五年级奥数-火车行程问题

合集下载

2024年小学五年级行程问题奥数题及答案

2024年小学五年级行程问题奥数题及答案
行程问题答案:
观察可知,老母牛一开始在火车的中心的左端。在相遇过程中,火车走了:2个桥长-1英尺;母牛走了:0.5个桥长-5英尺;在追及过程中:火车走了:3个桥长-0.25英尺;母牛走了:0.5个桥长+4.75英尺。则在相遇和追及过程中:火车共走了5个桥长-1.25英尺;同样的时间,母牛走了1个桥长-0.25英尺。所以火车的速度是母牛狂奔时的5倍。母牛的速度为90÷5=18英里/小时。又根据2个桥长-1英尺=2.5个桥长-25英尺所以0.5个桥长=24英尺。1个桥长=48英尺。
答案
1.解答:假设AB两地之间的距离为480÷2=240 (千米),那么总时间=480÷48=10 (小时),回来时的速度为240÷(10-240÷4)=60 (千米/时)。
2.解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4 小时,下山时间为12÷6=2 小时,上山、下山的平均速度为:12×2÷(4+2)=4 (千米/时),由于赵伯伯在平路上的速度也是4 千米/时,所以,在每天锻炼中,赵伯伯的平均速度为 4千米/时,每天锻炼3 小时,共行走了4×3=12 (千米)=12000 (米)。
答案解析:
第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
2024年小学五年级行程问题奥数题及答案

五年级奥数火车行程问题

五年级奥数火车行程问题

火车行程问题
1、甲火车长210米,每秒行18米,乙火车长140米,每秒行13米,乙火车在前,甲火车在双轨道上行驶,求甲火车从后面追上到完全超过乙火车要用多少秒?
练习1 一列火快车长150米,每秒行22米,一列慢车长100米,每秒行14米,快车从后面追上慢车到超过慢车,共需要几秒?
练习2 A火车长180米,每秒行18米,B火车每秒行15米,两火车同方向行驶,A火车追上B火车到超过他共用了100秒,求B火车长多少米?
2、一列火车长180米,每秒行25米,全车通过一条120米长的山洞,需要多少时间?
练习3 一座大桥长2100米,一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开桥共用3.1分钟,这列火车长多少米?
练习4 五年级222名学生排成两路纵队春游,每两名同学相隔0.6米,队伍以每分钟60米的速度通过长294米的市民广场,一共需要多少时间?
3、一列火车穿过长2400米的隧道需要1.7分钟,以同样的速度通过一座长1050米的大桥需要48秒,这列火车长多少米?
练习5 有两列火车,一列长320米,每秒行18米,另一列火车以每秒22米的速度迎面开来,两车从相遇到离开共用了15秒,求另一列火车车长?
3,乙车行了4、两辆车分别从甲乙两地相向而行,甲车行了全程的
5
5后两车相距27千米,求甲乙相距多少千米?
全程的
8。

(完整)五年级奥数行程问题五大专题

(完整)五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。

此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。

已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。

五年级奥数——行程问题练习题

五年级奥数——行程问题练习题

五年级数学兴趣小组练习题——行程问题(2013.10)班别___________ 姓名___________ 评分____________1. 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。

此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。

(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。

2. 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米)。

因此,东西两村的距离是15×(5-1)=60(千米)上午8时至中午12时是4小时。

15×2÷6=5(小时)15÷(5-4)=15(千米)15×(5-1)=60(千米)3. 甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距112.5千米。

两车继续行驶到下午1时,两车相距还是112.5千米。

A、B两地间的距离是多少千米?分析从10时到下午1时共经过3小时,3小时里,甲、乙两车从相距112.5千米到又相距112.5千米,共行112.5×2=225千米。

两车的速度和是225÷3=75千米。

从早上8时到10时共经过2小时,2小时共行75×2=150千米,因此,A、B两间的距离是150+112.5=262.5千米。

五年级奥数专题第四讲 火车行程问题

五年级奥数专题第四讲 火车行程问题

五年级奥数专题第四讲火车行程问题【一】一列火车长180米,每秒行20米,这列火车通过320米长的大桥,需要多少时间?练习1、一列火车长200米,每秒行20米,这列火车通过400米长的大桥,需要多少时间?2、一列火车车长360米,每秒行15米,全车通过一个山洞需40秒。

这个山洞长多少米?【二】一列火车通过一座长456米的桥需要80秒,用同样的速度通过一条长399米的隧道要77秒。

求这列火车的速度。

练习1、一列火车通过一座长446米的桥需要57秒,用同样的速度通过一条长1654米隧道要208秒。

求这列火车的速度。

2、一列火车以同一速度通过两座大桥,第一座桥长360米,用了24秒,第二座桥长480米,用了28秒,这列火车长多少米?【三】甲火车长210米,每秒行18米,乙火车长140米,每秒行13米。

乙火车在前,两火车在双轨车道上行驶。

求甲火车从后面追上到完全超过乙火车要用多少秒?练习1、一列快车长150米,每秒行22米,一列慢车长100米,每秒行14米。

快车从后面追上慢车到超过慢车,共需多少秒钟?2、小红以每秒2米的速度沿铁路旁的人行道跑步,身后开来一列长144米的火车,火车每秒行18米,问:火车追上小红到完全超过小红共用了多少秒钟?【四】一列火车长180米,每秒钟行25米。

全车通过一条长120米的山洞,需要多少时间?练习1、一列火车长360米,每秒行18米。

全车通过一座长90米的大桥,需要多长时间?2、一座大桥长2100米。

一列火车以每分钟800米的速度通过这座大桥,从车上桥到车尾离开共用3.1分钟,这列火车长多少米?【五】有两列火车,一车长130米,每秒行23米,另一车长250米,每秒行15米,现在两车相向而行,问从相遇到离开需要几秒钟?练习1、有两列火车,一车长360米,每秒行18米,另一车长216米,每秒行30米,现在两车相向而行,问从相遇到离开一共需要几秒钟?2、有两列火车,一列长220米,每秒行22米,另一列长200米迎面开来,两车从相遇到离开共用了10秒钟,求另一列火车的速度?【六】一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟。

五年级奥数之----火车行程问题

五年级奥数之----火车行程问题

五年级奥数之----火车行程问题1.一列火车长360米,每秒行驶18米。

全车通过一座长90米的大桥要用多少时间?(25s)2.小明以每秒3米的速度沿着铁路边的人行道跑步,后面开来一列180米的火车,火车每秒钟行驶18米。

问:从火车追上小明到完全超过小明共用多少秒钟?(12s)3.A火车长210米,每秒钟行驶25米,B火车每秒行驶20米,两列火车同方向行驶,从A火车追上B火车到超过共用80秒,求B 火车的长度。

(190m)4.南京长江铁路大桥全长6000米,一列火车以每分钟720米的速度通过这座大桥,从车头上桥到车尾离开大桥共用8.6分钟,求这列火车多长?(192m)5.一列列车长240米,每秒钟行驶20米。

全车通过一座160米的大桥需要多少时间?(20秒)6.一列火车长210米,每秒行驶25米。

全车通过一个190米的山洞需要多少时间?(16s)7.一列火车通过340米的大桥需要100秒,用同样的速度通过144米的大桥用了72秒。

求火车的速度和长度。

(7m/s、360m)8.有两列火车,客车长168米,每秒钟行驶23米,货车长288米,每秒钟行驶15米。

问从两车相遇到离开需要多长时间?(12s)9.甲列车每秒钟行驶18米,乙列车每秒钟行驶12米。

若两列车齐头并进,则甲列车经过40秒超过乙列车,若两列车齐尾并进,则甲列车经过30秒超过乙列车。

求甲、乙列车的长度。

(甲:240m,乙:180m)10.一列350米长的火车以每秒钟25米的速度穿过一座桥花了20秒,问:大桥的桥长是多少?(150m)11.老李沿着铁路散步,他每分钟走60米,迎面过来一列长300米的火车,他与车头相遇到车尾相离共用了20秒,求火车的速度。

(14m/s)12.一列快车长200米,每秒钟行驶20米,一列慢车长160米,每秒钟行驶15米。

若两车齐头并进,则快车超过慢车要多少时间?若两列车齐尾并进,则快车超过慢车要多少时间?(40s、32s)。

五年级上册奥数行程问题 (例题含答案)

五年级上册奥数行程问题 (例题含答案)

第七讲行程问题这一讲中,我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下已学过的基本数量关系:路程=速度×时间;总路程=速度和×时间;路程差=速度差×追及时间。

例1 小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?分析这道题实际上是一个行程问题.开始时两针成一直线,最后两针第一次重合.因此,在我们所考察的这段时间内,两针的路程差为30分格,又因分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针.这是一个追及问题,追及时间就是小明的解题时间。

例2 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。

画图如下:分析结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。

又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。

解:①甲和丙15分钟的相遇路程:(40+60)×15=1500(米)。

②乙和丙的速度差:50-40=10(米/分钟)。

③甲和乙的相遇时间:1500÷10=150(分钟)。

④A、B两地间的距离:(50+60)×150=16500(米)=16.5千米。

答:A、B两地间的距离是16.5千米.例3 甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?先画图如下:分析结合上图,我们可以把上述运动分为两个阶段来考察:①第一阶段——从出发到二人相遇:小强走的路程=一个甲、乙距离+100米,小明走的路程=一个甲、乙距离-100米。

应用题板块-行程问题之火车过桥(小学五年级奥数题)

应用题板块-行程问题之火车过桥(小学五年级奥数题)

应用题板块-行程问题之火车过桥(小学五年级奥数题)【一、题型要领】1. 行程问题【基本概念】行程问题源自于研究物体运动,他研究的是物体运动速度、运动时间和经过路程三者之间的关系。

【基本公式】经过路程= 运动速度* 运动时间2. 火车过桥【基本概念】火车过桥是行程问题的一个经典问题,也有路程、速度和时间之间的数量关系。

他的特殊之处在于,经过路程是从车头上桥算起到车尾离桥为止的总路程,如下图所示,也就是列车车长和桥长之和。

【基本公式】列车车长+ 桥长= 火车速度* 运动时间【解题关键】列车车长不可忽略,如果只行进了桥的长度则不能算“过桥”,因此总路程需要加上列车的车长。

【举一反三】一是火车过隧道,过山洞等与火车过桥是相似的;二是由人或者车组成的队列过桥,则队伍本身的长度是不能忽略的。

【二、重点例题】例题1【题目】一列长90米的火车以30米/秒的速度匀速通过一座长1200米的桥,需要多长时间?【分析】这是最基本的火车过桥问题,需注意火车通过大桥所走的距离为桥长加上车身长度【解】(90 + 1200)÷ 30 = 43(秒)【答】火车过桥需要43秒例题2【题目】一列火车通过180米长的桥用时40秒,用同样的速度穿过300米长的隧道用时48秒,求这列火车的长度和速度。

【分析】火车过桥,可以理解为40秒的行程为桥长加上车身长;火车过隧道,可以理解为48秒的行程为隧道长加上车身长,两者相减,相当于火车8秒行驶了120米,由此可以计算出火车的速度,进而计算出火车的长度【解】火车的速度= (300 - 180) ÷ (48 - 40) = 15(米/秒)火车的长度= 15 * 40 - 180 = 420 (米)【答】火车的速度是15米/秒,车长是420米例题3【题目】某小学三、四年级学生共528人,排成四路纵队去看电影,队伍行经的速度是25米/分,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥用时16分,这座桥的长度有多少米?【分析】由人组成的队伍过桥,需要计算队伍本身的长度。

小学数学5年级培优奥数讲义 第27讲 火车行程问题(学生版)

小学数学5年级培优奥数讲义 第27讲  火车行程问题(学生版)

第27讲火车行程问题清楚理解火车行程问题中的等量关系;能够透过分析实际问题,提炼出等量关系;培养分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力;一、基本公式路程=时间×速度时间=路程÷速度速度=路程÷时间二、火车行程问题有关火车过桥(隧道)、两列火车车头相遇到车尾相离等问题,是一种行程问题。

在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。

如果遇到复杂的情况,可利用作图或演示的方法来帮助解题。

解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥长(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。

考点一:求时间知识梳理典例分析学习目标例1、一列火车长150米,每秒钟行19米。

全车通过长800米的大桥,需要多少时间?例2、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?考点二:求隧道长例1、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

这条隧道长多少米?例2、一列火车长900米,从路旁的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟。

求这座大桥的长度。

考点三:求车长例1、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。

求这列火车的速度是每秒多少米?车长多少米?例2、快车长210m,每秒钟行驶25m,慢车每秒钟行驶20m,连列车同方向行驶,从快车追上慢车到超过共用了80秒,求慢车的长度。

考点四:求车速例6、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?例7、一支队伍1200米长,以每分钟80米的速度行进。

五年级奥数行程问题1习题

五年级奥数行程问题1习题

第六讲行程问题(一)1、两地相距900千米,甲、乙两列火车同时从两地出发相向而行。

甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。

两车相遇后,它们开到对方的出发点还需要多长时间?2、两匹马在相距50米地A、B两地同时同向出发,出发时黑马在前白马在后,如果黑马每秒跑10米,白马每秒跑12米,几秒后两马相距70米?3、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇,相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?4、两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。

甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。

两车相遇后,两车开到对方的出发点还需要多少小时?5、小玲每分行100米,小平每分行80米,两人同时同地背向行了5分后,小玲调转方向去追赶小平。

小玲追上小平时一共行了多少米?6、A、B两地相距1200千米。

甲从A地、乙从B地同时出发,相向而行。

甲每分钟行50千米,乙每分钟行70千米。

两人在C处第一次相遇。

问AC之间距离是多少?如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。

问CD之间距离是多少?7、东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲的速度是乙速度的2倍,5小时后两人相遇。

甲、乙两人的速度各是多少?8、快车和慢车同时从甲、乙两地相对开出,一直快车每小时行60千米,慢车每小时行52千米,两车在距离中点32千米处相遇。

甲、乙两地的路程是多少千米?9、甲、乙两站相距360千米。

客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,途中两车相遇,求相遇的地点离乙站多少千米?10、小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度。

五年级奥数专题---行程问题

五年级奥数专题---行程问题

五年级奥数专题--行程问题行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题.行程问题的主要数量关系是:路程=速度×时间.知道三个量中的两个量,就能求出第三个量.例1.甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米.两车在距中点32千米处相遇,东、西两地相距多少千米?变式训练1.小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇.学校到少年宫有多少米?2.一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米.甲、乙两地相距多少千米?3.甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村.东村到西村的路程是多少米?例2.快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米.慢车每小时行多少千米?变式训练1,兄弟二人同时从学校和家中出发,相向而行.哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米.弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米.4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?3.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学都能植这批树苗的一半还多20棵.如果这批树苗全部给五(1)班的同学去植,平均每人植多少树?例3.甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米.中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙.求东、西两村相距多少千米?变式训练1.甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米.甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇.A、B两地间的距离是多少千米?2.小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米.30分钟后小平到家,到家后立即原路返回,在离家350千米处遇到小红.小红每分钟走多少千米?3.甲、乙二人上午7时同时从A地去B地,甲每小时比乙快8千米.上午11时甲到达B地后立即返回,在距B地24千米处与乙相遇.求A、B两地相距多少千米?例4.甲、乙两车早上8点分别从A、B两地同时出发相向而行,到10点时两车相距112.5千米.两车继续行驶到下午1点,两车相距还是112.5千米.A、B两地间的距离是多少千米?变式训练1.甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米;又行3小时,两车又相距120千米.A、B两地相距多少千米?2.东、西两村相距36千米,甲、乙二人同时从东西两村相向出发,3小时后,丙骑车从东村出发去追甲,结果三人同时在某地相遇.已知甲每小时行4千米,乙每小时行5千米,求丙的速度.3.两队同学同时从相距30千米的甲、乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信.如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度.例5.甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距112.5千米.两车继续行驶到下午1时,两车相距还是112.5千米.A、B两地间的距离是多少千米?变式训练1.甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米.又行3小时,两车又相距120千米.A、B两地相距多少千米?2.快、慢两车早上6时同时从甲、乙两地相向开出,中午12时两车还相距50千米.继续行驶到14时,两车又相距170千米.甲、乙两地相距多少千米?3.甲、乙两人分别从A、B两地同时相向而行,匀速前进.如果各人按原定速度前进,4小时相遇;如果两人各自比原计划少走1千米,则5小时相遇.A、B两地相距多少千米?第29讲行程问题(二)专题简析:本周的主要问题是“追及问题” .追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题.追及问题的基本数量关系是:速度差×追及时间=追及路程解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差.抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题.例1.中巴车每小时行60千米,小轿车每小时行84千米.两车同时从相距60千米的两地同方向开出,且中巴在前.几小时后小轿车追上中巴车?变式训练1.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米.摩托车多长时间能够追上?2.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米.几分钟后哥哥追上弟弟?3.甲骑自行车从A地到B地,每小时行16千米.1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地.A、B两地相距多少千米?例2.一辆汽车从甲地开往乙地,要行360千米.开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时.因为要按时到达乙地,修好车后必须每小时多行30千米.汽车是在离甲地多远处修车的?变式训练1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂.有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米.小王是在离工厂多远处遇到熟人的?2.一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达.这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟.为了能在8小时内到达乙地,加油后每小时必须多行7.2千米.加油站离乙地多少千米?3.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地.汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发.为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速度驶向乙地?例3.甲、乙两人以每分钟60米的速度同时、同地、同向步行出发.走15分钟后甲返回原地取东西,而乙继续前进.甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙.甲骑车多少分钟才能追上乙?变式训练1.兄弟二人同时从家出发去学校,哥哥每分钟走80米,弟弟每分钟走60米.出发10分钟钟后,哥哥返回家中取文具,然后立即骑车以每分钟310米的速度去追弟弟.哥哥骑车几分钟追上弟弟?2.快车每小时行60千米,慢车每小时行40千米,两车同时从甲地开往乙地.出发0.5小时后,快车因故停下修车1.5小时.修好车后,快车仍用原速前进,经过几小时才能追上慢车?3.甲、乙二人加工同样多的零件,甲每小时加工20个,乙每小时加工15个.一天,乙比甲早工作2小时,到下午二人同时完成了加工任务.他俩一共加工了多少个零件?例4.甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练.出发后10分钟,甲便从乙身后追上了乙.已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?变式训练1.爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步.爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问:至少经营几分钟爸爸从小明身后追上小明?2.在300米长的环形跑道上,甲、乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米.两人起跑后的第一次相遇点在起跑线前多少米?3.环湖一周共400米,甲、乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙.若二人同时从同一地点反向而行,只要2分钟二人就相遇.求甲、乙的速度.例5.甲、乙、丙三人步行的速度分别是每分钟100米、90米、75米.甲在公路上A处,乙、丙在公路上B处,三人同时出发,甲与乙、丙相向而行.甲和乙相遇3分钟后,甲和丙又相遇了.求A、B之间的距离.变式训练2.甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米.甲、乙二人在B地,丙在A地与甲、乙二人同时相向而行,丙和乙相遇后,又过2分钟和甲相遇.求A、B两地的路程.3.甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米.甲、乙二人从B地同时同向出发,丙从A地同时同向去追甲和乙.丙追上甲后又经过10分钟才追上乙.求A、B两地的路程.3.A、B两地相距1800米,甲、乙二人从A地出发,丙同时从B地出发与甲、乙二人相向而行.已知甲、乙、丙三人的速度分别是每分钟60米、80米和100米,当乙和丙相遇时,甲落后于乙多少米?第30讲行程问题(三)专题简析:很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易.列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系.因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程,方便解题.例1.A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B 地开往A地,每小时行42千米.乙车开出几小时后和甲车相遇?变式训练1.甲、乙两地相距658千米,客车从甲地开出,每小时行58千米.1小时后,货车从乙地开出,每小时行62千米.货车开出几小时后与客车相遇?2.小军和小明分别从相距1860米的两处相向出发,小军出发5分钟后小明才出发.已知小军每分钟行120米,小明骑车每分钟行300米.求小军出发几分钟后与小明相遇?3.甲、乙两地相距446千米,快、慢两车同时从甲、乙两地相对开出,快车每小时行68千米,慢车每小时行35千米.中途慢车因修车停留半小时,求共经过几小时两车在途中相遇.例2.一辆汽车从甲地开往乙地,平均每小时行20千米.到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时.求甲、乙两地间的路程.变式训练1.汽车从甲地开往乙地送货.去时每小时行30千米,返回时每小时行40千米,往返一次共用8小时45分.求甲、乙两地间的路程.2.一架飞机所带的燃料最多可用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可飞1200千米.这架飞机最多飞多少千米就要往回飞?3.师徒二人加工一批零件.师傅每小时加工35个,徒弟每小时加工28个.师傅先加工了这批零件的一半后,剩下的由徒弟去加工.二人共用18小时完成了加工任务.这批零件共有多少个?例3.东、西两地相距5400米,甲、乙二人从东地、丙从西地同时出发,相向而行.甲每分钟行55米,乙每分钟行60米,丙每分钟行70米.多少分钟后乙正好走到甲、丙两人之间的中点处?变式训练1.A、B、C三地在一条直线上,如图所示:A、B两地相距2千米,甲、乙两人分别从A、B两地同时向C地行走,甲每分钟走35米,乙每分钟走45米.经过几分钟B地在甲、乙两人之间的中点处?2.东、西两镇相距60千米.甲骑车行完全程要4小时,乙骑车行完全程要5小时.现在两人同时从东镇到西镇去,经过多少小时后,乙剩下的路程是甲剩下路程的4倍?3.老师今年32岁,学生今年8岁.再过几年老师的年龄是学生的3倍?例4.快、慢两车同时从A地到B地,快车每小时行54千米,慢车每小时行48千米.途中快车因故停留3小时,结果两车同时到达B地.求A、B两地间的距离.变式训练1.甲每分钟行120米,乙每分钟行80米.二人同时从A地出发去B地,当乙到达B地时,甲已在B地停留了2分钟.A地到B地的路程是多少米?2.甲、乙二人同时从学校骑车出发去江边,甲每小时行15千米,乙每小时行20千米.途中乙因修车停留了24分钟,结果二人同时到达江边.从学校到江边有多少千米?3.兄弟二人同时从家往学校走,哥哥每分钟走90米,弟弟每分钟走70米.出发1分钟后,哥哥发现少带铅笔盒,就原路返回,取后立即出发,结果与弟弟同时到达学校.他们家离学校有多远?例5.一位同学在360米长的环形跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米.求他后一半路程用了多少时间?变式训练1.小明在420米长的环形跑道上跑了一圈,已知他前一半时间每秒跑8米,后一半时间每秒跑6米.求他后一半路程用了多少时间?2.小华在240米长的跑道上跑了一个来回,已知他前一半时间每秒跑6米,后一半时间每秒跑4米.求他返回时用了多少秒.3.甲、乙两地相距205千米,小王开汽车从甲地出发,计划5小时到达乙地.他前一半时间每小时行36千米,为了按时到达乙地,后一半时间必须每小时行多少千米?第31讲行程问题(四)专题简析:通过前面对行程应用题的学习,同学们可以发现,行程问题大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度×时间(3)同向而行:追及时间=追及距离÷速度差如果上述的几种情况交织在一起,组成的应用题将会丰富多彩、千变万化.解答这些问题时,我们还是要理清题中已知条件与所求问题之间的关系,同时采用“转化”、“假设”等方法,把复杂的数量关系转化为简单的数量关系,把一复杂的问题转化为几个简单的问题逐一进行解决.例1.甲、乙两地相距420千米,一辆汽车从甲地开到乙地共用了8小时,途中,有一段路在整修路面,汽车行驶这段路时每小时只能行20千米,其余时间每小时行60千米.整修路面的一段路长多少千米?变式训练1.一辆汽车从甲城到乙城共行驶395千米,用了5小时.途中一部分公路是高速公路,另一部分是普通公路.已知汽车在高速公路上每小时行105千米,在普通公路上每小时行55千米.汽车在高速公路上行驶了多少千米?2.小明家离体育馆2300米,有一天,他以每分钟100米的速度去体育馆看球赛.出发几分钟后发现,如果以这样的速度走下去一定迟到,他马上改用每分钟180米的速度跑步前进,途中共用15分钟,准时到达了体育馆.问:小明是在离体育馆多远的地方开始跑步的?3.老师和小英为班级剪五角星,教师每分钟剪10个,剪了几分钟后小英接着剪,小英每分钟剪6个,两人共用8分钟,共剪了60个.小英剪了多少个五角星?例2.客、货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米.两车相遇后又以原速前进,到达对方站后立即返回,两车再次相遇时客车比货车多行21.6千米.甲、乙两站间的路程是多少千米?变式训练1.乙、慢两车同时从甲、乙两地相对开出并往返行驶.快车每小时行80千米,慢车每小时行45千米.两车第二次相遇时,快车比慢车多行了210千米.求甲、乙两地间的路程.2.甲、乙两地相距216千米,客货两车同时从甲、乙两地相向而行.已知客车每小时行58千米,货车每小时行50千米,到达对方出发点后立即返回.两车第二次相遇时,客车比货车多行多少千米?3.甲、乙两车同时从相距160千米的两站相向开出,到达对方站后立即返回,经过4小时两车在途中第二次相遇.相遇时甲车比乙车多行120千米.求两车的速度.例3.两地相距460千米,甲列车开出2小时后,乙列车与甲列车相向开出,经过4小时与甲列车相遇.已知甲列车每小时比乙列车多行10千米,求甲列车每小时行多少千米?变式训练1.甲、乙两地相距680千米,快车从甲地向乙地开出,2小时后,慢车从乙地与快车相向开出,并经过5小时与快车相遇.已知快车每小时比慢车多行8千米,求快车每小时行多少千米?2.师徒二人合做264个零件,徒弟先做4小时后又和师傅合做了8小时才完成了任务.已知徒弟每小时比师傅少做3个,师傅每小时做多少个零件?3.小明家离学校2300米,哥哥从家中出发,5分钟后弟弟从学校出发,二人相向而行.弟弟出发10分钟后与哥哥相遇.如果哥哥每分钟比弟弟多行20千米,他们每分钟各行多少千米?例4.小明和小军同时从学校和少年宫出发,相向而行,小明每分钟走90米,两人相遇后,小明再走4分钟到达少年宫,小军再走270米到达学校.小军每分钟走多少米?变式训练1.小强和小东同时从甲、乙两地出发,相向而行.小强每小时行15千米,两人相遇后,小强再走2小时到达乙地,小东再走45千米到达甲地.小东每小时行多少千米?2.甲、乙二车同时从A、B两地出发相向而行,甲车每小时行45千米.两车相遇后,乙车再行135千米到A地,甲车再行2小时到B地.求乙车行全程共用了几小时?3.乙、慢两车同时从甲、乙两地相向而行,4小时相遇.已知快车每小时行65千米,慢车每小时行25千米.求慢车行完全程共用了多少小时?例5.甲、乙两地相距48千米,其中一部分是上坡路,其余是下坡路.某人骑自行车从甲地到乙地后沿路返回,去时用了4小时12分,返回时用了3小时48分.已知自行车上坡时每小时行10千米,求自行车下坡时每小时行多少千米?变式训练1.某学生乘车上学,步行回家,途中共需1.5小时.如果往返都坐车,途中只需30分钟;如果往返只步行,途中共需多少时间?2.一辆汽车把货物从城运往小区,往返共用15小时.去时所用的时间是返回的1.5倍,去时比回来时每小时慢12千米.这辆汽车往返共行了多少千米?3.南北两镇之间全是山路,某人上山每小时走2千米,下山时每小时走5千米.从南镇到北镇要走38小时,从北镇到南镇要走32小时.两镇之间的路程是多少千米?从南镇到北镇的上山路和下山路各是多少千米?。

五年级奥数专题 火车问题初步(学生版)

五年级奥数专题 火车问题初步(学生版)

学科培优数学“火车问题初步”学生姓名授课日期教师姓名授课时长知识定位在行程问题这个大家族中,除了我们常常研究的相遇与追击外,还有三大类我们必须了解的问题:火车过桥、流水行程和时钟问题.它们虽然也涉及速度、时间、路程这三个基本关系,但在应用中要兼顾考虑一些其它因素,譬如:火车车长、水流速度等等.其中火车过桥、流水行程是我们在以前的学习中已经有所接触的内容,在下面的学习中我们先回忆巩固原有基本概念,而后相应的拓展提高!知识梳理一、解火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.【重点难点解析】1.火车过桥要谨记车身长度2.火车与多人多次相遇与追及【竞赛考点挖掘】1. 火车与多人多次相遇与追及例题精讲【试题来源】【题目】慢车的车身长是142米,车速是每秒17米,快车车身长是173米,车速是每秒22,慢车在前面行驶,快车从后面追上到完全超过慢车需要多少时间?【试题来源】【题目】一列客车长190米,一列货车长240米,两车分别以每秒20米和23米的速度相向行进,在双轨铁路上,两车从车头相遇到车尾相离共需要多少时间.【试题来源】【题目】一列长72米的列车,追上长108米的货车到完全超过用了10秒,如果货车速度为原来的1.4倍,那么列车追上到超过货车就需要15秒。

货车的速度是每秒多少米?【试题来源】【题目】长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多少时间?【试题来源】【题目】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开。

五年级奥数火车问题学生版

五年级奥数火车问题学生版

火车问题教学目标五年级奥数火车问题学生版2、掌握人和火车、火车与火车的相遇追及问题与火车过桥的区别与联系.3、掌握火车与多人多次相遇与追及问题知识精讲火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度±人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) =(快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程) =(快车速度—慢车速度) ×错车时间;老师提醒学生注意:对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

模块一、火车过桥(隧道、树)问题【例 1】一列火车长200米,以60米每秒的速度前进,它通过一座220米长的大桥用时多少?【巩固】一列火车长360米,每秒钟行驶16米,全车通过一条隧道需要90秒钟,求这条隧道长多少米?【巩固】一列火车经过南京长江大桥,大桥长6700米,这列火车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?火车行驶路程火车火车桥【巩固】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【巩固】一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【巩固】一列火车长160米,全车通过一座桥需要30秒钟,这列火车每秒行20米,求这座桥的长度.【例2】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长米.【巩固】一个车队以6米/秒的速度缓缓通过一座长250 米的大桥,共用152秒.已知每辆车长6米,两车间隔10米.问:这个车队共有多少辆车?【巩固】一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。

小学五年级奥数趣味学习——火车行程问题

小学五年级奥数趣味学习——火车行程问题

小学五年级奥数趣味学习——火车行程问题火车行程问题两列火车错车用的时间是:(A的车身长+B的车身长)÷(A车的速度+B车的速度)两列火车超车用的时间是:(A的车身长+B的车身长)÷(A车的速度-B车的速度)(注:A车追B车)火车过桥问题,可用下面的关系式求火车通过的时间:(列车长度+桥的长度)÷列车速度火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:桥长+火车长或隧道长+火车长其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。

人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。

例1:一列慢车,车身长120米,车速是每秒15米,一列快车车身长160米,车速是每秒20米,两车在双轨轨道上相向而行,从车头相遇到车尾相离要用多少秒钟?解答:(120+160)÷(15+20)=280÷35=8(秒)答:两车从车头相遇到车尾相离用8秒钟。

例2:一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需多长时间?解:(150+450)÷20=30(秒)答:需要30秒。

例3:一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。

解:这列客车每秒行驶:(860-620)÷(45-35)=240÷10=24(米)这列客车的车身长:24×45-860=1080-860=220(米)答:这列客车每秒行驶24米,车身长220米。

例4:某小学三、四年级学生共528人,排成四路纵队去看电影,队伍进行的速度是每分25米,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥共需16分,这座桥走多少米?解:队伍长:1×(528÷4-1)=131(米)队伍行进的路程:25×16=400(米)桥长:400-131=269(米)答:这座桥长269米。

【小学五年级奥数讲义】火车行程问题

【小学五年级奥数讲义】火车行程问题

【小学五年级奥数讲义】火车行程问题
一、专题简析:
有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。

在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。

如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题。

解答火车行程问题可记住以下几点:
1、火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;
2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;
3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。

二、精讲精练
例1甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。

乙火车在前,两火车在双轨车道上行驶。

甲火车从后面追上到完全超过乙火车要用多少秒?
1。

五年级上册数学 火车行程问题 思维奥数讲义

五年级上册数学  火车行程问题  思维奥数讲义

五年级上册数学思维奥数讲义火车行程问题知识梳理1、车头上桥到车尾下桥:路程=火车长+桥长2、车尾上桥到车头下桥:路程=桥长-火车长3、火车与人相遇:路程和=火车长4、火车与人追及:路程差=火车长5、火车与火车相遇(车头相遇到车尾相离):路程和=甲车长+乙车长6、火车与火车追及(快车车头追上慢车车尾到快车车尾离开慢车车头):路程差=快车长+慢车长知识精讲小热身(1)甲乙两人相距50米,相向而行,速度分别为3米/秒和2米/秒,多久后两人相遇?(2)甲乙两人相距50米,同向而行,速度分别为3米/秒和2米/秒,多久后甲追上乙?典例1 (1)一列高铁长180米,每秒钟行驶60米,这列高铁通过一座300米长的大桥时,从车头开始上桥到车尾完全过桥需要多少时间?(2)一列高铁以每秒钟70米的速度行驶,通过一条400米长的隧道时,从车头开始进入隧道到车尾完全通过隧道共用时8秒钟,请问这列高铁车长多少米?变式1 (1)一列动车以每秒钟60米的速度通过一条长1000米的隧道,从车头开始进入隧道到车尾完全通过隧道共用时20秒,请问这列动车的长度是多少米?(2)一列动车长150米,每秒钟行驶70米,这列动车通过一座200米长的大桥时,从车头开始上桥到车尾完全过桥需要多少时间?典例2 同一列动车完全通过(从车头进入到车尾离开)一条490米长的隧道需要10秒,完全通过一条370米长的大桥需要8秒,那么这列动车的速度是每秒钟多少米?车长多少米?变式2 同一列高铁完全通过(从车头进入到车尾离开)一条长800米的大桥需要14秒,完全通过一条长540米深的隧道时需要10秒钟,请问高铁的速度是多少米?车长多少米?典例3 某铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分,整列火车完全在桥上的时间为40秒。

求火车的长度和速度。

变式3某条隧道长900米,现有一列100米长的火车从隧道中通过,测得火车从开始进入隧道到完全通过隧道共用20秒,则整列火车完全在隧道里的时间是多长?典例4 (1)一名行人沿着与铁路平行的公路散步,每秒走1米,迎面过来一列长120米的动车,已知动车每秒钟行驶59米,请问:从动车头与行人相遇到动车尾离开他共用了多长时间?(2)一人以每分钟60米的速度沿着与铁路平行的公路散步,一列长180米的动车从他身后开来,动车的速度是每秒钟61米,动车从他身边经过用了多长时间?变式4 (1)一人以每分钟60米的速度沿着与铁路平行的公路散步,一列长180米的动车从对面开来,从他身边经过用了3秒钟,动车的速度是每秒钟多少米?(2)小明在铁路旁边沿着与铁路方向平行的公路散步,他散步的速度是2米/秒,这时背后开来一列火车,从车头追上他到车尾离开他一共用了3秒,已知火车速度是42米/秒,请问:火车的车长多少米?典例5 (1)一列火车车长180米,每秒行驶40米,另一列火车长200米,每秒行驶36米,两车相向而行,它们从车头相遇到车尾相离要经过多长时间?(2)甲火车长420米,每秒钟行驶30米,乙火车在甲火车后,长300米,每秒钟行驶42米,两车同向行驶,请问:乙车从追上甲车到完全超过共需要多长时间?变式5 (1)已知快车长240米,每秒钟行驶38米,慢车长360米,两车相向而行,它们从车头相遇到车尾相离共用时10秒,请问:慢车速度是多少?(2)已知快车长240米,每秒钟行驶66米,慢车长360米,两车同向而行,它们从快车追上到完全超越慢车共用时20秒,请问:慢车速度是多少?课后训练1、一列火车长200米,以每分钟500米的速度通过一座长1300米的大桥,从车头上桥到车尾离开桥需要多少分钟?2、一列高铁车长120米,通过一条长720米的大桥时,从车头开始上桥到车尾完全过桥需要14秒,这列高铁完全通过(从车头进入隧道到车尾离开隧道)一条长360米长的隧道时需要多少秒?3、一列高铁车长100米,通过一条长700米的大桥时,高铁完全在桥上(车尾上桥到车头离开桥)的时间是10秒钟,这列高铁的速度是多少?4、一人以每分钟60米的速度沿着与铁路平行的公路散步,一列动车从他身后开来,动车的速度是每秒钟61米,3秒钟后动车从他身边经过,请问这列动车长多少米?5、有两列火车,一列长360米,每秒行驶36米,另一列长240米,每秒行驶60米,两车同向而行,快车赶超慢车(从追上到完全超过)需要多少秒?6、甲火车每秒行驶50米,乙火车每秒行驶30米,两列火车相向而行时,它们从车头相遇到车尾相离要经过4秒,请问:如果两列火车同向行驶时,甲火车从追上乙火车到完全超过共需要多长时间?7、现在有两列火车同时同方向齐头行进,快车每秒行驶18米,慢车每秒行驶10米,行驶12秒后快车超过慢车。

五年级奥数行程问题

五年级奥数行程问题

行程问题(一)例1.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东、西两地相距多少千米?练习1.小玲每分行100米,小平每分行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?练习2.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从A、B两地相向而行,在距中点20千米处相遇,求A、B两地的路程。

例2.快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?练习3.兄、弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?练习4.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗全部给五(1)班的同学去植,平均每人值多少棵树?例3.甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?练习5.甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。

A、B两地间的距离是多少千米?练习6.甲、乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。

上午11时甲到达B 地后立即返回,在距B地24千米处与乙相遇。

求A、B两地相距多少千米?例4.甲、乙两队学生从相距18 千米的两地同时出发,相向而行。

一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?练习7.两支队伍从相距55千米的两地相向而行。

通讯员骑马以每小时16千米的速度在两支队伍之间不断往返联络。

五年级奥数之行程问题

五年级奥数之行程问题

植树问题行程问题行程问题是研究运动物体的路程、速度和时间三个量之间关系的问题。

行程问题的基本数量关系是:速度×时间=路程路程÷时间=速度路程÷速度=时间相遇问题在行程问题中,还包括相遇(相离)问题(相离指的是两个人背对背行走)和追及问题。

这两个问题主要的变化在于人的数量和运动方向上。

现在我们可以简单地理解成:相遇(相离)问题和追及问题当中参与者必须是两个人以上;如果他们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。

1、相遇(相离)问题的基本数量关系:速度和×相遇时间= 相遇(相离)路程相遇(相离)路程÷相遇时间 = 速度和相遇(相离)路程÷速度和 = 相遇时间2、追及问题的基本数量关系速度差×追及时间= 相差路程相差路程÷追及时间 = 速度差相差路程÷速度差 = 追及时间在相遇(相离)问题和追击问题中,必须很好地理解各个数量的含义及其在应用体重是如何给出的,这样才能提高解题速度和能力。

例1:小丽和小红两家相距910米,两人电话相约同时从家中出发向对方相向行驶,小丽每分钟走60米,小红每分钟走70米,几分钟后两人在途中相遇?例2:甲、乙两人同时从学校向相反的方向行驶,甲每分钟行52米,乙每分钟行50米,经过7分钟后他们相距多少米?他们各自离学校有多少米?例3:甲、乙两辆汽车从相距600千米的两地相对开出,甲每小时行45千米,乙车每小时行40千米,甲车先开出2小时后,乙车才开出,问乙车行几小时后与甲车相遇?相遇时各行多少千米?练习:1、甲、乙两地相距54千米,A、B两人同时从两地相向而行,A每小时行4千米,B每小时行5千米,两人经过几小时后相遇?2、甲、乙两地相距480千米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,求货车的速度是每小时行多少千米?3、王乐和张强两人从相距2280米的两地相向而行,王乐每分钟行60米,张强每分钟行80米,王乐出发3分钟后张强才出发,张强出发几分钟与王乐相遇?4、一列火车于下午4时30分从甲站开出,每小时行120千米,经过1小时后,另一列火车以同样的速度从乙站开出,晚上9时30分两车相遇,问甲、乙两站铁路长是多少千米?5、AB两地相距360千米,客车与货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点距B地多远?例4:快车和慢车同时从甲、乙两地相对开出,已知快车每小时行60千米,慢车每小时行52千米,经过几小时后快车在经过中点32千米处与慢车相遇,求甲、乙两地的路程是多少?1、甲、乙两车从A、B两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇,求AB两地相距是多少?2、甲、乙两人同时从两地骑车相向而行,甲每小时行18千米,乙每小时行15千米,两人相遇时距中点3千米,求两地距离多少千米?3、甲、乙两人同时从正方形花坛A点出发,沿着花坛的边上走,甲顺时针每分钟走40米,乙逆时针每分钟行45米,两人在距C点15米处相遇,求这个花坛周长是多少?例5:甲、乙相距640千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行46千米,第二辆汽车每小时行34千米,第一辆汽车到达乙地后立即返回,两辆汽车从开出到相遇共用了几小时?1、AB两地相距900米,甲、乙两人同时从A到B,甲每分钟行70米,乙每分钟行50米,当甲到达B后立即返回与乙在途中相遇,两人从出发到相遇共经过多少分钟?2、AB两地相距250千米,一辆客车和一辆货车同时从A到B,客车每小时行65千米,货车每小时行60千米,客车到达B后立即返回与货车在途中相遇,求相遇点距B地有多少?3、甲乙两队学生从相距2700米的两地同时出发,相向而行,一个同学骑自行车以每分150米的速度在两队间不停地往返联络,甲队每分行25米,乙队每分行20米,两队相遇时,骑自行车的同学共行了多少米?与环形有关的行程问题一对老年夫妇沿着周长为200米的圆形花坛散步,他们从同一地点出发,相背而行,老太太每分钟走45米,老先生每分钟走55米,多长时间后他们第一次相遇(合走一圈)?多长时间后他们第二次相遇?火车过桥(过隧道或山洞)、火车经过人、两车对开问题火车过桥(过隧道或山洞)问题,主要发生变化的量是路程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2,小明以每秒2米的速度沿铁路旁的人行道跑步,身 后开来一列长188米的火车,火车每秒行18米。问:火 车追上小明到完全超过小明共用了多少秒钟?
3,A火车长180米,每秒行18米;B火车每秒行15米。 两火车同方向行驶,A火车从追上B火车到超过它共用 了100秒钟,求B火车长多少米?
例2
一列火车长180米,每秒钟行25米。全车通过一条120 米的山洞,需要多长时间?
分析甲火车从追上到超过乙火车,比乙火车多行了甲、 乙两火车车身长度的和,而两车速度的差是18-13=5 米,因此,甲火车从追上到超过乙火车所用的时间是: (210+140)÷(18-13)=70秒。
练习一
1,一列快车长150米,每秒行22米;一列慢车长100米, 每秒行14米。快车从后面追上慢车到超过慢车,共需 几秒钟?
例5
甲列车每秒行20米,乙列车每秒行14米,若两列车齐 头并进,则甲车行40秒超过乙车;若两列车齐尾并进, 则甲车行30秒超过乙车。甲列车和乙列车各长多少米?
分析 根据题意可知:甲列车每秒比乙列车多行20- 14=6米,当两列车齐头并进,甲列车超过乙列车时, 比乙列车多行的路程就是甲列车的车长。6×40=240 米;当两列车齐尾并进,甲列车超过乙列车时,比乙 列车多行的路程就是乙列车的车长,即6×30=180米。
3,一列火车长210米,以每秒40米的速度过一座桥, 从上桥到离开桥共用20秒。桥长多少米?
例4
一列火车通过2400米的大桥需要3分钟,用同样的速 度从路边的一根电线杆旁边通过,只用了1分钟。求这 列火车的速度。
分析 火车通过大桥时,所行的路程是桥长加火车的长, 而通过电线杆时,行的路程就是火车的长度。因此,3 分钟比1分钟多的2分钟内,就行了2400米,火车的速 度是每分钟行2400÷2=1200米。
3,王叔叔沿铁路边散步,他每分钟走50米,迎面驶来 一列长280米的列车,他与列车车头相遇到车尾相离 共用了半分钟,求这列火车的速度。
分析 由于火车长180米,我们以车头为准,当车进入 山洞行120米,虽然车头出山洞,但180米的车身仍在 山洞里。因此,火车必须再行180米,才能全部通过山 洞。即火车共要行180+120=300米,需要300÷25=12 秒。
练习二
1,一列火车长360米,每秒行18米。全车通过一座长 90米的大桥,需要多长时间?
练习五
1,一列快车长200米,每秒行22米;一列慢车长160米, 每秒行17米。两列车齐头并进,快车超过慢车要多少 秒?若齐尾并进,快车超过慢车要多少秒?
2,快车每秒行18米,慢车每秒行10米。两列火车同时 同方向齐头并进,行10秒钟后快车超过慢车;如果两 列火车齐尾并进,则7秒钟后快车超过慢车。求两列火 车的车长。
分析 从两车车头相遇到两车车尾相离,一共要行130 +250=380米,两车每秒共行23+15=38米,所以,从 相遇到相离一共要经过10秒钟。
练习三
1,有两列火车,一列长260米,每秒行18米;另一列 长216米,每秒行30米。现两列车相向而行,从相遇到 相离需要几秒钟?
2,一列火车长500米,要穿过一个长150米的山洞,如 果火车每秒钟行26米,那么,从车头进洞到车长全部 离开山洞一共要用几秒钟?
专题简析:
有关火车过桥、火车过隧道、两列火车车头相遇到车 尾相离等问题,也是一种行程问题。在考虑速度、时 间和路程三种数量关系时,必须考虑到火车本身的长 度。如果有些问题不容易一下子看出运动过程中的数 量关系,可以利用作图或演示的方法来帮助解题。
解答火车行程问题可记住以下几 点:
1,火车过桥(或隧道)所用的时间=[桥(隧道长)+ 火车车长]÷火车的速度;
2,一座大桥长2100米。一列火车以每分钟800米的速 度通过这座大桥,从车头上桥到车尾离开共用3.1分钟。 这列火车长多少米?
3,一列火车通过200米的大桥需要80秒,同样的速度 通过144米长的隧道需要72秒。求火车的速度和车长。
例3
有两列火车,一车长130米,每秒行23米;另一列火车 长250米,每秒行15米。现在两车相向而行,从相遇到 离开需要几秒钟?
2,两列火车相向而行,从相遇到相离所用的时间=两 火车车身长度和÷两车速度和;
3,两车同向而行,快车从追上到超过慢车所用的时间 =两车车身长度和÷两车速度差。
例1
甲火车长210米,每秒行18米;乙火车长140米,每秒 行13米。乙火车在前,两火车在双轨车道上行驶。甲 火车从后面追上到完全超过乙火车要5秒,用同样的速度 通过一座长100米的桥用了20秒。这列火车的速度是多 少?
2,一列火车长900米,从路旁的一棵大树旁通过用了 1.5分钟,以同样的速度通过一座大桥用了3.5分钟。求 这座大桥的长度。
3,五年级384个同学排成两路纵队去郊游,每两个同 学相隔0.5米,队伍以每分钟61米的速度通过一座长 207米的大桥,一共需要多少时间?
相关文档
最新文档