实验七 双闭环三相异步电动机调压调速系统

合集下载

双闭环三相异步电机调压调速系统实验报告

双闭环三相异步电机调压调速系统实验报告

“运动控制系统”专题实验r2 r2+Rs1 r2+Rs2 r2+Rs3sm sm1 sm2 s Tem图6-1整个调速系统采用了速度, 电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下, 电流环对电网振动仍有较大的抗扰作用, 但在起动过程中电流环仅起限制最大电流的作用, 不会出现最佳起动的恒流特性, 也不可能是恒转矩起动。

2.异步电机调压调速系统结构简单, 采用双闭环系统时静差率较小, 且比较容易实现正, 反转, 反接和能耗制动。

但在恒转矩负载下不能长时间低速运行, 因低速运行时转差功率全部消耗在转子电阻中, 使转子过热。

3.双闭环异步电机调压调速系统的机械特性。

转子变电阻时的机械特性:3.三相异步电机的调速方法三种类型: 转差功率消耗型: 调压、变电阻等调速方式, 转速越低, 转差功率消耗越大。

转差功率馈送型: 控制绕线转子异步电机的转子电压, 利用转差功率可实现调节转速的目的。

如串级调速。

转差功率不变型:转差功率很小, 而且不随转速变换, 如改变磁极对数调速, 变频调速。

1)定子调压调速当负载转矩一定时, 随着电机定子电压的降低, 主磁通减少, 转子感应电势减少, 转(2)空载电压为200V时n/(r/min) 1281 1223 1184 1107 1045I G/A 0.10 0.11 0.12 0.13 0.13U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.28312.闭环系统静特性n/(r/min) 1420 1415 1418 1415 1416 1412I G/A 0.11 0.14 0.16 0.19 0.21 0.26U G/V 203 200 201 200 200 199 M/(N·m) 0.2394 0.2795 0.3080 0.3777 0.3496 0.4482 静特性曲线:3.与开环机械特性比较, 闭环静特性比开环机械特性硬得多, 且随着电压降低, 开环特性越来越软。

6.2双闭环三相异步电动机串级调速系统

6.2双闭环三相异步电动机串级调速系统

6.2 双闭环三相异步电动机串级调速系统一.实验目的1.熟悉双闭环三相异步电动机串级调速系统的组成及工作原理。

2.掌握串级调速系统的调试步骤及方法。

3.了解串级调速系统的静态与动态特性。

二.实验内容1.控制单元及系统调试2.测定开环串级调速系统的静特性。

3.测定双闭环串级调速系统的静特性。

4.测定双闭环串级调速系统的动态特性。

三.实验系统组成及工作原理绕线式异步电动机串级调速,即在转子回路中引入附加电动势进行调速。

通常使用的方法是将转子三相电动势经二极管三相桥式不控整流得到一个直流电压,再由晶闸管有源逆变电路代替电动势,从而方便地实现调速,并将能量回馈至电网,这是一种比较经济的调速方法。

本系统为晶闸管亚同步闭环串级调速系统。

控制系统由速度调节器ASR,电流调节器ACR,触发装置GT,脉冲放大器MF,速度变换器FBS,电流变换器FBC等组成,其系统主回路原理图如图1-2所示,控制回路原理图可参考图1-1b所示。

四.实验设备和仪器1.电源控制屏(NMCL-32);2.低压控制电路及仪表(NMCL-31);3.触发电路和晶闸管主回路(NMCL—33);4.可调电阻(NMEL—03);5.直流调速控制单元(NMCL—18);6.电机导轨及测速发电机(或光电编码器);7.直流发电机M03;8.线绕电动机M09;9.双踪示波器;10.万用表;五.注意事项1.本实验是利用串调装置直接起动电机,不再另外附加设备,所以在电动机起动时,必须使晶闸管逆变角β处于βmin位置。

然后才能加大β角,使逆变器的逆变电压缓慢减少,电机平稳加速。

2.本实验中,α角的移相范围为90°~150°,注意不可使α<90°,否则易造成短路事故。

3.接线时,注意绕线电机的转子有4个引出端,其中1个为公共端,不需接线。

4.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

双闭环三相异步电动机调压调速系统的仿真设计

双闭环三相异步电动机调压调速系统的仿真设计

吉林建筑大学城建学院课程设计报告题目名称双闭环三相异步电动机调压调速系统的仿真院(系)电气信息工程系课程名称电力拖动自动控制系统班级电气11-1学号*********学生姓名李林指导教师柏逢明起止日期2015.3.2-2015.3.13目录摘要 (I)ABSTRACT (II)第1章双闭环三相异步电动机调压调速系统 (1)1.1设计原理 (1)1.2工作原理 (2)1.2.1 控制电路 (2)1.2.2 移相触发电路 (2)第2章设计方案 (3)2.1 主电路设计 (3)2.1.1 调压电路 (3)2.1.2 开环调压调速 (3)2.1.3闭环调压调速 (4)2.2 控制回路设计 (5)2.2.1转速检测环节和电流检测环节的设计 (5)2.2.2调速系统的静态参数分析 (9)2.3 触发电路设计 (11)第3章仿真设计 (12)3.1 调压电路 (12)3.1.1 调压电器的仿真模型 (12)3.1.2 参数的设定 (13)3.1.3电阻负载的仿真图形 (14)3.2 异步电动机带风机泵类负载开环调压调速模块 (15)3.2.1 参数设定 (15)3.2.2闭环调压 (18)结论 (21)致谢 (22)参考文献 (23)摘要调压调速是变转差率调速的一种。

由电机原理可知当转差率s基本保持不变时,电动机的电磁转矩与定子电压的平方成正比,因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的。

改变加在定子上的电压是通过交流调压器实现的。

目前广泛采用的交流调压器由晶闸管等器件组成。

它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间,通过调整晶闸管导通角的大小来调节加到定子绕组两端的端电压。

晶闸管三相交流调压电路的连结方式很多,各有其特点。

双闭环调压调速特性以前用饱和电抗器,现在广泛采用晶闸管调压电路。

在前面所述的开环系统的调速中,其机械特性软,调速范围较窄。

加转速负反馈系统环节后成了调压调速的闭环控制系统。

双闭环三相异步电动机调压调速系统

双闭环三相异步电动机调压调速系统

《运动控制系统》实验报告成绩姓名:专业班级:学号:同组人:实验三双闭环三相异步电动机调压调速系统一、实验目的1. 熟悉相位控制交流调压调速控制方式的工作原理。

2. 了解并熟悉双闭环三相异步电动机调压调速系统的原理及组成。

3. 通过测定系统的静特性和动态特性进一步理解交流调压系统中电流环和转速环的作用。

二、实验系统组成及工作原理双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器TVC及三相绕线转子异步电动机M。

控制系统由零速封锁器DZS、电流调节器ACR、速度调节器ASR、电流变换器FBC、速度变换器FBS、触发器GT、脉冲放大器AP1等组成。

图3-1为双闭环三相异步电动机调压调速系统原理框图。

整个系统采用了速度、电流两个反馈控制环。

交流调速系统中速度环的作用基本上与直流调速系统相同,而电流环的作用则有所不同。

在稳定运行的情况下,电流环对电网扰动仍有及时的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。

异步电动机调压调速系统结构简单,采用双闭环时静差率较小,在恒转矩负载下不能长时间低速运行,因为低速运行时转差功率P s = s·P m 全部消耗在转子电阻中,时间长了会使转子过热。

图3-1 双闭环三相异步电动机调压调速系统原理框图三、实验注意事项1.绕线式异步电动机M09参数:P N=100W,U N=220V,I N=0.55A,n=1350r/min,Y接。

2.不允许突加给定信号起动电动机,给定信号尽可能从0缓慢起调,且须空载起动。

3.测取系统静特性时,须注意电动机电流不允许超过额定电流(0.55A)。

4.电动机低速时,实验时间应尽量短,以免串接的电阻器过热而引起电阻数值变化。

四、实验内容1. 测定系统控制特性电动机空载条件下(发电机或测功机负载回路开路),调节给定电压U n*,使电动机转速慢升至额定转速1350r/min,在0~1350 r/min之间记录几组转速n和给定电压U n*的数据,并在图3-2所示的坐标系中画出系统控制特性曲线。

双闭环三相异步电动机调压调速心得体会

双闭环三相异步电动机调压调速心得体会

双闭环三相异步电动机调压调速心得体会
双闭环三相异步电动机调压调速是一种常见的控制技术,用于实现电动机的精确调节和控制。

通过对电动机的调压和调速,可以在不同的负载和工况下实现电动机的高效运行。

在实践中,我总结了一些关键的心得体会:
1. 理论基础:熟悉电动机的基本原理和工作特性是掌握调压调速技术的前提。

了解电动机的构造、转矩特性、绕组和定子的连接,可以更好地理解调压调速的原理和实现方式。

2. 控制策略:在双闭环控制中,内环控制是电流控制,外环控制是速度或转矩控制。

合理选择控制策略和参数调节方法,可以实现电动机的稳定运行和响应速度的提高。

3. 传感器选择:准确感知电动机的状态是实现调压调速的前提。

选择合适的传感器(如电流传感器、速度传感器)能够提供准确的反馈信号,为控制系统提供准确的输入。

4. 控制器设计:根据系统需求和控制策略选择合适的控制器。

PID控制器是常用的控制器类型,但根据实际情况可能需要采用其他控制算法。

5. 运行监测:定期对电动机进行运行监测,观察调压调速系统的性能和稳定性,及时发现和解决问题,确保电动机的正常运行。

需要注意的是,实施调压调速技术时,应遵守相关的安全操作规程,确保工作环境安全,避免事故发生。

《电力拖动自动控制系统》实验指导书(自编)-(2)

《电力拖动自动控制系统》实验指导书(自编)-(2)

《电力拖动自动控制系统》实验指导书(自编)-(2)-CAL-FENGHAI.-(YICAI)-Company One1《电力拖动自动控制系统》实验指导书昆明理工大学信自学院自动化系2005年9月目录实验须知----------------------------------------------------------------------2实验一系统调试-----------------------------------------------------------3实验二参数测试-----------------------------------------------------------9实验三双闭环系统的静特性研究-------------------------12实验四双闭环调速系统动特性研究----------------------------------15实验五逻辑无环流可逆调速系统的研究----------------------------17实验六错位选触无环流可逆系统-------------------------------------22实验七双闭环三相异步电动机调压调速系统----------------------26实验八双闭环三相绕线型异步电动机串级调速系统-------------29附录1双闭环不可逆直流调速系统主电路和控制电路连线图--32附录2逻辑无环流直流可逆调速系统主电路和控制电路连线图--33实验须知实验课是教学中的重要环节之一,通过实验,是理论联系实际,加深理解和巩固所学的有关理论知识,培养、锻炼和提高对实际系统的调试和分析、解决问题的能力,同时通过实验也培养严谨的科学态度和良好的作风,以达到工程技术人员应有的本领,因此要求每个学生不必须认真对待实验课,要求作到:一:实验前预习,要求:1、了解所有实验系统的工作原理2、明确实验目的,各项实验内容、步骤和做法3、拟定实验操作步骤,画出实验记录表格。

双闭环三相异步电机串级调速系统毕业设计(可编辑修改word版)

双闭环三相异步电机串级调速系统毕业设计(可编辑修改word版)

摘要本毕业论文所研究的是双闭环三相异步电动机的串级调速的基本原理与实现方法。

对于绕线式异步电动机来说,由于改变其转子绕组控制变量以实现调速,转子侧的控制变量有电流、电动势、电阻等。

通常转子电流随负载的大小决定,不能任意调节;而转子回路阻抗的调节属于耗能型调速,缺点较多,所以转子侧的控制变量只能是电动势,这也是本文所要研究的重点之一。

利用串级调速系统,就是使绕线式异步电动机实现高性能调速的有效办法。

用转子串反电动势来代替电阻,吸收转差功率;用双闭环控制提高系统的静、动态性能。

把这种用附加电动势的方法将转差功率回收利用的调速称为双闭环串级调速。

这是本文所必须研究的,也是本文的核心所在。

并通过利用MATLAB 软件对双闭环串级调速系统进行仿真,仿真结果表明通过双闭环串级调速系统能及时地对给定速度进行反馈,提高调速的准确性。

关键词:双闭环;串级;调速;MATLAB.AbstractThe graduation thesis studies three-phase asynchronous motor is double loop bunch_rank speed-control of the basic principle and implement method. With wound rotor series, asynchronous motors can adjust speeds through control variables, which include electric current, electromotive force and resistance, etc. on the rotor side. Typically, the rotor current is determined by the load and cannot be adjusted freely. In contrast, adjusting rotor’s return circuit impedance tends to consume more power along with other disadvantages. Therefore, electromotive force should be the only control variable on the rotor side, which is also one of the major points research in this paper.In summary, concatenation control system is one effective means to realize high control ability in series-wound asynchronous motors. Specifically, it is used to replace resistance with rotor’s electromotive force and absorb slip power; and to enhance the static and dynamic capabilities of the system using double closed loop. We refer to this method of utilizing additional electromotive force to recycle slip power as concatenation control with double close loop, which is also the focus of this paper. And through the use of MATLAB software on the double closed loop bunch_rank speed- control system, and simulation draw simulation diagram,the results show that by double closed loop bunch_rank speed-control system can timely given speed feedback, to improve the accuracy of speedKeywords: double-loop;cascade;governor;MATLAB.目录摘要 (I)Abstract (II)1绪论 (1)2串级调速的原理 (3)2.1异步电动机转子附加电动势时的工作情况 (3)2.2串级调速的功率传递关系 (4)2.3串级调速系统及其附加电动势的获得 (5)3双闭环三相异步电机的静态特性和动态特性 (9)3.1三相异步电动机串级调速开环工作机械特性 (9)3.2三相异步电动机单闭环ASR 系统静特性 (11)3.3双闭环调速系统的静态和动态特性 (13)4总体设计方案 (17)4.1双闭环三相异步电机串级调速各个模块的功能 (17)4.2串级调速系统设计 (23)4.3双闭环系统设计 (24)4.4总电路图的设计 (25)5系统仿真 (27)5.1仿真软件的简介 (27)5.2具体的软件仿真设计 (27)5.3系统的仿真、仿真结果的输出及结果分析 (36)总结 (37)参考文献 (38)致谢 (39)1绪论电力传动自动控制系统是把电能转换成机械能的装置。

双闭环三相异步电动机调压调速系统设计

双闭环三相异步电动机调压调速系统设计

双闭环三相异步电动机调压调速系统设计引言:异步电动机的转速恒小于旋转磁场的转速n1,只有这样,转子绕组才能产生电磁转矩,使电动机旋转。

如果n=n1,转子绕组与定子磁场之间无相对运动,则转子绕组中无感应电动势和感应电流产生,可见n<n1是异步电动机工作的必要条件。

由于电动机转速n与旋转磁场转速n1不同步,故称为异步电动机。

一、三相异步工作原理三相绕组接通三相电源产生的磁场在空间旋转,称为旋转磁场。

转速的大小由电动机极数和电源频率而定。

旋转磁场的转速n1称为同步转速。

它与电网的频率f1及电机的磁极对数p的关系为:n1=60f1∕p对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。

所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。

交流异步电动机机械特性的参数表达式如下:变压调速是异步电动机调速方法中的一种,由三相异步电动机机械特性参数表达式可知,当异步电动机等效电路的参数不变时,在相同点的转速的平方成正比,因此,改变定子外加电压就可下,电磁转矩与定子电压以机械特性的函数关系,从而改变电动机在一定负载转矩下的转速。

本实验即采用定子调压调速系统,就是在恒定交流电源与交流电动机之间接入晶闸管作为交流电压控制器,即改变定子电压调速。

如下图画出了定>子电压为、、 (时的机械特性。

1 / 17sab 通风机负载特c”Ua1Sm n m b' 'c '>U'U>U11”T ema T L x二、设计流程:1电动机的选型假设电动机工作于普通机床主轴传动系统中,设定最大转速为,可选出电动机型参数如下:1440r/min12A 满载时定子电流:Y132S-4 额定功率:5.5KW 型号:0.84 满载时功率因数:满载时效率:85.5% 满载时转速:1440r/min2.2N.m /额定转矩:/额定电流:7A 堵转转矩堵转电流210mm 定子外径:115mm 气隙长度0.4mm 铁芯长度:1-0.9mm -d:136mm定子内径:定子线规根数1~9mm 绕组形式:单层交叉节距:47每槽线数:Z1/Z2:36/32 定转子槽数系统结构确定如图所示2 / 172主电路设计:2.1晶闸管的选择晶闸管选择主要根据变流器的运行条件,计算晶闸管电压、电流值,选出晶闸管的型号规格。

实验二、双闭环三相异步电机调压调速系统实验

实验二、双闭环三相异步电机调压调速系统实验

实验二双闭环三相异步电机调压调速系统实验一、实验目的(1)了解并熟悉双闭环三相异步电机调压调速系统的原理及组成。

(2)了解转子串电阻的绕线式异步电机在调节定子电压调速时的机械特性。

(3)通过测定系统的静态特性和动态特性,进一步理解交流调压系统中电流环和转速环的作用。

二、实验所需挂件及附件三、实验线路及原理异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电机或线绕式异步电动机在转子中串入适当电阻后使机械特性变软其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动较大,因此常采用双闭环调速系统。

双闭环三相异步电机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。

控制部分由“速度调节器”、“电流调节器”、“转速变换”、“触发电路”、“正桥功放”等组成。

其系统原理框图如下图所示。

整个调速系统采用了速度、电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同,而电流环的作用则有所不同。

系统在稳定运行时,电流环对抗电网扰动仍有较大的作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。

异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正、反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率 P s=SP M全部消耗在转子电阻中,使转子过热。

交流调压器应采用宽脉冲或双窄脉冲进行触发。

实验装置中使用双窄脉冲。

实验线路如下所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。

在本实验中DJK04上的“调节器I”做为“速度调节器”使用,“调节器II”做为“电流调节器”使用。

整个系统环节较多,一般要经过检查、调试、整定才能良好地运行;可参照下面的“实验方法”:名称内容主要作用参考值实验值备注[打√]转速调节器[ I ] 运放调零平衡,可免0V正限幅值作用不大近零负限幅值最大电流-6V放大倍数:外接电阻快调节积分时间:外接电容消偏差0.47UF电流调节器[ II ] 运放调零平衡,可免0V 正限幅值最大电压+6V 负限幅值作用不大近零四、实验内容(1)测定三相绕线式异步电动机转子串电阻时的机械特性。

双闭环三相异步电动机调压调速的系统设计与仿真课程设计

双闭环三相异步电动机调压调速的系统设计与仿真课程设计

双闭环三相异步电动机调压调速的系统设计与仿真课程设计一、课程设计随着工业自动化的发展和智能化的进步,三相异步电动机的应用越来越广泛。

而异步电动机的调压调速技术在工业生产中也越来越受到重视。

双闭环调压调速是一种常用的控制方式,其控制精度高,适用范围广,因此在工业控制中被广泛应用。

本课程设计旨在通过实例设计,对双闭环三相异步电动机调压调速的实现过程有一个更深入的了解。

二、课程设计内容1、课程设计目的通过本课程设计,学生可以了解三相异步电动机调压调速的原理和实现方式。

通过仿真实验,学生可以掌握双闭环控制的实现过程。

2、课程设计要求•学生需要了解三相异步电动机的基本原理和调压调速的基本理论。

•学生需要掌握PID算法的基本原理和调试方法。

•学生需要使用Simulink进行仿真实验,并通过实验得到实验数据并进行分析。

3、课程设计流程Step 1:建立三相异步电动机模型1. 建立电机参数模型2. 建立电机方程模型Step 2:建立双闭环控制模型1. 建立速度闭环控制模型2. 建立电流闭环控制模型Step 3:进行仿真实验1. 设计PID算法2. 进行仿真实验3. 得到实验数据Step 4:数据分析1. 对实验数据进行分析2. 分析双闭环系统的控制效果4、课程设计结果通过本课程设计,学生将掌握三相异步电动机的调压调速技术和双闭环控制的实现方法。

通过仿真实验,学生将得到实验数据,并对数据进行分析,进一步了解双闭环控制系统的控制效果。

三、参考资料1.林信良、陈清波. 高效率电力电子变换器与驱动系统(原书第2版)[M]. 北京: 机械工业出版社, 2012.2.陈海峰, 金壮龙, 吴文明. MATLAB/SIMULINK在电气工程中的应用[M].北京: 北京理工大学出版社, 2006.3.姜晶, 刘冬平. 电力电子技术原理及应用[M]. 北京: 电子工业出版社,2004.四、通过本课程设计,学生可以了解三相异步电动机调压调速的原理和实现方式,掌握PID算法的基本原理和调试方法,并通过Simulink进行仿真实验,得到实验数据并进行分析。

异步电动机采用调压调速时

异步电动机采用调压调速时

异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电动机或绕线式异步电动机在转子中串入适当的电阻后是机械特性变软后,其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动严重,为此长采用双闭环调速系统。

双闭环三相异步电动机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。

控制部分由“电流调节器”,“速度变换”,“触发电路”,“正桥功放”等组成。

其系统原理框图如图所示。

整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统想同,而电流环的作用则有所不同。

在稳定运行的情况下,电流环对电网扰动仍有较大的抗绕作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。

异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转和能耗制动。

但在恒转矩负载下不能长时间低速运行,因为低速运行时转差率功率Ps=SPm全部消耗在转子电阻中,会使转子过热。

222222交流调速调压系统的电气原理图如图所示。

交流调压调速系统的仿真模型如图所示。

下面介绍各部分的建模与参数设置过程。

1.系统的建模和模型参数设置(1)主电路的建模和参数设置由图可见,主电路由三相对称交流电压源,晶闸管三相交流调压器,交流异步电动机,电动机信号分配器等部分组成。

此处着重讨论晶闸管三相交流调压器,交流异步电动机,电动机测试信号分配器的建模和参数设置问题。

@1晶闸管三相交流调压器的建模和参数设置。

晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管采用“相位控制”方式,利用电网自然换流。

图()所示为晶闸管三相交流调压器的仿真模型及模块符号。

图()所示为三相交流调压器中的晶闸管元件的参数设置情况。

在图()中我们是用单个晶闸管元件按三相交流调压的接线要求建成仿真模型的,单个晶闸管元件的参数设置仍然遵循晶闸管整流桥的参数设置原则。

双闭环三相异步电机调压调速系统实验报告

双闭环三相异步电机调压调速系统实验报告

双闭环三相异步电机调压调速系统实验报告一、实验目的1.实现双闭环三相异步电机的调压调速系统;2.了解电机调速系统的工作原理及稳态特性;3.掌握电机调速过程中的调节和优化方法。

二、实验原理1.双闭环三相异步电机调压调速系统的组成本次实验所用的电机调压调速系统主要由以下三个部分组成:(1)电源控制模块:主要是对驱动电机的电源进行控制,电源的形式可以是AC或DC。

(2)DSP控制模块:对电机进行调速调压和保护,实现电机的闭环控制。

(3)电机驱动模块:主要包括功率放大器和信号变换器。

2.电机调速控制原理实现电机调速控制主要通过改变电机转矩的大小和方向来实现。

根据电机理论,电机的转矩和电机 stator winding 上的电流之间有着线性关系,因此,改变电机 stator winding 上的电流大小和方向来改变电机的转矩。

启动电机的一种典型方法是通过 stator winding 上的正弦波 AC 电源激励。

通过改变 AC 电源的频率和幅度,可以改变电机的转速。

当电机开始旋转后,其转速可以通过反馈闭环控制来调节和控制。

例如,根据 PI 控制器的输出,可以调整电机的功率放大器来调整电机的 stator winding 上的电流,从而实现电机的转速调节和控制。

3.电机调压控制原理与电机调速不同,电机调压是通过控制电机 stator winding 上的电压大小来调整电机的输出功率和转矩。

在调压控制中,需要根据负载的需求来确定合适的电压值,并通过反馈机制来实现闭环控制。

三、实验内容与步骤1.实验装置准备本次实验所用的设备包括三相异步电动机、DSP开发板、电源、三相电表、频率计和电源电压采样电路等。

首先进行电机的接线,通过电源采样电路连接电源进行电压的采样和测量,再通过三相电表测量电机中三相电流和电机的输入功率等。

2.实验参数设置设置电机参数,包括电机的额定电压、额定功率、转速、电流等参数,并将这些参数输入到 DSP 控制模块中。

第五篇交流电机调速系统实验

第五篇交流电机调速系统实验

第五章交流电机调速系统实验实验一双闭环三相异步电机调压调速系统实验一、实验目的(1)了解并熟悉双闭环三相异步电机调压调速系统的原理及组成。

(2)了解转子串电阻的绕线式异步电机在调节定子电压调速时的机械特性。

(3)通过测定系统的静态特性和动态特性,进一步理解交流调压系统中电流环和转速环的作用。

二、实验所需挂件及附件三、实验线路及原理异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电机或线绕式异步电动机在转子中串入适当电阻后使机械特性变软其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动严重,为此常采用双闭环调速系统。

双闭环三相异步电机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。

控制部分由“电流调节器”、“速度变换”、“触发电路”、“正桥功放”等组成。

其系统原理框图如图7-1所示:整个调速系统采用了速度、电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同,而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网扰动仍有较大的抗扰作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。

异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正、反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率 P s=SP M全部消耗在转子电阻中,使转子过热。

图1-1 双闭环三相异步电机调压调速系统原理图四、实验内容(1)测定三相绕线式异步电动机转子串电阻时的机械特性。

(2)测定双闭环交流调压调速系统的静态特性。

(3)测定双闭环交流调压调速系统的动态特性。

五、预习要求(1)复习电力电子技术、交流调速系统教材中有关三相晶闸管调压电路和异步电机晶闸管调压调速系统的内容,掌握调压调速系统的工作原理。

(2)学习有关三相晶闸管触发电路的内容,了解三相交流调压电路对触发电路的要求。

实验七双闭环三相异步电动机调压调速系统

实验七双闭环三相异步电动机调压调速系统

实验七双闭环三相异步电动机调压调速系统一.实验目的1.熟悉相位控制交流调压调速系统的组成与工作。

2.了解并熟悉双闭环三相异步电动机调压调速系统的原理及组成。

3.了解绕线式异步电动机转子串电阻时在调节定子电压调速时的机械特性。

4.通过测定系统的静特性和动态特性进一步理解交流调压系统中电流环和转速环的作用。

二.实验内容1.测定绕线式异步电动机转子串电阻时的人为机械特性。

2.测定双闭环交流调压调速系统的静特性。

3.测定双闭环交流调压调速系统的动态特性。

三.实验系统组成及工作原理双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器及三相绕线式异步电动机(转子回路串电阻)。

控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。

其系统原理图如图7-1所示。

整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。

异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。

四.实验设备和仪器1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。

4.电机导轨及测速发电机、直流发电机5.MEL—03三相可调电阻器(或自配滑线变阻器450Ω,1A)6.绕线式异步电动机7.MEL—11组件8.直流电动机M039.双踪示波器。

.10.万用表五.注意事项1.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

异步电动机的双闭环调压调速系统课程设计

异步电动机的双闭环调压调速系统课程设计

交流调速控制系统课程设计(论文)题目:异步电动机的双闭环调压调速系统设计院(系):电气与信息工程学院专业班级: xxx学号: 10学生姓名: xxx引言随着电力电子技术及计算机技术的发展,近年来交流电动机调速技术得到了迅速发展,特别是变频调速技术, 其性能不断提高、应用领域不断扩大,大有逐渐取代传统的直流电机传动系统的趋势。

但就我国实际国情来看,变频调速中使用的GTO 与GTR 等的换流器件价格昂贵,换流电路及控制线路复杂,组成的控制器价格远远高于电机价格。

而晶闸管交流调压调速系统中,晶闸管可以因负载电流过零而自行关断, 不需另加换流电路, 故线路简单, 调压装置体积小、成本低廉、使用维修方便。

特别对风机、水泵类负载, 其调速性能完全能满足调速需要,因而这种调速方法在应用量大面广的风机、水泵类负载上仍被广泛应用。

目录引言 (1)第一章、设计方案选择分析 (3)1.1、三相异步电动机的调速方法 (3)1.2、调压调速 (3)1.3、调压调速特性及其性能 (4)第二章、三相异步电动 (6)2.1、三相异步电动机的结构与基本原理 (6)2.2、转差率 (8)2.3、异步电动机的三种运行状态 (8)第三章、主电路设计 (9)3.1、三相晶闸管交流调压器 (9)第四章、控制电路设计 (9)4.1、电流调节器ACR的设计 (9)4.2转速调节器ACR的设计 (13)第五章、课程设计总结 (16)参考文献 (17)第一章、设计方案选择分析1.1 三相异步电动机的调速方法异步电机的调速方法有不少,根据异步电机的转速公式n=n1(1-s)=60f1/p(1-s) (3-1) 可知:异步电动机有以下三种基本调速方法:(1)改变定子极对数p调速。

(2)改变电源频率f1调速。

(3)改变转差率s调速。

1.2 调压调速调压调速是变转差率调速的一种。

调压调速是异步电动机调速中比较简便的一种方法。

由电机原理可知当转差率s基本保持不变时,电动机的电磁转矩与定子电压的平方成正比,因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的。

双闭环三相异步电动机调压调速系统课程设计

双闭环三相异步电动机调压调速系统课程设计

第1章绪论现在社会工业化越来越体现着它的强大。

工业化运行的前提是能源的有力支撑。

调压调速是一种非常简单实用的调速方法。

本论文对异步电机开环控制调压调速系统与速度闭环控制调压调速系统的讨论和仿真,并探讨最经济实用的调压电路。

找出最合理的调速方法,实现电机平稳运行,平滑调速,既能延长电机寿命,又可以有效节约能源。

在现实社会具有相当高的研究价值。

交流电动机的发明是由美国发明家特斯拉完成的,最早的交流电动机根据电磁感应原理设计,结构比起直流电动机更为简单,同时也比起只能使用在电车上的直流电动机用途更广泛,它的发明让电动机真正进入了家庭电器领域。

交流电动机问世之后,同步电动机、串激电动机、交流换向器电动机等也逐步被人们发明出来,并投入实际的生产,为人们的生活提供更多便利。

电动机的发明和应用对人类来说具有极大的意义,可以说它为人类生活带来了翻天覆地的变化。

交流电动机,特别是鼠笼型异步电动机,结构简单,成本低,维护方便,而且坚固耐用,惯量小,运行可靠,对环境要求不高,因此在工农业生产中得到了极广泛的应用。

其突出的优点是:电机制造成本低,结构简单,维护容易,可以实现高压大功率与高速驱动,适宜在恶劣条件下工作,并能获得和直流电机控制系统相媲美或更好的控制性能。

因此,人们对交流电机的研究也越来越深入。

但是交流电机是一个复杂的、多变量、强耦合的非线性系统,在设计交流调速系统时完全用解析法是相当复杂的也是行不通的。

构造实验系统进行分析研究是通常采用的办法,但由实验来分析研究,耗时长、投资大,且不便于分析系统的各种性能。

因此,利用计算机仿真技术去研究交流调速系统是一个省时省力的好办法,计算机仿真作为研究交流电机的一种重要手段,也越来越受到重视。

MATLAB 是目前最流行的科学计算语言之一。

它是以复数矩阵作为基本编程单元的高级程序设计语言,提供了矩阵的运算与操作,拥有强大的绘图功能。

同时还是高度集成的软件系统,解决工程计算、图形可视化、图像处理、多媒体处理等问题。

三相异步电机双闭环调速控制系统设计

三相异步电机双闭环调速控制系统设计

三相异步电机双闭环调速控制系统设计O 引言三相交流异步电机以其结构简单,体积小,重量轻,价格低,维修方便等优点,广泛应用于武器装备、给料系统、数控机床、柔性制造技术、各种自动化设备等领域,其转速控制系统性能的优劣直接决定了设备性能的发挥。

随着高性能微处理器及新型电力电子器件的出现,使得应用全控型电力电子器件和空间矢量(SVPWM)控制技术进行变频调速的方式已成为交流电机调速控制的主流。

相对于其他微处理器,DSP 具有运算速度快,可以自己产生有死区时间的PWM 输出,可以实现诸如模糊控制等复杂的算法,外围硬件少等优点,因而广泛用于电机的数字控制。

本文以TMS320LF2407A DSP 芯片和AT89S52 单片机为核心,设计了针对三相交流异步电机的全数字调速控制系统。

实验结果表明,该系统具有实时显示,数据存储,动态响应快,控制精度高,抗干扰性强等优点。

1 TMS320LF2407A 简介TMS320LF2407A 主要包括算术逻辑运算单元(CALU)、寄存器集、辅助算术逻辑单元(ARAU)、乘法器、乘法移位器、累加器、加法移位器、时钟锁相环电路、两个完全等同的事件管理器A,B(包括通用定时器、比较单元、捕获/正交编码器脉冲电路)、内部A/D 转换器、双串口、看门狗、CAN 总线电路单元等。

TMS320LF2407A 采用先进的哈佛结构,流水线作业,在30 MHz 内部时钟频率下,指令周期仅为33 ns。

其内部存储器包含2 类RAM 块。

一类为DRAM,另一类为SRAM。

对DRAM 而言又划分为3 个RAM 块,即B0,B1,B2,容量依次为256 字,256 字,32 字。

这些RAM 全部允许在一个指令周期内访问两次,因此在数据处理能力上有显著的增加。

同时,B0 块还可以通过程序动态地配置为数据存储器区或程序存储器区。

若配置为程序区可在上电时把浮点算法子程序或者数据表从外部慢速EPROM。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七双闭环三相异步电动机调压调速系统一.实验目的
1.熟悉相位控制交流调压调速系统的组成与工作。

2.了解并熟悉双闭环三相异步电动机调压调速系统的原理及组成。

3.了解绕线式异步电动机转子串电阻时在调节定子电压调速时的机械特性。

4.通过测定系统的静特性和动态特性进一步理解交流调压系统中电流环和转速环的作用。

二.实验内容
1.测定绕线式异步电动机转子串电阻时的人为机械特性。

2.测定双闭环交流调压调速系统的静特性。

3.测定双闭环交流调压调速系统的动态特性。

三.实验系统组成及工作原理
双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器及三相绕线式异步电动机(转子回路串电阻)。

控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。

其系统原理图如图7-1所示。

整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。

异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。

四.实验设备和仪器
1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。

4.电机导轨及测速发电机、直流发电机
5.MEL—03三相可调电阻器(或自配滑线变阻器450 ,1A)
6.绕线式异步电动机
7.MEL—11组件
8.直流电动机M03
9.双踪示波器。


10.万用表
五.注意事项
1.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

3.测取静特性时,须注意电流不许超过电机的额定值(0.55A)。

4.三相主电源连线时需注意,不可换错相序。

5.电源开关闭合时,过流保护、过压保护的发光二极管可能会亮,只需按下对应的复位开关SB1、SB2即可正常工作。

6.系统开环连接时,不允许突加给定信号U g起动电机。

7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。

8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。

9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。

10.低速实验时,实验时间应尽量短,以免电阻器过热引起串接电阻数值的变化。

11.绕线式异步电动机:P N=100W,U N=220V,I N=0.55A,n N=1350,M N=0.68,Y接。

六.实验方法
1.移相触发电路的调试(主电路未通电)
(a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双窄脉冲,且间隔均匀,幅值相同;
(b)将面板上的U blf端接地,调节偏移电压U b,使U ct=0时,α接近1500。

将正组触发脉冲的六个键开关“接通”,观察正桥晶闸管的触发脉冲是否正常(应有幅值为1V~2V的双脉冲)。

(c)触发电路输出脉冲应在30°~90°范围内可调。

可通过对偏移电压调节电位器及ASR输出电压的调整实现。

例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。

2.控制单元调试
按直流调速系统方法调试各单元
3.求取调速系统在无转速负反馈时的开环工作机械特性。

a.断开ASR(MCL—18或MCL—31)的“3”至U ct(MCL—33或MCL—53)的连接线,G(给定)直接加至U ct,且Ug调至零。

直流电机励磁电源开关闭合。

电机转子回路接入每相为10Ω左右的三相电阻。

b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=230V。

注:如您选购的产品为MCL —Ⅲ、Ⅴ,无三相调压器,直接合上主电源。

以下均同。

c .调节给定电压U g ,使电机空载转速n 0=1300转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取测功机输出转矩M (或直
注:若采用直流发电机,转矩可按下式计算
n P R I U I M O S G G G /)(55.92++=
式中 :
M ——三相异步电动机电磁转矩; I G ——直流发电机电流; U G ——直流发电机电压; R S ——直流发电机电枢电阻;
P 0——机组空载损耗。

不同转速下取不同数值:n=1500r/min ,Po=13.5W ;n=1000r/min ,Po=10W ;n=500r/min ,Po=6W 。

d .调节U g ,降低电机端电压,在!/3U
e 及2/3U e 时重复上述实验,以取得一组人为机械特性。

4.系统调试
(1)调压器输出接三相电阻负载,观察输出电压波形是否正常。

(2)将系统接成双闭环调压调速系统,转子回路仍串每相10Ω左右的电阻 ,渐加给定U g 至+5V, 调节FBS 的反馈电位器,使电机空载转速n 0=1300转/分,观察电机运行是否正常。

(3)调节ASR.ACR 的外接电容及放大倍数调节电位器,用慢扫描示波器观察突加给定的动态波形,确定较佳的调节器参数。

5.系统闭环特性的测定
调节Ug ,使转速至n =1300r/min ,从轻载按一定间隔做到额定负载,测出闭环静特性n
系统动态特性的观察 用慢扫描示波器观察并记录:
(1)突加给定起动电机时转速n ,电机定子电流i 及ASR 输出Ugi 的动态波形。

(2)电机稳定运行,突加,突减负载时的n, Ugi, i 的动态波形。

七.实验报告
1.根据实验数据,画出开环时,电机人为机械特性。

2.根据实验数据,画出闭环系统静特性,并与开环特性进行比较。

3.根据记录下的动态波形分析系统的动态过程。

相关文档
最新文档