材料科学基础期末复习知识点(可缩印)

合集下载

2019年材料科学基础期末总结复习资料

2019年材料科学基础期末总结复习资料

材料科学基础期末总结复习资料1、名词解释(1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。

(2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变。

(3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J 点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。

即HJB---包晶转变线,LB+δH→rJ(4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。

(5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析(6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。

(7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。

(9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。

(10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。

(11)加工硬化:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。

(12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。

材料科学基础复习资料

材料科学基础复习资料

材料科学基础复习资料材料科学基础是各个工程领域的基本学科,是各个领域的基础。

材料科学基础涵盖了材料的结构、物理与化学性质、制备工艺等方面内容,是材料科学领域学习过程中必须掌握的知识。

因此,为帮助有需要的人顺利复习材料科学基础知识,本文整理了一些相关的复习资料。

一、材料基础知识1. 基本的物理性质:包括化学成分、密度、电导率、热导率等基本参数,通常在每种材料的材料数据表中都可查到。

2. 结构相关:晶体结构:晶体结构指材料中原子、离子、分子排布的类型和规律,常用的晶体结构有:立方晶系、四方晶系、六方晶系、等轴晶系、正交晶系、单斜晶系、三斜晶系等。

非晶态:非晶态作为一种新兴的材料类型,其分子呈无序排列,在某些情况下可能拥有更好的性能。

3. 材料特性:热膨胀系数:在温度变化时,材料线膨胀的速度大小,通常用公式ΔL/L0 = αΔT 表示,其中α为热膨胀系数。

韧性:材料在受到剪切力或拉伸力时的弹性变形程度,是一种考量材料性能的指标,通常可以通过材料变形曲线进行查看。

4. 金属与合金相关:金属材料通常具有良好的导电、导热等特性,同时在高温、高压等环境下具有较强的稳定性。

合金则通常是由多个金属或者非金属元素组成的混合物,其性质与材料组分、配比等有关。

二、材料治理、工艺及应用1. 材料的处理:常用材料的处理包括固化、焊接、框架处理、表面处理以及高压工艺等,其中固化的过程包括了煅烧、烧结等过程。

2. 材料配方:通常材料的配方根据材料的成分、目的等进行确定,其中分子键长、键能以及分子排列等指标都可能用来确定最终配方。

3. 材料的加工工序:通常材料加工工序包括切削、钣金、打压成形等过程,每个工序都会影响材料的性质和特性。

三、材料的主要分类1. 材料的物理分类:主要涉及到材料的形态、密度以及各种物理性质,通常有固体、液体、气体以及等离子体等分类方式。

2. 材料的化学分类:不同的元素应用于不同的方案分类,这种分类通常依据材料的化学成分。

材料科学基础期末复习总汇.doc

材料科学基础期末复习总汇.doc

1•空间点阵一把原子或原子团按某种规律抽象成三维空间排列的点,这些有规律排列的点称为空间点阵。

2.金属间化合物一由不同的金属或金属与亚金属组成的一类合金相,其点阵既不同于溶剂的点阵,也不同于溶质的点阵,而是属于一种新的点阵。

3.过冷度一理论熔点与实际结晶温度的差值。

4.相一体系中具有相同的物理化学性质的均匀部分。

5.上坡扩散一在化学位梯度的推动下,溶质由低浓度的地方向高浓度的地方扩散的现象。

1.原子配位数一晶体中与任何一原子最临近并且等距离的原子数,它表示晶体中原子的密堆程度以及原子的化学键数。

2.固溶体一在合金相中,组成合金的异类原子以不同比例均匀混合,混合后形成的合金相的点阵与组成合金的溶剂组元结构相同。

3.成分过冷一合金凝固时由于液固界面前沿溶质浓度分布不均匀,使其实际温度低于其理论熔点而所造成的一种特殊过冷现象。

4去应力退火一冷变形金属通过加热使内应力得到很大程度的消除,同时又能保持冷变形强化状态的工艺。

5.柯肯达尔效应〜在置换固溶体中由于两组元的原子以不同速率相对扩散而引起标记面漂移的现象。

1. 晶体缺陷一晶体中原子排列的不完全区域,按几何特征分为点、线、面、体晶体缺陷。

2. 多滑移一晶体在外力的作用滑移时,由于晶体的转动,将使多个滑移系同时达到临界分切应力,从而使这些滑移系同时或交替进行滑移,多滑移也称复滑移。

3. 再结晶一冷变形金属加热到再结晶温度以上时,通过重新形核和长大的方式使变形晶粒转变为无畸变等轴晶粒,位错密度和空位浓度完全恢复到冷变形之前的状态,加工硬化也完全消失,这种转变过程称为再结晶。

再结晶过程不发生晶体结构的变化。

5.复合界面一通过物理和化学作用把两种或两种以上异质、异形和异性的材料复合起来所形成的界面称为复合界面。

1. 同素异构体一相图成分相同的化学物质在不同热力学条件下形成的各种不同结构的物质。

2. 微观偏析一是在一个晶粒范围内成分不均匀的现象。

根据凝固时晶体生长形态的不同,可分为枝晶偏析、胞状偏析和晶界偏析。

大学期末复习—材料科学基础知识点汇总 (1)

大学期末复习—材料科学基础知识点汇总 (1)

大学期末复习—材料科学基础知识点汇总材料科学基础复习1、正尖晶石,反尖晶石;萤石结构,反萤石结构;位移型转变,重建型转变;⼆⼆面体,三⼆面体;同质多晶,异质同晶。

(1)正尖晶石:在尖晶石AB2O4型结构中,如果A离子占据四面体空隙,B离子占据⼆面体空隙,则称为正尖晶石。

(A)[B2]O4。

(2)反尖晶石型结构如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据⼆面体空隙,则称为反尖晶石。

(B)[AB]O4。

(3)萤石结构:Ca2+作立方紧密堆积,F-充填于全部的四面体空隙,⼆面体空隙全部空着,因此在⼆个F-之间存在有较大的空洞,为阴离子F-的扩散提供条件。

(4)反萤石结构:晶体结构与萤石完全相同,只是阴、阳离子的位置完全互换。

如:Li2O、Na2O、K2O等。

其中Li+、Na+、K+离子占有结构中F-离子的位置,而O2-或其它离子占有Ca2+离子的位置。

叫做反同形体。

(5)位移型转变:同一系列(即纵向)之间的转变不涉及晶体结构中键的破裂和重建,仅是键长和键角的调整,转变迅速且可逆。

(6)重建型转变:不同系列(即横向)之间的转变,如α-石英和α-磷石英,α-磷石英和α-方石英之间的转变都涉及键的破裂和重建,转变速度缓慢。

(7)⼆⼆面体:⼆面体以共棱方式相连,但⼆面体中的O2-离子只被两个其它阳离子所共用,这种⼆面体称为⼆⼆面体。

(8)三⼆面体:⼆面体仍共棱方式相连,但⼆面体中的O2-离子被其它三个阳离所共用,称为三⼆面体。

(9)同质多晶:化学组成相同的物质,在不同的热⼆学条件下形成不同的晶体的现象。

(10)异质同晶:答:化学组成相似或相近,在相同的热⼆学条件下,形成的晶体具有相同的结构,这种现象称为类质同晶现象。

2、架状结构,层状结构,岛状结构。

岛状结构:硅酸盐晶体结构中的硅氧四面体以孤立状态存在,它们之间通过其它正离子的配位多面体连结。

层状结构:硅氧四面体通过三个共同氧连接,在⼆维平面内延伸成一个硅氧四面体层。

材料科学基础期末总结复习资料

材料科学基础期末总结复习资料

材料科学基础期末总结复习资料材料科学基础期末总结复习资料1、名词解释(1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。

(2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变。

(3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。

即HJB---包晶转变线,LB+δH→rJ(4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。

(5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析(6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。

(7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。

(9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。

(10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。

(11)加工硬化:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。

(12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。

材料科学基础复习要点

材料科学基础复习要点

材料科学基础复习要点第一章工程材料中的原子排列1、晶体中的原子键合方式?各种原子结合键的特点2、原子核外电子的能级排列?遵循的规律3、晶体和非晶体的区别?晶体的各向异性及各向同性4、晶体结构和空间点阵的联系及区别5、晶向指数和晶面指数的确定及表示方法,重点为面心立方晶体和体心立方晶体中密排面和密排方向的指数及其表示6、三种常见的晶体结构的特点,包括晶胞中的原子数、点阵常数与原子半径的关系、致密度、配位数、晶体中的间隙、原子堆垛方式、密堆程度、晶体的多晶型性7、铁的三种同素异构体的晶体结构类型8、空位的类型:肖脱基空位、弗兰克尔空位,空位浓度对晶体物理性能的影响9、位错的类型,刃位错、螺位错位错线与柏氏矢量间的关系,画图表示,位错密度对材料强度的影响10、位错环中位错类型的确定(如课本27页,图1-38,33页,图1-47)11、位错柏氏矢量的确定、柏氏回路与柏氏矢量的关系12、柏氏矢量的表示方法、柏氏矢量的模的计算13、柏氏矢量的守恒性及其推论14、作用在位错上的力的大小及方向15、位错的运动方式?刃、螺位错分别能如何运动,运动方向与位错线、柏氏矢量间的关系16、刃、螺位错应力场的特点?应变能与柏氏矢量的关系,不同类型位错应变的大小比较17、平行同号位错间的相互作用18、常见金属晶体中的位错:全位错、不全位错,位错稳定性的判定19、位错反应的判定20、晶界的类型及其位错模型,界面能与晶界位向差间的关系21、相界面的类型22、课后作业51页习题1、3、11,复习思考题1、2、9、10、12第二章固体中的相结构1、相的定义2、固溶体的晶体结构特点、分类及影响固溶体固溶度的因素3、金属原子间形成无限固溶体的条件4、间隙固溶体和间隙化合物的区别5、固溶体的性能特点6、金属间化合物的结构特点、分类、特性7、课后习题79页1、复习思考题1、2第三章凝固1、金属凝固的微观过程及宏观现象2、过冷现象与过冷度3、金属结晶的热力学条件、驱动力及其与过冷度间的关系4、金属结晶的结构条件5、晶核的形成方式6、均匀形核过程中系统能量的变化、临界晶核半径、形核功、临界晶核表面积、临界晶核体积间的关系推导7、均匀形核的条件8、均匀形核的形核率的受控因数、有效过冷度及其与熔点间的关系9、非均匀形核的形核功与均匀形核功间的比较10、晶体长大的条件、动态过冷度11、液固界面的微观结构及其宏观表象、常见金属的界面结构12、不同界面结构下晶体的长大方式13、液固界面的温度梯度与晶体长大形态间的关系14、铸态晶粒大小的控制措施15、课后习题109页1、6,复习思考题第四章相图1、相平衡及相律,相平衡的热力学条件,相率的表达式及其应用2、杠杆定律的计算3、固溶体非平衡凝固中固相、液相的成分变化规律,晶内偏析及其消除方法4、成分过冷的定义、表达式含义及成分过冷对固溶体生长形态及组织的影响5、典型二元共晶相图的分析,如Pb-Sn相图,包括典型合金的结晶过程分析、室温下组成相及组织组成的分析、相的相对含量、组织相对含量的计算(室温下)、非平衡凝固组织组成的分析6、伪共晶、离异共晶的定义,组织特征7、铁碳合金相图的基本相组成及其结构、性能特点8、铁碳合金相图中重要的点、线的含义、3个典型转变的方程式及其转变产物的相组成、组织名称。

材料科学基础复习资料整理

材料科学基础复习资料整理

一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。

2. 原子核外电子分布规律遵循的三个原则。

3. 金属键、离子键、共价键、分子键的特点。

4. 混合键比例计算与电负性差的关系。

5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。

6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。

7.影响固溶体溶解度的因素。

8.间隙相和间隙化合物的区别。

9. 晶体缺陷几何特征分类-点、线、面缺陷。

10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。

11.获得过饱和点缺陷的方法及原因。

12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。

13. 位错的主要运动方式;常温下金属塑性变形的方式。

14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。

15.说明柏氏矢量的确定方法。

掌握利用柏氏矢量和位错线的位向关系来判断位错类型。

16.两根平行的螺型位错相遇时的相互作用情况。

17.刃型位错和螺型位错的不同点。

18. 大小角度晶界的位向差、常见类型、模型描述、能量等。

19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。

20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。

21.柯肯达尔效应的含义及说明的问题(重要意义)。

22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。

23. 反应扩散定义、特点、扩散层增厚速度的决定因素。

24. 影响扩散的主要因素简述及分别叙述。

材料科学基础复习资料整理

材料科学基础复习资料整理

一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。

2. 原子核外电子分布规律遵循的三个原则。

3. 金属键、离子键、共价键、分子键的特点。

4. 混合键比例计算与电负性差的关系。

5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。

6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。

7.影响固溶体溶解度的因素。

8.间隙相和间隙化合物的区别。

9. 晶体缺陷几何特征分类-点、线、面缺陷。

10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。

11.获得过饱和点缺陷的方法及原因。

12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。

13. 位错的主要运动方式;常温下金属塑性变形的方式。

14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。

15.说明柏氏矢量的确定方法。

掌握利用柏氏矢量和位错线的位向关系来判断位错类型。

16.两根平行的螺型位错相遇时的相互作用情况。

17.刃型位错和螺型位错的不同点。

18. 大小角度晶界的位向差、常见类型、模型描述、能量等。

19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。

20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。

21.柯肯达尔效应的含义及说明的问题(重要意义)。

22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。

23. 反应扩散定义、特点、扩散层增厚速度的决定因素。

24. 影响扩散的主要因素简述及分别叙述。

材料科学基础复习要点

材料科学基础复习要点

《材料科学基础》复习要点一、主要内容1. 工程材料中的原子排列(1)原子键合,工程材料种类;(2)原子的规则排列:晶体结构与空间点阵,晶向及晶面的特点及表示,金属的晶体结构,陶瓷的晶体结构。

(3)原子的不规则排列:点、线、面缺陷的类型及特征,位错的弹性性质,实际晶体中的位错。

2. 固体中的相结构(1)固溶体:分类、性能及影响固溶度的因素;(2)金属间化合物:分类、性能及特征;(3)陶瓷晶体相:分类、结构、性能及特征;(4)玻璃相:性能、特征及形成条件。

3. 凝固与结晶(1)结晶的基本规律;(2)结晶的基本条件;(3)晶核的形成:形核能量变化,临界晶核,形核功,形核率;(4)晶体的长大:长大条件,液固界面结构,长大机制,温度梯度,晶体形态;(5)凝固理论的应用。

4. 二元相图:(1)相图的基本知识;(2)二元匀晶相图、共晶相图及包晶相图:二元合金的平衡凝固及非平衡凝固,凝固过程中的成分变化及偏析,成分过冷与固溶体组织,共晶体形成机理及其形态,杠杆定律;(3)二元相图的分析方法,其他类型二元相图及其应用;(4)Fe-C相图分析及平衡凝固;(5)铸锭组织与偏析。

5. 材料中的扩散:(1)扩散定律及其应用;(2)扩散的微观机理,影响扩散的因素;(3)扩散的热力学理论;(4)反应扩散。

6. 塑性变形:(1)单晶体的塑性变形;(2)多晶体的塑性变形;(3)合金的塑性变形;(4)冷变形金属的组织与性能。

7. 回复与与结晶:(1)冷变形金属在加热时的变化;(2)回复:机制,热力学,动力学,应用,影响因素;(3)再结晶:机制,热力学,动力学,应用,影响因素;(4)再结晶后晶粒长大:机制,热力学,动力学,应用及组织控制,影响因素;(5)金属的热变形,超塑性。

二、参考书目1. 《材料科学基础》,胡庚祥,蔡珣,上海交通大学出版社,20002. 《材料科学基础》(第二版),刘智恩,西北工业大学出版社20033. 《材料科学基础》,石德珂,西安交通大学出版社,20004. 《材料科学基础》,潘金生,仝健民,清华大学出版社,1998《材料科学基础》复习纲要重要概念-键合、工程材料-晶体、非晶体、各向异性-点阵、晶体结构、晶胞、晶系、布拉菲点阵、晶面指数、晶向指数、晶面族、晶向族-晶格常数、晶胞原子数、配位数、致密度、间隙-堆垛、密排面、密排方向、堆垛次序、堆垛方向-缺陷、点缺陷、刃位错、螺位错、混合位错-柏氏矢量、滑移矢量-位错密度-滑移、攀移、交滑移、交割、割阶、扭折、塞积-位错应力场、应变能、线张力、位错线上的力-位错增殖、位错源-全位错、不全位错、堆垛层错、位错反应-晶界、相界、界面能、大角度晶界、小角度晶界、孪晶界-相、固溶体、置换固溶体、间隙固溶体-金属间化合物、玻璃相-凝固、结晶、短程有序、长程有序-结构起伏(相起伏)、能量起伏、成分起伏-过冷度、形核过冷度、动态过冷度、临界过冷度、有效形核过冷度-均匀形核、非均匀形核、晶核、临界晶核、临界形核功、形核率-光滑界面、粗糙界面、垂直长大、横向长大、温度梯度、树枝状-平衡转变(结晶)、非平衡转变(结晶)、正常凝固-匀晶、共晶、包晶、共析、包析、脱溶转变-平衡分配系数、有效分配系数-微观偏析(枝晶偏析)、宏观偏析-亚共晶、共晶、过共晶、伪共晶、离异共晶、非平衡共晶、包晶转变不完全性-铁素体、奥氏体、珠光体、莱氏体、渗碳体、工业纯铁、钢、铸铁-液相线、固相线、液相面、固相面、中间面、液相平均成分线、固相平均成分线-浓度三角形-垂直截面、水平界面、投影图-扩散、空位扩散、间隙扩散、稳态扩散、非稳态扩散-扩散系数、扩散激活能、扩散通量、迁移率-上坡扩散、反应扩散-滑移、滑移线、滑移带、滑移方向、滑移面、滑移系、临界分切应力、取向因子、吕德斯带-柯氏气团、屈服、应变时效-细晶强化、固溶强化、复相强化、弥散强化、加工硬化-纤维组织、带状组织、流线、位错胞、变形亚结构、织构-回复、再结晶、晶粒长大-低、中、高温回复,多边化,去应力退火-再结晶温度、再结晶退火-临界变形度、热蚀沟、再结晶图-动态回复、动态再结晶,热变形-复合材料、基体、增强体、界面各章知识要点一、工程材料中的原子排列§1.1 原子键合• 原子键合的种类、特点、典型例子• 工程材料的分类及其主要键合类型• 键合的多重性§1.2 原子的规则排列• 晶体的特点、晶体结构、点阵• 晶系、布拉菲点阵• 晶面指数、晶向指数(标定和作图)及其特点,晶面族、晶向族• 晶面间距• 典型金属结构(fcc、bcc、hcp)(晶胞原子数、点阵常数、配位数、致密度)(间隙种类及其特点)(堆垛方式)• 多晶型性、同素异晶转变• 陶瓷晶体结构(离子键晶体、共价键晶体)(结构规则、不等径刚球密堆原理)§1.3 原子的不规则排列• 缺陷的种类• 点缺陷的种类• 空位的平衡浓度• 点缺陷对晶体性能的影响• 位错的类型、特点• 柏氏矢量(柏氏回路)• 位错的运动方式、特点• 位错的力学性能(应力场、畸变能、位错线上的力、线张力)• 位错的交互作用(位错与点、线、面缺陷的交互作用)• 位错增殖• 实际晶体中的位错(全位错、不全位错、单位位错、部分位错、堆垛层错、弗兰克位错、肖克来位错)• 位错反应• 面缺陷(类型及其结构模型、界面能、界面的特点)二、固体中的相结构§ 2.1 固溶体-固溶体的概念、分类-影响固溶度的因素-固溶体的均匀性-固溶体的性能§ 2.2 金属间化合物-化合物的概念、分类-化合物的性能§ 2.3 陶瓷晶体相-陶瓷的概念、特征§ 2.4 玻璃相-陶瓷的概念、形成条件三、凝固§ 3.1 金属结晶的基本规律-微观规律(形核、长大、)-宏观规律(过冷)§ 3.2 金属结晶的基本条件-热力学条件(ΔG < 0、ΔT )-动力学条件(形核:结构条件、能量条件、成分条件)(长大:速度条件)§ 3.3 晶核的形成-形核的方式(均匀形核、非均匀形核)-结晶时的体系能量变化-形核的驱动力和阻力-临界晶核的概念-临界晶核半径及其计算-临界形核功及其计算-形核率(概念、影响因素、特点)-两种形核方式的比较§3.4 晶体的长大-液固界面的微观结构-晶体的长大机制-温度梯度-晶体长大的形态§3.6 凝固理论的应用-铸锭晶粒组织及其控制-单晶体的制备-定向凝固-非晶合金的制备-微晶合金的制备四、相图§ 4.1 相、相平衡及相图制作-相的定义-相平衡的定义-成分的表示方法(质量分数、摩尔分数)-相图的制作方法§ 4.2 匀晶相图-相图分析-成分变化(平衡、非平衡)(微观偏析、宏观偏析)-成分过冷(概念、形成原因)-固溶体形貌§ 4.3 共晶相图-相图分析-共晶转变特点-典型合金的结晶过程(平衡、非平衡)-成分变化(平衡、非平衡)-共晶形成机理(形核机理、长大机理)-共晶体形貌特征(平衡、非平衡)-杠杆定律计算(相组成、组织组成)§ 4.4 包晶相图-相图分析-包晶转变特点-典型合金的结晶过程(平衡、非平衡)-成分变化(平衡、非平衡)-包晶形成机理-杠杆定律计算(相组成、组织组成)§ 4.5 其它相图-相图分析方法、步骤-典型合金的结晶过程(平衡、非平衡)-成分变化(平衡、非平衡)-杠杆定律计算(相组成、组织组成)§ 4.6 Fe-C相图-相图分析-典型合金的平衡结晶过程-成分变化-典型合金的名称-杠杆定律计算(相组成、组织组成)§ 4.8 铸锭组织与偏析-偏析的类型§ 4.9 三元合金相图-成分表示法(浓度三角形)-三元匀晶相图(立体图、投影图)-三元匀晶相图(垂直截面、水平截面)-三元匀晶相图平衡结晶过程-简单三元共晶相图(立体图、投影图)-简单三元共晶相图(垂直截面、水平截面)-简单三元共晶相图平衡结晶过程五、材料中的扩散§5.1 扩散定律及其应用-扩散第一定律及其应用条件-扩散第二定律及其应用条件§ 5.2 扩散的微观机理-扩散的微观机理-原子热运动对扩散的影响-晶态、非晶态化合物中的扩散§ 5.3 扩散的热力学理论-扩散的驱动力-上坡扩散(概念、诱因)-扩散系数§ 5.4 反应扩散-反应扩散(概念、特点)陶瓷的概念、特征§ 5.5 扩散的影响因素-影响因素及其机理六、塑性变形§ 6.1 应力-应变曲线-工程应力应变曲线、真应力应变曲线及二者差别-强度及塑性指标,硬化系数§ 6.2 单晶体的塑性变形-滑移现象(滑移线、滑移带、滑移特征)-滑移系-临界分切应力-滑移的微观机理-晶体的转动、多滑移、交滑移及滑移线形貌-孪生的概念、特点§ 6.3 多晶体的塑性变形-位向差及晶界对塑变的影响-细晶强化机理、特征-霍尔-配奇公式§6.4 合金的塑性变形-固溶强化机理-屈服及应变时效-复相强化机理及特征-弥散强化机理§ 6.5 冷变形金属的组织和性能-组织变化(显微组织、变形亚结构、变形织构)-能量变化(内应力、畸变能)-力学性能(加工硬化)-物理、化学性能变化七、回复与再结晶§ 7.1 加热时的变化-显微组织变化-能量变化-力学性能变化-物理、化学性能变化§ 7.2 回复-回复机制-回复热力学-回复动力学-回复应用§ 7.3 再结晶-再结晶机制(形核机制、长大机制)-再结晶热力学-再结晶动力学-再结晶温度及其影响因素-再结晶组织及其影响因素§ 7.4 再结晶后晶粒长大-长大方式-晶粒长大(特征、热力学、动力学)-晶粒长大影响因素-再结晶应用八、固态相变-固态相变的分类九、复合效应与界面-复合材料定义、分类-复合材料的构成、各部分的作用-复合效应-界面结合种类热处理改变钢的性能的原因是因为采用不同的加热、保温、冷却方式使钢内部结构发生改变,从而获得所需性能。

材料科学基础知识点

材料科学基础知识点

材料科学基础知识点
1. 结晶学:研究晶体的形成、结构和性质。

包括晶体生长、晶体结构分析、晶体缺陷等。

2. 材料力学:研究材料的力学性质,包括材料的强度、韧性、塑性、蠕变等。

3. 材料热学:研究材料的热传导、热膨胀、热稳定性等热学性质。

4. 材料电学:研究材料的电导率、介电性质、磁性等电学性质。

5. 材料化学:研究材料的化学成分、结构和化学反应。

包括材料的合成方法、表面改性、材料的腐蚀与防护等。

6. 材料物理学:研究材料的物理性质,包括光学性质、磁性、声学性质等。

7. 材料加工:研究材料的加工方法、工艺和性能改善。

包括材料的铸造、焊接、锻造、热处理等。

8. 材料性能测试:研究材料的各种性能指标的检测和测试方法。

9. 材料选择:根据工程要求和材料性能,选择最合适的材料。

10. 材料应用:研究材料在各种实际应用中的性能和适用范围,包括材料的耐久性、可靠性等。

材料科学基础知识点

材料科学基础知识点

材料科学基础知识点材料科学基础重点梳理第一章1.1原子的结合有哪些?1.2工程材料可分为哪几类?1.3晶向指数、晶面指数能画图,给图能写出。

1.4金属常见的晶格类型、配位数、致密度、原子密排面、密排晶向、结构中的间隙。

1.5晶体中缺陷的种类。

1.6位错的种类、位错方向与柏氏矢量的关系、位错的运动方式。

1.7位错反应条件及计算。

1.8晶界的种类,界面能与晶界的关系。

第二章2.1影响置换固溶体溶解度有哪些因素?有何规律?1、原子尺寸因素:溶质和溶剂的尺寸差别越小越容易形成置换固溶体2、晶体结构因素:同一种间隙原子在fcc的固熔度大于bcc的3、负电性因素;负电性相差很大时,即亲和力很大,往往比较容易形成比较稳定的化合物; 负电性差不大时,随负电性值增加,有利于增大固溶度4、电子浓度因素:溶质元素的原子价越高,形成固溶体的极限固溶度越小。

2.2间隙固溶体与间隙相之间的关系。

间隙固熔体式固熔体的一种,间隙相是一种金属间化合物两者的晶体结构也各不相同。

2.3金属间化合物的种类及特点金属间化合物分为正常价化合物,电子价化合物和间隙化合物;正常价化合物:电负性差值越大,稳定性越高;电子价化合物:间隙化合物:主要受组元的原子尺寸因素控制。

通常是由渡族金属与原子半径很小的非金属元素组成,分为简单间隙化合物与复杂间隙化合物,非金属元素处于化合物晶格的间隙中。

第三章3.1金属结晶的热力学条件是什么?热力学第二定律:在等温等压条件下物质系统总是自发地从自由能较高的状态向自由能较低的状态转变,就是说只有伴随着自由能降低的过程才能自发的进行。

3.2金属结晶的能量条件是什么?能量起伏(详细看书P85-86)固态金属自由能低于液态金属自由能。

当温度低于Tm时液态的自由能Gl高于固态的自由能,由液态转为固态时,将释放出那份能量而是系统自由能降低,所以过程才能够自动进行。

凝固过程一定要在低于熔点温度时才能进行。

3.3金属结晶的结构条件是什么?结构起伏 (详细看书P86-87)3.4金属结晶时的形核有哪些方式?均匀形核、非均匀形核3.5根据凝固理论,如何细化晶粒?单位体积中的晶粒数取决于两个因素:形核率N和长大速度V;增加过冷度;小制件:增加冷却速度,大制件:采用形核剂;振动。

材料科学基础复习知识点

材料科学基础复习知识点

1 简述刃型位错和螺型位错的区别答:不同点:1、柏氏矢量b垂直于位错线是刃型位错,b平行于位错线是螺型位错。

2、对刃型位错外加作用力F与外加切应力t一致,对螺型位错F与t垂直 3、刃型位错由于b 垂直于位错线,所以具有唯一的滑移面,而螺型位错的b平行于位错线,所以滑移面不是唯一的。

4、刃型位错的应力场既有正应力也有切应力,而螺位错的应力场只有切应力没有正应力。

5、刃型位错既能滑移又能攀移,螺位错只能滑移不能攀移。

6,刃型位错可以形成对称倾侧晶界螺型位错可形成扭转晶界。

相同点:1.都是已滑移与未滑移的交线。

2,当位错线沿滑移面滑过整个晶体时,就会在晶体表面沿柏氏矢量方向产生一个滑移台阶,其宽度等于柏氏矢量b。

常见晶体缺陷各举一例位错运动方式面心立方金属不全位错有哪些?位错线是什么?位错增殖机制:假定有一两端扎钉的位错线段AB,在t作用下AB受F=tb作用,所以AB发生滑移,但AB 固定所以AB发生弯曲当r=r(min) 位错线在t的作用下不断扩展,当位错线m,n点相遇时彼此抵消,原来整根位错线断成两部分外部是一个封闭的位错环里面是一段位错线AB,在t的作用下位错环不断向外拓展,AB不断重复上述过程,结果便放出大量位错环造成位错的增值。

扭折:位错交割生成的小曲折线段与原位错线在同一滑移面上。

割阶:位错交割生成的小曲折线段与原位错线不在同一滑移面上。

固熔体:是固态下一种组元熔解在另一种组元中形成的新相,其特点是固熔体具有熔剂组元的点阵类型。

相:是指在任一给定的物质系统中,具有同一化学成分,同一原子聚集状态和性质的均匀连续组成部分。

置换固熔体:熔质原子占据熔剂点阵的固熔体。

间隙固熔体:是由那些原子半径小于0.1mm的非金属元素熔入到熔剂金属晶体点阵的间隙中所形成的固熔体中间相:金属与金属,或金属与类金属之间所形成的化合物统称为金属间化合物。

由于它们常处在相图的中间位置上,故又称中间相。

间隙相:当非金属原子半径与过渡金属原子半径之比(Rx/RM)<0.59时化合物具有比较简单的结构称为简单间隙化合物,又称间隙相。

材料科学基础复习资料

材料科学基础复习资料

材料科学基础复习资料材料科学基础复习资料材料科学是一门研究材料的性质、结构、制备和应用的学科。

它涉及到多个学科领域,如物理学、化学、工程学等。

材料科学的发展对于现代社会的进步和创新发挥着重要的作用。

在这篇文章中,我们将复习一些材料科学的基础知识和重要概念。

1. 材料的分类材料可以根据其组成、结构和性质的不同进行分类。

常见的材料分类包括金属材料、陶瓷材料、聚合物材料和复合材料。

金属材料具有良好的导电性和导热性,常用于制造工具和机械部件。

陶瓷材料具有优异的耐热性和耐腐蚀性,常用于制作陶瓷器皿和瓷砖。

聚合物材料具有良好的可塑性和绝缘性能,广泛应用于塑料制品和纤维材料。

复合材料是由两种或更多种材料组成的材料,具有优异的力学性能和特殊的功能。

2. 材料的结构材料的结构对其性质和性能具有重要影响。

材料的结构可以分为原子结构、晶体结构和非晶态结构。

原子结构是材料中最基本的结构单元,决定了材料的化学性质。

晶体结构是由原子或离子按照一定规律排列而成的,具有明确的晶格和晶面。

非晶态结构是指材料的原子或分子无序排列的结构,常见于玻璃等非晶体材料。

3. 材料的性质材料的性质包括物理性质和化学性质。

物理性质是指材料在外界条件下的响应和行为,如硬度、弹性、导电性等。

化学性质是指材料与其他物质发生化学反应的性质,如腐蚀性、氧化性等。

材料的性质与其组成、结构和制备方法密切相关。

4. 材料的制备材料的制备是指通过一系列的加工过程将原材料转变为所需的成品材料。

常见的材料制备方法包括熔融法、溶液法、沉积法和固相反应法等。

熔融法是将原材料加热至熔点后冷却固化,常用于金属和玻璃材料的制备。

溶液法是将原材料溶解在溶剂中,然后通过蒸发或沉淀得到所需的材料。

沉积法是将原材料沉积在基底上,常用于薄膜和涂层的制备。

固相反应法是将原材料在高温下反应生成所需的材料。

5. 材料的应用材料的应用广泛涉及到各个领域,如电子、能源、医疗、航空航天等。

电子材料用于制造电子器件和电路,如半导体材料和导电材料。

材料科学基础期末复习知识点(可缩印)

材料科学基础期末复习知识点(可缩印)

1、菲克第一定律:当系统中物质的扩散达到稳定状态时(即物质在各处的质量浓度不随时间而变化),扩散通量(单位时间内通过垂直于扩散方向单位横截面的物质的质量)与物质的浓度梯度(扩散方向上单位距离物质的浓度差)成正比。

2、菲克第二定律:描述了非稳态扩散系统中扩散原子的分布与时间及所处位置的相互关系,根据应用条件的不同,对此偏微分方程进行求解,可得到一定条件下不同时刻、不同位置处的扩散原子的浓度分布状况。

3、柯肯达尔效应:多元系统中由于各组元扩散速率不同而引起的扩散偶原始界面向扩散速率快的一侧移动的现象称为柯肯达尔效应。

说明在扩散系统中每一种组元都有自己的扩散系数。

4、反应扩散:当某种元素通过扩散自金属表面向内部渗透时,该元素含量超过基体金属的溶解度以后会在金属表层形成新相(中间相或固溶体)的现象。

N元反应扩散的渗层组织中只有N-1相能够共存,并且相界面浓度是突变的。

5、高分子构象:由于单键内旋导致原子排布方式的不断变换,使分子在空间呈现的不同形态。

6、高分子链的柔顺性:链段长度和整个分子长度的比值。

7、滑移系:一个滑移面和此面上的一个滑移方向合起来称为一个滑移系。

8、取向因子(软取向和硬取向):分切应力与轴向正应力的比值,可表示为取向因子越大,分切应力越大,越接近临界分切应力,容易使金属滑移,称为软取向。

9、加工硬化:金属材料经冷变形后,强硬度显著提高,塑性很快下降的现象。

10、固溶强化:随着溶质原子固溶度的增加,基体金属的变形抗力随之提高的现象。

11、柯氏气团:溶质原子与位错的交互作用,溶质原子更倾向于聚集在位错的周围,使位错可动性下降,类似形成了一个溶质原子气团。

12、应变时效:将经过少量变形的试样放置一段时间,或经过短时间低温热处理后再进行拉伸,则屈服点又重新出现,且屈服应力提高的现象。

13、Hall-petch定律:多晶体的强度随着晶粒的细化(晶界面积增大)而增加,屈服强度与晶粒尺寸d-12之间存在线性关系。

材料科学基础复习资料

材料科学基础复习资料

1..晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象2.科垂尔气团:溶质原子在刃型位错周围的聚集的现象,这种气团可以阻碍位错运动,产生固溶强化效应等结果3.反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散,如从金属表面向内部渗入金属时,渗入元素浓度超过溶解度出现新相4.变形织构:经过塑性变形后原来多晶体中位向不同的晶粒变成取向基本一致,形成晶粒的择优取向,择优取向后的晶体结构为织构,若织构是在塑性变形中产生的,称为变形织构5.割阶和扭折:位错运动过程中与其它位错交截后形成一定的位错交截折线,若交截后的位错折线在原来位错的滑移面上,此位错折线称为扭折,若交截后的位错折线垂直于原来位错的滑移面,此位错折线称为割阶6.冷加工与热加工:通常根据金属材料的再结晶温度来加以区分,在再结晶温度以上的加工称为热加工,低于再结晶温度又是室温下的加工称为冷加工7.面角位错:在位错反应中,fcc晶体中不同滑移面上的全位错分解为不全位错后,领先不全位错反应生成新的不可动位错,导致出现的三个不全位错之间夹杂两个层错的不可动位错组态;8.变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构;9.再结晶织构是具有变形织构的金属经过再结晶退火后出现的织构,位向于原变形织构可能相同或不同,但常与原织构有一定位向关系。

10.再结晶全图:表示冷变形程度、退火温度与再结晶后晶粒大小的关系(保温时间一定)的图。

11.带状组织:多相合金中的各个相在热加工中可能沿着变形方向形成的交替排列称为带状组织;12.加工流线:金属内部的少量夹杂物在热加工中顺着金属流动的方向伸长和分布,形成一道一道的细线;13.动态再结晶:低层错能金属由于开展位错宽,位错难于运动而通过动态回复软化,金属在热加工中由温度和外力联合作用发生的再结晶称为动态再结晶。

大学期末总复习——材料科学基础知识点汇总

大学期末总复习——材料科学基础知识点汇总

大学期末总复习——材料科学基础知识点汇总一、名词解释1、空间点阵:表示晶体中原子规则排列的抽象质点。

2、配位数:直接与中心原子连接的配体的原子数目或基团数目。

3、对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。

4、超结构:长程有序固溶体的通称。

5、固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。

6、致密度:晶体结构中原子的体积与晶胞体积的比值。

7、正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附。

8、晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能。

9、小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界。

10、晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。

11、肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。

12、弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。

13、刃型位错:柏氏矢量与位错线垂直的位错。

螺型位错:柏氏矢量与位错线平行的位错。

14、柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。

15、单位位错:柏氏矢量等于单位点阵矢量的位错。

16、派—纳力:位错滑动时需要克服的周围原子的阻力。

17、过冷:凝固过程开始结晶温度低于理论结晶温度的现象。

18、过冷度:实际结晶温度和理论结晶温度之间的差值。

19、均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。

20、过冷度:实际结晶温度和理论结晶温度之间的差值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、菲克第一定律:当系统中物质的扩散达到稳定状态时(即物质在各处的质量浓度不随时间而变化),扩散通量(单位时间内通过垂直于扩散方向单位横截面的物质的质量)与物质的浓度梯度(扩散方向上单位距离物质的浓度差)成正比。

2、菲克第二定律:描述了非稳态扩散系统中扩散原子的分布与时间及所处位置的相互关系,根据应用条件的不同,对此偏微分方程进行求解,可得到一定条件下不同时刻、不同位置处的扩散原子的浓度分布状况。

3、柯肯达尔效应:多元系统中由于各组元扩散速率不同而引起的扩散偶原始界面向扩散速率快的一侧移动的现象称为柯肯达尔效应。

说明在扩散系统中每一种组元都有自己的扩散系数。

4、反应扩散:当某种元素通过扩散自金属表面向内部渗透时,该元素含量超过基体金属的溶解度以后会在金属表层形成新相(中间相或固溶体)的现象。

N元反应扩散的渗层组织中只有N-1相能够共存,并且相界面浓度是突变的。

5、高分子构象:由于单键内旋导致原子排布方式的不断变换,使分子在空间呈现的不同形态。

6、高分子链的柔顺性:链段长度和整个分子长度的比值。

7、滑移系:一个滑移面和此面上的一个滑移方向合起来称为一个滑移系。

8、取向因子(软取向和硬取向):分切应力与轴向正应力的比值,可表示为cos cosφλ。

取向因子越大,分切应力越大,越接近临界分切应力,容易使金属滑移,称为软取向。

9、加工硬化:金属材料经冷变形后,强硬度显著提高,塑性很快下降的现象。

10、固溶强化:随着溶质原子固溶度的增加,基体金属的变形抗力随之提高的现象。

11、柯氏气团:溶质原子与位错的交互作用,溶质原子更倾向于聚集在位错的周围,使位错可动性下降,类似形成了一个溶质原子气团。

12、应变时效:将经过少量变形的试样放置一段时间,或经过短时间低温热处理后再进行拉伸,则屈服点又重新出现,且屈服应力提高的现象。

13、Hall-petch定律:多晶体的强度随着晶粒的细化(晶界面积增大)而增加,屈服强度与晶粒尺寸21-d之间存在线性关系。

14、形变织构:多晶体材料在拉应力作用下,原本任意取向的晶粒趋向于外加应力方向,形成晶体的择优取向,变形量越大,择优取向程度越大,织构越强。

15、蠕变:金属材料在高温恒定载荷 (通常<σs) 的持续作用下,会发生与时间相关的塑性变形,应变随时间增加而增大的现象,在温度T≥(0.3-0.5)Tm时尤为明显。

16、超塑性:某些金属材料,在特定条件下拉伸时,可以使材料在较低的流动应力下,得到高达500%~2000%的延伸率,而不发生缩颈,这种特性叫做超塑性。

17、准晶:具有长程周期有序排列,而没有平移对称性的原子聚集状态,可存在不符合传统晶体学的五次、八次、十二次对称轴。

18、脱溶分解:当固溶体因温度变化等原因而呈过饱和状态时,将自发分解,其所含的过饱和溶质原子通过扩散而形成新相析出,此过程称为脱溶分解。

19、调幅分解:过饱和固溶体在一定温度下通过溶质原子的上坡扩散形成结构相同而成分呈周期性波动的两种固溶体。

20、居里温度(尼尔温度):材料的磁特性受温度的影响,随温度增加,饱和磁化强度逐渐减小,然后急降到零,此时的温度为居里温度。

21、N型半导体:在4价本征半导体中加入5价置换杂质,形成的弱键单电子容易被激发到导带中去,使导带中电子数远超过价带中的空穴数,半导体的电导明显增加,这类材料称为n型半导体,导电性主要由电子浓度决定。

22、P型半导体:在4价本征半导体中加入3价置换杂质,价带电子容易被激发到该掺杂能级中去,使价带中空穴数远超过导带中的电子数,半导体的电导明显增加,这类材料称为p 型半导体,导电性主要由空穴浓度决定。

23、声子:晶格振动的能量量子,就是一种具有特定的频率ν、波长λ和一定传播方向的弹性波。

24、受激辐射:处于激发态的原子在外来光子刺激下跃迁到低能态,并发射出频率与入射光相同的光子。

25、自发辐射:在没有任何外界作用下,激发态原子向低能态跃迁并发射光子的现象,是一种随机无序发射。

1. 稳态扩散质量浓度不随时间而变化,非稳态扩散某一点浓度是随时间变化的; 菲克定律:(1)两端不收扩散影响的扩散偶:ρ(x,t)=(ρ1+ρ2)/2+(ρ1-ρ2)*erf(x/2√Dt).(2)一端成分不受影响的扩散体:[ρs-ρ(x,t)]/(ρs-ρ0)=erf(x/2√Dt). x=A √Dt 或x 2=BDt3. 上坡扩散:物质从低浓度向高浓度扩散,提高了浓度梯度;扩散驱动力是化学位梯度。

扩散结果总是导致扩散组元化学势梯度减小为0.4. 固体扩散中两种主要的扩散机制:间隙机制和空位机制。

5. 温度对于扩散速率的影响:Arrhenius 速率方程D=D 0exp(-Q/RT),其中D 0扩散常数,Q代表激活能,D 为扩散系数。

lnD=lnD 0-Q/RT6. 影响扩散的因素:温度,温度越高高,原子热激活能越大,扩散系数越大;固溶体类型,间隙固溶体较小;晶体结构;晶体缺陷;化学成分;应力的作用。

7.离子扩散缺陷类型:形成等量的阳离子和阴离子空位的无序分布为肖脱基型空位;形成阳离子空位的电荷可通过形成间隙阳离子来补偿,这样的缺陷组合为弗兰克型空位。

扩散特点:为了保持局部电中性,必须产生成对的缺陷,导致了离子扩散的速率通常远小于金属原子的扩散速率。

8. 高分子中的分子运动起因于主链中单键的内旋转;单键的内旋转是导致高分子链蜷曲构象的原因,内旋越自由,蜷曲的趋势越大,表明高分子链的柔顺性越好;运动方式:大尺寸单元指整个高分子链(布朗运动),小尺寸单元指链段或链段以下的小运动单元(微布朗运动)。

玻璃态-高弹态-黏流态;不同阶段的分子运动方式:玻璃态热能不足以激活整个高分子链或链段的运动,可能使比链段小的一些运动单元发生运动;高弹态高分子链可扩张伸直或蜷曲收缩;黏流态有可能实现整个分子链的质心位移—流动高分子柔顺性用链段长度的大小表示,影响因素:主链结构;取代基特性;链的长度;交联度;结晶度。

1. 弹性形变特征:(1)理想的弹性变形是可逆变形,加载时变形,卸载时变形消失并恢复原状。

(2)在弹性变形范围内,其应力与应变之间服从胡克定律:在正应力下:σ=εE (弹性模量)τ=γG (切变模量);G=E/[2(1+ν)]其中ν泊松比,指材料横向收缩率与纵向伸长率之比。

2. 单晶塑性变形:常温下两大变形方式:滑移和孪生。

(1)滑移:位移+转动。

Schmid 定律:τ=F/Acos Φcos λ;cos Φcos λ为取向因子,取向因子大的为软取向;取向因子小的为硬取向。

单晶体滑移时,除滑移面发生相对位移外,往往伴随着晶面的转动;多滑移时,滑移首先在取向最有利的滑移系;交滑移:两个或多个滑移面沿着某个共同方向同时或交替滑移(2)孪生特点:(1)孪生变形也是在切应力作用下发生的,并通常出现于滑移受阻而引起的应力集中区,因此,孪生所需的临界切应力要比滑移时大得多。

(2)孪生是一种均匀切变,即切变区内与孪晶面平行的每一层原子面,均相对于其毗邻晶面沿孪生方向位移了一定距离,且每一层原子相对于孪生面的切变量,跟它与孪生面的距离成正比。

(3)孪晶的两部分晶体形成镜面对称的位向关系。

3. 多晶塑变变形:(1)晶粒取向:需要五个独立滑移系同时开动(五个独立滑移系来满足各晶粒变形时相互协调的要求)。

(2)晶界:Hall-petch 定律σs=σ0+21-Kd ,σ0反映晶内对变形的阻力相当于极大单晶屈服强度,K 反映晶界对变形的影响系数;室温采用细晶强化,而高温时会发生晶粒沿晶界的相对滑动和扩散性蠕变,产生不利影响。

4. 单相固溶体合金 固溶强化:溶质原子的存在及其固溶度的增加,使基体金属的变形抗力随之提高。

影响固溶强化的因素:1)溶质原子的原子数分数越高,强化作用也越大;2)溶质原子与基体金属的原子尺寸相差越大,强化作用也越大;3)间隙型溶质原子比置换型原子具有较大的固溶强化效果;4)溶质原子与基体金属价电子数相差越大,强化效果越显著。

屈服现象和应变时效现象:柯氏气团理论很好地解释应变时效。

当卸载后重新加载,由于位错已经挣脱出气团的钉孔,故不出现屈服点;如果卸载后放置较长时间或经时效,则溶质原子已经通过扩散而重新聚集到位错周围形成了气团,故屈服现象又复出现。

6. 金属四大常用强化手段及其强化机理 (1)细晶强化:细晶粒不仅可以是材料具有较高的强度、硬度,而且也使它具有良好的塑性和韧性;(2)固溶强化:随着溶质原子固溶度的增加,基体金属的变形抗力会随之提高。

(3)第二相强化:通过其对位错运动的阻碍作用来实现。

(4)加工硬化:7. 冷加工过程对材料组织、结构及性能的影响:(1)显微组织的变化(2)亚结构的变化,位错密度增加(3)性能的变化,强度(硬度)显著提高,塑性很快下降,即产生加工硬化。

塑性变形使得金属中结构缺陷增多,自由焓升高,因而导致金属中的扩散过程加速,金属的化学活性增大,腐蚀速度也加快。

(4)形变织构(5)残余应力:宏观残余应力;微观残余应力;点阵(晶格)畸变(最主要的)。

热处理1、冷变形随后热处理对材料组织、结构及性能的恢复:回复-再结晶-晶粒长大;金属退火过程(回复和再结晶过程)中:强度和硬度、电阻、内应力减小,亚晶粒尺寸、密度增加。

2.回复驱动力主要来自于应变能的下降。

动力学方程C=C 0RT Q A t e RT Q +=⇒-ln回复特点:(1)没有孕育期;(2)在一定温度下,初期的回复速率很大,随后变慢至趋近于零;(3)每一温度的回复程度都有一极限值,退火温度越高,极限值越高,达到这一极限值所需时间就越短;(4)预变形量越大,原始晶粒尺寸越小,初始回复速率越快; 再结晶驱动力是变形金属经回复后未被释放的储存能;作用可以消除冷加工的影响;动力学方程:RT Q A t -=-ln ln )]11)(/ex p[(2121T T R Q t t --=晶粒长大的驱动力通常来自总的界面能的降低;3.冷变形量、再结晶温度、再结晶粒尺寸之间的关系。

随着冷变形程度的增加,储能也增多,再结晶的驱动力就越大,再结晶温度越低,同时等温退火时的再结晶速度也越快,再结晶晶粒更细小。

提高退火温度可使再结晶速度显著加快,临界变形度数值变小,温度越高晶粒越粗。

4:晶粒正常长大表现为大多晶粒几乎同时逐渐均匀长大;异常长大则为少数晶粒突发性的不均匀长大。

正常长大平均晶粒直径随保温时间的平方根而增大,影响因素:a 温度,温度越高,长大速度越快;b 分散相粒子对晶界有阻碍作用,使晶粒长大速度降低;c 晶粒间的位向差;d 杂质与微量合金元素(降低)。

异常晶粒长大(二次再结晶)的驱动力来自界面能的降低,而且不是重新产生新的晶核,而是以一次再结晶后某些特殊晶粒作为基础而长大的。

相关文档
最新文档