反比例函数中K的几何含义详解
反比例函数中k的几何意义及应用.
反比例函数中k的几何意义及应用.例析反比例函数中k 的几何意义及应用陆智勇(云南省广南县篆角初级中学邮编:663312 电话:135********) 反比例函数中k 的几何意义就是反比例函数图象上的任意一点的横坐标与纵坐标的乘积都等于比例系数K 的值,如图①所示.过P 作x 轴、y 轴的垂线PA 、PB ,垂足为A 、B ,连结OP,则有(1)AOBP S 矩形=PA ·PB=|y|·|x|=|xy|=|k|;(2)K PA OA S S BOP AOP 2121=?==??.能灵活运用这两个结论解有关反比例函数的问题,会给解题带来很多方便。
现略举说明。
一、求交点坐标和面积例1如图②,已知反比例函数与xy 8-=一次函数2+-=x y 的图象交于A、B两点。
(1)求A,B两点的坐标;(2)求△AOB的面积。
图②+-=-=.2,8)1(:x y x y 联立解??=-=-==.4,2;2,4y x y x 或解得).2,4(),4,2(--∴B A ).0,2(,2,0,2:)2(M x y x y ==+-=时当解法一二、比较面积的大小例2如图⑤,在χχ(1=y >0)的图像上有三点A,B,C,经过三点分别向χ轴引垂线,交χ轴于111,,C B A 三点,连接OA ,OB ,OC ,记△,1OAA △,1OBB △,1OCC 的面积分别为,,,321S S S 则有 ..642=+=+=∴OAM OMB AOB S S S .,D x BD C x AC 轴于轴于作⊥⊥,2,4==BD AC ,2222121=??=??=∴?BD OM S OMB .4422121=??=??=?AC OM S OMA ). 2,0(,2,0,2:)2(N y x x y ==+-=时当解法二图⑤.2=∴ON .,D y BD C y AC 轴于轴于作⊥⊥,4,2==BD AC ,4422 121=??=??=∴?BD ON S ONB.2222121=??=??=?AC ON S ONA .624=+=+=∴O NA O NB AO B S S SA.S 1 = S 2 = S 3B. S 1 < S 2 < S 3C. S 3 < S 1 < S 2D. S 1 > S 2 >S 3 解:由性质(1)得三、确定解析式例3如图⑥,反比例函数K xKy (=﹤0) 的图象经过点A (,3-m ),过A 作AB ⊥χ轴于点B ,.3=?AO B S (1)求K 和m 的值.(2)若过A 点的直线y=a χ+b 与χ轴交于点C ,且∠ACO=30, 求直线的解析式.解: (1)由性质(2)得,21K S AOB =∴.213K =.,,21||21,21||21,21||21321111A S S S k S k S k S OOC BOB AOA 故选即========.32=K ,图像在二、四象限又 .32-=∴K .32χ-=∴y 解析式为得代入,把(χ32)3-=-y m 图⑥(2)①连接,2AC 则在Rt △AB 2C 中,∵AB=2,∠A 2C O=30,.32,422==∴BC AC.322=-=∴BO BC OC ).0,32的坐标为(C ∴得)代入,(和(把b a y A C +=-χ23)0,32② 连接,1AC 则在Rt △AB 1C 中,∵AB=2,∠A 1C O=30,.32,411==∴BC AC.3311=+=∴BO BC OC ).0,331-∴的坐标为(C.133+-=∴χy 解析式为=+-=+.23,03)1(:b a b a 解??=-=.1,33b a 解方程组得.2=m得)代入,(和(把b a y A C +=--χ23)0,331四、求函数值例4两个反比例函数χχ6,3==y y 在第一象限内的图象如图⑦所示,2005321...,P P P P ,点在反比例函数χ6=y 的图象上,它们的横坐标分别是,...,2005321χχχχ,纵坐标分别是1,3,5,…,共2005个连续奇数, 2005321...,P P P P ,过点分别作y 轴的平行线,χ3=y 与的图象的交点依次),,(),,(),,(332222111y Q y Q y Q χχχ …, ),,(200520052005χχQ 则=2005y .解: 2005321...,P P P P ,点在反比例函数χ6=y 的图象上,它们的纵坐标分别取1,3,5…,4009时相应的横坐标分别=+-=+-.23,033b a b a ??==.3,33b a 解方程组得.333+=∴χy 解析式为图⑦图⑧为,40096,...,56,36,16),,(),,(),,(332222111y Q y Q y Q χχχ…, ),,(200520052005χχQ 函数的图象上,χ3=y 且这些点的横坐标分别与点2005321...,P P P P ,横坐标相同, 的点2005Q 横坐标是.40096所以的点2005Q 纵坐标是=2005y χ3=.24009400963= 五、确定K 的取值范围例5如图⑧所示,已知一次函数8+-=χy 和反比例函数χKy =(K ≠0)的图象在第一象限内有两个不同的公共点A 、B.(1)求实数K 的取值范围;(2)若△AOB 的面积S=24,求K 的值..082=+-k χχ依据题意得△=64-4K >0,∴K <16.设两公共点的坐标为).y ,(),y ,(2211χχB A 又1χ>0, 2χ>0,∴1χ+2χ=8>0, 1χ2χ=K >0. ∴实数K 的取值范围为0<K <16.(2)在y=-χ+8中,令χ=0,得y=8,∴OC=8.(4212112=?-?=-=χχOC OC S S S COA COB AOB 2χ-1χ) =.2446444)(421221=-=-+K χχχχ得消去联立解y Ky y ??=+-=.,8)1(:χχ∴.6464=-K ∴K=7.六、确定自变量χ的取值范围例6如图⑨是一次函数和b K y +=χ1和反比例函数χmy =2的图象,观察图象写出1y >2y 时,χ的取值范围 .解:由图⑨得y >2y ,χmy =2的图象在一、三象限,∴第三象限χ的取值范围为-2<χ<0.第一象限χ的取值范围为χ>3.∴图象1y >2y 时,χ的取值范围为-2<χ<0或χ>3. 七、求点的坐标例7如图⑩所示,正方形OABC 、正方形ADEF 的顶点A 、D 、C 在坐标轴上,点F 在AB 上,点B 、E 在函数χ1=y (χ>0)的图象上,则点E 的坐标是().的增大而增大,随χ1y .2的增大而增小随χy M >0 图⑨)215,215.(-+A )253,253.(-+B )215,215.(+-C )253,253.(+-D 解:连接OB ,则.1,12121==∴?=?=?AOB AB OA AB OA S连接OE ,则,12121?=?=?O DE OD S DE 设则,a AD DE == ,01,1)12=-+=+a a a a 即(=1a 解得.(215,2152舍去)--=-a .2512151,215+=-+=+=-=∴AD OA OD DE ∴点E 的坐标是).215,215(-+图⑩。
反比例函数中比例系数k的几何意义
反思小结
在反比例函数 y 10 的图象上,有一系列点A1,A2, x A3…..An,An+1,若A1横坐标为2,且以后每点的 横坐标与它前一个点的横坐标的差都为2. 现分别 过点A1,A2,A3…..An,An+1作X轴与Y轴的垂线 段,构成若干个矩形如图10所示,将图中阴影部 分的面积从左到右依次记为S1、S2、S3、…Sn, 5 5 15 2 5 2 (5 _____, ) 则S1=________, S +S +S =____ S1+S2 2 1 2 3 4 2 5 10 n 2 (5 ) +S3+….+Sn=________________.( 用n的代数式表 n 1 n 1 A 示)
C
S SOAD SABD SBCD SOCD 4 1 4
达标测试
已知几何图形的面积S,求比例系数k
5、如图,已知双曲线 (k>0) 经过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k的值为( B )。
y
y
k x
A 1
所以
B 2
C 4
S OAB 4
O
y
已知几何图形的面积S,求比例系数k k y 变式、如图,已知双曲线 x ( k>0 )经
B
D
C E A
x
而
SOAB SOBC SOAC
即
S ODE 1 S OAB 1 4 k 3 2
1 k 2
相似三角形的面积比 等于相似比的平方 k 4;
k 0 k 4
k 0 k 4
4 y x
达标测试
4、如图,在平面直角坐标系中, 点O为原点,菱形OABC的对角线 OB在x轴上,顶点A在反比例函数 2 的图像上,求菱形的面积。 y B
反比例函数中k的几何意义的应用
反比例函数中k的几何意义的应用
k在反比例函数中具有重要的几何意义,以下列举一些它的应用。
1. 直线反比例函数:k反映直线斜率的倒数,即斜率m=-k。
当给定直
线k值时,由定点和k值可以求出斜率m,从而可以绘制出这条直线。
2. 圆反比例函数:k反映圆半径r的倒数,即r=1/k。
当给定圆k值时,由定点和k值可以求出圆半径,从而可以绘制出这个圆。
3. 抛物线反比例函数:k反映抛物线的开口方向,当k > 0时,抛物线
向右开口;当k < 0时,抛物线向左开口。
4. 双曲线反比例函数:k反映双曲线的开口方向,当k>0时,双曲线
开口向右;当k<0时,双曲线开口向左。
5. 其他函数反比例函数:k可以反映此类函数中曲线的凹凸,当k > 0时,曲线是凹曲线;当k < 0时,曲线是凸曲线。
总之,k在反比例函数中应用广泛,几乎所有的函数都可以用反比例函
数表示。
它的几何意义非常重要,不仅仅可以根据k值绘制出各种曲线,而且可以了解曲线的开口方向以及凹凸方向。
因此,k在反比例函
数绘制中发挥着重要的作用。
反比例函数中K的几何意义课件
k值决定了反比例函数图像的形状和 位置。
详细描述
在反比例函数y=k/x中,k值决定了图 像的形状和位置。当k>0时,图像出 现在第一象限和第三象限;当k<0时 ,图像出现在第二象限和第四象限。
k的正负与图像的位置
总结词
k的正负决定了图像所在的象限。
详细描述
当k>0时,图像分布在第一象限和第三象限;当k<0时,图像分布在第二象限和 第四象限。
拓展反比例函数的应用领域
随着科学技术的发展,反比例函数的应用领域也在不断扩大。未来我们可以尝试将反比例 函数应用于其他领域,如经济学、生物学等,以解决实际问题。
探索与其他数学知识的联系
反比例函数作为数学中的一个重要概念,与其他数学知识有着密切的联系。未来我们可以 进一步探索反比例函数与其他数学知识之间的联系,以促进数学学科的发展。
k值对反比例函数图像的影响
随着k值的增大或减小,反比例函数的图像会向内或
反比例函数在实际生活中有着广泛的应用,如电流与电阻、电容与电压
等物理量之间的关系可以用反比例函数来描述。
对反比例函数的研究展望
深入探究反比例函数的性质
尽管我们已经对反比例函数的性质有了一定的了解,但仍有许多未知的性质等待我们去发 现和研究。例如,反比例函数的极限行为、奇偶性等性质。
反比例函数的性质
反比例函数具有以下性质:当 x 增大时,y 值会减小;当 x 减小 时,y 值会增大。这是因为 xy =
k 的关系。
在图像上,反比例函数的两个分 支在 x 轴和 y 轴上分别趋于无穷
大和无穷小。
反比例函数在坐标系中的图像是 不闭合的,且无限接近于坐标轴
。
Part
02
反比例函数中K的几何意义
反比例函数中K的几何意义
在反比例函数中,K表示比例系数或常数,也被称为反比例常数。
它
是用来确定两个变量之间反比关系的重要参数。
反比例函数的一般形式为:y=K/x,其中K表示比例系数。
K的几何意义可以通过分析反比例函数的图像得出。
反比例函数的图
像是一个双曲线,特点是曲线趋向于两个坐标轴。
下面将详细讨论K的几
何意义。
1.K的符号对于曲线的位置以及开口方向具有重要影响。
如果K为正数,那么曲线将位于第一和第三象限,并且开口方向为右上和左下。
如果
K为负数,那么曲线将位于第二和第四象限,并且开口方向为左上和右下。
2.K的绝对值越大,曲线就越“陡峭”。
当K增大时,曲线将更加接
近于坐标轴,并且在原点附近的斜率会越来越大。
反之,当K变小时,曲
线将更加平缓,斜率将减小。
3.K决定了特定坐标点的函数值。
例如,在函数y=K/x中,当x为K 时,y的值将为1、这是因为x与y成反比关系,而K是这种关系的常数。
4.K还决定了曲线相对于坐标轴的位置。
具体而言,当K增大时,曲
线将向坐标轴移动,而当K减小时,曲线将远离坐标轴。
总之,K代表了反比例函数中的比例系数或常数,它对于函数的位置、开口方向、陡峭程度以及特定坐标点的函数值都具有重要影响。
通过对K
的分析,我们可以更好地理解和解释反比例函数的几何特征。
反比例函数中k的几何意义
【主干必备】 反比例函数中比例系数k的几何意义 设点P(m,n)是双曲线y= k (k≠0)上任意一点
x
(1)过点P作x轴或y轴的垂线,垂足为点A,则
S△OAP=
1 2
·OA·AP=
1 |m|·|n|=
2
1 |mn|=
2
1 2
|k|.
(2)过点P分别作x轴、y轴的垂线,垂足为A,B,
值为 世纪金榜导学号( D )
A.5
B.-5
C.10
D.-10
3.(2019·哈尔滨木兰期末)已知P是反比例函数y= k
x
(k≠0)图象上一点,PA⊥x轴于A,若S△AOP=4,则这个反
比例函数的解析式是 ( C )
A.y= 8
x
C.y= 8 =- 8
x
D.y= 4 或y=- 4
则S矩形OAPB=OA·AP=|m|·|n|=|mn|=|k|.
【微点警示】 因为反比例函数y= k (k是常数,k≠0)中的k有正、负之
x
分,所以在利用解析式求矩形或三角形的面积时,都应 加上绝对值符号;已知矩形或三角形的面积求反比例函 数的解析式或k的值时,要根据函数的图象所在的象限 确定k的正负.
x
x轴于点B交反比例函数y= 2 的图象于点C,连接OA,OC,
x
则△OAC的面积为 ( B )
A.2
B.3
C.6
D.8
2.(2019·达州达川区期末)如图所示,点A是反比例函
数y= k 的图象上的一点,过点A作AB⊥x轴,垂足为B,点
x
C为y轴上的一点,连接AC,BC.若△ABC的面积为5,则k的
【核心突破】
反比例函数中“k”的几何意义
反比例函数中“k”的几何意义
反比例函数中的比例系数“k”除了可以表示解析式外,还有丰富的几何意义。
比例系数“k"往往与三角形、矩形面积相关,若与梯形相关,还有更多的信息可以挖掘。
本文就来探索反比例函数中“k”的几何意义。
通过设点P的坐标,并通过计算,由于本题的背景是k>0,得到矩形面积为k。
因此将规律一般化为:反比例图像上的点与坐标轴围成的矩形面积为|k|。
将本题中的图形进行变化,还可以得到以下图像的面积也为|k|:
反比例图像上的任意一点向坐标轴作平行线,所围成的特殊四边形(矩形、菱形、正方形、平行四边形)的面积为|k|。
反比例图像上若有两点关于原点对称,且三角形有一边平行于坐标轴,那么此时三角形的面积为|k|。
由反比例函数与矩形面积的关系,我们可以得到反比例函数与三角形面积的关系如下:反比例图像上的点与坐标轴围成的三角形面积为1/2|k|。
我们还可以做如下变式:这些三角形都有一条边与坐标轴平行,以下三角形的面积也均为1/2|k|。
掌握了上述三角形的面积特点,我们可以利用转化的方法得到面积相等的三角形。
转化的方法就是利用平行得到同底等高的三角形面积相等。
如图,S▲AOB=S▲ABC=1/2|k|。
因此要学会转化成“k” 的几何意义,更重要的是要能从图形中发现这些基本图形。
将以上两类问题综合,我们可以得到下列几个图形的面积为2|k|。
轴作垂线形成的梯形面积。
反比例图像上的任意两点分别向坐标轴作垂线,这两点的连线与垂足的连线互相平行。
反比例函数的几何意义
1、定义:一般地,如果两个变量x,y之间的关系可以表示成 (k为变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。
2、图像:k>0时,图像在一、三象限,y随x的增大而减小;k<0时,图像在二、四象限,y随x的增大而增大。
k值相等的反比例函数图像重合,k值不相等的反比例函数图像永不相交。
|k|越大,反比例函数的图像离坐标轴的距离越远。
3、k的几何意义
反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。
反比例函数的图像既是轴对称图形,又是中心对称图形,它有两条对称轴y=±x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数图像不与x轴和y轴相交的渐近线为:x轴与y轴。
浅谈反比例函数中“k”的性质与运用
浅谈反比例函数中“k ”的性质与运用诸暨市浣江初中有关反比例函数问题时常在中考中出现,并呈现出愈加灵活,有更深和更难的趋势,成为中考考查的重点之一,在解反比例函数问题时,灵活运用比例系数k 的几何意义,就会为解决问题提供极大的方便。
本文就做一次简单的探究,目的在于掌握反比例函数几何意义这一知识要点,灵活利用这一知识点解决数学相关问题,并熟悉与反比例函数k 几何意义的常见考查方式和解题思路。
一、反比例函数的概念:如果某个函数如果可以写成)0(≠=k xky 或)0(1≠=-k kx y 或)0(≠=k k xy 的形式,则这个函数为反比例函数。
二、反比例函数中k 与图像的形状关系:|k |越大,图像的弯曲度越小,曲线越平直; |k |越小,图像的弯曲度越大。
三、反比例函数中k 值与图像位置和性质的关系:反比例函数与坐标轴没有交点,两条坐标轴是双曲线的渐近线。
当k >0时,图像的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当k <0 时,图像的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大。
四、反比例函数与一次函数中k 值关系: 一次函数x k y 1=与反比例函数xk y 2=的关系: (1)当21k k ⋅ <0时,两图像没有交点;(2)当时21k k ⋅ >0,两图像必有两个交点,且这两个交点关于原点成中心对称。
五、反比例函数中k 和几何意义:如图1所示,反比例函数)0(≠=k xky 中,比例系数k 的几何意义,就是过该函数图像上任一点P (x ,y )分别作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,所得矩形PMON 的面积S 矩形PMON = PM ・PN = |x|・|y| = |xy| = |k |,这就说明,过曲线上任意一点作x 轴、y 轴的垂线,所得到的矩形的面积为常数|k |,这是系数k 几何意义。
同时通过k 性质可以延伸理解出多种图形面积的不变性特征,如下表所示:明确了k 的几何意义,会给以下几种类型的解题运用带来许多方便,我们可以通过以下几举例说明。
反比例函数K的几何意义
【山东·全国考题回访】
1.(2014·济南中考)如图,△OAC和△BAD都是等
如图,过y轴正半轴上的任意一点P,作x轴 的平行线,分别与反比例函数y=-4/x和 y=2/x交于点A和点B,若点C是x轴上任意一 点,连接AC、BC,则△ABC的面积为
点B,D在反比例函数y=b/x(b<0)的图象上,
AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,
AB与CD的距离为5,则a-b的值是
则S△OBC=
1·(-x)·22y=6.解得k=xy=-6. 2
答案:-6
如图,直线l⊥x轴于点P,且与反比例函数 y1=k1/x(x>0)及y2=k2/x(x>0)的图像分别交于点A, B,连接OA,OB,已知△OAB的面积为3,则k1-k2 的值等于( )
如图△P1OA1,△P2A1A2是等腰直角三角形,点P1, P2在函数y=4/x(x>0)的图象上,斜边OA1,A1A2 都在x轴上,则点A2的坐标是______.
答案:6
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同 时落在反比例函数的图象上,猜想是哪两个点, 并求矩形的平移距离和反比例函数的解析式.
(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4, 点A的坐标为(2,6). ∴AB=CD=2,AD=BC=4, ∴B(2,4),C(6,4),D(6,6);
腰直角三角形,∠ACO=∠ADB=90°,反比例函数 y= k 在第一象限的图象经过点B,若OA2-AB2=12, 则kx的值为_______.
专题12 反比例函数比例系数k的几何意义(解析版)
1专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x =或3y x =-专项训练一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA的面积是( )A .2B .1C .1-D .12【答案】B 【分析】设(),P x y ,则POA 的面积是1122x y xy ••=,再结合2y x=-即可求解.【详解】解:设(),P x y ,则POA 的面积是1122x y xy ••=,∵2y x=-∵22xy =-=∵POA 的面积是1212⨯=.故选:B . 【点睛】本题考查了反比例函数与图形的面积计算,解题的关键是熟练运用数形结合的思想. 2.如图,在平面直角坐标系中,A ,B 是反比例函数ky x=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB 的面积为54,则k 的值为()A .23B .1C .2D .154【答案】A 【分析】过点A 作AC y ⊥轴,过点B 作BD x ⊥轴,反向延长AC BD 、交于点E ,利用割补法表示出AOB 的面积,即可求解. 【详解】解:过点A 作AC y ⊥轴,过点B 作BD x ⊥轴,反向延长AC BD 、交于点E ,如下图:则四边形ODEC 为矩形3点AB 、的横坐标分别为1,4, 则(1,)(4,)4kA kB 、,(0,)(4,0)(4,)C kDE k 、、11154143224244AOBAOCOBDABEODEC k k SS SSSk k k ⎛⎫=---=-⨯⨯-⨯⨯-⨯⨯-= ⎪⎝⎭矩形解得23k = 故选A【点睛】此题考查了反比例函数的有关性质,涉及了割补法求解三角形面积,熟练掌握反比例函数的有关性质是解题的关键.3.若图中反比例函数的表达式均为4y x=,则阴影面积为4的有( )A .1个B .2个C .3个D .4个【答案】B 【分析】根据反比例函数比例系数k 的几何意义,反比例函数的性质以及三角形的面积公式,分别求出四个图形中阴影部分的面积,即可求解. 【详解】解:图1中,阴影面积为xy =4; 图2中,阴影面积为12xy =12×4=2; 图3中,阴影面积为2×12xy =2×12×4=4; 图4中,阴影面积为4×12xy =4×12×4=8; 则阴影面积为4的有2个. 故选:B . 【点睛】本题考查了反比例函数ky x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.也考查了反比例函数的对称性,三角形的面积.4.如图,点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ∵x 轴,AC ∵y 轴,垂足分别为B ,C ,则矩形ABOC 的面积为( )A .-4B .2C .4D .8【答案】C 【分析】根据反比函数的几何意义,可得矩形ABOC 的面积等于比例系数的绝对值,即可求解. 【详解】解:∵点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ∵x 轴,AC ∵y 轴,∵矩形ABOC 的面积44-= . 故选:C . 【点睛】本题主要考查了反比函数的几何意义,熟练掌握本题主要考查了反比例函数()0ky k x=≠ 中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积等于k 是解题的关键.5.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为( )5A .60B .48C .36D .20【答案】A 【分析】过A 作AE ∵BC 于E 交x 轴于F ,则AF ∵y 轴,根据矩形的性质得到EF =OB ,根据勾股定理得到3AE =,设OB =a ,则A (4,3),(5,)a D a +,即可得到4(3)5k a a =+=,解方程求得a 的值,即可得到D 的坐标,进而求得k 的值. 【详解】解:过A 作AE ∵BC 于E 交x 轴于F , ∵5AB AC ==,8BC =, ∵142BE BC ==,∵3AE ==, 设OB =a , ∵BD =AB =5, ∵A (4,3),(5,)a D a +, ∵反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D . ∵4(3)5k a a =+=, 解得:a =12, ∵51260k =⨯=, 故选择:A .【点睛】本题考查了反比例函数图象上点的坐标特征,等腰三角形的性质,勾股定理,表示出点的坐标是解题的关键.6.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11ky x =(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A .﹣3B .3 C.D【答案】A 【分析】作AM ∵x 轴于M ,BN ∵x 轴于N ,由反比例函数系数k 的几何意义得到k 1=2S ∵AOM ,k 2=﹣2S ∵BON,解直角三角形求得o tan 30OB OA =∵AOM ∵∵OBN ,得到2=3AOM BOMSOA SOB ⎛⎫= ⎪⎝⎭进而得到123k k =-. 【详解】作AM ∵x 轴于M ,BN ∵x 轴于N , ∵S ∵AOM =12|k 1|,S ∵BON =12|k 2|,∵k 1>0,k 2<0,∵k 1=2S ∵AOM ,k 2=﹣2S∵BON , 在Rt ∵AOB 中,∵BAO =30°,7∵o tan 30OB OA = ∵∵AOM +∵BON =90°=∵AOM +∵OAM , ∵∵OAM =∵BON , ∵∵AMO =∵ONB =90°, ∵∵AOM ∵∵OBN ,∵2=3AOM BOMS OA S OB ⎛⎫= ⎪⎝⎭, ∵12232AOMBOMk S k S ==--, 故选A .【点睛】本题主要考查了反比例函数比例系数k 的几何意义,相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 7.如图,A 、B 是双曲线y =kx图象上的两点,过A 点作AC ∵x 轴于点C ,交OB 于点D ,BD =2OD ,且ADO 的面积为8,则DCO 的面积为( )A .12B .1C .32D .2【答案】B 【分析】过点B 作BH x ⊥轴于点H ,根据反比例函数比例系数k 的几何意义,即可得到ADO △的面积与梯形CDBH 的面积相等,再根据DCO BOH △∽△,即可求得DCO 的面积.【详解】解:过点B作BH∵x轴于点H,∵AC∵x轴于点C,∵AOC的面积与BOH的面积相等,∵ADO的面积与梯形CDBH的面积相等,∵ADO的面积为8,∵梯形CDBH的面积为8,∵DC//BH,∵DOC∵BOH,∵BD=2OD,∵DOC与BOH的相似比为1:3,∵DOC与BOH的面积比为1:9,设DCO的面积比为x,则x:(x+8)=1:9,解得:x=1,故选:B.【点睛】本题考查了反比例函数比例系数k的几何意义,三角形的相似及相似的性质,得到ADO△的面积与梯形CDBH的面积相等和DOC BOH∽是解决本题的关键.8.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若∵PMN的面积为2,则k的值为()A.2B.3C.4D.5【答案】B9【分析】由题意易得点M 到y 轴的距离即为∵PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则有11k k MN a a a +⎛⎫=--= ⎪⎝⎭,进而根据三角形面积公式可求解.【详解】解:由平行于y 轴的直线l 分别与反比例函数k y x =(x >0)和1y x=-(x >0)的图象交于M 、N 两点,可得:点M 到y 轴的距离即为∵PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,∵11k k MN a a a+⎛⎫=--= ⎪⎝⎭, ∵∵PMN 的面积为2, ∵111222PMNk SMN a a a+=⋅=⨯⨯=, 解得:3k =; 故选B . 【点睛】本题主要考查反比例函数与几何的综合,熟练掌握反比例函数与几何的综合是解题的关键. 9.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y 3=x(x >0)和y 6=x-(x >0)的图象交于B 、A 两点.若点C 是y 轴上任意一点,则∵ABC 的面积为( )A .3B .6C .9D .92【答案】D 【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x-=和y 3x =中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC的面积12⨯=AB×P的横坐标,求出即可.【详解】解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y6x=-中得:y6a=-,故A(a,6a-);将x=a代入反比例函数y3x=中得:y3a=,故B(a,3a),∵AB=AP+BP639a a a+==,则S∵ABC12=AB•x P19922aa=⨯⨯=,故选D.【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k的几何意义.10.如图.在平面直角坐标系中,∵AOB的面积为278,BA垂直x轴于点A,OB与双曲线y=kx相交于点C,且BC∵OC=1∵2,则k的值为()A.﹣3B.﹣94C.3D.92【答案】A【分析】过C作CD∵x轴于D,可得∵DOC∵∵AOB,根据相似三角形的性质求出S∵DOC,由反比例11函数系数k 的几何意义即可求得k . 【详解】解:过C 作CD ∵x 轴于D ,∵BC OC=12, ∵OCOB =23, ∵BA ∵x 轴, ∵CD ∵AB , ∵∵DOC ∵∵AOB , ∵DOC AOB S S ∆∆=(OC OB )2=(23)2=49, ∵S ∵AOB =278, ∵S ∵DOC =49S ∵AOB =49×278=32,∵双曲线y =kx在第二象限,∵k =﹣2×32=﹣3,故选:A . 【点睛】本题主要考查了反比例函数系数k 的几何意义,相似三角形的性质和判定,根据相似三角形的性质和判定求出S ∵DOC 是解决问题的关键. 二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0ky k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.【答案】-12【分析】根据反比例函数的比例系数k的几何意义得到12k=,然后根据反比例函数的性质确定k的值.【详解】解:四边形AMON的面积为12,12k∴=,反比例函数图象在二四象限,k∴<,12k∴=-,故答案为:12-.【点睛】本题考查了反比例函数函数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值||k.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∵CAB=2,则k的值为_____【答案】﹣12【分析】连接OC,过点A作AE∵x轴于点E,过点C作CF∵y轴于点F,通过角的计算找出∵AOE=∵COF,结合“∵AEO=90°,∵CFO=90°”可得出∵AOE∵∵COF,根据相似三角形的性质得出比例式,再由tan∵CAB=2,可得出CF•OF的值,进而得到k的值.【详解】如图,连接OC,过点A作AE∵x轴于点E,过点C作CF∵y轴于点F.∵由直线AB与反比例函数3yx=的对称性可知A、B点关于O点对称,∵AO=BO.又∵AC=BC,∵CO∵AB.∵∵AOE+∵AOF=90°,∵AOF+∵COF=90°,∵∵AOE=∵COF.又∵∵AEO=90°,∵CFO=90°,∵∵AOE∵∵COF,∵AE OE AO CF OF CO==,∵tan∵CABOCOA==2,∵CF=2AE,OF=2OE.又∵AE•OE=3,CF•OF=|k|,∵|k|=CF•OF=2AE×2OE=4AE×OE=12,∵k=±12.∵点C在第二象限,∵k=﹣12.故答案为:﹣12.13【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,锐角三角函数,解答本题的关键是求出CF•OF=12.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.【答案】2【分析】设出点P的坐标,∵OAP的面积等于点P的横纵坐标的积的一半,把相关数值代入即可.【详解】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数4yx=-的图象上,∵4 xy=-,∵122POAS xy==,故答案为:2.【点睛】题考查了反比例函数比例系数k的几何意义:在反比例函数ky=x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中15点D .若矩形OABC 的面积为8,则k 的值为________.【答案】2 【分析】过点D 作DE ∵OA 于点E ,由矩形的性质可知:S ∵AOC =12S 矩形OABC =4,从而可求出∵ODE 的面积,利用反比例函数中k 的几何意义即可求出k 的值. 【详解】如图,过点D 作DE OA ⊥于点E ,设,k D m m ⎛⎫ ⎪⎝⎭,则OE m =,k DE m=, ∵点D 是矩形OABC 的对角线AC 的中点, ∵2OA m =,2k OC m=, ∵矩形OABC 的面积为8, ∵228kOA OC m m⋅=⋅=, ∵2k =, 故答案为:k =2.【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是求出矩形的面积. 15.如图,点A 与点B 分别在函数11(0)k y k x=>与220)k y k x =<(的图象上,线段AB 的中点M 在y 轴上.若∵AOB 的面积为3,则12k k -的值是___.【答案】6【分析】设A(a,b),B(-a,d),代入双曲线得到k1=ab,k2=-ad,根据三角形的面积公式求出ab+ad=6,即可得出答案.【详解】解:作AC∵x轴于C,BD∵x轴于D,∵AC∵BD∵y轴,∵M是AB的中点,∵OC=OD,设A(a,b),B(-a,d),代入得:k1=ab,k2=-ad,∵S∵AOB=3,∵111()23 222b d a ab ad+--=,∵ab+ad=6,∵k1-k2=6,故答案为:6.【点睛】本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab+ad=6是解此题的关键.三、解答题16.如图,一次函数122y x=-的图象分别交x轴、y轴于A、B,P为AB上一点且PC为17AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS =.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.【答案】(1)A (4,0),B (0,-2);(2)3k =,Q 的坐标为(2 ,32).【分析】(1)因为一次函数y =12x -2的图象分别交x 轴,y 轴于A ,B ,所以当y =0时,可求出A 的横坐标,当x =0时可求出B 的纵坐标,从而可得解.(2)因为三角形OQC 的面积是Q 点的横纵坐标乘积的一半,且等于32,所以可求出k 的值,PC 为中位线,可求出C 的横坐标,也是Q 的横坐标,代入反比例函数可求出纵坐标. 【详解】解:(1)设A 点的坐标为(a ,0),B 点坐标为(0,b ), 分别代入y =12x -2,解方程得a =4,b =-2, ∵A (4,0),B (0,-2); (2)∵PC 是∵AOB 的中位线, ∵PC ∵x 轴,即QC ∵OC , 又Q 在反比例函数ky x=的图象上, ∵2S ∵OQC =k ,∵k =2×32=3,∵PC 是∵AOB 的中位线, ∵C (2,0), 可设Q (2,q )∵Q 在反比例函数ky x=的图象上, ∵q =32,∵点Q 的坐标为(2 ,32).【点睛】本题考查反比例函数的综合运用,熟练掌握并应用反比例函数ky x=(0k >)中k 的几何意义是解题的关键.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数ay x=的图象上,点B 、D 在反比例函数by x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ∵请求出a 、b 的值; ∵试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.【答案】(1)∵a =24,b =6∵92;(2)是定值为92.【分析】(1)∵把A ()6,4代入反比例函数ay x=即可求出a ,根据点B 为OA 的中点,求出B 点坐标,代入by x=即可求出b ;∵根据k 的几何意义求出∵AOP 的面积,再连接BP ,根据中线的性质即可求解;19(2)先分析,A C 分别位于a y x =的两个分支,,B D 分别位于 by x=的两个分支;再利用反比例函数系数k 的几何意义,表示S ∵AOB 和S ∵COD ,再根据三角形的面积公式,AB 与CD 之间的距离为6,即求出答案. 【详解】(1)∵把A ()6,4代入反比例函数ay x=,得a =6×4=24 ∵点B 为OA 的中点, ∵B (3,2)把B (3,2)代入反比例函数by x=,得b =3×2=6 ∵∵S ∵AOP = S ∵AON -S ∵NOP = 1122a b -=9 ∵B 点是OA 的中点, ∵BP 是∵AOP 的中线∵OBP 的面积=12×9=92;(2)如图,当,A C 在a y x =的第一象限的图像上时,,B D 在by x=的第一象限的图像上时////AB CD x 轴,32CD AB ==,∴AOBS=1122AOM BOM S S a b -=-△△, COD S =△1122CON DON S S a b -=-△△∴COD S =△AOBS1=2AOB S AB OM ⨯△,12COD S CD ON =⨯△OM ON ∴=则点A 与点C 重合,点B 与点D 重合 即AB 与CD 间的距离为0,,A C ∴分别位于a y x =的两个分支,,B D 分别位于 by x=的两个分支; 如图,延长AB 、CD 交y 轴于点E 、F ,∵点A 、C 在反比例函数a y x =的图象上,点B 、D 在反比例函数by x=的图象上,a >b >0,////AB CD x 轴,∵AB 与CD 间的距离为6, ∵OE +OF =6 ∵S ∵AOE =12a =12a =S ∵COF ,S ∵BOE =12b =12b =S ∵DOF ,∵S ∵AOB =S ∵AOE −S ∵BOE =12a −12b =12AB •OE =34OE ,S ∵COD =S ∵COF −S ∵DOF =12a −12b =12CD •OF =34OF ,∵S ∵AOB +S ∵COD =a −b =34OE +34OF =34(OE +OF )=92.92a b ∴-=. 【点睛】本题考查反比例函数图象上点的坐标特征以及反比例函数系数k 的几何意义,理解反比例函数系数k 的几何意义是正确解答的关键.18.如图,点C 在反比例函数y 1=x 的图象上,CA ∵y 轴,交反比例函数y 3=x 的图象于点A ,CB ∵x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则∵ABO的面积为__.【答案】4【分析】设A(a,3a),则C(a,1a),根据题意求得a=1,从而求得A(1,3),C(1,1),进一步求得B(3,1),然后作BE∵x轴于E,延长AC交x轴于D,根据S∵ABO=S∵AOD+S梯形ABED ﹣S∵BOE和反比例函数系数k的几何意义得出S∵ABO=S梯形ABED,即可求得结果.【详解】解:设A(a,3a),则C(a,1a),∵CA=2,∵31a a-=2,解得a=1,∵A(1,3),C(1,1),∵B(3,1),作BE∵x轴于E,延长AC交x轴于D,∵S∵ABO=S∵AOD+S梯形ABED﹣S∵BOE,S∵AOD=S∵BOE32 =,∵S∵ABO=S梯形ABED12=(1+3)(3﹣1)=4;故答案为:4.【点睛】本题考查了反比例函数系数k的几何意义和三角形的面积,得出S∵ABO=S梯形ABED是解题的关键.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动21点, P A ∵X 轴于点A ,交函数2y x =图象于点C ,PB ∵Y 轴于点B ,交函数 2y x=图象于点D ,点D 的横坐标为a .(1)用字母a 表示点P 的坐标; (2)求四边形ODPC 的面积;(3)连接DC 交X 轴于点E ,连接DA 、PE ,求证:四边形DAEP 是平行四边形. 【答案】(1)P (2a ,2a);(2)2;(3)见解析【分析】(1)先求出点D 的纵坐标得到点P 的纵坐标,代入解析式即可得到点P 的横坐标; (2)利用矩形的面积计算公式及反比例函数k 值的几何意义,利用OBD OAC OAPB S S S ∆∆--四边形,即可求出答案;(3)证明∵DPC ∵∵EAC ,即可得到结论. 【详解】解:(1)∵点D 的横坐标为a ,且点D 在函数2y x=图象上, ∵点D 的纵坐标2y a=, 又PB ∵y 轴,且点P 在4y x=图象上, ∵点P 的纵坐标2y a=, ∵点P 的横坐标为x =2a , ∵P (2a ,2a);23(2)∵224OAPB S a a =⨯=四边形,ΔΔ1212OBD OAC S S a a==⨯⨯=, ∵D C 422O P S =-=四边形;(3)∵P A ∵x 轴于点A ,交函数2y x=图象于点C , ∵点C 的坐标为(2a ,1a), 又P (2a ,2a),∵PC =CA =1a, ∵DP ∵AE ,∵∵PDE =∵DEA ,∵DP A =∵P AE , ∵∵DPC ∵∵EAC , ∵DP =AE ,∵四边形DAEP 是平行四边形. 【点睛】此题考查反比例函数的性质,反比例函数图象与几何图形,平行四边形的判定定理,反比例函数k 值的几何意义,熟练掌握反比例函数的性质及计算方法是解题的关键.20.如图,点A (﹣2,y 1)、B (﹣6,y 2)在反比例函数y =kx(k <0)的图象上,AC ∵x轴,BD ∵y 轴,垂足分别为C 、D ,AC 与BD 相交于点E .(1)根据图象直接写出y 1、y 2的大小关系,并通过计算加以验证;(2)结合以上信息,从∵四边形OCED 的面积为2,∵BE =2AE 这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是 (只填序号). 【答案】(1)12y y >,见解析;(2)见解析,∵(也可以选择∵) 【分析】(1)观察函数的图象即可作出判断,再根据A 、B 两点在反比例函数图象上,把两点的坐标代入后作差比较即可;(2)若选择条件∵,由面积的值及OC 的长度,可得OD 的长度,从而可得点B 的坐标,把此点坐标代入函数解析式中,即可求得k ;若选择条件∵,由DB =6及OC =2,可得BE 的长度,从而可得AE 长度,此长度即为A 、B 两点纵坐标的差,(1)所求得的差即可求得k . 【详解】(1)由于图象从左往右是上升的,即自变量增大,函数值也随之增大,故12y y >; 当x =-6时,26ky =-;当x =-2时,12k y =- ∵12263k k ky y -=-+=-,k <0∵120y y -> 即12y y > (2)选择条件∵∵AC ∵x 轴,BD ∵y 轴,OC ∵OD ∵四边形OCED 是矩形 ∵OD ∙OC =2 ∵OC =2 ∵OD =1 即21y =∵点B 的坐标为(-6,1)把点B 的坐标代入y =kx中,得k =-6若选择条件∵,即BE =2AE ∵AC ∵x 轴,BD ∵y 轴,OC ∵OD ∵四边形OCED 是矩形 ∵DE =OC ,CE =OD ∵OC =2,DB =6 ∵BE =DB -DE =DB -OC =4 ∵122AE BE == ∵AE =AC -CE =AC -OD =12y y - 即122y y -=由(1)知:1223ky y -=-= ∵k =-6 【点睛】本题考查了反比例函数的图象和性质、矩形的判定与性质、大小比较,熟练掌握反比例函数的图象与性质是解决本题的关键.2521.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB = 【答案】(1)(2,0),m =-5;(2)2455y x -=+【分析】(1)在直线y =kx +k 中令y =0可求得A 点坐标;连接CO ,得OBCABCS S==3,根据反比例函数比例系数的几何意义,即可求解;(2)利用勾股定理求出OB =2,设C (b ,2),代入反比例函数,求出C 点坐标,再利用待定系数法,即可求解. 【详解】解:(1)在()20y kx k k =-≠中,令y =0可得02kx k =-,解得x =2, ∵A 点坐标为(2,0);连接CO , ∵CB ∵y 轴, ∵CB ∵x 轴,∵OBCABCSS==3,∵点C 在反比例函数1(10)m y m x-=-≠的图象上, ∵126BOCm S-==,∵反比例函数1(10)m y m x-=-≠的图象在二、四象限, ∵16m -=-,即:m =-5; (2)∵点A (2,0), ∵OA =2,又∵AB =∵在Rt AOB 中,OB 2=,∵CB ∵y 轴, ∵设C (b ,2), ∵62b-=,即b =-3,即C (-3,2), 把C (-3,2)代入2y kx k =-,得:232k k =--,解得:k =25-,∵一次函数的解析式为:2455y x -=+.【点睛】本题主要考查待定系数法求函数解析式及函数图象的交点坐标,掌握两函数图象的交点坐标满足两函数解析式是解题的关键,注意反比例函数y =kx中k 的几何意义的应用. 22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ∵x 轴,垂足为点H ,交反比例函数y =kx(x >0)的图象于点D ,连接OD ,∵ODH 的面积为627(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若∵BDE 的面积是∵OCD 面积的2倍,求点E 的坐标.【答案】(1)12k =,点 D 坐标为(4,3);(2)点E 的坐标为(-8,2) 【分析】(1)结合反比例函数k 的几何意义即可求解k 值;由⊥CH x 轴可知//CH y 轴,利用平行线分线段成比例即可求解D 点坐标;(2)//CH y 可知OCD ∆和BCD ∆的面积相等,由函数图像可知BDE ∆、BCD ∆、CED ∆的面积关系,再结合题意2BDE OCD S S ∆∆=,即可求CD 边上高的关系,故作EF CD ⊥,垂足为F ,即可求解E 点横坐标,最后由E 点在直线AB 上即可求解. 【详解】解∵(1)设点 D 坐标为(m ,n ), 由题意得116,1222OH DH mn mn ⋅==∴=.∵点 D 在ky x=的图象上,12k mn ∴==. ∵直线122y x =--的图象与x 轴交于点A ,∵点A 的坐标为(-4,0). ∵CH ⊥x 轴,CH //y 轴. 1.4AO ABOH AO OH BC∴==∴==. ∴点D 在反比例函数12y x=的图象上, ∴点 D 坐标为(4,3)(2)由(1)知CDy 轴,BCD OCD S S ∴=△△.2,3BDE OCD EDC BCD S S S S =∴=△△△△.过点E 作EF ⊥CD ,垂足为点 F ,交y 轴于点M , 1111,,32222EDCBCDSCD EF S CD OH CD EF CD OH =⋅=⋅∴⋅=⨯⋅.312.8EF OH EM ∴==∴=.∵点 E 的横坐标为-8.∵点E 在直线122y x =--上,∵点E 的坐标为(-8,2).【点睛】本题考查一次函数与反比例函数的综合运用、三角形面积问题、k 的几何意义,属于中档难度的综合题型.解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想. 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)ky k x=≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积. 【答案】(1)-6;(2)8 【分析】(1)过P 作PE 垂直于x 轴,垂足为E ,证明ABO APE ∽.根据相似三角形的性质可得2AO OE =,49ABO APESS=,由此可得9APES =,3PEOS=.再由反比例函数比例系数k 的几何意义即可求得k 值.(2)先求得(1,6)P -,(0,4)B ,再利用待定系数法求得直线PB 的解析式为24y x=-+.与反29比例函数的解析式联立方程组,解方程组求得(3,2)Q -.再根据PO POQO BQ BS SS=+即可求解. 【详解】(1)过P 作PE 垂直于x 轴,垂足为E ,∵PE//BO , ∵ABO APE ∽. ∵2AB BP =,4AOB S =△,∵2AO OE =,22439ABO APESS ⎛⎫== ⎪⎝⎭, ∵9APES=,3PEDS=.∵1||32k =⨯,||6k =,即6k =-. (2)由(1)知6y x-=,∵(1,6)P -. ∵2AB PB =,∵2PBOS=,∵||4BO =,(0,4)B .设直线PB 的解析式为y kx b =+,将点(1,6)P -、(0,4)B 代入y kx b =+,得64k bb =-+⎧⎨=⎩.解得24k b =-⎧⎨=⎩.∵直线PB 的解析式为24y x =-+.联立方程组624y x y x -⎧=⎪⎨⎪=-+⎩,解得13x =,21x =-, ∵(3,2)Q -.∵()1||2POQQOBPOB Q P SSSOB x x =+=⨯-14482=⨯⨯=.【点睛】本题是一次函数与反比例函数的综合题,熟练运用反比例函数比例系数k 的几何意义是解决问题的关键.。
反比例函数中K的几何意义
反比例函数中K的几何意义作者:杨高朋来源:《世界家苑》2019年第02期摘要:反比例函数是数学知识的重点和难点之一,理解起来难度较大,也是考试活动中重点考察内容之一。
“K”是反比例函数的重要组成部分,在整个反比例函数中具有重要的几何意义,加大对“K”值的了解,有助于学生学生在日常数学知识学习过程中灵活展开数形结合,高效、精确解决数学问题,更能够为学生进行其他数学知识的学习奠定良好基础。
鉴于此,本文详细探讨了反比例函数中K的几何意义以及反比例函数在集合图形中的应用,以供参考。
关键词:反比例函数;K;几何意义初等函数中,反比例函数占据基础地位,学生通过对反比例函数的特点、性质等的深刻理解,对于以后更加顺利、快捷的进行三角函数以及二次函数等数学知识点的学习具有促进作用。
而系数“K”在反比例函数中具备较强的几何意义,能够将“数形结合”的数学思想充分的体现出来。
因此,学生在积极进行反比例函数学习的过程中,深入进行“K”几何意义的探讨与分析具有重要意义。
1 反比例函数中K的几何意义在y=k/x(k≠0)这一反比例函数函数当中,要想对系数k的几何意义进行全面掌握,就必须掌握以下几点:第一,应促使学生明确当y=k/x这一双曲线距离坐标轴越远时,就会产生越大的|k|值;第二,在对一般情况下和特殊情况下的反比例函数进行分析的过程中,能够对方程所形成的过程产生深刻认知,在此基础上学生才可以灵活应用反比例函数表达式进行图形面积的计算,在这一过程中,学生可以通过观察图像面积的方式,对反比例函数中K值进行确定。
例如,图一所示例题中“在y=k/x(k≠0)这一反比例函数函数当中,其中K值呈现出重要的几何意义,即在y=k/x这一反比例函数中取P点(P属于任意一点),假设PM、PN分别为P与x轴和y轴之间的垂线,在此基础上形成的PMON这一矩形,以S=PM·PN=|y|·|x|=|xy|=|k|,将O、P相连,得出S△POM=S△PON=k/2”。
反比例函数中k的几何意义
过 P 点作 x 轴的垂线,过 B 点作 y 轴的垂线,两直线相交于 C,则 S△PBC =2∣k∣
容易看出,此变式是基本型的综合情况,△PBC 可以分解成两个小的三角形(△PAO 与 △P’BO)和一个矩形 OABC。
x
垂足为 B,A 是 x 轴上任意一点,则 S△APB = 1 ∣k∣
2
图(Ⅴ)
图(Ⅵ)
相关练习
6.如图,点 A 是反比例函数 y= k (k≠0)的图象上的一点,
x
过点 A 作 AB⊥x 轴,垂足为 B.点 C 为 y 轴上的一点,连接 AC,
BC.若△ABC 的面积为 4,则 k 的值是
.
7.如图,A 是反比例函数图象上一点,过点 A 作 AB⊥y 轴于点 B,
x
k 的值为( )
A.32 B.20 C.24 D.12
13.如图,两个反比例函数 y= 2 和 y= 4 在第一象限内的图像分别是 C1 和 C2,设点
x
x
P 在 C1 上,PA⊥x 轴于点 A,交 C2 于点 B,则△POB 的面积为
.
(第 5 题)
(第 6 题)
(第 7 题)
14.如图,直线 l⊥x 轴于点 P,且与反比例函数 y1= k1 (x>0)及 y2= k2 (x>0)
三、变式二
1.如图(Ⅴ),设 P(m、n)是双曲线 y= k (k≠0)上任意一点,过 P 点分别作 x 轴的垂线, x
垂足为 A,B 是 y 轴上任意一点,则 S△APB = 1 ∣k∣
2 2..如图(Ⅵ),设 P(m、n)是双曲线 y= k (k≠0)上任意一点,过 P 点分别作 y 轴的垂线,
反比例函数k的几何意义题目
反比例函数k的几何意义题目
反比例函数是一种特殊的函数形式,其定义为f(x) = k/x,其中k是一个非零常数。
反比例函数的几何意义可以通过其图像来理解。
当k为正数时,函数图像呈现出一条经过原点的拋物线,开口朝下。
当x值增大时,f(x)的值逐渐减小,但是递减的速度越来越慢。
当x趋近于无穷大时,f(x)趋近于0。
同样地,当x值减小时,f(x)的值逐渐增大,但是增长的速度也越来越慢。
当x趋近于无穷小时,f(x)趋近于无穷大。
几何上,反比例函数的图像可以看作是一个对称于y轴的双曲线。
当k的值增大时,曲线会变得更陡峭,而当k的值减小时,曲线会变得更平缓。
反比例函数在几何学中有许多应用。
例如,在物理学中,反比例函数可以用来描述两个物理量之间的关系,例如电阻和电流之间的关系。
当电阻增加时,电流减小,反之亦然。
同样,在经济学中,反比例函数可以用来描述供给和需求之间的关系。
当价格上升时,需求减少,而供给增加,反之亦然。
总之,反比例函数的几何意义是一条对称的双曲线,可以用来描述两个变量之间的相互关系,特别是当一个变量的增加导致另一个变量的
减小,反之亦然。
反比例函数中K的几何意义
,PA⊥x轴于A, PB⊥y轴于B.求长方形PAOB的面积。
解:S矩形PAOB =OA·.PA
y
= m•n
=k
=
P(m,n) B
o
A
x
1、过反比例函数y k 中,任意一点 x
P(m, n)分别作x轴, y轴的垂线,
垂足分别为A, B,
2、如图,连接OM,则
则S矩形OAPB OA• AP
m•n
PA=( 2 ),S矩形OAPB=( 6 )
y
B
P(3,2)
oA
x
yE
2、若E(1,6)也在该图像上,则绿色矩形
面积为( 6 )
B
P(3,2)
o
A
x
F(4,-1.5)
3、若F(4,-1.5) 在 y - 6 图像上,则 x
黄色矩形面积为( 6 )
例1、如图,点P是反比例函y数
2 x
图象上的一点
⑶若P的坐标是(x,y),则PM=y____,PNx=____
y
平面直角坐标系内任意一点P(x,y)
P到x轴的距离是这点纵坐标的绝对值即 y
是
.x
P到y轴的距离是这点横坐标的绝对值即 是
p
N
M
ox
1.如图,点P(3,2)在反比例 函数 y k 图像上
x
则K=( 6 ),过P作PA⊥x轴,
PB⊥y轴,则OA=( 3 ),
已知面积求K值
y
2、若四边形OABC是边长为1的正
方形,反比例函数 y k 的 x
B
A
的图象过点B,则k的值为( )
解: S正方形OABC 12 k
Co
x
6.2反比例函数K的几何意义
2 y= x
2 y= x (x>0)的图象上
B. 3
C. 4 D. 5
B C
E
A D x
o
训练反馈
10,如图,过y轴正半轴上的任意一点P,作x轴的 2 4 y = y = 平行线,分别与反比例函数 和 x 的图象 x 交于点A和点B,若点C是x轴上任意一点,连接 AC、BC,则∆ABC的面积为 ( A ) A. 3 B. 4 C.
B
P(m,n) A
o
A
x
o
x
过反比例函数图象上任一点P分别作x轴、y轴的垂线,垂足 分别为A,B,它们与坐标轴形成的矩形面积是不变的.
面积性质(二)
设 P (m ,n )是双曲线 y =
k x
(k
≠
0 )上任意一点 ,有 :
(2)过 P 作 x AP = | m | | n |= | k | 2 2 y 2
y
E
A
B
O
D
C
x
训练反馈
3 4.如图,A,B是双曲线 y = 上的点,分别经过A,B两点向X x
轴、y轴作垂线段,若
S阴影 = 1,则S1 S2 = 4
y y A
C D S1
H
.
B
F
o E o
S2
x x
拓展延伸
5.如图,点P、Q是反比例函数图象上的两点,过点P、
Q分别向x轴、y轴作垂线,则S1(黄色三角形)S2(绿 色三角形)的面积大小关系是:S1 ____ = S2.
6.2反比例函数
再谈反比例函数中“k”的几何意 义
温故知新篇
面积性质(一)
k 设 P ( m , n ) 是双曲线 y = ( k 0 ) 上任意一点 , 有 : x (1)过点P分别作x轴,y轴的垂线,垂足为A,B,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
3、若四边形OABC是边长为1的正方形,反比例函数
k 的 y 的图象过点B,则k的值为( x y
B A
)
C
o
x
4.如图,点P是反比例函数 图象上的一点, 若矩形OMNP的面积是3,则K=( )
k y x
y
M
o x
N
P
5.如图,点P是反比例函数 图象上的一点, 若矩形ONPM的面积是4,则K=( )
6 1、若点P(m,n)在反比例函数 y 图像上, x
则mn= 。 , . 2
B
3 A D
1 2
2.如图,S矩形ABCD= S△ABD=
S矩形ABCD=
C
1.理解并掌握反比例函数中∣K∣的几何意义; 2.能灵活运用∣K∣的几何意义求图形面积; 3.能根据图形面积求出K值。
k 1.如图,点P(3,2)在反比例函数 y 图像上 x 则K=( ),过P作PA⊥x轴,PB⊥y轴,则OA=( ),
PA=( ),S矩形ABCD=(
y
)
B
P(3,2) A
o
x
若E(1,6)也在该图像上,则绿色矩形面积为( )
若F(4,-1.5)
y
E
6 在y - x
图像上,则黄色矩形面积为
B
P(3,2)
o
A
F(4,-1.5)
x
(1)过P(m, n)分别作x轴, y轴的垂线, 垂足分别为A, B, 则S矩形OAPB OA AP | m | | n || k | (如图所示).
y
A.S1 = S2 = S3 B. S1 < S2 < S3 C. S3 < S1 < S2 D. S1 > S2 >S3
A S1 B S2
C
o
A1
S3 B1 C1
x
k 1.已知,点P是反比例函数 y x 图象上一点,作
PA⊥ x轴 于A,若 S△AOP是3,则这个反比例函 数的解析式为( )
y
P(m,n)
o
A
x
2 1.如图,点P是反比例函数 y 图象上 x 的一点,PD⊥x轴于D.则△POD的面积为1
S△POD
1 = OD· PD 2
1 = 2
y P (m,n) o D x
m n
1 = k 2
2.如图:SRt△OAP=
.
y
y
3 x
P
A
o x
2 3.如图:A、C是函数y 图像上任意两点, Rt△ AOB的 x 面积记作S1,Rt△OCD的面积记作S 2,则下列结论正确 的是()
y
E
S2S2
o
S1
A
S1
B D
x
C
2.如图,下列图像中阴影部分面积不是2的是( ) y
y 4 x
y
o
M P
y 2 x
x
P
A
y
o
D
y
x
B
N
3 x
2 y x
y
A
P
C
oS
2
C
A
o x
B
x
D
3.如图,反比例函数
y
k x
与正比例函数y=-
1 2
x交
于A、B点,AC⊥x轴,若S△ABC=2,求k的值。 y
则四边形AOBP的面积为 k ;且S△AOP =
S△BOP k
。
2
1.理解并掌握反比例函数中∣K∣的几何意义; 2.能灵活运用∣K∣的几何意义求图形面积; 3.能根据图形面积求出K值。
2 1.如图,过反比例函数 y 图像上两点A、C分别作 x Rt△OAB、矩形CDOE,则S1=( ) , S2=( )
则S△AOB=(
) y
A
4 y x
o
S2
C
x
B
如图,反比例函数
y-
4 x
与正比例函数y=-x交于A、B ) y
两点,AC⊥x轴B
x
4 如图,A是反比例函数 y x 上任意一点,
P是x轴上一点,过A作AB⊥y轴,垂足为B,则 S△ABP=( ).
y B A
P
O
X
k y x
y o N
M
x
P
1.如图,S矩形OAPB=
y
,S△OAP=
.
P B
O
4 y x P
A
x
2.观察图中各个三角形的面积,你有什么发现?
y P(m,n)
4 x
y
o
A
x
k (2)设P(m, n)是双曲线y (k 0)上任意一点 ,有: x 过P作x轴的垂线, 垂足为A, 则 1 1 1 SOAP OA AP | m | | n | | k | 2 2 2
A.S1>S2 B.S1<S2 C.S1 = S2 D.不能确定.
C
y
A
o
S2 S2
SS 1
1
B D
x
3 4.如图, 在y ( x 0)的图像上有三点 A, B, C , x 经过三点分别向 x轴引垂线 , 交x轴于A1 , B1 , C1三点, 边结OA, OB, OC, 记OAA 的 1 , OBB 1 , OCC1 面积分别为S1 , S 2 , S3 , 则有 __ .
y
B
P(m,n)
A
o
x
3 1.如图,点P是反比例函数 y 图象 x 上的一点,过点P分别向x轴、y轴作垂线,
则长方形ONPM的面积是多少?
y
P
N
O
M
x
3 2.如图,点P是反比例函数y 图象 x
上的一点,过点P分别向x轴、y轴作垂线, 则长方形ONPM的面积是多少?
y
y
3 x
P
N
A
o
C
S2
B
x
如图,A是反比例函数 上任意一点,P是 x轴上一动点,过A作AB⊥y轴,垂足为B,则关于 S△ABP正确的说法是( )
y A、逐渐增大 B、逐渐减小 C、保持不变 D、无法确定 P O X B A
4 y x
k 反比例函数 y 上一点P(x0,y0),过点P x
作PA⊥y轴,PB⊥X轴,垂足分别为A、B,
1.已知,点P是反比例函数 图象上一点,作 PA⊥ x轴 于A,若 S△AOP是4,求这个反比例函 数的解析式。 2.已知,点P是反比例函数 图象上一点,作 PA⊥ y轴 于A,若 S△AOP是2,求这个反比例函 数的解析式。
k y x
y
k x
如图,反比例函数与正比例函数图像交于A、B两点,