三角形的五心
初中数学知识点:三角形五心定理
初中数学知识点:三角形五心定理三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。
一、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。
二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。
5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
三角形的五心
第五讲 三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》)分析:由已知可得MP ′=MP =MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点 N 是△P ′PC 的外心.有 ∠BP ′P =21∠BMP =21∠BAC ,∠PP ′C =21∠PNC =21∠BAC .∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外 心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K=21(∠O 2O 1S +∠SO 1K ) =21(∠O 2O 1S +∠PO 1O 2) =21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .A BCPP MN'A B C QK P O O O ....S123二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △PAD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有 CF =2222221c b a -+, BE =2222221b a c -+, AD =2222221ac b -+.将a 2+c 2=2b 2,分别代入以上三式,得 CF =a23,BE =b 23,AD =c23.∴CF :BE :AD =a23:b 23:c23=a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴∆∆S S '=(aCF )2.AA 'FF 'G E E 'D 'C'P C B D据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43.∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c 2 ⇒a 2+c 2=2b 2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置.(1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知13212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4; 由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2,故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称.同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2.求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2. (1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2=r 2+(AM 2-MH 2), ①又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2∥=∥=.OA A A A 1234H H12H H HMA B BA ABC CC F12111222D E=AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ② 而ABH AH∠sin =2R ⇒AH 2=4R 2cos 2A ,Aasin =2R ⇒a 2=4R 2sin 2A . ∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有 A 21A =r 2+bcac b 2222-+·bc -(4R 2-a 2)=21(a 2+b 2+c 2)-4R 2+r 2.同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.故有AA 1=BB 1=CC 1.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用).例7.ABCD 为圆内接凸四边形,取△DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3, O 4.求证:O 1O 2O 3O 4为矩形.(1986,中国数学奥林匹克集训题)证明见《中等数学》1992;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF中点P 是△ABC 之内心.(B ·波拉索洛夫《中学数学奥林匹克》)分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢?如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.易知AQ =αsin r .∵QK ·AQ =MQ ·QN , ∴QK =AQQN MQ ⋅=αsin /)2(r r r R ⋅-=)2(sin r R -⋅α.由Rt △EPQ 知PQ =r ⋅αsin .A B C D O O O 234O1AααMBC KN ER OQ Fr P∴PK =PQ +QK =r ⋅αsin +)2(sin r R -⋅α=R 2sin ⋅α. ∴PK =BK .α利用内心等量关系之逆定理,即知P 是△ABC 这内心. 五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于 一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.例9.在直角三角形中,求证:r +r a +r b +r c =2p .式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周.(杭州大学《中学数学竞赛习题》)分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c )=41[(a +b )2-c 2] =21ab ;(p -a )(p -b )=21(-a +b +c )·21(a -b +c )=41[c 2-(a -b )2]=21ab .∴p (p -c )=(p -a )(p -b ). ① 观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a , r c =CK =p . 而r =21(a +b -c )=p -c . ∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p =4p -(a +b +c )=2p . 由①及图形易证.例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:11q r ·22q r =qr .(IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知K r r r r O O O 213AOECBabcOD =OA ′·2'sinA=A ′B ′·'''sin 2'sinB O A B ∠·2'sin A =A ′B ′·2''sin2'sin2'sinB A B A +⋅,O ′E = A ′B ′·2''sin2'cos2'cosB A B A +.∴2'2''B tgA tg EO OD =.亦即有11q r ·22q r =2222B tgCNB tgCMA tgA tg∠∠=22B tgA tg=qr .六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心. 例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =FA .试证:(1)AD ,BE ,CF 三条对角线交于一点;(2)AB +BC +CD +DE +EF +FA ≥AK +BE +CF . (1991,国家教委数学试验班招生试题)分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE 的内心.从而有ID =CD =DE ,IF =EF =FA , IB =AB =BC . 再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用 不等式有: BI +DI +FI ≥2·(IP +IQ +IS ).不难证明IE =2IP ,IA =2IQ ,IC =2IS . ∴BI +DI +FI ≥IA +IE +IC .∴AB +BC +CD +DE +EF +FA =2(BI +DI +FI )≥(IA +IE +IC )+(BI +DI +FI ) =AD +BE +CF . I 就是一点两心.例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心.证明A ...'B'C'O O 'EDE rdos..I P ABCD E FQSOE 丄CD .(加拿大数学奥林匹克训练题) 分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设 CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证:DG :GK =31DC :(3121-)DC =2:1.∴DG :GK =DE :EF ⇒GE ∥MF . ∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心. 易证OE 丄CD .例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .(1988,中国数学奥林匹克集训题)分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有 ∠AIB =90°+21∠C =105°,∴∠DIE =360°-105°×3=45°. ∵∠AKB =30°+21∠DAO=30°+21(∠BAC -∠BAO ) =30°+21(∠BAC -60°)=21∠BAC =∠BAI =∠BEI .∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高. 同理EO 是△DIE 之垂心,OI 丄DE . 由∠DIE =∠IDO ,易知OI =DE .例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距 离和为d 重,垂心到三边距离和为d 垂.求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴2d 外=2(cos A +cos B +cos C ). ①AB CDE FOKG O A BC DEFIK30°B CO IA O G H O G H G O G H 123112233∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C , 同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和=2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ② ∴BCHBH sin =2,∴HH 1=cos C ·BH =2·cos B ·cos C . 同样可得HH 2,HH 3. ∴d 垂=HH 1+HH 2+HH 3=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③ 欲证结论,观察①、②、③,须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B + cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.练 习 题1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)6.△ABC 的边BC =21(AB +AC ),取AB ,AC 中点M ,N ,G 为重心,I 为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克) 7.锐角△ABC 的垂心关于三边的对称点分别是H 1,H 2,H 3.已知:H 1,H 2,H 3,求作△ABC .(第7届莫斯科数学奥林匹克)8.已知△ABC 的三个旁心为I 1,I 2,I 3.求证:△I 1I 2I 3是锐角三角形.9.AB ,AC 切⊙O 于B ,C ,过OA 与BC 的交点M 任作⊙O 的弦EF .求证:(1)△AEF 与△ABC 有公共的内心;(2)△AEF 与△ABC 有一个旁心重合.[编辑本段]1、重心三角形三条中线的交点叫做三角形重心。
三角形的、外心、内心、重心、垂心、和旁心(五心定理)
三角形的外心、内心、重心、垂心、旁心(五心定理)
4
三
角
形的
垂心
三角形的三条高交于一点,这点称
为三角形的垂心 1,三角形任一顶点到垂心的距离,等于外
心到对边的距离的2倍;锐角三角形的垂
心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍;
2,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的
垂心在三角形外 ;
5
三角形的旁心
三角形的一条内角平分线与另两
个外角平分线交
于一点,称为三角形的旁心(旁切圆圆心)
1, 每个三角形都有三个旁心;
2, 旁心到三边的距离相等
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
A
B
C
D
E F
I a
A B
C D
E
F O。
五心数学定义
五心数学定义
五心数学定义主要涉及到三角形的五种特殊点,即重心、外心、内心、垂心和旁心。
以下是关于这些点的详细定义:
1. 重心:三角形的三条中线相交于一点,这点称为三角形的重心。
重心的坐标是顶点坐标的算术平均数,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
此外,重心有一个重要的性质,即重心将中线分为2:1的两部分,也就是说,从顶点到重心的距离是从重心到对边中点的距离的两倍。
2. 外心:三角形三边的垂直平分线相交于一点,这个点称为三角形的外心。
外心到三角形的三个顶点的距离相等,也就是说,外心是三角形外接圆的圆心。
3. 内心:三角形的三条内角平分线相交于一点,这个点称为三角形的内心。
内心到三角形的三边的距离相等,也就是说,内心是三角形内切圆的圆心。
4. 垂心:三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
5. 旁心:与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形旁心。
旁心是一个三角形有三个旁心,而且一定在三角形外。
这五个点各自具有独特的性质,并在几何学中发挥着重要的作用。
对于理解和解决与三角形相关的问题,这些定义和性质都是非常有价值的工具。
三角形的五心定理
三角形的五心定理三角形是几何学中最基本的图形之一,具有丰富的性质和定理。
其中,五心定理是一条十分重要的定理,它揭示了三角形内包含的五个特殊点,这些点被称为三角形的五心。
本文将从五心定理的定义和推导开始,详细介绍五心的概念、性质以及应用。
一、五心定理的定义和推导五心定理是指在任意三角形ABC中,存在五个特殊点O、I、H、G、N,它们分别为外心、内心、垂心、重心和费马点。
这些特殊点具有一些特殊性质,对于研究三角形的性质和问题具有重要作用。
首先,我们来推导五心定理。
假设三角形ABC的外接圆圆心为O,内切圆圆心为I,垂心为H,重心为G,费马点为N。
根据几何学的基本定理和性质,可以得到以下关系:1. 外心定理:三角形的三条边的中垂线交于一点,该点即为三角形的外心O。
2. 内心定理:三角形的三条角平分线交于一点,该点即为三角形的内心I。
3. 垂心定理:三角形的三条高交于一点,该点即为三角形的垂心H。
4. 重心定理:三角形的三条中线交于一点,该点即为三角形的重心G。
5. 费马点定理:三角形内所有角的顶点到三个顶点的距离之和最短,该点即为三角形的费马点N。
综上所述,我们可以得出三角形ABC内含有五个特殊点O、I、H、G、N,它们分别为三角形的外心、内心、垂心、重心和费马点。
接下来,我们将详细介绍这五个特殊点的性质和应用。
二、五心的性质和应用1. 外心O:外心O是三角形的外接圆圆心,该圆将三角形的三个顶点都包含在内。
外接圆的半径等于三角形的外心到任意顶点的距离,外心到三个顶点的连线都互相垂直。
2. 内心I:内心I是三角形的内切圆圆心,该圆与三条边都相切。
内切圆的半径等于三角形的内心到任意边的距离,内心到三条边的连线都互相垂直。
3. 垂心H:垂心H是三角形的三条高交于的点,该点到三个顶点的连线都互相垂直。
垂心是一个重要的概念,在三角形的高问题以及垂心距离等方面有广泛的应用。
4. 重心G:重心G是三角形的三条中线交于的点,该点将三角形分成六个三角形的面积之比为2:1。
三角形的心特点
三角形的心特点
三角形共有五心,分别为重心、内心、外心、垂心和旁心。
以下是这五心的特点:
1. 内心:三条角平分线的交点,也是三角形内切圆的圆心。
到三边距离相等。
2. 外心:三条中垂线的交点,也是三角形外接圆的圆心。
到三个顶点距离相等。
3. 重心:三条中线的交点。
三条中线的三等分点,到顶点距离为到对边中点距离的2倍。
4. 垂心:三条高所在直线的交点。
此点分每条高线的两部分乘积。
5. 旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点。
到三边的距离相等。
【高中】三角形的五心【强烈推荐】[1]
三角形的五心三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍. 三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心.指的是三角形的外心,内心,重心,垂心和旁心. 1、三角形的外心、三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 三角形的外心到三角形的三个顶点距离相等.三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径.都等于三角形的外接圆半径. 锐角三角形的外心在三角形内;锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点;直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外.钝角三角形的外心在三角形外. 2、三角形的内心、三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径.都等于三角形内切圆半径. 内切圆半径r 的计算:的计算:设三角形面积为S ,并记p =12(a +b +c ),则r =S p .特别的,在直角三角形中,有 r =12(a +b -c ).3、三角形的重心、三角形的重心三角形的三条中线交于一点,这点称为三角形的重心.这点称为三角形的重心.上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2. 4、三角形的垂心、三角形的垂心三角形的三条高交于一点,这点称为三角形的垂心.这点称为三角形的垂心.斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”.5、三角形的旁心、三角形的旁心三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心).每个三角形都有三个旁切圆.每个三角形都有三个旁切圆. A 类例题类例题例1 证明重心定理。
三角形的“五心”
三角形的“五心”
一米阳光
三角形有“五心”,在初中数学人教版中明确重心(八年级)、内心和外心(九年级),其实还有垂心和旁心。
下面简单介绍它们的定义和性质:
1、内心
定义:三角形三条角平分线的交点,即三角形内切圆的圆心。
性质:三角形的内心在三角形的内部,到三角形三边的距离相等。
2、外心
定义:三角形三边垂直平分线(中垂线)的交点,即三角形外接圆的圆心。
性质:锐角三角形的外心在三角形内部;直角三角形的外心在直角三角形斜边上(是斜边中点);钝角三角形的外心在三角形外部。
三角形的外心到三角形三个顶点的距离相等。
3、重心
定义:三角形三条中线的交点。
性质:三角形的重心在三角形的内部,三角形的重心到三角形顶点距离等于它到对边中点距离的2倍。
4、垂心
定义:三角形三条高(高线)所在直线的交点。
性质:锐角三角形的垂心在三角形内部;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外部。
三角形的垂心是垂足三角形的内心。
5、旁心
定义:三角形任意两个外角平分线和第三个内角平分线的交点。
性质:三角形的旁心在三角形的外部,三角形的旁心到三角形三边的距离相等。
三角形的五心及区间表示
三角形的五心三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍.三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心.1、三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心).三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径.锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径.内切圆半径r 的计算:设三角形面积为S ,并记p =12(a +b +c ),则r =Sp .特别的,在直角三角形中,有 r =12(a +b -c ).3、三角形的重心 三角形的三条中线交于一点,这点称为三角形的重心.上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2. 4、三角形的垂心三角形的三条高交于一点,这点称为三角形的垂心. 斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”. 5、三角形的旁心三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心).A B COABCD EFGAB CD EF I aIK HE F D ABCM每个三角形都有三个旁切圆.区间何时用并集表示,何时用“和”或逗号表示如(-1,2),(6,8)有的时候则是(-1,2)∪(6,8)如果是不等式解集可以用下面的形式,如果是单调区间就用上面的,因为两个单调区间用并集符号链接后可能违背单调定义一般是涉及函数单调性的时候用","分开,因为单调性是指一个范围上的,而不是整个定义域上的。
比如说一个函数y=sinX 上,在[0,π/2] ,[3π/2.,2π]上是单调递增的,是两个断开的区间。
平面几何竞赛之三角形的“五心”
平面几何竞赛之三角形的“五心”一、基本概念1、内心:与三角形所有边相切的圆叫做此三角形的内切圆,其圆心叫做此三角形的内心.内心是三角形三条内角平分线的交点.三角形的内心在三角形内部.内心有以下常用的性质:性质1:设I 是⊿ABC 内一点,I 为⊿ABC 内心的充要条件是:I 到三角形三边的距离相等. 证明: 性质2:设I 是⊿ABC 内一点,AI 所在直线交⊿ABC 的外接圆于D , I 为⊿ABC 内心的充要条件是:ID=DB=DC.证明:性质3:设I 是⊿ABC 内一点,I 为⊿ABC 内心的充要条件是: ∠BIC=900+21∠A ,∠AIC=900+21∠B ,∠AIB=900+21∠C. 证明:性质4:设I 是⊿ABC 内一点,I 为⊿ABC 内心的充要条件是: ⊿IBC 、⊿IAC 、⊿IAB 的外心均在⊿ABC 的外接圆上. 证明:性质5:设I 为⊿ABC 内心,BC=a ,AC=b ,AB=c ,I 在BC 、AC 、AB边上的射影分别为D 、E 、F ,内切圆的半径为r ,令p=21(a+b+c),则(1)ID=IE=IF=r ,S ⊿ABC =pr=))()((c p b p a p p ---=xyz z y x )(++;海伦公式推导:(2)r=cb a S ABC++∆2;M(3)abc ·r=p ·AI ·BI ·CI.性质6:设I 为⊿ABC 内心,BC=a ,AC=b ,AB=c ,∠A 的平分线交BC 于K ,交⊿ABC 的外接圆于D ,则IK AI =DI AD =DK DI =a c b .〖例1〗如图,设⊿ABC 的外接圆O 的半径为R ,内心为I ,∠B=600,∠A<∠C,∠A 的外角平分线交圆O 于E ,证明:(1)IO=AE,(2)2R<IO+IA+IC<(1+3)R. (1994高中联赛)〖例2〗如图,在⊿ABC 中,AB=4,AC=6,BC=5,∠A 的平分线交⊿ABC 的外接圆于K ,O 、I 分别是⊿ABC 的外心和内心,求证:IO ⊥AK. (1982四川省数学竞赛题)练习【练习1】如图,已知点I 是ABC ∆的内心,延长AI 交ABC ∆的外接圆于点D ,交BC 于点E .求证:DI 是DE 、AD 的比例中项.D654321I EDCBA【解析】 连接BI .因为I 是ABC ∆的内心,所以1122BAC ∠=∠=∠,1342ABC ∠=∠=∠.所以()15132BAC ABC ∠=∠+∠=∠+∠,()164242DBI BAC ABC ∠=∠+∠=∠+∠=∠+∠.所以5DBI ∠=∠,于是DB DI =.因为26∠=∠,所以16∠=∠.又因为BEA AEB ∠=∠,所以DBE DAB ∆∆∽,所以2BD DE DA =⋅.所以2DI DE AD =⋅,即DI 是DE 、AD 的比例中项.点评:本题用三角形内心的性质先证明DB DI =,再证明DBE DAB ∆∆∽.已知三角形的内心,通常连接内心和顶点,得角相等.本题很明显BD DC =,这个命题的逆命题也成立.【练习2】⑴ 如图,在ABC ∆中,A ∠、B ∠,C ∠的平分线分别交外接圆于点P 、Q 、R .证明:AP BQ CR BC CA AB ++>++.ABCRPQIB'C'A'ABCI⑵ 如图,设I 为ABC ∆的内心,且'A 、'B 、'C 分别为IBC ∆、IAC ∆、IAB ∆的外心, 证明:ABC ∆与'''A B C ∆有相同的外心.⑶ 已知I 是ABC ∆的内心,AI 、BI 、CI 的延长线分别交ABC ∆的外接圆于D 、E 、F . 求证:EF AD ⊥.MFEDICBAD⑷ 已知一等腰三角形的外接圆半径为R ,内切圆半径为r , 证明:两圆心的距离为d =【解析】 ⑴ 连接AR 、RB 、BP 、PC 、CQ 、QA .因为12∠=∠,34∠=∠,56∠=∠,所以AP 、BQ 、CR 相交于一点I ,即I 为ABC ∆的内心, 则PB PI PC ==,QA QI QC ==,RA RI RB ==. 在BPC ∆中,因为PB PC BC +>,所以2PI BC >. 同理可证2QI AC >,2RI AB >.将这三个式子相加并整理,得()12PI QI RI BC CA AB ++>++…①因为BI CI BC +>,AI BI AB +>,AI CI CA +>,所以()12AI BI CI BC CA AB ++>++ …②⑵ 作ABC ∆的外接圆,延长AI 交圆心于"A ,连接"A B 、"A C .因为I 是ABC ∆的内心,所以"""A B A I A C ==. 从而"A 为IBC ∆的外心.又因为'A 为IBC ∆外心,所以"A 与'A 两点重合, 即点'A 在ABC ∆的外接圆上.同理可证点'B 、'C 也都在ABC ∆的外接圆上. 所以A 、'C 、B 、'A 、C 、'B 六点共圆, 因此,ABC ∆与'''A B C ∆有相同的外心. ⑶ 连接DE .∵I 是ABC ∆的内心∴ADF ABF CBF ∠=∠=∠,BFE BCE ACE ∠=∠=∠,BFD BAD CAD ∠=∠=∠ ∴ADF BFE BFD ∠+∠+∠ ()1902ABC ACB BAC =∠+∠+∠=︒ ∴EF AD ⊥⑷ 如图,设AB AC =,O 为ABC ∆的外接圆圆心,I 为ABC ∆的123456ABCRPQIABCIDEFMICBAA'(A'')C'B'内切圆圆心(即I 为ABC ∆的内心),连接AI 并延长AI ,交圆O 于D ,则易知AD 是圆O 的直径.设AC 与圆O 相切于E ,连接IE 、DC ,则90AEI ACD ∠=∠=︒,所以IE DC ∥,从而AI IE AD DC=, 于是2AI DC AD IE Rr ⋅=⋅=,由此,得DC DI =. 因为AI OA OI R d =+=+,DI OD OI R d =-=-, 所以()()2R d R d Rr +-=,整理,得d点评:本题根据轴对称构造直径,使问题简化.本题的结论对任意三角形(不一定是等腰三角形)也成立,这就是著名的欧拉公式.【练习3】如图,ABC ∆的三边满足关系()12BC AB AC =+,O 、I 分别为ABC ∆的外心,内心,BAC ∠的外角平分线交圆O 于E ,AI 的延长线交圆O 于D ,DE 交BC 于H .求证:⑴ AI BD =;⑵ 12OI AE =.IH OEDCBABGACD EOH I【解析】 ⑴ 作IG AB ⊥,连接BI ,有()12AG AB AC BC =+-.因为()12BC AB AC =+,所以12AG BC =.由I 为ABC ∆的内心,BD CD =,且DE 为圆O 的直径,得DE BC ⊥,12BH BC =.所以AG BH =.易证:Rt Rt AGI BHD ∆∆≌.故AI BD =⑵ 因为IBD IBH HBD ∠=∠+∠ABI BAI BID =∠+∠=∠.由中位线定理,得12OI AE =. 点评:首先必须掌握三角形内心的性质,即内心是角平分线的交点,它到三边的距离都相等,所以通常作边的垂线;其次要掌握ID BD DC ==.【练习3】设ABC ∆的内切圆O 切BC 于点D ,过点D 作直径DE ,连接AE ,并延长交BC 于点F ,则BF CD =.F DC B F DCBHGI 1ABCDFE【解析】 解法1:如图,令圆O 分别切AB 、AC 于点M 、N . 过点E 作GH BC ∥,分别交AB 、AC 于点G 、H , 则GH 切圆O 于点E ,且AGE ABF ∆∆∽,AGH ABC ∆∆∽. 记AGH ∆与ABC ∆的周长分别为2'p 、2p ,则AG GE AG GM +=+AM AN =='AH HN AH HE p =+=+=.于是'2'2p p AG p p AB =='GF AG GE p BF AB BF AB BF+===++ 即有p AB BF =+,故BF p AB CD =-=. 解法2:设AB c =,AC b =,BC a =,则()12BD b a b c +=++,∴()12BD a c b =+- 下面仅需证明()12CF a c b =+-. 为此,作1FI BC ⊥交AI 的延长线于1I ,1I G AC ⊥于G , 即仅需证明1I 是ABC ∆旁切圆在A ∠内的旁心.事实上,由111I F AI I GIE AI IH==(H 是边AC 与圆I 的切点)但IE IH =,可知11I F I G =,即1I 确是旁心,∴()12CF a b c =+-,即BD CF =.2、外心:经过三角形各顶点的圆叫做此三角形的外接圆,其圆心叫做此三角形的外心.外心是三角形三条边的垂直平分线的交点. 锐角三角形的外心在三角形内部,直角三角形的外心在斜边中点,钝角三角形的外心在三角形外部.外心有以下常用的性质:性质1:⊿ABC 所在平面上一点是其外心的充要条件是:该点到三角形三顶点的距离相等.性质2:设O 是⊿ABC 所在平面内一点,则O 为⊿ABC 的外心的充要条件是: (1)∠BOC=2∠A ,∠ACC=2∠B ,∠AOB=2∠C.(2)OB=OC, 且∠BOC=2∠A.性质3:R=ABCS abc4或S ⊿ABC =R abc 4.〖例3〗如图,设AD 是⊿ABC 的∠BAC 的平分线,O 是⊿ABC 的外心,01是⊿ABD 的外接圆的圆心,02是⊿ADC 的外接圆的圆心.求证:OO 1=OO 2. (1990高中联赛)3、重心:三角形三条边中线的交点叫做此三角形的重心.重心在三角形内部.重心到顶点的距离等于它到对边中点距离的2倍(即:重心将每条中线分成1:2两部分).重心有以下常用的性质:性质1:设G是⊿ABC的重心,连AG并延长交BC于D,则D为BC的中点,AD2=21(AB2+AC2)-BC2,且AG:GD=2:1.性质2:设G是⊿ABC的重心,P为⊿ABC内任意一点,则(1)AP2+BP2+CP2=AG2+BG2+CG2+3PG2;(2)AG2+BG2+CG2=31(AB2+BC2+CA2).性质3:设G 是⊿ABC 内一点,G 是⊿ABC 的重心的充要条件是下列条件之一:(1)S ⊿GBC =S ⊿GCA =S ⊿GAB =31S ⊿ABC ;(2)当AG 、BG 、CG 的延长线交三边于D 、E 、F 时,S ⊿AFG =S ⊿BDG =S ⊿CEG .(3)当点G 在三边BC 、CA 、AB 上的射影分别为D 、E 、F 时,GD ·GE ·GF 值最大;(4)过G 的直线交AB 于P ,交AC 于Q 时,AP AB +AQAC=3;(5)BC 2+3AG 2=CA 2+3GB 2=AB 2+3GC 2.4、垂心:三角形三条边高线的交点叫做此三角形的垂心。
三角形的五心
三角形的中心,重心,垂心,内心,外心。
五心的定义和性质是什么如果你知道了三角形的重心,垂心,内心,外心,那么对以等边三角形,这四心是合一的,也叫中心,中心具有所有四心的性质。
需要补充的是三角形还有一个旁心,通常把三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
一、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
重心位置:于三角形内部三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。
二、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的位置:于锐角三角形内部,直角三角形的两只角边交点,钝角三角形的外部。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF ⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此,垂心定理成立!三、三角形内心定理三角形内切圆的圆心,叫做三角形的内心。
三角形的“五心”
三角形的“五心”任何三角形都有五心,分别是重心、垂心、外心、内心、旁心。
我们可以用14个字便能准确快捷地区分并记住五心,“中重、高垂、垂直平分外、分内、外分旁”,最后一字为三角形的某种心,前三种为边上的某种线,后两种为三角形内角或外角的平分线。
中重:三角形三边中线的交点,为三角形的重心;在三角形的内部;此点到顶点的距离是到对边中点距离的2倍。
高垂:三角形三边高线的交点,为三角形的垂心;锐角三角形垂心在内部,直角三角形在直角顶点,钝角三角形在外部。
垂直平分外:三角形三边垂直平分线的交点,为三角形的外心;锐角三角形的外心在内部,直角三角形在斜边中点,钝角三角形在外部;此点为△外接圆的圆心,到三顶点的距离相等,这个距离叫外接圆半径R.分内:三角形三内角平分线的交点,为三角形的内心;在三角形的内部,此点为三角形内切圆的圆心,到三边的距离相等,此距离为内切圆半径r.重心、垂心、外心、内心均只有唯一的一点,作图时只需作出二线,第三线一定过此点。
外分旁:三角形相邻二外角的平分线的交点,为三角形的旁心。
任何三角形都有三颗旁心,且不相邻的内角平分线过旁心,旁心到三边的距离相等。
到三角形三边距离相等的点共有四点,内心及旁心。
在初中阶段外心、内心我们经常在圆部分接触和应用,一定要掌握它们的特性,重心、旁心、垂心偶尔接触只需了解。
等腰三角形的重心、垂心、外心、内心及其中一颗旁心在同一直线上即底边的高线上。
等边三角形是最完美的三角形,因而前四心及一颗旁心合一,外接圆半径R 为内切圆半径r 的2倍,R=33a(a 为边长)(∠OAD=30°,∴R=2r,高为23a,则,R=33a ,r=63a )直角三角形的外接圆半径为斜边的一半(2C ),内切圆半径为21(a+b-c ),c为斜边的长。
如图 S=21AC ·BC=21r (AC+BC+AB )∴r=ABBC AC BC AC ++⋅.=cb a ab ++=22)(ba b a ab+++=21(a+b-c )例1. 已知等边三角形ABC 是⊙O 的内接三角形,若⊙O 的半径为8cm 时,求△ABC 的内切圆面积。
三角形五心及其性质
三角形的五心定义及性质
三角形五心是指三角形的重心、外心、内心、垂心、旁心。
定义:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。
三角形的性质
1.在平面上三角形的内角和等于180°(内角和定理)。
2.在平面上三角形的外角和等于360°(外角和定理)。
3.在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4.一个三角形的三个内角中最少有两个锐角。
5.在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6.三角形任意两边之和大于第三边,任意两边之差小于第三边。
7.在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8.直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
9.直角三角形斜边的中线等于斜边的一半。
10.三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
11.三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
12.等底同高的三角形面积相等。
13.底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
14.三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
15.等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
初中几何三角形五心及定理性质
初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3 ) /3 , (Y1+Y2+Y3 ) /3 )。
5、以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理夕卜心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若0是厶ABC的外心,则/ B0C=2 / A (/A为锐角或直角)或/ BOC=360 -2Z A (/A 为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等垂心定理图1 图2三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心0、重心G和垂心H三点共线,且0G : GH=1 : 2。
(此直线称为三角形的欧拉线(Euler line ))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
推论:1. 若D、E、F分别是△ ABC三边的高的垂足,则 / 1 = / 2。
(图1)2. 三角形的垂心是其垂足三角形的内心。
三角形的五心
三角形的五心引言在数学几何学中,三角形是一个基本的图形。
而对于一个三角形来说,有一些特殊的点在其内部或边上,这些点被称为三角形的五心。
本文将介绍三角形的五心及其特征。
五心的定义三角形的五心分别指的是三角形内切圆的圆心、三角形外接圆的圆心、三角形重心、三角形垂心和三角形内垂心。
内切圆的圆心三角形的内切圆是唯一一个与三角形三边相切的圆,它的圆心即为三角形的内切圆心。
内切圆的圆心与三角形的顶点连线垂直,并且与三角形的边相切。
外接圆的圆心三角形的外接圆是唯一一个能够将三角形的三个顶点都与圆上的一个点相连的圆,它的圆心即为三角形的外接圆心。
外接圆的圆心为三角形三边的垂直平分线的交点。
重心三角形的重心是由三条中线交点所组成的点。
中线指的是连接三角形的一个顶点和对脚边中点的线段。
重心是三角形的质心,它将三角形分为三个相等的三角形。
垂心三角形的垂心指的是三条高的交点。
高是指从三角形的一个顶点到对脚边的垂直线段。
垂心是三角形的垂直外心,它的特点是到三角形三个顶点的距离相等。
内垂心三角形的内垂心是三角形内部以三条边为对边的角平分线的交点。
内垂心到三个顶点的距离相等。
五心的性质内切圆性质•内切圆的半径与三角形的边的关系:内切圆半径等于三角形的面积除以半周长。
•内切圆的面积与三角形的面积的关系:内切圆的面积等于三角形面积的三倍。
•内切圆的圆心与三角形的外接圆心、重心共线。
外接圆性质•外接圆的半径等于三角形三边的乘积除以四倍三角形的面积。
•外接圆与三角形的三个顶点共线。
重心性质•重心到三个顶点的距离相等,且距离等于垂心到对脚边的距离的两倍。
•重心将三角形分为三个相等的三角形。
垂心性质•垂心到三个顶点的距离相等。
•垂心到三角形的边的距离也相等。
•垂心到三个角的角度均为90度。
内垂心性质•内垂心到三个顶点的距离相等。
•内垂心到三角形的边的距离也相等。
•内垂心到三个角的角度均为90度。
结论三角形的五心是由特定的点组成的,它们分别是内切圆的圆心、外接圆的圆心、重心、垂心和内垂心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上.(杭州大学《中学数学竞赛习题》)分析:由已知可得MP ′=MP =MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =21∠BAC .∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC . 例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.A B C P P MN 'A B C QK P O O O ....S 123∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K ) =21(∠O 2O 1S +∠PO 1O 2)=21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC . 二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和.(第26届莫斯科数学奥林匹克)分析:设G 为△ABC 重心,直线PG 与AB ,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △PAD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有CF =2222221c b a -+, BE =2222221b ac -+, AA 'F F 'GE E 'D 'C 'PC B DAD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴∆∆S S '=(aCF )2. 据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43.∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c 2⇒a 2+c 2=2b 2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利. 例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置. (1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知 .OA A A A 1234H H1213212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4;由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2,故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称.同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2.求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2=r 2+(AM 2-MH 2), ①又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2=AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ② 而ABH AH∠sin =2R ⇒AH 2=4R 2cos 2A ,Aasin =2R ⇒a 2=4R 2sin 2A . ∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有∥=∥=H H HM A B BA ABC CC F12111222D EA 21A =r 2+bca cb 2222-+·bc -(4R 2-a 2)=21(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.故有AA 1=BB 1=CC 1. 四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用).例7.ABCD 为圆内接凸四边形,取 △DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3,O 4.求证:O 1O 2O 3O 4为矩形.(1986,中国数学奥林匹克集训题)证明见《中等数学》1992;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF 中点P 是△ABC 之内心.(B ·波拉索洛夫《中学数学奥林匹克》)分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.易知AQ =αsin r.∵QK ·AQ =MQ ·QN ,∴QK =AQQNMQ ⋅=αsin /)2(r rr R ⋅-=)2(sin r R -⋅α.由Rt △EPQ 知PQ =r ⋅αsin .A B CD O O O 234O1A ααMBCKNER OQF rP∴PK =PQ +QK =r ⋅αsin +)2(sin r R -⋅α=R 2sin ⋅α. ∴PK =BK .α利用内心等量关系之逆定理,即知P 是△ABC 这内心. 五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.例9.在直角三角形中,求证:r +r a +r b +r c =2p .式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周.(杭州大学《中学数学竞赛习题》)分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c ) =41[(a +b )2-c 2]=21ab ; (p -a )(p -b )=21(-a +b +c )·21(a -b +c )=41[c 2-(a -b )2]=21ab .∴p (p -c )=(p -a )(p -b ). ①观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a , r c =CK =p .而r =21(a +b -c )=p -c . ∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+pKr r r r O O O 213A O E CB a b c=4p -(a +b +c )=2p . 由①及图形易证.例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:11q r ·22q r =qr . (IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知OD =OA ′·2'sin A=A ′B ′·'''sin 2'sinB O A B ∠·2'sin A =A ′B ′·2''sin2'sin2'sin B A B A +⋅, O ′E = A ′B ′·2''sin2'cos2'cos B A B A +. ∴2'2''B tg A tg E O OD =. 亦即有11q r ·22q r =2222B tg CNB tg CMA tg A tg ∠∠ =22B tg A tg=qr. 六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =FA .试证:(1)AD ,BE ,CF 三条对角线交于一点;(2)AB +BC +CD +DE +EF +FA ≥AK +BE +CF .A ...'B 'C 'OO 'ED(1991,国家教委数学试验班招生试题)分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE 的内心.从而有ID =CD =DE ,IF =EF =FA , IB =AB =BC .再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用 不等式有: BI +DI +FI ≥2·(IP +IQ +IS ).不难证明IE =2IP ,IA =2IQ ,IC =2IS . ∴BI +DI +FI ≥IA +IE +IC .∴AB +BC +CD +DE +EF +FA =2(BI +DI +FI )≥(IA +IE +IC )+(BI +DI +FI ) =AD +BE +CF .I 就是一点两心.例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心.证明OE 丄CD .(加拿大数学奥林匹克训练题)分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证: DG :GK =31DC :(3121-)DC =2:1. ∴DG :GK =DE :EF ⇒GE ∥MF . ∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心. 易证OE 丄CD .例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .(1988,中国数学奥林匹克集训题)分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有∠AIB =90°+21∠C =105°,Erdos..I P ABCD E FQSA B C D E F O KGO A BC DEF I K30°∴∠DIE =360°-105°×3=45°.∵∠AKB =30°+21∠DAO=30°+21(∠BAC -∠BAO )=30°+21(∠BAC -60°)=21∠BAC =∠BAI =∠BEI .∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高. 同理EO 是△DIE 之垂心,OI 丄DE . 由∠DIE =∠IDO ,易知OI =DE .例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距 离和为d 重,垂心到三边距离和为d 垂.求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴2d 外=2(cos A +cos B +cos C ). ① ∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C , 同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和 =2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ②∴BCHBHsin =2,∴HH 1=cos C ·BH =2·cos B ·cos C . 同样可得HH 2,HH 3. ∴d 垂=HH 1+HH 2+HH 3=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③ 欲证结论,观察①、②、③, 须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B + cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.B C O IA O G H O G H GO G H 123112233练 习 题1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)6.△ABC 的边BC =21(AB +AC ),取AB ,AC 中点M ,N ,G 为重心,I为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克)7.锐角△ABC 的垂心关于三边的对称点分别是H 1,H 2,H 3.已知:H 1,H 2,H 3,求作△ABC .(第7届莫斯科数学奥林匹克)8.已知△ABC 的三个旁心为I 1,I 2,I 3.求证:△I 1I 2I 3是锐角三角形.9.AB ,AC 切⊙O 于B ,C ,过OA 与BC 的交点M 任作⊙O 的弦EF .求证:(1)△AEF 与△ABC 有公共的内心;(2)△AEF 与△ABC 有一个旁心重合.。