微积分——多元函数及二重积分知识点(教学内容)
第六章 多元函数微积分6.7二重积分的概念与性质
D
D 1
D 2
性质6.7.3 若 为D的面积,则 1dd.
D
D
性质6.7.4(不等式性)若在D上 f(x ,y ) g (x ,y ),
则有 f(x,y)dg(x,y)d.
D
D
特殊地 f(x,y)df(x,y)d.
D
D
上一页 下一页 目 录
性质6.7.5 设 M 、m分别是 f ( x, y)在闭区域 D 上的 最大值和最小值, 为 D 的面积,则
上一页 下一页 目 录
(4)二重积分的几何意义
当 f( x ,y ) 在 有 界 闭 区 域 D 上 连 续 时 ,
f(x,y)0时 , f(x,y)d表 曲 顶 柱 体 体 积
D
f(x,y)0时 , f(x,y)d表 曲 顶 柱 体 体 积 的 负 值
D
f(x,y)符 号 不 定 时 , f(x,y)d表 曲 顶 柱 体 体 积 代 数 和
6.7 二重积分的概念与性质
一元函数积分学
推广 多元函数积分学
重积分 曲线积分 曲面积分
本节内容:
一、 二重积分的概念
☆例6.6.1
二、 二重积分的性质
☆例6.6.2 ☆例6.6.3 ☆例6.6.4
三、 内容小结 ★ 作业 ★ 习题解答
问题的提出
1.曲顶柱体的体积(volume) 柱体(cylindrical body)体积
内某一点 ( , ) 的函数值 f ( , ) 为高的平顶柱体的体积.
证: 由性质5 可知,
m Df(x i,y ) n 1 D f (x ,y )d m Df(x a ,y )x
由连续函数介值定理, 至少有一点 (,)D使
f(,) 1D f(x,y)d
多元函数微分学知识点梳理
多元函数微分学知识点梳理
第九章多元函数微分学
内容复
一、基本概念
1.多元函数的基本概念包括n维空间、n元函数、二重极限、连续等。
其中,偏导数和全微分也是重要的概念。
2.重要定理:
1)二元函数中,可导、连续、可微三者的关系为偏导数
连续→可微。
同时,偏导数存在和函数连续是可微的必要条件。
2)二元函数的极值必须满足必要条件和充分条件。
二、基本计算
一)偏导数的计算
1.偏导数值的计算有三种方法:先代后求法、先求后代法
和定义法。
2.偏导函数的计算包括简单的多元初等函数和复杂的多元
初等函数。
对于复杂的函数,可以使用链式法则,或者隐函数求导法。
3.高阶导数的计算需要注意记号表示和求导顺序。
二)全微分的计算
1.叠加原理可以用于计算全微分,即dz=∂z/∂x dx+∂z/∂y dy。
2.一阶全微分形式不变性对于自变量和中间变量均成立。
三、偏导数的应用
在优化方面,多元函数的极值和最值是常见的应用。
1.无条件极值可以用必要条件和充分条件来求解。
2.条件极值可以使用Lagrange乘数法来求解。
3.最值可以通过比较区域内部驻点处函数值和区域边界上最值的大小来确定。
高等数学多元函数微分重点难点
多元函数微分学及其应用一.基本要求(1)理解多元函数的概念。
(2)了解二元函数的极限与连续性的概念及有界闭区域上连续函数的性质。
(3)理解偏导数和全微分的概念,了解全微分存在的必要条件和充分条件及全微分在近似计算中的应用。
(4)理解方向导数与梯度的概念并掌握其计算法。
(5)掌握复合函数一阶、二阶偏导数的求法。
(6)会求隐函数(包括由方程组确定的隐函数)的偏导数。
(7)了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它的方程。
(8)了解二元函数的二阶泰勒公式。
(9)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会用最小二乘法求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的实际问题。
二.主要内容多元函数某些概念之间关系的比较 1. 一元函数()f x 在0x x =2. 二元函数(,)f x y 在点),(000y x P不成立重要定理定理1在有界闭区域D 上的多元连续函数,在D 上一定有最大值和最小值.定理2在有界闭区域D 上的多元连续函数,如果在D 上取得两个不同的函数值,则它在D 上必取得介于两个值之间的任何值.定理3如果),(y x f z =的两个二阶混合偏导数x y z ∂∂∂2及y x z ∂∂∂2在区域D 内连续,那么在该区域内,必有x y z ∂∂∂2=yx z∂∂∂2.定理4如果函数),(y x f z =在点),(y x 可微,则该函数在点),(y x 的偏导数必定存在,且函数),(y x f z =在点),(y x 的全微分为dy yz dx x z dz ∂∂+∂∂= 定理5如果函数),(y x f z =的偏导数x z ∂∂,yz∂∂在点),(y x 连续,则函数在该点可微.定理6设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必为零,即0),(00'=y x f x ,0),(00'=y x f y . 定理7设函数),(y x f z =在点),(00y x 的某邻域内连续且存在二阶连续偏导数,且0),(00'=y x f x ,0),(00'=y x f y记),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =2B AC CB BA -==∆ 则(1)当0>∆时,),(y x f 在),(00y x 处具有极值,且当0<A 时,),(00y x f 是极大值,当0>A 时,),(00y x f 是极小值; (2)当0<∆时,),(00y x f 不是极值;(3)当0=∆时,),(y x f 在),(00y x 处是否有极值不能确定. 重要公式多元复合函数求导法则空间曲面的切平面与法线方程空间曲线的切线与法平面方程多元函数极值的求法重点: 理解多元函数的基本概念定义,掌握基本概念之间的关系,会求复合函数和隐函数的偏导数。
多元函数微积分知识点
多元函数微积分知识点多元函数微积分是微积分学中的一个重要分支,主要研究有多个自变量的函数的导数、偏导数、微分、积分等问题。
它是单变量函数微积分的拓展与推广,涉及涉及多元函数的极限、连续性、可微性、可导性、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等内容。
本文将从多元函数的定义与性质、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等几个方面介绍多元函数微积分的知识点。
1.多元函数的定义与性质多元函数是指有多个自变量的函数,一般形式为f(x1, x2, ..., xn),其中x1, x2, ..., xn是自变量,f是因变量。
多元函数的定义域是自变量可能取值的集合。
在多元函数中,可以分别将每个自变量视为其他自变量的常数,对应单变量函数的概念。
多元函数的性质包括定义域、值域、可视化、极值等。
2.偏导数与全微分偏导数是多元函数在其中一变量上的导数,其他变量视为常数。
偏导数的计算与单变量函数的导数计算类似,可以通过极限或者求偏导数的定义计算。
全微分是多元函数在特定点的一个线性逼近,可以用于计算函数值的近似值。
全微分的表示为df = (∂f/∂x1)dx1 + (∂f/∂x2)dx2 + ... + (∂f/∂xn)dxn,其中∂f/∂xi表示对变量xi的偏导数。
3.多元复合函数的求导多元复合函数是指多个函数通过复合而成的函数,其中一个函数的导数是另一个函数的自变量。
类似于链式法则,多元复合函数的求导需要使用偏导数和全导数的概念。
对于函数z = f(g(x, y)),链式法则可以表示为dz = (∂z/∂x)dx + (∂z/∂y)dy = (∂f/∂g)(dg/dx)dx +(∂f/∂g)(dg/dy)dy。
4.隐函数的求导5.多重积分多重积分是多元函数的积分形式,与单变量函数的定积分类似。
多重积分有二重积分、三重积分等,分别对应二元函数、三元函数等的积分。
多重积分可以用于计算函数在区域内的面积、体积等。
12_第11讲二重积分及其计算
性质 2
若D = D1 + D2 ( D1与D2除边界点外无公共部分 ),则
∫∫ f ( x, y) d x d y =∫∫ f ( x, y) d x d y + ∫∫ f ( x, y) d x d y 。
D D1 D2
性质 3
若 f ( x, y ) ≤ g ( x, y ) ( x, y ) ∈ D,则
dσ = d x d y 相应地,直角坐标系下,二重积分写为
∫∫ f ( x, y) d x d y 。
D
(3) 有界闭区域上的连续函数可积。
( 4) 若函数 f ( x, y ) 在区域 D 上有界,且仅在 D 内有限条
曲线(面积为零)上不连续,则 f ( x, y ) 在 D 上可积。
(5) 二重积分是一个数,它取决于被积函数和积分区域, 而与积分变量的记号(字母)无关:
将 D 任意分割为 n 个无公共内点的小区域 Di ( i = 1, 2, L , n ) ,
则 D= Di ,并记 Di 的面积为 ∆σ i。 U
i =1
n
若 ∀(ξ i ,ηi ) ∈ Di,极限
λ →0
lim ∑ f (ξ i ,ηi )∆σ i
i =1
n
存在,则称该极限值为函数 f ( x, y ) 在区域 D 上的二重积分, 其
λ→0
i=1 D n
能不能用定积分 来求曲顶柱体的体积?
利用平行截面面积为已知的 几何体体积计算方法.
曲 顶 柱 体 的 体 积
z
z = f ( x, y ) > 0
z = f ( x, y )
. b
x
x
a O
x = x S(x) = y f (x, y) d y ∫ϕ (x)
第八讲 多元函数积分学知识点
第八讲 多元函数积分学知识点一、二重积分的概念、性质1、 ∑⎰⎰=→∆=n i i i i d D f dxdy y x f 10),(lim ),(δηξ ,几何意义:代表由),(y x f ,D 围成的曲顶柱体体积。
2、性质:(1)=⎰⎰D dxdy y x kf ),(⎰⎰Ddxdy y x f k ),((2)[]⎰⎰+D dxdy y x g y x f ),(),(=⎰⎰D dxdy y x f ),(+⎰⎰D dxdy y x g ),( (3)、D dx d y D =⎰⎰(4)21D D D +=,⎰⎰D dxdy y x f ),(=⎰⎰1),(D dxdy y x f +⎰⎰2),(D dxdy y x f (5)若),(),(y x g y x f ≤,则≤⎰⎰D dxdy y x f ),(⎰⎰Ddxdy y x g ),((6)若,),(M y x f m ≤≤则MD dxdy y x f mD D ≤≤⎰⎰),( (7)设),(y x f 在区域D 上连续,则至少存在一点D ∈),(ηξ,使=⎰⎰D dxdy y x f ),(D f ),(ηξ二、计算 (1) D:)()(,21x y x b x a ϑϑ≤≤≤≤⎰⎰⎰⎰=)()(21),(),(x x ba D dy y x f dx dxdy y x f ϑϑ (2) D :)()(,21y x y d y c ϕϕ≤≤≤≤,⎰⎰⎰⎰=)()(21),(),(x x d c D dy y x f dy dxdy y x f ϑϕ 技巧:“谁”的范围最容易确定就先确定“谁”的范围,然后通过划水平线和垂直线的方法确定另一个变量的范围(3)极坐标下:θθθrdrd dxdy r y r x ===,sin ,cos⎰⎰⎰⎰=)(0)sin ,cos (),(θβαθθθr D rdr r r f d dxdy y x f 三、曲线积分1、第一型曲线积分的计算(1)若积分路径为L :b x a x y ≤≤=),(φ,则 ⎰L ds y x f ),(=dx x x x f ba ⎰'+2))((1))(,(φφ (2)若积分路径为L :d y c y x ≤≤=),(ϕ,则⎰L ds y x f ),(=dy y y y f dc ⎰'+2))((1)),((ϕϕ (3)若积分路为L :⎩⎨⎧==)()(t y t x ϕφ,βα≤≤t ,则⎰L ds y x f ),(=dt t t t t f ⎰'+'βαϕφϕφ22))(())(())(),(( 2、第二型曲线积分的计算(1) 若积分路径为L :)(x y φ=,起点a x =,终点b y =,则⎰=+L dy y x Q dx y x P ),(),([]dx x x x Q x x P ba ⎰'+)())(,())(,(φφφ (2) 若积分路径为L :)(y x ϕ=,起点c y=,终点d y =,则 ⎰=+L dy y x Q dx y x P ),(),([]dy y y Q y y y P d c⎰+')),(()())),((ϕϕϕ (3) 若积分路为L :⎩⎨⎧==)()(t y t x ϕφ,起点α=t ,终点β=t ,则⎰=+L dy y x Q dx y x P ),(),([]dt t t t Q t t t P ⎰'+'βαϕϕφφϕφ)())(),(()())(),((。
大学数学微积分第九、十章 多元函数积分学二重积分知识点总结
第九、十章 多元函数积分学§9.1 二重积分一、在直角坐标系中化二重积分为累次积分以及交换积分顺序序问题 X型区域:设有界闭区域{}12(,),()()D x y a x b x y x φφ=≤≤≤≤其中12(),()x x ϕϕ在[,]a b 上连续,(,)f x y 在 D 上连续,则21()()(,)(,)(,)x bDDax f x y d f x y dxdy dx f x y dy φφσ==⎰⎰⎰⎰⎰⎰Y 型区域:设有界闭区域{}12(,),()()D x y c y d y x y φφ=≤≤≤≤其中12(),()y y ϕϕ在[,]c d 上连续,(,)f x y 在D 上连续则21()()(,)(,)(,)y dDDcy f x y d f x y dxdy dy f x y dx ϕϕσ==⎰⎰⎰⎰⎰⎰关于二重积分的计算主要根据X 型区域或Y 型区域I ,把二重积分化为累次积分从而进行计算,对于比较复杂的区域D 如果既不符合X 型区域中关于D 的要求,又不符合Y 型区域中关于D 的要求,那么就需要把D 分解成一些小区域,使得每一个小区域能够符合X 型区域或Y 型区域中关于区域的要求,利用二重积分性质,把大区域上二重积分等于这些小区域上二重积分之和,而每个小区域上的二重积分则可以化为累次积分进行计算。
在直角坐标系中两种不同顺序的累次积分的互相转化是一种很重要的手段,具体做法是先把给定的累次积分反过来化为二重积分,求出它的积分区域D ,然后根据D 再把二重积分化为另外一种顺序的累次积分。
二、在极坐标系中化二重积分为累次积分在极坐标系中一般只考虑一种顺序的累次积分,也即先固定θ对γ进行积分,然后再对θ进行积分,由于区域D 的不同类型,也有几种常用的模型。
模型I 设有界闭区域{}12(,),()()D γθαθβϕθγϕθ=≤≤≤≤其中12(),()ϕθϕθ在[,]αβ上连续,(,)(cos ,sin )f x y f γθγθ=在D 上连续。
二重积分知识点
二重积分知识点一、引言二重积分是高等数学中的重要内容,是对二元函数在有限区域上的积分运算。
二重积分的概念与求解技巧是深入理解、掌握多元函数的必备工具,也为解决实际问题提供了数学方法。
本文将从二重积分的概念、性质、计算方法和应用等方面,全面详细地介绍二重积分的知识点。
二、概念1. 二重积分的定义设f (x,y )在闭区域D 上有定义,D 由有向闭曲线C 围成,且f (x,y )在D 上有界。
若存在数I ,对于任意给定的正数ε,都存在正数δ,使得对于D 内任意满足Δσ<δ的任意分割σ,对应的任意代点ξij ,总有|∑∑f mj=1n i=1(ξij )Δσij −I|<ε则称I 为函数f (x,y )在闭区域D 上的二重积分,记作I =∬f D(x,y )dσ其中,Δσij 表示第(i,j )个小区域的面积,Δσ表示整个区域D 的面积。
2. 二重积分的几何意义二重积分的几何意义是对二元函数在闭区域上的面积进行逐点求和,即将闭区域D 分割成无穷多个小面积区域,并对每个小面积区域上的函数值进行乘积再求和,最终得到二重积分。
三、性质1. 线性性质设闭区域D上有二重积分∬fD(x,y)dσ,若c为常数,则有∬(cf(x,y)) D dσ=c∬fD(x,y)dσ∬(f(x,y)±g(x,y)) D dσ=∬fD(x,y)dσ±∬gD(x,y)dσ2. 区域可加性设闭区域D可分为非重叠的两部分D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ3. Fubini定理(累次积分)设函数f(x,y)在闭区域D上连续,则有∬f D (x,y)dσ=∫(∫fβ(x)α(x)(x,y)dy)badx=∫(∫fδ(y)γ(y)(x,y)dx)dcdy其中,(x,y)∈D,α(x)≤y≤β(x),γ(y)≤x≤δ(y)。
4. 值定理设函数f(x,y)在闭区域D上一致连续,则存在(ξ,η)∈D,使得∬fD (x,y)dσ=f(ξ,η)∬dDσ=f(ξ,η)σ(D)其中,σ(D)表示闭区域D的面积。
高中数学知识点多元函数微积分
高中数学知识点多元函数微积分高中数学知识点:多元函数微积分数学是一门充满魅力的学科,是一种日常生活中必不可少的学问。
而在高中数学中,多元函数微积分是一个十分重要的知识点,也是理所当然的。
在本文中,我们将探讨多元函数微积分的相关知识。
一、函数的概念在数学中,函数是指每个自变量对应一个唯一的因变量的规则。
其中,自变量表示不同的变量,而因变量表示任何由自变量产生的结果。
在函数中,自变量和因变量的关系可以用一个方程或者一张图表来表示。
二、多元函数在二元函数中,函数的自变量和因变量是二维的,通常用 (x,y) 表示。
同样的,在多元函数中,函数的自变量和因变量可以是任意维度的向量,而多元函数在图像上可以画出一个三维图像。
三、多元函数的微积分在学习多元函数微积分时,我们需要掌握很多基本概念。
其实,微积分就是计算函数导数和积分的算法。
在多元函数中,导数可以理解为瞬时速度或瞬时变化率。
而在三维空间中,导数也可以表示为切向量的方向。
对于多元函数 f(x,y),我们可以把它的微分表示成df = ∂f/∂x dx + ∂f/∂y dy。
其中,∂f/∂x 和∂f/∂y 是偏导数,分别对应自变量 x 和y。
微分也可以用来表示函数的局部线性逼近。
因此,我们可以通过微分来计算多元函数的斜率和切角。
四、多元函数的求极限在计算多元函数极限时,我们需要用到极限的三个特性:唯一性、保序性和有界性。
此外,我们还需要掌握一些极限的常用公式和技巧。
例如,当两个无穷小的乘积趋近于零时,我们可以使用 L'Hopital 法则来解决。
五、多元函数的最大值和最小值在多元函数中,我们常常需要求解最大值和最小值,这些值对于优化和排课等问题都非常重要。
通常我们可以使用一些基本的极值定理来解决这些问题。
例如,当函数的偏导数等于零时,函数的值最大或最小。
此外,我们还可以使用拉格朗日乘数法求解非约束性最大值和最小值。
六、多元函数应用多元函数在模拟现实问题时有着广泛的应用。
多元函数微积分复习概要
第六章多元函数微积分复习要点一、基本概念及相关定理1.多元函数的极限定义:函数(,)z f x y =在区域D 有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数A,则称常数A 是函数(,)z f x y =当P(x ,y )趋于000(,)P x y 时的极限.记作0lim (,)x xy y f x y A →→=,或00(,)(,)lim(,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或lim (,)f x y A ρ→=,或(,)f x y A →,0ρ→.其中,ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义,如果对任意0(,)()P x y U P ∈,都有0000(,)(,)lim(,)(,)x y x y f x y f x y →=(或0lim ()()P P f P f P →=),则称函数(,)z f x y =在点000(,)P x y 处连续.3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义.(1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导数定义为00000(,)(,)lim x f x x y f x y x∆→+∆-∆,记作00x x y y zx ==∂∂,或00x x y y f x==∂∂,或00(,)x z x y ',或00(,)x f x y ',即x x y y zx==∂∂=00000(,)(,)lim x f x x y f x y x∆→+∆-∆.(2)函数(,)z f x y =在点000(,)P x y 处对y 的偏导数定义为00000(,)(,)lim y f x y y f x y y∆→+∆-∆,记作00x x y y zy ==∂∂,或00x x y y f y==∂∂,或00(,)y z x y ',或00(,)y f x y ',即x x y y zy==∂∂=00000(,)(,)lim y f x y y f x y y∆→+∆-∆.而称z x∂∂,或f x ∂∂,或(,)x z x y ',或(,)x f x y '及[z y ∂∂,或f y∂∂,或(,)y z x y ',或(,)y f x y ']为(关于x 或关于y )偏导函数.高阶偏导数:22(,)xx z zf x y x x x∂∂∂⎛⎫''== ⎪∂∂∂⎝⎭或(,)xx z x y '', 2(,)xy z zf x y y x x y∂∂∂⎛⎫''== ⎪∂∂∂∂⎝⎭或(,)xy z x y '', 2(,)yx z zf x y x y y x⎛⎫∂∂∂''== ⎪∂∂∂∂⎝⎭或(,)yx z x y '', 22(,)yyz zf x y y y y⎛⎫∂∂∂''== ⎪∂∂∂⎝⎭或(,)yy z x y ''. 同理可得,三阶、四阶、…,以及n 阶偏导数.4.全微分定义:设函数(,)z f x y =在点(,)P x y 的某一邻域()U P 有定义,若函数在点(,)x y 的全增量(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为()z A x B y ρ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,仅于x、y有关,ρ=,则称函数(,)z f x y =在点(,)x y 处可微分,称A x B y ∆+∆为函数(,)z f x y =在点(,)x y 的全微分,记为dz ,即dz A x B y =∆+∆.可微的必要条件:若函数(,)z f x y =在点(,)x y 处可微分,则(1)函数(,)z f x y =在点(,)x y 的偏导数z x ∂∂、zy∂∂必存在;(2)全微分为z z dz x y z x y z dx dy x y∂∂+∂∂∂=∆+∆=∂∂∂. 推广:函数(,,)u f x y z =在点(,,)x y z 的全微分为u u udu dx dy dz x y z∂∂∂=++∂∂∂.可微的充分条件:若函数(,)z f x y =的偏导数z x∂∂、z y∂∂在点(,)x y 处连续⇒(,)z f x y =在点(,)x y 处可微分.5.复合函数微分法(5种情况,由简单到复杂排列): (1)含有多个中间变量的一元函数(,,)z f u v w =,()u u x =,()v v x =,()w w x =,则dz z du z dv z dwdx u dx v dx w dx∂∂∂=++∂∂∂, 称此导数dzdx为全导数;(2)只有一个中间变量的二元复合函数 情形1:()z f u =,(,)u u x y =,则z dz ux du x∂∂=∂∂ ,z dz u y du y∂∂=∂∂. 情形2:(,,)z f x y u =,(,)u u x y =,则z f z u x x u x∂∂∂∂=+∂∂∂∂ ,z f z u y y u y∂∂∂∂=+∂∂∂∂. zx wv u xx zuyxzy yuxx其中,f x∂∂与z x∂∂是不同的,z x∂∂是把复合函数[,,(,)]z f x y u x y =中的y 看作不变量而对x 的偏导数;f x∂∂是把函数(,,)f x y u 中的y 及u 看作不变量而对x 的偏导数。
微积分——多元函数及二重积分知识点
第四章 矢量代数与空间解析几何微积分二大纲要求了解 两个向量垂直、平行的条件,曲面方程和空间曲线方程的概念,常用二次曲面的方程及其图形,空间曲线的参数方程和一般方程.空间曲线在坐标平面上的投影.会 求平面与平面、平面与直线、 直线与直线之间的夹角,利用平面、直线的相互絭(平行、垂直、相交等)解决有关问题,点到直线以及点到平面的距离,求简单的柱面和旋转曲面的方程,求空间曲线在坐标平面上的投影方程.理解 空间直角坐标系,向量的概念及其表示,单位向量、方向数与方向余弦、向量的坐标表达式 掌握 向量的运算(线性运算、数量积、向量积、混合积),用坐标表达式进行向量运算的方法,平面方程和直线方程及其求法.第一节 矢量代数一、内容精要 (一) 基本概念 1.矢量的概念定义4.1 一个既有大小又有方向的量称为矢量,长度为0的矢量称为零矢量,用0表示,方向可任意确定。
长度为1的矢量称为单位矢量。
定义4.2两个矢量a 与b,若它们的方向一致,大小相等,则称这两个矢量相等,记作b a .换句话说一个矢量可按照我们的意愿把它平移到任何一个地方(因为既没有改变大小,也没改 变方向),这种矢称为自由矢量,这样在解问题时将更加灵活与方便。
k a j a i a a3211( 称为按照k j i ,,的坐标分解式,},,{321a a a a 称为坐标式。
.||232221a a a a 若,0 a 记||0a a a。
知0a 是单位矢量且与a 的方向一致,且0||a a a 。
因此,告诉我们求矢量a 的一种方法,即只要求出a 的大小||a 和与a方向一致的单位矢量0a ,则.||0a a a 若},{321a a a a,知},cos ,cos ,{cos },,{2322213232221223222110 a a a a a a a a a a a a a其中 ..是a分别与Ox 轴,Oy 轴,Oz 轴正向的夹角,而,cos ,cos ,cos 232221323222123322211a a a a a a a a a a a a且.1cos cos cos 2222.矢量间的运算设}.,,{},,,{},,,{321321321c c c c b b b b a a a a).0||,0|(|||||cos ),0(cos |||| b a b a ba b a b a.cos ,232221232221332211332211b b b a a a b a b a b a b a b a b a b aa a a a a a a a 知,0cos 2的确定(1),sin |||||| b a b a (2)b a 与b a,所确定的平面0,0||,||,( b a b a b a b a 即知若,方向可任意确定)垂直,且b a b a,,构成右手系若,, 用坐标式给出,则b b a j b a b a i b a b a b b b a a a k j i b a()()(12113312332321321由行列式的性质可知.a b b ab a 的几何意义:b a表示以b a ,为邻边的平行四边形的面积,即.||sin ||||||s h a b a b a容易知道以b a,为邻边的三角形面积为||21b a s .图4-1sin ||b容易验证.||||||2222b a b a b a321321321)(c c c b b b a a a c b ac b a)(的性质可用行列式的性质来记,其余没有提到的性质与以前代数运算性质完全相同。
微积分——多元函数及二重积分知识点
第四章 矢量代数与空间解析几何微积分二大纲要求了解 两个向量垂直、平行的条件,曲面方程和空间曲线方程的概念,常用二次曲面的方程及其图形,空间曲线的参数方程和一般方程.空间曲线在坐标平面上的投影.会 求平面与平面、平面与直线、 直线与直线之间的夹角,利用平面、直线的相互絭(平行、垂直、相交等)解决有关问题,点到直线以及点到平面的距离,求简单的柱面和旋转曲面的方程,求空间曲线在坐标平面上的投影方程.理解 空间直角坐标系,向量的概念及其表示,单位向量、方向数与方向余弦、向量的坐标表达式 掌握 向量的运算(线性运算、数量积、向量积、混合积),用坐标表达式进行向量运算的方法,平面方程和直线方程及其求法.第一节 矢量代数一、内容精要 (一) 基本概念 1.矢量的概念定义 一个既有大小又有方向的量称为矢量,长度为0的矢量称为零矢量,用0表示,方向可任意确定。
长度为1的矢量称为单位矢量。
定义两个矢量a 与b,若它们的方向一致,大小相等,则称这两个矢量相等,记作b a =.换句话说一个矢量可按照我们的意愿把它平移到任何一个地方(因为既没有改变大小,也没改 变方向),这种矢称为自由矢量,这样在解问题时将更加灵活与方便。
k a j a i a a3211(++=称为按照k j i ,,的坐标分解式,},,{321a a a a = 称为坐标式。
.||232221a a a a ++= 若,0≠a 记||0a a a=。
知0a 是单位矢量且与a 的方向一致,且0||a a a =。
因此,告诉我们求矢量a 的一种方法,即只要求出a 的大小||a 和与a方向一致的单位矢量0a ,则.||0a a a=若},{321a a a a = ,知},cos ,cos ,{cos },,{2322213232221223222110γβα=++++++=a a a a a a a a a a a a a其中γβα..是a分别与Ox 轴,Oy 轴,Oz 轴正向的夹角,而,cos ,cos ,cos 232221323222123322211a a a a a a a a a a a a ++=++=++=γβα且.1cos cos cos 222=++γβα2.矢量间的运算设}.,,{},,,{},,,{321321321c c c c b b b b a a a a ===).0||,0|(|||||cos ),0(cos ||||≠≠⋅=≤≤=⋅b a b a ba b a b a θπθθ.cos ,232221232221332211332211b b b a a a b a b a b a b a b a b a b a ++++++=++=⋅θa a a a a a a a ⋅===⋅知,0cos 2b a ⨯的确定(1),sin ||||||θb a b a =⨯(2)b a ⨯与b a,所确定的平面0,0||,||,(=⨯=⨯≠b a b a b a b a 即知若,方向可任意确定)垂直,且b a b a⨯,,构成右手系若c b a ,, 用坐标式给出,则k a b b a j b a b a i b ab a b b b a a a k j i b a)()()(212113312332321321-+---==⨯由行列式的性质可知.a b b a⨯-=⨯b a ⨯的几何意义:b a⨯表示以b a ,为邻边的平行四边形 的面积,即.||sin ||||||s h a b a b a ===⨯θ 容易知道以b a,为邻边的三角形面积为||21b a s ⨯=.容易验证 ().||||||2222b a ba b a=⋅+⨯321321321)(c c c b b b a a a c b a =⋅⨯b a ⨯ba图θsin ||b =图v1.0 可编辑可修改c b a⋅⨯)(的性质可用行列式的性质来记,其余没有提到的性质与以前代数运算性质完全相同。
微积分——多元函数及二重积分知识点
微积分——多元函数及二重积分知识点
一、多元函数
多元函数是指变量、个数多于一个的函数。
常见的函数可以分为二元、三元函数。
1、二元函数
二元函数是指变量、个数为两个的函数,常见的二元函数有:二次函数、双曲线函数等。
(1)二次函数
二次函数是指用一元二次方程记录的函数,一般格式为:y=ax²+bx+c,其中a≠0,则二次函数是一个关于x的二次多项式函数,当a>0时,它
的图像呈现出U形;当a<0时,它的图像呈现出锥形。
(2)双曲线函数
双曲线的定义式有很多种,常见的有标准双曲线、变形双曲线等,它
们的共同特点是,双曲线的图像都是上下对称的,它们的定义式具有一定
的对称性。
2、三元函数
三元函数是指变量、个数为三的函数,一般格式为:z=f(x,y),它
们也有很多类型,比如极坐标函数、椭圆函数、正弦函数、余弦函数等。
(1)极坐标函数
指的是用极坐标表示的只有一个变量的函数,通常表示为r=f(θ),其中r代表半径,θ代表角度,则r随着θ的变化而变化,极坐标函数
的图像一般是一个圆或者椭圆。
(2)椭圆函数
椭圆函数是指以椭圆为图形的函数,一般表示为:
(x-x0)²/a²+(y-y0)²/b²=1,其中a是x轴的长半轴,b是y轴的
长半轴,x0、y0是椭圆圆心坐标。
微积分第八章多元函数笔记
微积分第八章多元函数笔记微积分第八章多元函数是在一元函数的基础上拓展而来的,主要涉及多元函数的极限、连续性、偏导数、全微分、多元函数的微分、多元函数的导数以及拉格朗日乘数法等内容。
本文将重点探讨多元函数的微分和拉格朗日乘数法,并尝试用卷积的角度解释其中的概念。
一、多元函数的微分多元函数的微分是一种线性近似,它描述了函数在其中一点附近的变化情况。
多元函数的微分可以通过偏导数来求解。
对于二元函数f(x,y),在点(x0,y0)处可以定义偏微分算子∂=∂/∂x和∂/∂y,其定义为:∂f/∂x=f_x(x0,y0)=(f(x0+Δx,y0)-f(x0,y0))/Δx∂f/∂y=f_y(x0,y0)=(f(x0,y0+Δy)-f(x0,y0))/Δy其中Δx和Δy分别表示变量x和y的增量。
∂f/∂x和∂f/∂y分别表示函数f在点(x0,y0)处对变量x和y的变化率。
考虑函数f(x,y)的微分形式,可以表示为:df=f_x(x_0,y_0)dx+f_y(x_0,y_0)dy其中dx和dy分别表示x和y的增量。
df表示函数f在点(x0,y0)处的全增量。
可以将df看作是函数f的线性近似,其包含了对x和y的变化的线性度量。
二、卷积的思维解释卷积是一种线性运算,它用来描述信号经过系统处理后的结果。
在微积分中,可以将多元函数的微分看作是函数f和无穷小增量dx、dy的卷积操作。
其中,函数f可以看作是输入信号,dx和dy可以看作是脉冲响应。
通过卷积运算,可以得到函数f在(dx,dy)范围内的局部增量。
具体来说,可以将函数f(x,y)表示为一个二维矩阵,矩阵的每个元素对应函数f在不同点的值。
将增量dx、dy表示为一个二维矩阵,矩阵的大小与函数f相同,每个元素都是一个脉冲。
通过卷积运算,将函数f和增量dx、dy进行卷积,可以得到函数f在(dx,dy)范围内的局部增量。
三、拉格朗日乘数法拉格朗日乘数法是一种用于求解约束条件下的极值问题的方法。
微积分课件 二重积分的概念
i为底作平顶柱体, 其体积为
O
y
f (i ,i ) i
D
x
i
(i ,i )
Vi f (i ,i ) i (i 1,2, ,n)
n
V f (i ,i ) i i 1
6
3.求和取极限
令di
表示
内任意两点间距离的最大值
i
(称为该区域的直径), 又令
y i
d max 1in
x
O
23
x+y=1
15
例2 估计 (x2 y2 9)d ,其中D : x2 y2 4.
D
解 由第八章二元函数最值的求法知:
要求 z x2 y2 9
在区域D : x2 y2 4的最值, 须先求出ƒ(x,y)在D内全部驻点的函数值、一阶偏导不 存在的点的函数值以及区域D的边界上的最值,再比较
di
,
O
x
若当d→0时(此时必有n→∞,但n→∞不能保证有d→0),
n
有
V
lim d 0
i 1
f (i ,i ) i
存在,
则定义此极限为曲顶柱体之体积.
注1 这种和式的极限的应用极广;各个领域中的不少 问题通常都要化为这种和式的极限;我们常把这种和 式的极限称为 二重积分.
7
§1 二重积分的概念
1
2 x2 ( y1)2 2
f (x, y)dxdy .
解 因ƒ(x,y)在闭区域D上连续,而 2,
则由得中值定理
I lim 1 f ( ,) 0 2
lim f ( ,) 0
lim f (,) ( ,) (0,1)
( ,) D
=ƒ(0,1)=1.
18
经济数学微积分教学大纲
3.理解线性微分方程解的性质及解的结构
2
4.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性 微分方程.
5.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常 系数非齐次线性微分方程.
6.了解差分与差分方程及其通解与特解等概念. 7.掌握一阶常系数线性差分方程的求解方法. 8.会用微分方程求解简单的经济应用问题.
3
1
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求 它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分 求解简单的经济应用问题.
4.理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分.
经济数学微积分----教学大纲
一.函数极限与ห้องสมุดไป่ตู้续
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右 极限之间的关系.
8.掌握 ex , sin x ,cos x ,ln(1 x) 及(1 x)
用它们将一些简单函数间接展开为幂级数.
的麦克劳林(Maclaurin)展开式,会
六.常微分方程与差分方程
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.
大学数学微积分第八章 多元函数微分学多元函数的概念、极限与连续性知识点总结
第八章 多元函数微分学§8.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点P(x,y)∈D ,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以z=f (x ,y ),D 称为定义域。
二元函数z=f (x ,y )的图形为空间一块曲面,它在xy 平面上的投影域就是定义域D 。
例如 22221,:1z x y D x y =--+≤ 二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是xy 平面上以原点为圆心,半径为1的闭圆。
2.三元函数与n 元函数:(,,),(,,)u f x y z x y z =∈Ω空间一个点集,称为三元函数12(,,,)n u f x x x n =称为元函数。
它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。
条件极值中,可能会遇到超过三个自变量的多元函数。
二、二元函数的极限:设00(,)(,)f x y x y 在点的邻域内有定义,如果对任意00,εδ>>存在只要2200()(),(,)x x y y f x y A δε-+-<-<就有则,0000(,)()lim (,)lim (,)x x x y x y y y f x y A f x y A →→→==或称当00(,)(,)(,)x y x y f x y 趋于时的极限存在,极限值为A 。
否则,称为极限不存在。
值得注意:00(,)(,)x y x y 这里趋于是在平面范围内,可以按任何方式沿任意曲线趋于00(,)x y ,所以二元函数的极限比一元函数的极限复杂,但只要求知道基本概念和简单的讨论极限存在性和计算极限值不象一元函数求极限要求掌握各种方法和技巧。
三、二元函数的连续性1.二元函数连续的概念若000000lim (,)(,)(,)(,)x x y y f x y f x y f x y x y →→=则称在点处连续 若(,)f x y D 在区域内每一点皆连续,则称(,)f x y 在D 内连续。
微积分II全书整理
第一部分 多变量微分学一、多元函数极限论 1. 多元函数极限的定义:(1)邻域型定义:设函数)(P f 的定义域为D ,0P 是D 的聚点,如果存在常数A ,对于任意给定的正数ε,总存在正数δ,使得当点)(0P U D P δ⋂∈时,都有ε<-A P f )(,那么就称常数A 为函数)(P f 当0P P →时的极限,记作.)(lim 0A P f P P =→(2)距离型定义:设函数)(P f 的定义域为D ,0P 是D 的聚点,如果存在常数A ,对于任意给定的正数ε,总存在正数δ,使得当点P D ∈,且δρ<<),(00P P 时,都有ε<-A P f )(,那么就称常数A 为函数)(P f 当0P P →时的极限,记作.)(lim 0A P f P P =→注:①这里给出的是数学分析中国际通用的定义,已自然排除了0P 邻域内的无定义点; ②极限存在的充要条件:点P 在定义域内以任何方式或途径趋近于0P 时,)(P f 都有极限; ③除洛必达法则、单调有界原理、穷举法之外,可照搬一元函数求极限的性质和方法,常用的有:等价无穷小替换、无穷小×有界量=无穷小、夹挤准则等;④若已知)(lim 0P f P P →存在,则可以取一条特殊路径确定出极限值;相反,如果发现点P 以不同的方式或途径于0P 时,)(P f 区域不同的值,则可断定)(lim 0P f P P →不存在.⑤二元函数的极限记为A y x f y x y x =→),(lim ),(),00(或A y x f y y x x =→→),(lim 0.2. 多元函数的连续性:设函数)(P f 的定义域为D ,0P 是D 的聚点,如果0P D ∈,且有)()(lim 00P f P f P P =→,则称)(P f 在0P 处连续;如果)(P f 在区域E 的每一点处都连续,则称)(P f 在区域E 上连续.注:①如果)()(lim 00P f P f P P ≠→,只称“不连续”,而不讨论间断点类型;②在有界闭区域上的连续函数拥有和一元函数类似的性质,如有界性定理、一致连续性定理、最大值最小值定理、介值定理等. 3.二重极限与累次极限累次极限与二重极限的存在性之间没有任何必然的联系,但若某个累次极限和二重极限都存在,则它们一定相等;反之,若两个累次极限存在而不相等,则二重极限一定不存在,又若两个累次极限存在且相等,称累次极限可以交换求极限的顺序.二、偏导数、全微分1.偏导数、全微分的相关理论问题 (以二元函数为例讨论)(1)偏导数的存在性:讨论对某个变量的偏导数,则将其他变量当作常数.),('),(),(lim 0000000y x f x x y x f y x f x x x ∆→=--;),('),(),(lim 0000000y x f y y y x f y x f y y y ∆→=--. (2)可微性:记),(),(0000y x f y y x x f z -∆+∆+=∆,则仅当0)()()(lim22=∆+∆∆+∆-∆→→y x y B x A z y x 时,),(y x f 在),(00y x 处可微,否则不可微.其中),('00y x f A x =,),('00y x f B y =. 注:等价于()22)()(y x o y B x A z ∆+∆+∆+∆=∆ 即()220000)()()(),(),(y x o y B x A y x f y y x x f ∆+∆=∆+∆--∆+∆+又即()()2020********)()())(,('))(,('),(),(y y x x o y y y x f x x y x f y x f y x f y x -+-=-+---记dy yzdx x z y B x A dz ∂∂+∂∂=∆+∆=为全微分),(y x f 在),(y x 处的全微分. 中值定理推广为:.1,0,),('),('2121<<∆∆++∆∆+∆+=∆θθθθy y y x f x y y x x f z y x (3)偏导数的连续性:讨论偏导连续性,先用定义求),('00y x f x 和),('00y x f y ,用公式求),('y x f x 和),('y x f y ,判断),('),('lim 000y x f y x f x x y y x x =→→和),('),('lim 0000y x f y x f y y y y x x =→→是否都成立,如果都成立则偏导数连续. ④逻辑关系:极限存在偏导存在可微连续偏导连续⇒⇓⇑⇒2.多元函数微分法: (1)链式求导法则:①从题目中的复合关系画出从起始变量经过中间变量到终变量的复合结构图;②求偏导就是“走路”的过程,有几条路,等号后就有几项;每条路上有几段,每项中就会有几部分相乘(注意:偏导写偏微分符号“∂”, 不偏则写微分符号“d ”); ③严格遵守用位置表示偏导数的规则,注意避免符号混乱和歧义;④对于求高阶偏导数的问题,不论对谁求导,也不论求了几阶导,求导后的新函数仍具有与原来函数相同的复合结构(注意若偏导连续则相等,要合并同类项).(2)全微分形式不变性:仅一阶全微分可以使用,高阶全微分不再成立. (3)隐函数存在性及求导法则:①一个方程的情形(以三个变量为例):设),,(z y x F 在点),,(000z y x 某邻域内偏导连续,且0),,(000=z y x F ,0),,('000≠z y x F z ,则方程0),,(=z y x F 在点),,(000z y x 内某邻域内可唯一确定单值函数),(y x z z =,这个函数在),(00y x 的某邻域内具有连续的偏导数,且''z x F F x z-=∂∂,''z y F F y z -=∂∂.结论不难推广到一般情形. ②方程组的情形:一般地,设方程组),2,1(0),,,;,,,(2121m i u u u x x x F m n i ==可确定m 个n 元函数),,,(21n i i x x x u u =.当雅可比行列式0),,,(),,,(11112212121112121≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂=m m m m m m m u F u F u F u F u F u F u F u F u F u u u F F F J时,可以确定JJ x u j i *-=∂∂,其中*J 由将),,,(),,,(2121m m u u u F F F J ∂∂=分母中的第i 个元素替换成j x 得到.(雅可比行列式在横向上改变各自变量,纵向上改变各函数名称) 注:①求导前应事先判断,a 个变元,b 个方程可确定b 个)(a b -元函数; ②有些比较简单的问题不必使用此通法,可以考虑利用全微分形式不变性. ③经验结论:由0),(),,,(),,,(===v u F z y x v z y x u ψϕ确定的隐函数),(y x z z =,求22x z∂∂时,有0'')'(222221222=∂∂+∂∂+⎪⎭⎫⎝⎛∂∂x v F x u F x u F A ;求y x z ∂∂∂2时,有0'')'(222122=∂∂∂+∂∂∂+∂∂∂∂y x vF y x u F yu x u F A ; 求22yz∂∂时,有0'')'(222221222=∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂y vF y u F y u F A , 其中=A 222112211122")'("''2")'(F F F F F F F +-.(0),(=y x F 的曲率:()232221)'()'(F F A+)三、多元微分学的几何学应用(以下的讨论主要为了计算,条件未必严格)1.曲线的切线和法平面:设曲线()()()⎪⎩⎪⎨⎧===t z z t y y t x x l : 在0P 处()()()000'''t z t y t x ,,都存在且不为0,则曲线l 在0P 处的: (1)切线方程为()()()000000'''t z z z t y y y t x x x -=-=-: (2)法平面方程为()()()0)(')(')('000000=-+-+-z z t z y y t y x x t x . 注:若曲线以⎩⎨⎧==0),,(0),,(z y x G z y x F 形式给出,切向量为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧,,,''''''''''''y x y x x z x z z y z y G G F F G G F F G G F F .2.曲面的切平面与法线:设曲面∑由方程0),,(=z y x F 确定,),,(z y x F 在点0P ),,(000z y x 处可微,且'''z y x F F F ,,不为0,则曲面∑在0P 处的:(1)切平面方程为0)(')(')('000=-+-+-z z F y y F x x F z y x (导数已经代入0P 坐标); (2)法线方程为'''000z y x F z z F y y F x x -=-=-. 注:二元函数在某点处的全微分等于其在这点处切平面竖坐标的增量. 3.方向导数: (1)定义式:0)()(limPP P f P f lu P P P -=∂∂→→(2)若函数),,(z y x f 在点0P 处可微,那么),,(z y x f 在点0P 处沿所有方向的方向导数存在,且γβαcos cos cos 0zfy f x f lf P ∂∂+∂∂+∂∂=∂∂→,其中γβαcos ,cos ,cos 为→l 的方向余弦.注:沿所有方向的方向导数存在不能推出可微,偏导数存在不能推出各方向导数存在. 4.梯度:(1)计算:gra d u =x u ∂∂i +y u ∂∂j +xu∂∂k ; (2)grad u是)(P u 在点P 的变化量最大的方向,其模等于这个最大变化率; (3)梯度的运算法则和一元函数的求导法则相似; (4)方向导数等于梯度在该方向上的投影.四、极值与最值问题1.二元函数的非条件极值问题(1)极值的必要条件:对偏导数存在的函数),(y x f ,在),(00y x M 处有极值的必要条件是0),(),(0000=∂∂=∂∂yy x f x y x f .(可推广到三元及以上)(2)极值的充分条件:设),(00y x M 为函数),(y x f 的驻点,且),(y x f 在),(00y x 处连续,记AC B y x f A C y x f B y x f A yy xy xx -=∆====2000000),,("),,("),,(",则: ①0<∆时,),(00y x 是极值点,当0>A 时,),(00y x f 为极小值;当0<A 时,),(00y x f 为极大值;②0>∆时,),(00y x 不是极值点; ③0=∆时,此法失效,另谋它法.注:本方法不可推广到三元及以上,三元及以上的充分条件中,要求黑塞矩阵正定或负定.(本知识不做要求,在出题人手下不会出现三元以上的极值判断问题) 2.条件极值与拉格朗日乘数法(1)一般情况下的拉格朗日乘数法:求函数),,,(21n x x x f u =在条件),,,(21n i x x x ϕ下的条件极值),,2,1(n m m i <= ,可以从函数),,,(),,,(),,,,,(2112111n i mi i n n n x x x x x x f x x F ϕλλλ∑=+=的驻点中得到可能的条件极值的极值点. 步骤:①构造辅助函数;(注意:变量均为独立变量) ②求各变量的一阶导并令其为零,联立得到方程组; ③解方程组得到所有驻点.(解无定法,尽量利用观察法) (2)对“条件极值”的解读:事实上,只利用拉格朗日乘数法求条件极值无异于掩耳盗铃.由于对于多元函数,构造拉格朗日函数后会出现至少三个变量,在数学上欲判断求得的驻点是否是极值点需要利用三阶以上的黑塞矩阵.而出题人为了回避这一知识点,通常以实际问题的形式来考察拉格朗日乘数法.由于在实际问题的背景下必存在最值,可以认为“所得即所求”,但是实际上求出的并不是真正的条件极值,而是在条件下的最值.所以,出题人通常在题目中会以“最值”来代替极值进行考察.五、习题1.已知方程02222=∂∂+∂∂y u x u 有⎪⎭⎫⎝⎛=x y u ϕ形式的解,求出此解.2.已知二元函数),(y x f z =可微,两个偏增量:,3)32(322222x y x xy x y x z x ∆+∆+∆+=∆.2233y x y y x z y ∆+∆=∆且,1)0,0(=f 求).,(y x f3.设0),(222=++++z y x z y x F 确定),(y x z z =,其中F 有二阶连续偏导数,求.2yx z∂∂∂ 4.已知函数),(y x f z =可微,且有,0≠∂∂xz满足方程.0)(=∂∂+∂∂-y z y x z z x 现在将x 作为z y ,的函数,求.yx∂∂ 5.设),,(t x f y =t 是由方程0),,(=t y x F 确定的x ,y 的函数,其中F 和f 均有一阶连续的偏导数,求.dxdy 6.设),,(),,(),,(v u f z v u y v u x ===ψϕz 是x ,y 的二元函数,求x z ∂∂及.yz∂∂ 7.求函数)ln(22z x e w y+=-在点),1,(2e e 处沿曲面uv v u v u e z e y e x ===-+,,的法线向量的方向导数.8.求g ra d[c ·r +21ln(c ·r )],其中c 为常向量,r 为向径,且c ·r >0. 9.设二元函数f 在),(000y x P 点某邻域内偏导数'x f 和'y f 都有界,证明:f 在此邻域内连续. 10.设),(00'y x f x 存在,),('y x f y 在),(00y x 处连续,证明:),(y x f 在),(00y x 处可微.11.证明:函数⎪⎩⎪⎨⎧≠≠+-=)0,0(),(0)0,0(),(),(2233y x y x y x y x y x f ,,在原点处偏导数存在但不可微.12.设),(y x z z =是由方程⎪⎭⎫⎝⎛=z y z x ϕ确定的二元函数,其中ϕ有连续的二阶导函数,证明:.222222⎪⎪⎭⎫⎝⎛∂∂∂=∂∂⋅∂∂y x z y z x z 13.证明:曲面)2(2z y f ezx -=-π是柱面,其中f 可微.第二部分 多变量积分学一、各类积分的计算公式及意义(一)二重积分 1.计算公式①直角坐标系下的二重积分:()()()⎰⎰⎰⎰⎰⎰==)()()()(2121,,,y x y x dcbax y x y Ddx y x f dy dy y x f dx dxdy y x f②极坐标系下的二重积分:()()()⎰⎰⎰⎰⎰⎰==)()()()(2121.sin ,cos sin ,cos ,r r bar r Dd r r f rdr rdr r r f d dxdy y x f ϕϕβαθθθθθθθθ③二重积分的变量替换:()[]dudv v u y x v u y v u x f dxdy y x f uvxy),(),(),(),,(,∂∂=⎰⎰⎰⎰σσ2.几何意义:()0,≥y x f 时,表示以0=z 为底,以()y x f z ,=为顶的曲顶柱体的体积. 3.物理意义:各点处面密度为()y x f ,的平面片D的质量. (二)三重积分 1.计算公式①直角坐标系下的三重积分: (1)柱型域:投影穿线法(先一后二法):()()()()⎰⎰⎰⎰⎰⎰=y x z y x z Vdz z y x f dxdy dV z y x f xy,,21,,,,σ(2)片型域:定限截面法(先二后一法):()()⎰⎰⎰⎰⎰⎰=zD z z Vdxdy z y x f dz dV z y x f ,,,,21②柱面坐标系下的三重积分:()()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰==βαθθθθθθθθ2121,,,sin ,cos ,sin ,cos ,,r r r z r z VVdzz r r f rdr d dz rdrd z r r f dV z y x f ③球面坐标系下的三重积分:()()()()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰==ϕθϕθθϕθϕβαϕθϕθϕϕϕθϕθϕϕθϕθϕ,,222121cos ,sin sin ,cos sin sin sin cos ,sin sin ,cos sin ,,r r VVdrr r r r f d d drd d r r r r f dV z y x f④三重积分的变量替换:()[]dudvdw w v u z y x w v u z w v u y w v u x f dV z y x f uvwxyzV V ),,(),,(),,(),,,(),,,(,,∂∂=⎰⎰⎰⎰⎰⎰2.物理意义:各点处体密度为()z y x f ,,的几何形体Ω的质量.(三)第一型曲线积分: 1.计算公式①平面曲线的情形:(1)()()b t a t y y t x x C ≤≤⎩⎨⎧==,,:则()()()()()().,,22⎰⎰'+'=b aC dt t y t x t y t x f ds y x f(2)()b x a x g y C ≤≤=,:则()()()()⎰⎰+=baCdx x g x g x f ds y x f .'1,,2(3)()βθαθ≤≤=,:r r C 则()()()()()()⎰⎰'+=βαθθθθθθθ.sin ,cos ,22d r r r r f ds y x f C②空间曲线的情形:()()()b t a t z z t y y t x x C ≤≤⎪⎩⎪⎨⎧===,,,::()()()()()()()().',,,,222⎰⎰+'+'=βαdt t z t y t x t z t y t x f ds z y x f C2.几何意义:以C 为准线,母线平行于z 轴的柱面介于0=z 与()y x f z ,=间的面积. 3.物理意义:各点处线密度为()y x f ,(或()z y x f ,,)的曲线C 的质量. (四)第一型曲面积分: 1.计算公式:()()().1,,,,,22⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=xydxdy y z x z y x z y x f dS z y x f Sσ 2.物理意义:各点处面密度为()z y x f ,,的曲面S 的质量. (五)第二型曲线积分:1.计算公式:①平面曲线的情形:()()b t a t y y t x x C ≤≤⎩⎨⎧==,,:⎰⎰+=+baCt dy t y t x Q t dx t y t x P dy y x Q dx y x P )())(),(()())(),((),(),(②空间曲线的情形:()()()b t a t z z t y y t x x C ≤≤⎪⎩⎪⎨⎧===,,,:)())(),(),(()())(),(),(()())(),(),((),,(),,(),,(t dz t z t y t x z t dy t z t y t x Q t dx t z t y t x P dz z y x R dy z y x Q dx z y x P baC ⎰⎰++=++2.物理意义:力场F =P(x,y ,z )i + Q (x,y ,z )j +R (x ,y,z )k 沿有向曲线C 所做的功.(六)第二型曲面积分: 1.计算公式:.)),(,,()),(,,()),(,,(),,(),,(),,(⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫⎝⎛∂∂-+⎪⎭⎫ ⎝⎛∂∂-±=++xy dxdy y x z y x R y x z y x Q y z y x z y x P x z dxdyz y x R dzdx z y x Q dydz z y x P Sσ 2. 物理意义:流速场v=P (x ,y,z )i + Q (x,y ,z )j+R (x ,y,z)k 单位时间通过有向曲面S流向指定一侧的净通量.二、各种积分间的联系1. 第一型曲线积分与第二型曲线积分:[]⎰⎰++=++CCds R Q P Rdz Qdy Pdx .cos cos cos γβα2. 第一型曲面积分与第二型曲面积分:[].cos cos cos ⎰⎰⎰⎰++=++SSdS R Q P Rdxdy Qdzdx Pdydz γβα3. 第二型曲线积分与二重积分(Gr een 公式):.dxdy y P x Q Qdy Pdx D C ⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+4. 第二型曲面积分与三重积分(Gaus s公式):.dV z R y Q x P Rdxdy Qdzdx Pdydz S V ⎰⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=++5. 第二型曲线积分与第二型曲面积分(Stokes 公式):.dxdy y P x Q dzdx x R z P dydz z Q y R Rdz Qdy Pdx S C ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=++⎰⎰⎰ 三、各种积分的通用性质1.黎曼积分的性质1°()()[]()().⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f βαβα2°()()()⎰⎰⎰ΩΩΩΩ+Ω=Ω21d P f d P f d P f ,其中Ω=Ω⋃Ω21,且1Ω与2Ω无公共内点.3°若()()P g P f ≤,Ω∈P ,则()().⎰⎰ΩΩΩ≤Ωd P g d P f若()()()()P g P f P g P f ≠≤,,且()()P g P f ,连续,Ω∈P ,则()().⎰⎰ΩΩΩ<Ωd P g d P f4°()().⎰⎰ΩΩΩ≤Ωd P f d P f5° 若()P f 在积分区域Ω上的最大值为M ,最小值为m ,则().Ω≤Ω≤Ω⎰ΩM d P f m6° 若()P f 在有界闭区域Ω上连续,则至少有一点Ω∈*P ,使()().Ω=Ω*Ω⎰P f d P f7° 若2R ⊂Ω关于坐标轴对称,当()P f 关于垂直该轴的坐标是奇函数则为0;若3R ⊂Ω关于坐标平面对称,当()P f 关于垂直该平面坐标轴的坐标是奇函数时为0.8° 将坐标轴重新命名,如果积分区域不变,则被积函数中的x ,y ,z 也同样作变化后,积分值保持不变.2.第二型积分的性质1° 设-Ω是与Ω方向相反的几何体,则.)()(→Ω→→Ω→Ω-=Ω⎰⎰-d P A d P A2° ()()()().⎰⎰⎰Ω→→Ω→→Ω→→Ω±Ω=Ω⎥⎦⎤⎢⎣⎡±d P B d P A d P B P A βαβα3°若21Ω+Ω=Ω,则.)()()(21→Ω→→Ω→→Ω→Ω+Ω=Ω⎰⎰⎰d P A d P A d P A4°若e p ()P A →⊥,,Ω∈P 则.0)(=Ω→Ω→⎰d P A5°设,Ω∈P e p ={}P P P γβαcos cos cos ,,,()P A →={})(),(),(P R P Q P P ,则[]⎰⎰Ω→Ω→Ω++=Ωd P R P Q P P d P A P P Pγβαcos )(cos )(cos )()(6° 将坐标轴重新命名,如果曲线或曲面的方程不变,则被积函数中的x,y ,z 也同样作变化后,积分值保持不变.四、各种积分的应用1.形心坐标公式:(),ΩΩ=⎰Ωxd M x μ()().,ΩΩ=ΩΩ=⎰⎰ΩΩzd M z yd M y μμ质心坐标公式:()(),⎰⎰ΩΩΩΩ=d M xd M x μμ()()()().,⎰⎰⎰⎰ΩΩΩΩΩΩ=ΩΩ=d M zd M z d M yd M y μμμμ2.转动惯量:()().2⎰ΩΩ=d M r M I μ 3.旋度:r otF (M)= ⎪⎪⎭⎫⎝⎛∂∂-∂∂z Q y R i +⎪⎭⎫ ⎝⎛∂∂-∂∂x R z P j +⎪⎪⎭⎫⎝⎛∂∂-∂∂y P x Q k.4.散度:div F (M)= .Mz R y Q x P ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂ 五、习题1.计算,2dxdy y D⎰⎰其中D由横轴和摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 的一拱)0,20(>≤≤a t π围成. 2.计算,)(sin 12dxdy y x D⎰⎰+-其中D: .0,0ππ≤≤≤≤y x 3.计算,222dxdy y x a D⎰⎰--其中D : .0,,22>≥≤+a x y ay y x 4.计算,22dxdy y x D⎰⎰+ 其中D : .0,0a y a x ≤≤≤≤5.计算[],)(1⎰⎰⎰+VdV z xf y 其中V 是由不等式组2230,1,11y x z y x x +≤≤≤≤≤≤-所限定的区域,)(z f 为任一连续函数.6.计算,222⎰⎰⎰+VdV z y x 其中V 是由不等式组1)1(,1222222≤-++≥++z y x z y x 所确定的空间区域. 7.计算,1222⎰⎰⎰-++VdV z y x 其中V 是由锥面22y x z +=和平面1=z 围成的立体.8.计算,)32(⎰⎰⎰++VdV z y x 其中V是顶点在)000(,,处,底为平面3=++z y x 上以)111(,,为圆心,1为半径的圆的圆锥体.8.计算,⎰lxds 其中l 为双曲线1=xy 上点)2,21(到)1,1(的弧段.9.计算⎰++Lds xy zx yz ,)222(其中L 是空间圆周.232222⎪⎩⎪⎨⎧=++=++az y x a z y x10.计算,ds z y x z D⎰⎰),,(ρ其中S 是椭球面122222=++z y x 的上半部分,点π,),,(S z y x P ∈为S 在点P处的切平面,),,(z y x ρ为原点)000(,,到平面π的距离.11.计算,cos )sin 1(2⎰--+ly y xdx e dy x e x 其中l 是由由原点沿2x y =到点)1,1(的曲线.12.计算⎰Γ+++++,)()()(222222dz y x dy x z dx z y 其中(),024:22222>⎪⎩⎪⎨⎧=+=++Γz xy x xz y x从z 轴正向看Γ取逆时针方向.13.计算,)()(22⎰+++-ly x dy y x dx y x 其中l 为摆线⎩⎨⎧-=--=ty t t x cos 1sin π从0=t 到π2=t 的弧段. 14.计算,)6()22(22223ydxdy z dzdx x z y x zy dydz e xx S-+++--⎰⎰-π其中S 是由抛物面224y x z --=,坐标面xo z,yo z及平面1,1,21===y x y z 所围成的立体表面的外侧. 15.计算,)()()(232323dxdy x z dzdx z y dydz y x S-+-+-⎰⎰其中S 是由锥面22z x y +=与半球面)0(222>--+=R z x R R y 构成的闭曲面的外侧.16.计算,dxdy y x f y z z dzdx y x f dydz y x f y x ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎰⎰∑其中∑是由122++=z x y 和229z x y --=所围立体表面的外侧, )(u f 是有连续导数的函数.17.计算,4)1(2)18(2dxdy yz dzdx y xdydz y S ⎰⎰--++其中S 是由()3101≤≤⎪⎩⎪⎨⎧=-=y x y z 绕y 轴旋转一周所得到的曲面,它的法向量与y 轴正向夹角恒大于.2π18.计算,222dzdx z x Sy ⎰⎰+其中S是曲面22z x y +=及1=y ,2=y 所围立体表面外侧.19.求闭曲面z a z y x 32222)=++(所围成的立体体积. 20.求锥面222x z y =+含在圆柱面222a y x =+内部分的面积.21.求由曲线L :)21(ln 2142≤≤-=x x x y 绕直线8943-=x y 旋转形成的旋转曲面的面积. 22.求平面曲线段l :)10(233≤≤+=x x x y 绕直线L:x y 34=旋转形成的旋转曲面的面积. 23.设函数)(x f 在区间]1,0[上连续,并设,)(1⎰=A dx x f 求⎰⎰110.)()(xdy y f x f dx24.求线密度为x 的物质曲线()0222222≥⎪⎩⎪⎨⎧=+=++z Rxy x Rz y x 对三个坐标轴转动惯量之和. 25.设r =x i +yj +z k , r=|r |.(1)求)(r f ,使div[)(r f r ]=0;(2)求)(r f ,使di v[grad )(r f ]=0.26.设函数)(x f 在区间]1,0[上连续、正值且单调下降,证明:.)()()()(110210102⎰⎰⎰⎰≤dx x f dxx f dxx xf dxx xf27.设函数)(t f 连续,证明:⎰⎰⎰--=-DAAdt t A t f dxdy y x f .|)|)(()(28.证明:()),0()323(31085335>+≤+++≤⎰⎰∑a a a dS a z y x a ππ其中∑是球面:.022222222=+---++a az ay ax z y x29.设Γ是弧长为s 的光滑曲线段,函数),,(),,,(),,,(z y x R z y x Q z y x P 在Γ上连续,且.max 222R Q P M ++=Γ证明:.Ms Rdz Qdy Pdx ≤++⎰Γ30.设在上半平面{}0|),(>=y y x D 内函数),(y x f 具有连续偏导数,且对任意的0>t ,都有).,(),(2y x f tty tx f -=证明:0),(),(=-⎰dy y x xf dx y x yf L,其中L 是D 内任意分段光滑的有向简单闭曲线.第三部分 无穷级数一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0. 2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变. 5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i)当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii)当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i)当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii)当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim>=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容)另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p-级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim 1>=+∞→r u u n n n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n nu与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在R x x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim 1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n n nx x a在Rx x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n n x x ,∑∞=-=+022)1(11n nn x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1].⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1].⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1]. (2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx n nxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin nnxdx x n nxdx x n nxdx x nn n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e axax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.五、习题1.判断下列数项级数的敛散性,若收敛,不是正项级数的指出是绝对收敛还是条件收敛. (1)∑∞=⎪⎭⎫ ⎝⎛+1212n nn n ;(2)nn n βα∑∞=1,其中β非负;(3)∑⎰∞=140tan n n n xdx λπ,其中0>λ;(4)np n n n1111)1(+∞=-∑-;(5)n n nnn !)(1∑∞=-α,其中0>α; (6)!)!12(!)!32()1(2---∑∞=n n n n.2.求幂级数nn n n x n ∑∞=+132的收敛域. 3.求幂级数nn n n x n b n a ∑∞=⎪⎪⎭⎫ ⎝⎛+1的收敛域,其中b a ,为正数.4.将下列函数展开成x 的幂级数. (1)xx 21-;(2)x arcsin ;(3)x x x x -+-+arctan 2111ln 41. 5.求下列幂级数的收敛域及和函数.(1)n n n x n ∑∞=+-121)1(;(2))12()1(211--∑∞=-n n x n n n ; (3)()∑∞=03!3n nn x ; 6.求数项级数∑∞=-⋅-1212)!2(2)1(n nn n n 的和. 7.设(),arctan )(2x x f =分别求出)0()12(-n f 和)0()2(n f .8.求极限∑⎰∞=+→+112sin 0202)sin(lim n n n xx n x dt t . 9.求极限.)!14(!11!7!31)!34(!9!51lim 448444840-++++-++++--→n n n n x ππππππ10.将函数⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=l x l x l l x x x f 2,20,)(展开成正弦级数.11.将函数⎪⎪⎩⎪⎪⎨⎧≤≤≤≤=l x l l x l x x f 2,020,cos )(π展开成余弦级数. 12.将函数)arcsin(sin )(x x f =展开成傅里叶级数. 13.证明:幂级数n n n k x n k ∑∑∞==112)!2()!(在)3,3(-内绝对收敛. 14.求函数⎰-+=πππdt t x f t f x F )()(1)(的傅里叶系数nn B A ,,其中)(x f 是以π2为周期的连续函数,n n b a ,是其傅里叶系数.并证明:).(2)(1212202n n n b a a dt t f ++=∑⎰∞=-πππ。
(整理)第六章多元函数微积分复习概要
第六章多元函数微积分复习要点一、基本概念及相关定理1.多元函数的极限定义:函数(,)z f x y =在区域D 内有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数A,则称常数A 是函数(,)z f xy =当P(x ,y )趋于000(,)P x y 时的极限.记作0l i m (,)x x y y f x y A →→=,或00(,)(,)lim(,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或lim (,)f x y A ρ→=,或(,)f x y A →,0ρ→.其中,ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 内有定义,如果对任意0(,)()P x y U P ∈,都有0000(,)(,)lim(,)(,)x y x y f x y f x y →=(或0l i m ()()P P f P f P →=),则称函数(,)z f x y =在点000(,)P x y 处连续.3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 内有定义.(1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导数定义为00000(,)(,)lim x f x x y f x y x∆→+∆-∆,记作00x x y y zx ==∂∂,或00x x y y f x==∂∂,或00(,)x z x y ',或00(,)x f x y ',即x x y y zx==∂∂=00000(,)(,)lim x f x x y f x y x∆→+∆-∆.(2)函数(,)z f x y =在点000(,)P x y 处对y 的偏导数定义为00000(,)(,)lim y f x y y f x y y∆→+∆-∆,记作00x x y y zy ==∂∂,或00x x y y f y==∂∂,或00(,)y z x y ',或00(,)y f x y ',即x x y y zy==∂∂=00000(,)(,)lim y f x y y f x y y∆→+∆-∆.而称z x∂∂,或f x ∂∂,或(,)x z x y ',或(,)x f x y '及[z y ∂∂,或f y∂∂,或(,)y z x y ',或(,)y f x y ']为(关于x 或关于y )偏导函数.高阶偏导数:22(,)xx z zf x y x x x∂∂∂⎛⎫''== ⎪∂∂∂⎝⎭或(,)xx z x y '', 2(,)xy z zf x y y x x y∂∂∂⎛⎫''== ⎪∂∂∂∂⎝⎭或(,)xy z x y '', 2(,)yx z zf x y x y y x⎛⎫∂∂∂''== ⎪∂∂∂∂⎝⎭或(,)yx z x y '', 22(,)yyz zf x y y y y⎛⎫∂∂∂''== ⎪∂∂∂⎝⎭或(,)yy z x y ''. 同理可得,三阶、四阶、…,以及n 阶偏导数.4.全微分定义:设函数(,)z f x y =在点(,)P x y 的某一邻域()U P 内有定义,若函数在点(,)x y 的全增量(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为()z A x B y ρ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,仅于x、y有关,ρ=,则称函数(,)z f x y =在点(,)x y 处可微分,称A x B y ∆+∆为函数(,)z f x y =在点(,)x y 的全微分,记为dz ,即dz A x B y =∆+∆.可微的必要条件:若函数(,)z f x y =在点(,)x y 处可微分,则(1)函数(,)z f x y =在点(,)x y 的偏导数z x ∂∂、zy∂∂必存在;(2)全微分为z z dz x y z x y z dx dy x y∂∂+∂∂∂=∆+∆=∂∂∂. 推广:函数(,,)u f x y z =在点(,,)x y z 的全微分为u u udu dx dy dzx y z ∂∂∂=++∂∂∂.可微的充分条件:若函数(,)z f x y =的偏导数z x∂∂、z y∂∂在点(,)x y 处连续⇒(,)z f x y =在点(,)x y 处可微分.5.复合函数微分法(5种情况,由简单到复杂排列): (1)含有多个中间变量的一元函数(,,)z f u v w =,()u u x =,()v v x =,()w w x =,则dz z du z dv z dwdx u dx v dx w dx∂∂∂=++∂∂∂, 称此导数dzdx为全导数;(2)只有一个中间变量的二元复合函数 情形1:()z f u =,(,)u u x y =,则z dz u x du x∂∂=∂∂ ,z dz u y du y∂∂=∂∂. 情形2:(,,)z f x y u =,(,)u u x y =,则z f z u x x u x∂∂∂∂=+∂∂∂∂ ,z f z u y y u y∂∂∂∂=+∂∂∂∂. zx wv u xx zuyxzy yuxx其中,f x∂∂与z x∂∂是不同的,z x∂∂是把复合函数[,,(,)]z f x y u x y =中的y 看作不变量而对x 的偏导数;f x∂∂是把函数(,,)f x y u 中的y 及u 看作不变量而对x 的偏导数。
微积分——多元函数及二重积分知识点
第四章 矢量代数与空间解析几何微积分二大纲要求了解 两个向量垂直、平行的条件,曲面方程和空间曲线方程的概念,常用二次曲面的方程及其图形,空间曲线的参数方程和一般方程.空间曲线在坐标平面上的投影.会 求平面与平面、平面与直线、 直线与直线之间的夹角,利用平面、直线的相互絭(平行、垂直、相交等)解决有关问题,点到直线以及点到平面的距离,求简单的柱面和旋转曲面的方程,求空间曲线在坐标平面上的投影方程.理解 空间直角坐标系,向量的概念及其表示,单位向量、方向数与方向余弦、向量的坐标表达式 掌握 向量的运算(线性运算、数量积、向量积、混合积),用坐标表达式进行向量运算的方法,平面方程和直线方程及其求法.第一节 矢量代数一、容精要(一) 基本概念 1.矢量的概念定义4.1 一个既有大小又有方向的量称为矢量,长度为0的矢量称为零矢量,用0表示,方向可任意确定。
长度为1的矢量称为单位矢量。
定义4.2两个矢量a 与b,若它们的方向一致,大小相等,则称这两个矢量相等,记作b a =.换句话说一个矢量可按照我们的意愿把它平移到任何一个地方(因为既没有改变大小,也没改 变方向),这种矢称为自由矢量,这样在解问题时将更加灵活与方便。
k a j a i a a3211(++=称为按照k j i ,,的坐标分解式,},,{321a a a a = 称为坐标式。
.||232221a a a a ++= 若,0≠a 记||0a a a=。
知0a 是单位矢量且与a 的方向一致,且0||a a a =。
因此,告诉我们求矢量a 的一种方法,即只要求出a 的大小||a 和与a方向一致的单位矢量0a ,则.||0a a a=若},{321a a a a = ,知},cos ,cos ,{cos },,{2322213232221223222110γβα=++++++=a a a a a a a a a a a a a其中γβα..是a分别与Ox 轴,Oy 轴,Oz 轴正向的夹角,而,cos ,cos ,cos 232221323222123322211a a a a a a a a a a a a ++=++=++=γβα且.1cos cos cos 222=++γβα2.矢量间的运算设}.,,{},,,{},,,{321321321c c c c b b b b a a a a ===).0||,0|(|||||cos ),0(cos ||||≠≠⋅=≤≤=⋅b a b a b a b a b a θπθθ .cos ,232221232221332211332211b b b a a a b a b a b a b a b a b a b a ++++++=++=⋅θa a a a a a a a ⋅===⋅知,0cos 2b a ⨯的确定(1),sin ||||||θb a b a =⨯(2)b a ⨯与b a,所确定的平面0,0||,||,(=⨯=⨯≠b a b a b a b a 即知若,方向可任意确定)垂直,且b a b a⨯,,构成右手系若c b a ,, 用坐标式给出,则k a b b a j b a b a i b a b a b b b a a a k j i b a)()()(212113312332321321-+---==⨯由行列式的性质可知.a b b a⨯-=⨯b a ⨯的几何意义:b a⨯表示以b a ,为邻边的平行四边形的面积,即.||sin ||||||s h a b a b a ===⨯θ容易知道以b a,为邻边的三角形面积为||21b a s ⨯=.容易验证 ().||||||2222b a ba b a=⋅+⨯321321321)(c c c b b b a a a c b a =⋅⨯c b a⋅⨯)(的性质可用行列式的性质来记,其余没有提到的性质与以前代数运算性质完全相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教育类别+ 241
第四章 矢量代数与空间解析几何
微积分二大纲要求
了解 两个向量垂直、平行的条件,曲面方程和空间曲线方程的概念,常用二次曲面的方程及其图
形,空间曲线的参数方程和一般方程.空间曲线在坐标平面上的投影.
会 求平面与平面、平面与直线、 直线与直线之间的夹角,利用平面、直线的相互絭(平行、
垂直、相交等)解决有关问题,点到直线以及点到平面的距离,求简单的柱面和旋转曲面的方程,求空间曲线在坐标平面上的投影方程.
理解 空间直角坐标系,向量的概念及其表示,单位向量、方向数与方向余弦、向量的坐标表达式 掌握 向量的运算(线性运算、数量积、向量积、混合积),用坐标表达式进行向量运算的方法,
平面方程和直线方程及其求法.
第一节 矢量代数
一、内容精要 (一) 基本概念 1.矢量的概念
定义4.1 一个既有大小又有方向的量称为矢量,长度为0的矢量称为零矢量,用0表示,方向可任意确定。
长度为1的矢量称为单位矢量。
定义4.2两个矢量a 与b
,若它们的方向一致,大小相等,则称这两个矢量相等,记作b a .
换句话说一个矢量可按照我们的意愿把它平移到任何一个地方(因为既没有改变大小,也没改 变方向),这种矢称为自由矢量,这样在解问题时将更加灵活与方便。
k a j a i a a
3211( 称为按照k j i ,,的坐标分解式,},,{321a a a a 称为坐标式。
.||2
32221a a a a 若,0 a 记|
|0a a a。
知0a 是单位矢量且与a 的方向一致,且0||a a a 。
因此,告诉我们求矢量a 的一种方法,即只要求出a 的大小||a 和与a
方向一致的单位矢量0
a ,则
.||0a a a
若},{321a a a a ,知
},cos ,cos ,{cos },
,
{
2
3
2
22
13
2
3
2
22
12
2
3
2
22
11
0 a a a a a a a a a a a a a
其中 ..是a
分别与Ox 轴,Oy 轴,Oz 轴正向的夹角,而
,cos ,cos ,cos 2
3
2
22
13
2
3
2
22
12
3
3
22211
a a a a a a a a a a a a
且.1cos cos cos 2
2
2
2.矢量间的运算
设}.,,{},,,{},,,{321321321c c c c b b b b a a a a
教育类别+
242
).0||,0|(|||||cos ),0(cos |||| b a b a b
a b a b a
.cos ,
2
3
22212
3
2
22
13
32211332211b b b a a a b a b a b a b a b a b a b a
a a a a a a a a 知,0cos 2
b a 的确定(1),sin |||||| b a b a (2)b a 与b a
,所确定的平面0,0||,||,( b a b a b a b a 即知若,方向可任意确定)垂直,且b a b a
,,构成右手系若
c b a ,, 用坐标式给出,则
k a b b a j b a b a i b a b a b b b a a a k j i b a
)()()(2121133123323
21321
由行列式的性质可知.a b b a
b a 的几何意义:b a
表示以b a ,为邻边的平行四边形 的面积,即.||sin ||||||s h a b a b a
容易知道以b a
,为邻边的三角形面积为
||2
1b a s .
容易验证
.||||||2
222b a b a b a
3
2
13213
21)(c c c b b b a a a c b a
c b a
)(的性质可用行列式的性质来记,其余没有提到的性质与以前代数运算性质完全相同。
c b a )(的几何意义 |)(|c b a 表示以c b a
,,为邻边的平行六面体的体积,即
cos |||||)(|c b a c b a
.||cos ||||v sh h b a c b a
b a
b
a
图4-1
b
a h
sin ||b h
图4-2
图4-3
c
b 图4-4
c。