sin cos tan 1(2)15ααααααααα-⨯=====-++-+ 故答案选B【点睛】 本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.8.C【解析】试题分析:由已知,-2a +i =1-bi ,根据复数相等的充要条件,有a =-12,b =-1所以|a +bi|2=,选C 考点:复数的代数运算,复数相等的充要条件,复数的模9.C【解析】【分析】由复数除法求出z ,写出共轭复数,写出共轭复数对应点坐标即得【详解】 解析:()()()1111111222i i i i z i i i i +-+====-+--+,1122z i ∴=--, 对应点为11(,)22--,在第三象限. 故选:C .【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键. 10.C【解析】【分析】由题意,模拟程序的运行,依次写出每次循环得到的k ,v 的值,当1k =-时,不满足条件0k ,跳出循环,输出v 的值.【详解】解:初始值10v =,2x =,程序运行过程如下表所示:9k =,1029v =⨯+,8k ,2102928v =⨯+⨯+,7k =,2310292827v =⨯+⨯+⨯+,6k =,4321029282726v =⨯+⨯+⨯+⨯+,5k =,4325102928272625v =⨯+⨯+⨯+⨯+⨯+,4k =,6543210292827262524v =⨯+⨯+⨯+⨯+⨯+⨯+,3k =,6574321029282726252423v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+,2k =,7654328102928272625242322v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+,1k =,4987653210292827262524232221v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+,0k =,98765432101029282726252423222120v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+,1k =-,跳出循环,输出v 的值为其中98765432101029282726252423222120v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+①10987651143221029282726252423222120v =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+②①—②得41711098653210212121212121212121212v -=-⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ ()111021210212v --=-⨯+-11922v =⨯+.故选:C .【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到k ,v 的值是解题的关键,属于基础题.11.A【解析】【分析】由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为y =±x ,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r ,即r=.答案:A 【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题. 12.B 【解析】 【分析】用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断. 【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确. ③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么 这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误. 故选:B 【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想. 二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档