应变片性能实验

合集下载

应变片 实验报告 灵敏

应变片 实验报告 灵敏

应变片实验报告灵敏引言应变片是一种常用于测试物体受力情况的传感器。

其具有灵敏性能的重要指标是其在不同受力情况下的响应能力。

本实验旨在测试应变片的灵敏性能,并分析实验结果。

实验材料和设备- 应变片- 电源- 数字示波器- 受力装置- 变阻器实验步骤1. 将应变片粘贴在要测试的物体表面,并保证其充分贴合。

2. 连接应变片与电源和数字示波器,确保电路连接良好。

3. 利用受力装置对测试物体施加不同大小的力,记录下力的大小和对应的应变片输出信号。

4. 根据实验需求,对应变片输出信号进行转换和调节,以便与数字示波器适配。

5. 将转换后的信号输入到数字示波器中,记录下实验数据。

数据分析通过实验记录的数据,我们可以对应变片的灵敏性能进行分析。

我们可以将施加的力与应变片输出的电压信号进行对比,以便确定其灵敏度和线性范围。

结果与讨论根据实验记录的数据,我们绘制了应变片的灵敏性能曲线。

曲线上的每个点表示施加不同大小力时应变片的输出电压信号。

通过对曲线进行分析,我们可以得到以下结论:1. 灵敏度:灵敏度是应变片的输出电压和外力之间的关系。

经实验测得,应变片的灵敏度为X mV/N,表明应变片对外力的变化相当敏感。

2. 线性范围:线性范围是指应变片在力作用下输出电压与力的关系保持线性的区间范围。

根据实验数据,我们可以确定应变片的线性范围为X N至Y N之间。

结论本实验通过测试应变片的灵敏性能,得出了应变片的灵敏度和线性范围等重要指标。

这些指标将有助于我们在实际应用中选择合适的应变片,并确保其测量结果的准确性。

参考文献[1] 张三, 李四. 应变片传感器的原理与应用. 科学出版社, 20XX.[2] 王五, 赵六. 传感器技术基础. 电子工业出版社, 20XX.。

应变片实验报告

应变片实验报告

应变片实验报告
实验名称:应变片实验
实验目的:通过应变片实验,研究材料在受力过程中的应变情况。

实验原理:
应变片是一种用于测量物体受力时产生的应变的传感器。

其原理基于电阻应变效应,即应变片在受力作用下会发生微小形变,从而改变其电阻值。

通过测量电阻值的变化,可以获知材料的应变情况。

实验仪器和材料:
1. 应变片
2. 电流源
3. 万用表
实验步骤:
1. 将应变片粘贴在需要测量应变的材料表面。

2. 将电流源与应变片相连,调整电流源的输出电流。

3. 使用万用表测量应变片上的电阻值。

4. 在材料上施加不同的受力,记录电阻值随受力变化的情况。

5. 根据电阻值的变化计算应变大小。

实验结果:
根据实验数据记录的电阻值随受力变化的情况,可以得到应变片的应变曲线。

根据应变曲线可以分析材料在受力过程中的应
变行为,如线性弹性应变、屈服应变等。

根据测得的电阻值变化,还可以计算出材料的应变量。

实验结论:
通过应变片实验,可以获知材料在受力过程中的应变情况,并分析材料的力学性能。

应变片作为一种常用的力学测试传感器,具有灵敏度高、测量精度高等优点,在工程领域有着广泛的应用。

应变片实验报告

应变片实验报告

传感器实验----金属箔式应变片:单臂、半桥、全桥比较【实验目的】了解金属箔式应变片,单臂单桥的工作原理和工作情况。

验证单臂、半桥、全桥的性能及相互之间关系。

【所需单元及部件】直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、电压/频率表、电源, 重物加在短小的圆盘上。

【旋钮初始位置】直流稳压电源打到±2V 挡,电压/频率表打到2V 挡,差动放大增益最大。

【应变片的工作原理】当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属的电阻应变效应。

设有一根长度为L 、截面积为S 、电阻率为ρ的金属丝,在未受力时,原始电阻为(1-1)当金属电阻丝受到轴向拉力F 作用时,将伸长ΔL ,横截面积相应减小ΔS ,电阻率因晶格变化等因素的影响而改变Δρ,故引起电阻值变化ΔR 。

对式(1-1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S L L R R (1-2) 【测量电路】应变片测量应变是通过敏感栅的电阻相对变化而得到的。

通常金属电阻应变片灵敏度系数K 很小,机械应变一般在10×10-6~3000×10-6之间,可见,电阻相对变化是很小的。

例如,某传感器弹性元件在额定载荷下产生应变101000⨯=ε-6,应变片的电阻值为Ω120,灵敏度系数K=2,则电阻的相对变化量为⨯⨯==∆10002εK RR10-6=0.002,电阻变化率只有0.2%。

这样小的电阻变化,用一般测量电阻的仪表很难直接测出来,必须用专门的电路来测量这种微弱的电阻变化。

最常用的电路为电桥电路。

(a )单臂 (b )半桥 (c )全桥图1-1 应变电桥直流电桥的电压输出当电桥输出端接有放大器时,由于放大器的输入阻抗很高,所以,可以认为电桥的负载电阻为无穷大,这时电桥以电压的形式输出。

输出电压即为电桥输出端的开路电压,其表达式为U R R R R R R R R U ))((432142310++-=(1-3)设电桥为单臂工作状态,即1R 为应变片,其余桥臂均为固定电阻。

应变片性能实验

应变片性能实验

实验一 应变传感器的性能研究一、实验类型:验证性实验。

二、实验目的1. 观察了解箔式应变片的结构及粘贴方式;2. 测试应变梁变形的应变输出;3. 验证单臂、半桥、全桥测量电桥的输出关系,比较不同桥路的功能。

三、实验内容1. 设计并实现应变传感器的测试桥路;2. 测量单臂、半桥、全桥测量电桥的输出,记录数据、绘制关系曲线,并分析。

四、实验原理1. 本实验说明箔式应变片及单臂直流电桥的原理和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。

通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/ R3、ΔR4/R4,当使用一个应变片时,∑∆=RRR ;当二个应变片组成差动状态工作,则有2RR R∆=∑;用四个应变片组成二个差动对工作,且R1= R2 = R3 = R4 = R ,4RR R∆=∑。

由此可知,单臂,半桥,全桥电路的灵敏度依次增大。

2. 已知单臂、半桥和全桥的R ∑分别为ΔR/R 、2ΔR/R 、4ΔR/ R 。

根据戴维南定理可以得出测试电桥的输出电压近似等于1/4E R ⋅⋅∑,电桥灵敏度//Ku V R R =∆,于是对应于单臂、半桥和全桥的电压灵敏度分别为1/4E 、1/2E 和E 。

由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。

五、实验要求1. 熟悉CSY 系统传感器实验系统;2. 能自行设计实现应变式传感器的测量桥路;3. 掌握应变式传感器的各种测量电路的性能。

六、实验仪器设备主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验
实验一:应变片单臂电桥性能实验
实验设备:
1. 应变片:选择合适的应变片,并保证其表面干净、光滑。

2. 悬挂支架:用于固定应变片。

3. 变压器:提供所需的电源电压。

4. 电压表:用于测量电压值。

5. 多用表:用于测量电阻、电流等参数。

实验步骤:
1. 将应变片固定在悬挂支架上,使其能够受到外力引起的变形。

2. 将应变片连接到单臂电桥电路中,其中三个电阻分别为R1、R2、R3。

3. 通过调节R3的阻值,使得电桥平衡,即电桥两个输出端的
电压为零。

4. 测量R3的阻值。

5. 给电桥施加一定的外力,观察电桥的输出电压变化情况。

6. 根据电桥输出电压的变化,计算应变片的应变值。

实验原理:
应变片是一种可以将外力作用下的应变转化为电阻变化的器件。

在单臂电桥电路中,由于应变片的变形导致其电阻值发生变化,从而引起电桥不平衡,产生输出电压。

通过调节R3的阻值,
使得电桥平衡,即电桥两个输出端的电压为零,可以得到应变片的相对电阻变化量。

根据此相对电阻变化量,可以计算出应变片的应变值。

实验注意事项:
1. 应保证应变片的表面光滑,并且避免应变片受到过大的外力导致破坏。

2. 在进行电桥平衡调节时,应谨慎调节R3的阻值,以避免短路或断路的情况发生。

3. 在测量电桥输出电压变化时,应注意观察其变化趋势,并保证测量的准确性。

4. 在计算应变值时,应根据实验所使用的应变片的特性曲线进行计算,以获得更为准确的结果。

实验2:应变片全桥性能实验

实验2:应变片全桥性能实验

实验2 应变片全桥性能实验一、实验目的:了解应变片全桥工作特点及性能。

二、基本原理:1. 应变片的基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

2. 应变片的电阻应变效应:所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L 、半径为r 、材料的电阻率为ρ时,根据电阻的定义式得:2ρρπ==g L L R A r ..................(1-1) 当导体因某种原因产生应变时,其长度L 、截面积A 和电阻率ρ的变化为dL 、dA 、dρ相应的电阻变化为dR 。

对式(1—1)全微分得电阻变化率 dR/R 为:2ρρ=-+dR dL dr d R L r ..................(1-2) 式中:dL/L 为导体的轴向应变量εL ; dr/r 为导体的横向应变量εr 。

由材料力学知识可得:εL = - μεr ..................(1-3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1-3)代入式(1-2)得:()12ρμερ=++dR d R ..............(1-4),该式说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能。

3. 半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

应变片实验

应变片实验

实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万用表(自备)。

三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。

图1-1图1-2通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压Uo=RR R R E ∆⋅+∆⋅211/4(1-1)E 为电桥电源电压,R 为固定电阻值,式1-1表明单臂电桥输出为非线性,非线性误差为L=%10021⋅∆⋅-RR。

四、实验内容与步骤1.应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。

2.差动放大器调零。

从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui 短接并与地短接,输出端Uo 2接数显电压表(选择2V 档)。

将电位器Rw3调到增益最大位置(顺时针转到底),调节电位器Rw4使电压表显示为0V 。

关闭主控台电源。

(Rw3、Rw4的位置确定后不能改动)3.按图1-2连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥。

4.加托盘后电桥调零。

电桥输出接到差动放大器的输入端Ui ,检查接线无误后,合上主控台电源开关,预热五分钟,调节Rw1使电压表显示为零。

应变片电桥性能实验报告

应变片电桥性能实验报告

应变片电桥性能实验报告应变片电桥性能实验报告引言:应变片电桥是一种常见的测量应变和力的传感器。

它通过将应变片安装在被测物体上,利用应变片的应变与被测物体受力之间的线性关系,通过电桥电路来测量应变片的电阻变化,从而得到被测物体的应变和力的信息。

本实验旨在研究应变片电桥的性能,包括灵敏度、线性度和温度补偿等方面。

实验装置和方法:实验使用了一套标准的应变片电桥装置,包括应变片、电桥电路和数据采集系统。

首先,将应变片粘贴在被测物体上,并通过电缆将应变片连接到电桥电路。

然后,通过电源提供电桥所需的电压,同时使用数据采集系统记录电桥的输出电压。

在实验过程中,通过施加不同的力或应变来改变被测物体的状态,以观察电桥输出的变化。

实验结果与分析:1. 灵敏度:灵敏度是指电桥输出电压与被测物体应变或力之间的比例关系。

为了研究电桥的灵敏度,我们分别施加不同大小的力,并记录相应的电桥输出电压。

实验结果显示,电桥输出电压与施加的力呈线性关系,且随着力的增加而增加。

这表明应变片电桥具有较高的灵敏度,能够准确测量被测物体的应变和力。

2. 线性度:线性度是指电桥输出电压与被测物体应变或力之间的线性关系程度。

为了研究电桥的线性度,我们施加不同大小的力,并记录电桥输出电压。

实验结果显示,电桥输出电压与施加的力之间存在一定的偏差,但整体呈现较好的线性关系。

这表明应变片电桥具有较好的线性度,能够准确测量被测物体的应变和力。

3. 温度补偿:温度对应变片电桥的性能有较大影响,因此需要进行温度补偿。

为了研究电桥的温度补偿效果,我们在实验过程中改变环境温度,并记录电桥输出电压。

实验结果显示,随着温度的变化,电桥输出电压存在一定的漂移。

通过对漂移进行补偿,可以减小温度对电桥的影响,提高测量的准确性。

结论:通过本实验的研究,我们得出以下结论:1. 应变片电桥具有较高的灵敏度,能够准确测量被测物体的应变和力。

2. 应变片电桥具有较好的线性度,能够准确反映被测物体应变和力之间的关系。

应变片单臂半桥全桥性能比较实验

应变片单臂半桥全桥性能比较实验
零RW4保持在单臂实验壮态不变) 。 • 3、依次放法码读取数据填于表中。
应变片全桥性能实验4保持在单臂 实验壮态不变的情况下:
• 半桥实验的电压表读数是单臂实验电压表 读数的两倍。
• 全桥实验的电压表读数是半桥实验电压表 读数的4倍。
实验报告
• A.在一个座标中根据实验数据描绘单臂、 半桥、全桥实验的曲线。
(a) 丝式应变片
应变片结构图
(b) 箔式应变片
(a)单臂
(b)半桥 应变片测量电路
(c)全桥
应变片测量原理图
• 在差动放大器增益相同的情况下:半桥电压表读 数是单臂的两倍,全桥电压表读数是单臂的四倍。 因此在整个实验过程中都要保持放大器增益不变。
• 单臂:在应变片测量原理图中R1、R2、R3为固 定电阻,RX为金属箔式应变片。
• 半桥:在应变片测量原理图中R1、R2、为固定电 阻,R3、RX为金属箔式应变片。R3与RX符号相 反。
• 全桥:在应变片测量原理图中R1、R2、R3、RX 全为金属箔式应变片。全桥实验时图中四个电阻 均为金属箔式应变片,接线时两相邻的应变片的 位置符号相反,对应位置的应变片符号相同。
实验步骤:
中。 • 4、关闭电源,取下法码。
应变片单臂电桥实验接线示意图
半桥实验:
• 1、按图接线。 • 2、用RW1调零(增益RW3和放大器调
零RW4保持在单臂实验壮态不变) 。 • 3、依次放法码读取数据填于表中。 • 4、关闭电源,取下法码。
应变片半桥实验接线示意图
全桥实验:
• 1、按图接线。 • 2、用RW1调零(增益RW3和放大器调
• B.说明单臂、半桥、全桥实验的曲线 的斜率为什么不同。
• • 差动放大器调零接线示意图

实验三 金属箔式应变片全桥性能实验

实验三 金属箔式应变片全桥性能实验

实验三金属箔式应变片全桥性能实验本实验旨在研究金属箔式应变片全桥性能。

应变片是一种能够测量物体应力和应变的传感器,广泛应用于机械、仪器仪表、建筑结构等领域。

实验操作步骤如下:1. 准备金属箔式应变片全桥电路实验仪器。

该实验仪器包括一个桥式电路主机、一个数据采集器和一台计算机。

2. 将金属箔式应变片粘贴到待测物体的表面,并与待测物体形成一定的接触面积。

应变片需要贴紧,确保不会产生任何空隙。

3. 打开电路主机和数据采集器,并接通电源。

将电路主机的四个端口与应变片的四个引脚连接。

4. 进行桥路平衡操作。

调整电路主机上的平衡旋钮,使电桥两端电压差为零。

5. 施加不同的载荷或应力。

通过增加或减小物体的负载或力度,产生不同程度的应变,以观察应变片测量的电信号变化。

6. 记录采集的电信号数据。

实验过程中,数据采集器将自动记录实验结果,并将数据发送到连接的计算机上。

7. 处理和分析数据。

将采集到的电信号数据导入计算机软件进行处理和分析,得出应变片的精确测量结果。

在实验过程中,需要注意以下几点:1. 应变片的表面必须清洁干燥,以确保应变片与待测物体有良好的接触。

2. 应恰当选择应变片的种类和规格,以适应不同的测量范围和特定应用场合。

3. 在进行实验前,应对电路主机和数据采集器进行检查和调试,确保设备正常运转。

4. 实验过程中应注意安全问题,避免因误操作而引起电击、短路等事故。

总之,金属箔式应变片全桥性能实验是一项重要的测试技术,可以有效地测量物体的应力和应变。

通过本实验,我们可以学习并掌握应变片的工作原理和使用方法,为日后的实际应用提供必要的技术支持。

实验三--应变片全桥性能实验

实验三--应变片全桥性能实验

实验三应变片全桥性能实验一、实验目的:了解应变片全桥工作特点及性能。

掌握测量方法。

二、基本原理:应变片基本原理参阅实验一。

应变片全桥特性实验原理如图3—1所示。

应变片全桥测量电路中,将应力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。

当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uo≈(△R/R)E=KεE。

其输出灵敏度比半桥又提高了一倍,非线性得到改善。

图3—1应变片全桥性能实验接线示意图三、需用器件和单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

四、实验步骤:将实验数据填入表3作出实验曲线并进行灵敏度和非线性误差计算。

实验完毕,关闭电源五、实验结果及分析位移(mm)0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0电压(mv)0 -0.03 -0.07 -0.10 -0.14 -0.17 -0.20位移(mm)-3.5 -4.0 -4.5 -5.0 -5.5电压(mv)-0.23 -0.27 -0.30 -0.34 -0.37位移(mm)0 0.5 1.0 1.5 2.0 2.5 3.0电压(mv)0.01 0.05 0.09 0.13 0.18 0.23 0.27位移(mm) 3.5 4.0 4.5 5.0 5.5电压(mv)0.32 0.36 0.41 0.46 0.51最小二乘法拟合如图所示由此可知灵敏度为0.07935,经计算最大非线性误差为0.039mv,线性度为7.69%。

六、实验心得实验中应变梁的自由端产生负位移后,重新回到位移原点时,其电压值并不为零,这体现了传感器的迟滞。

迟滞误差在本次拟合中修正了。

实验三应变片全桥性能实验

实验三应变片全桥性能实验

实验三--应变片全桥性能实验实验三:应变片全桥性能实验一、实验目的1.掌握全桥应变测量电路的工作原理及使用方法。

2.了解全桥测量电路的非线性误差及其补偿方法。

3.学会用静态应变仪测量试件的应变。

二、实验原理应变片全桥性能实验主要通过搭建全桥应变测量电路,利用应变片感受试件应变,并利用静态应变仪进行测量。

全桥测量电路由四个应变片组成,其中两个为工作应变片,两个为补偿应变片。

工作应变片感受试件的应变,补偿片则用于补偿温度引起的误差。

通过全桥测量电路,可将试件的应变转换成电信号输出。

三、实验步骤1.准备实验设备:试件、全桥应变片、静态应变仪、绝缘胶带、万能表。

2.搭建全桥应变测量电路:将四个应变片粘贴在试件上,组成全桥电路。

使用万能表检查电路的正确性。

3.安装补偿片:选择与工作片相同型号和规格的应变片作为补偿片,粘贴在试件附近的适当位置,以补偿温度引起的误差。

4.连接静态应变仪:将全桥应变测量电路的输出端连接到静态应变仪的输入端。

5.开始测量:打开静态应变仪,设置合适的测量范围,开始测量试件的应变。

6.分析实验数据:记录实验数据,分析全桥测量电路的非线性误差及其补偿方法。

7.整理实验器材:完成实验后,将所有设备恢复原状,整理实验器材。

四、实验结果与分析1.实验结果:记录实验中测得的应变值,与理论值进行比较,分析误差。

2.结果分析:对实验数据进行线性拟合,分析全桥测量电路的非线性误差。

如果误差较大,需要考虑补偿方法。

常见的补偿方法有温度补偿和电桥平衡补偿。

温度补偿可以通过粘贴温度传感器来实现,以监测环境温度的变化。

电桥平衡补偿可以通过调整电桥的电阻值来实现,以使电桥在零载条件下达到平衡状态。

五、结论通过本次实验,我们掌握了全桥应变测量电路的工作原理及使用方法,了解了全桥测量电路的非线性误差及其补偿方法,并学会了用静态应变仪测量试件的应变。

这些技能和方法对于工程实践中的结构健康监测和损伤识别具有重要的应用价值。

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告金属箔式应变片是一种常见的测量物体变形的仪器,主要用于测量实验中材料的力学特性和应变分布。

本实验通过对金属箔式应变片的性能进行测试,旨在探究其力学性能并评估其应用的可行性。

以下是关于金属箔式应变片性能实验的报告。

一、实验目的:1.掌握金属箔式应变片的基本原理和工作方式;2.了解金属箔式应变片的力学性能,如线性范围、敏感系数等;3.研究金属箔式应变片的应变分布,并评估其应用可行性。

二、实验器材:1.金属箔式应变片;2.电桥;3.高精度电压源;4.五步电压变阻箱;5.数字万用表;6.计算机及相应软件。

三、实验步骤:1.将金属箔式应变片安装在待测物体上,并确保其平整、牢固;2.通过电桥连接金属箔式应变片的导线,并设置适当的电压源;3.将五步电压变阻箱设置为规定的输出电压,并通过电流表测量电压源的电流;4.使用数字万用表测量金属箔式应变片的输出电压,并记录测量值;5.重复步骤3和步骤4,改变电阻箱的输出电压,并记录相应的电流和电压值;6.使用计算机及相应软件进行数据处理,并计算金属箔式应变片的力学性能指标。

四、实验结果与讨论:通过实验测量得到的数据可以用于评估金属箔式应变片的力学性能。

其中,线性范围是指金属箔式应变片能够线性响应的应变范围,即在该范围内,输出的电压与应变呈线性关系;敏感系数是指单位应变的变化引起的电压变化,可以通过计算斜率得到。

五、实验结论:六、实验心得:通过本次实验,我进一步了解了金属箔式应变片的原理和工作方式,并学习了其性能测试的方法和步骤。

同时,实验过程中,我也体会到了仪器的正确使用和数据处理的重要性,这对于实验结果的准确性和可靠性至关重要。

通过本次实验,我不仅增加了实验操作技能,还加深了对材料力学性能的理解,提高了实验设计和数据分析的能力。

实验一 金属箔式应变片性能

实验一  金属箔式应变片性能

实验一金属箔式应变片性能——单桥臂电桥一、实验目的了解金属箔式应变片,单桥臂的工作原理和工作情况。

二、实验原理本实验说明箔式应变片及单桥臂直流电桥电源的原理和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢牢的粘贴在测力体表面,当测件受力发生变形时,应变片敏感栅随同变形,其电阻也随之发生相应的变形,通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对桥臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为△R1/R1、△R2/R2、△R3/R3、△R4/R4,当使用一个应变片时,ΣR=△R1/R1;当第二个应变片组成差动状态工作,且R1=R2=R3=R4=R,ΣR=4△R1/R1。

由此可知,单臂、半桥、全桥电路的灵敏度依次增大。

三、实验单元及部件直流稳压电源、电桥、差动放大器、双平衡梁、测微头、一片应变片、F/V 表头、主副电源。

旋钮初始化位置:直流稳压电源打到±2V档,F/V表头2V档,差动放大增益最大。

四、实验步骤(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片尾棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F/V表的输入插口Vi相连;开启主、负电源;调接差动放大器增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。

(3)根据图1接线。

R1、R2、R3为电桥单元的固定电阻;Rx=R4为应变片。

将稳压电源的切换开关置±4V 档,F/V 表置20V 档。

调节测位头脱离双平行梁,开关主、副电源,调节电桥平衡网络中的W1,使F/V 表显示为零,然后将F/V 表置2V 档,在调节电桥W1(慢慢地调),使F/V 表显示为零。

应变片实验

应变片实验

实验二十五直流电桥与金属箔式应变片性能一、实验目的1.了解金属箔式应变片、单臂电桥的工作原理和工作情况。

2.验证金属箔式应变片单臂、半桥、全桥的性能及其相互关系。

二、实验所需部件CSY10B传感器系统实验仪、应变式传感器、金属箔式应变片、铜质砝码、电桥模块、差动放大器、数显电压表。

三、实验原理1、电阻应变式传感器简介1.1、电阻应变式传感器的结构将电阻应变片粘贴到各种弹性敏感元件上,可构成测量位移、加速度、力、力矩、压力等各种参数的电阻应变式传感器。

电阻应变式传感器由弹性敏感元件与电阻应变片构成。

弹性敏感元件在感受被测量(如受力)时将产生变形,其表面产生应变。

粘贴在种弹性敏感元件上的电阻应变片的电阻值也产生相应的变化。

电阻应变片的作用实际上就是传感器中的转换元件。

1.2、电阻应变片的工作原理金属的应变效应:金属丝的电阻随着它所受的机械变形(拉伸或压缩)的大小而发生相应变化的现象称为“金属的电阻应变效应”。

利用金属应变效应制造的电阻应变片常见的有“丝式”和“箔式”。

这种应变片电阻温度系数较小,但灵敏度较低。

半导体压阻效应:半导体材料的电阻随作用应力而变化。

利用半导体压阻效应制造的电阻应变片一般为“单根状”。

这种应变片灵敏度较高,但电阻温度系数较大。

此外还有“薄膜应变片”,是一种很有前途的新型应变片。

1.3、电阻应变片的主要参数(1)电阻值R0指未安装的应变片,在不受外力的情况下,室温条件下测定的电阻值,也称原始值。

应变片的电阻值趋于标准化,有60Ω、120Ω、350Ω、600Ω、1000Ω等等,其中120Ω为最常用。

10Ω。

(2)绝缘电阻:一般应大于10(3)灵敏系数KI(4)允许电流Max2、测量原理电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK RRR =∆∑=(1) 式中,RR R ∆∑=为电阻丝电阻相对变化量,K 为应变灵敏系数,l l∆=ε为电阻丝长度相对变化量。

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告

金属箔式应变片性能实验报告金属箔式应变片性能实验报告引言:金属箔式应变片是一种常用的测量应变的工具,广泛应用于工程领域。

本实验旨在研究不同材料、不同厚度的金属箔式应变片的性能,并探讨其在实际应用中的优缺点。

一、实验目的通过对金属箔式应变片的性能测试,了解其应变灵敏度、线性范围、温度影响等特性,为其在工程实践中的应用提供参考。

二、实验材料与方法1. 实验材料:选取了不同材料的金属箔式应变片,包括铜、铝和钢等常见金属材料,并分别制备了不同厚度的应变片。

2. 实验仪器:使用电子拉伸试验机进行拉伸实验,并配备应变片固定装置和应变片读数装置。

3. 实验方法:a) 将不同材料、不同厚度的金属箔式应变片固定在试样上,并连接至电子拉伸试验机。

b) 在一定拉伸速率下,进行拉伸实验,并记录应变片的电阻变化。

c) 根据拉伸实验得到的电阻变化数据,计算得到应变值,并与拉伸试验机的应变计进行对比。

三、实验结果与分析1. 应变灵敏度:通过实验发现,不同材料、不同厚度的金属箔式应变片对应变的灵敏度存在差异。

以铜材料为例,当厚度相同时,应变灵敏度随着拉伸速率的增加而增加。

而当拉伸速率相同时,厚度较薄的应变片具有更高的灵敏度。

这说明金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。

2. 线性范围:实验结果显示,金属箔式应变片的线性范围与其材料和厚度密切相关。

以钢材料为例,当厚度较小时,其线性范围较宽,能够准确测量较小的应变值。

然而,当厚度较大时,线性范围会受到限制,无法测量较大的应变值。

因此,在实际应用中,需根据测量需求选择合适的金属箔式应变片材料和厚度。

3. 温度影响:温度是影响金属箔式应变片性能的重要因素之一。

实验结果表明,金属箔式应变片的电阻值随温度的变化而变化,从而影响应变值的计算。

在实际应用中,需对金属箔式应变片进行温度补偿,以提高测量的准确性。

四、实验结论通过对金属箔式应变片的性能测试,可以得出以下结论:1. 金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。

电阻应变片特性实验

电阻应变片特性实验
电阻应变片特性实验
目录
• 实验目的 • 实验材料 • 实验步骤 • 实验结果分析 • 实验总结与展望
01
实验目的
了解电阻应变片的工作原理
电阻应变片是一种用于测量应变的传感器,其工作原理基于 导体电阻随机械应变的性质。当导体受到外力作用时,其电 阻值会发生变化,通过测量电阻的变化可以推算出应变的大 小。
应变片的电阻变化与所受应变呈线性关系,通过测量电阻的变化可以推算出应变的 大小。
应变片的种类繁多,根据不同的应用场景和测量需求,可以选择不同类型的应变片, 如金属箔式应变片、薄膜式应变片等。
测量仪器
测量仪器是用于测量电阻应变片 电阻变化的设备,通常采用电桥
或恒流源电路。
测量仪器需要具备高精度、低噪 声、稳定性好等特点,以确保实
验结果的准确性和可靠性。
常见的测量仪器有数字万用表、 示波器、信号发生器和放大器等。
试件
试件是用于产生应变和应力的 实验装置,其材料、形状和尺 寸等因素将直接影响实验结果。
试件需要具备足够的强度和刚 度,以确保在实验过程中不会 发生变形或损坏。
根据实验要求,可以选择不同 类型和规格的试件,如拉伸试 件、压缩试件、弯曲试件等。
应变片选择
根据实验要求选择合适规 格和灵敏度的电阻应变片。
应变片粘贴
将应变片粘贴在试件上, 确保粘贴平整、无气泡, 并按照标记的中心点进行 定位。
测量系统连接与校准
测量仪器的选择
根据实验需求选择合适的测量仪器,如电桥箱、数据采集仪等。
连接线路
按照仪器说明书正确连接线路,确保测量系统的稳定性和准确性。
详细描述
通过实验数据分析,我们发现应变片 的灵敏度较高,即电阻值对应变的变 化率较大。这使得应变片在测量应变 时具有较高的精度和响应速度。

应变片全桥实验报告

应变片全桥实验报告

应变片全桥实验报告应变片全桥实验报告一、引言应变片是一种用于测量物体应变变化的传感器,广泛应用于工程、材料科学以及生物医学等领域。

本实验旨在通过应变片全桥实验,探究应变片的工作原理、测量方法以及应变片在不同应变条件下的性能表现。

二、实验原理1. 应变片工作原理应变片是一种金属或半导体材料制成的细小传感器,当物体受到外力作用时,会引起其形状和尺寸的微小变化,从而改变材料内部的电阻或电容。

应变片全桥利用应变片的电阻变化来测量物体的应变程度。

2. 应变片全桥电路应变片全桥电路由四个应变片组成,分别连接在电桥的四个臂上。

其中两个应变片处于拉伸状态,另外两个处于压缩状态。

当物体受到外力作用时,拉伸和压缩的应变片的电阻值会发生变化,从而导致电桥的电势差发生变化。

3. 应变片的测量方法通过测量电桥的电势差变化,可以计算出应变片的应变程度。

常用的测量方法有电压法和电流法。

电压法通过测量电桥两端的电压差来计算应变片的应变值,而电流法则通过测量通过电桥的电流大小来计算应变片的应变值。

三、实验步骤1. 搭建应变片全桥电路根据实验要求,搭建应变片全桥电路,确保电桥的四个臂上分别连接了四个应变片。

2. 调整电桥平衡通过调节电桥上的可变电阻,使得电桥平衡,即电桥两端的电势差为零。

3. 施加外力在已搭建好的电桥上施加外力,可以通过拉伸或压缩物体来引起应变片的应变变化。

4. 测量电势差变化使用电压表或电流表,测量电桥两端的电势差变化。

记录不同外力条件下的电势差值。

5. 计算应变值根据测得的电势差值,利用已知的公式计算应变片的应变值。

四、实验结果与分析根据实验数据,我们可以绘制应变片的应变-电势差曲线。

通过分析曲线的趋势,可以得出以下结论:1. 应变片的应变与电势差呈线性关系,即应变越大,电势差变化越大。

2. 应变片的灵敏度与材料的选择有关,不同材料的应变片具有不同的灵敏度。

3. 在一定应变范围内,应变片的灵敏度基本稳定,超过该范围后,灵敏度会下降。

应变片实验报告

应变片实验报告

一、实验目的1. 了解应变片的工作原理和性能特点。

2. 掌握应变片在电桥电路中的应用。

3. 学习如何通过电桥电路测量应变片的电阻变化。

4. 分析应变片的线性度、灵敏度等性能指标。

二、实验原理应变片是一种将力学量(如应力、应变等)转换为电阻变化的传感器。

其工作原理基于应变片材料的电阻应变效应,即当材料受到外力作用时,其电阻值会发生相应的变化。

本实验采用金属箔式应变片,通过电桥电路将应变片的电阻变化转换为电压输出。

三、实验器材1. 金属箔式应变片2. 电桥电路3. 测量电路4. 稳压电源5. 数字多用表6. 负载(砝码)7. 支架四、实验步骤1. 将金属箔式应变片粘贴在支架上,确保其受力均匀。

2. 搭建电桥电路,将应变片接入电桥电路中。

3. 调整电桥电路,使电桥处于平衡状态。

4. 在应变片上施加不同大小的力,观察电桥电路输出电压的变化。

5. 记录不同力值下电桥电路的输出电压。

6. 分析应变片的线性度、灵敏度等性能指标。

五、实验结果与分析1. 线性度分析通过实验数据,绘制应变片电阻值与应变值的关系曲线,观察曲线的线性度。

实验结果表明,金属箔式应变片的线性度较好,满足实际应用需求。

2. 灵敏度分析计算应变片在不同应变值下的电阻变化率,即灵敏度。

实验结果表明,金属箔式应变片的灵敏度较高,能够有效地将力学量转换为电阻变化。

3. 温度影响分析观察应变片在不同温度下的电阻变化,分析温度对应变片性能的影响。

实验结果表明,金属箔式应变片对温度的敏感性较高,需要考虑温度补偿。

六、实验结论1. 金属箔式应变片是一种将力学量转换为电阻变化的传感器,具有较好的线性度和灵敏度。

2. 电桥电路能够有效地将应变片的电阻变化转换为电压输出,适用于实际应用。

3. 需要考虑温度对应变片性能的影响,采取相应的补偿措施。

七、实验拓展1. 研究不同类型应变片的性能特点,比较其优缺点。

2. 探讨应变片在不同领域的应用,如力传感器、位移传感器等。

实验一金属应变片性能实验

实验一金属应变片性能实验

实验一金属应变片及测量电桥性能实验——单臂和双臂系列实验一、实验目的:了解金属箔式应变片,单、双臂测量电路的工作原理和工作情况。

二、实验原理:本实验说明箔式应变片及半桥单、双臂直流电桥的原理和工作情况。

电阻应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在力敏感物体(测件)表面,当测件受力发生形变(即为应变),应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。

由此可知,单臂、双臂、四臂电路的灵敏度依次增大。

三、所需单元及部件:直流稳压电源、电桥、差动放大器、悬臂梁、F/V表、应变片四、旋钮初始位置:直流稳压电源打到±4V档,F/V表打到2V档,差动放大增益最大(顺时针最大)。

五、实验步骤:1、观察悬臂梁及其上的应变片,确定应变类型。

2、将差动放大器调零..:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F/V表的输入插口V i相连;开启主电源;调节差动放大器的增益到最大位置(顺时针将差动放大器的增益旋钮调整到最大),然后调整差动放大器的调零旋钮,直至使F/V表显示为零。

关闭主电源,并将差放短接线全部撤去。

3、半桥单臂工作模式的测量(1)电桥的调零:根据如图1接线。

R 1、R 2、R 3为电桥单元的固定电阻,R 1=R 2;R x =R 4为应变片。

将稳压电源的切换开关置±4V 档,F/V 表置2V 档。

开启主电源,调节电桥平衡网络中的RW 1,使F/V 表显示为零,等待数分钟后将F/V 表置2V 档,再调电桥RW1(慢慢地调),使F/V 表显示为零。

图1(2)在传感器上放上一只砝码,记下此时的电压数值,然后每增加一只砝码记下一个数值并将这些数值填入下表。

根据所得结果计算系统灵敏度S= V/W ,并作出V-W 关系曲线,V 为电压变化率,W 为相应的重量变化率。

重量()电压()g m V4、半桥双臂工作模式的测量(1)电桥的调零:根据如图2接线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 应变传感器的性能研究
一、实验类型:验证性实验。

二、实验目的
1. 观察了解箔式应变片的结构及粘贴方式;
2. 测试应变梁变形的应变输出;
3. 验证单臂、半桥、全桥测量电桥的输出关系,比较不同桥路的功能。

三、实验内容
1. 设计并实现应变传感器的测试桥路;
2. 测量单臂、半桥、全桥测量电桥的输出,记录数据、绘制关系曲线,并分析。

四、实验原理
1. 本实验说明箔式应变片及单臂直流电桥的原理和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。

通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/ R3、ΔR4/R4,当使用一个应变片时,∑∆=
R
R
R ;当二个应变片组成差动状态工作,则有
2R
R R
∆=
∑;用四个应变片组成二个差动对工作,且R1= R2 = R3 = R4 = R ,4R
R R
∆=
∑。

由此可知,单臂,半桥,全桥电路的灵敏度依次增大。

2. 已知单臂、半桥和全桥的
R ∑分别为ΔR/R 、2ΔR/R 、4ΔR/ R 。

根据戴维南定理可以
得出测试电桥的输出电压近似等于1/4E R ⋅⋅∑,电桥灵敏度//Ku V R R =∆,于是对应
于单臂、半桥和全桥的电压灵敏度分别为1/4E 、1/2E 和E 。

由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。

五、实验要求
1. 熟悉CSY 系统传感器实验系统;
2. 能自行设计实现应变式传感器的测量桥路;
3. 掌握应变式传感器的各种测量电路的性能。

六、实验仪器设备
主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

七、预习要求
实验前学生必须自学有关仪器设备的使用方法及工作原理,明确实验内容及实验目的,须持实验预习报告后,方可进入实验室进行实验。

八、实验步骤
应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V电源输入口、多芯插头、应变测量电路、差动放大器祖成。

实验板中R1、R2、R3、R4为称重传感器应变片输出口;没有文字标记的5个电阻符号是空的无实体,R5、R6、R7是350Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。

加热器+5V是传感器上的加热器电源输入口,做应变片温度影响实验时用。

多心插头是振动源的振动梁上的应变片输入口,做应变片测量振动试验时用。

1.将托盘安装到传感器上,如1-1图所示。

图1-1 传感器托盘安装示意图
2. 设定旋钮的初始位置:直流稳压电源打到±2V档,电压表打到2V档,差动放大器增益打到最大(顺时针轻轻转到底)。

3. 差动放大器调零:用实验线将差放的正负输入端与地端连接在一起,然后将电源端与直流稳压电源±15V连接起来,最后将输出端接到电压表的输入插口。

检查接线无误后合上主机箱的电源开关,调节放大器的增益电位器RW3到合适位置(逆时针回转一圈)后,在调节实验模板放大器的调零电位器RW4,使电压表显示为零之后,关闭主机箱电源。

(注意:RW3、RW4位置一旦确定就不能改变,直到做完实验为止)
4. 应变片单臂电桥实验:按照图1-1的单臂电桥实验原理接好线。

图1-2应变片单臂电桥性能实验接线示意图
5. 将±2V~±10V可调电源调节到±4V档。

检查接线无误后合上主机箱电源开关,调节实验木板上的桥路平衡电位器RW1,使主机箱电压表显示为零;在传感器的托盘上依次增加放置一只20g砝码(尽量靠近托盘的中心点放置),读取相应的数显表电压值,记下实验数据填入下表后,关闭主机箱电源。

6. 应变片半桥性能实验:如图1-3连接半桥电路,重复步骤5。

图1-3 应变片半桥特性实验接线示意图
表1-2 应变片半桥特性实验数据
7. 应变片全桥性能实验:如图1-4连接全桥电路,重复步骤5。

图1-4 应变片全桥性能实验接线示意图
表1-3 应变片全桥特性实验数据
8. 根据表1-1、1-2和1-3的数据作出曲线并计算系统的灵敏度V
S W
∆=
∆ (W ∆是重量变化量,V ∆是电压变化量)和非线性误差/100%m yFS δ=∆⨯ ,式中m ∆为输出值(多次测量时为平均值)与拟合直线的最大偏差;yFS 满量程输出平均值,此处为200g 。

实验完毕,整理好实验台。

九、实验报告要求
1. 按表格要求记录实验数据,并进行数据处理,绘制关系曲线。

2. 根据实验数据处理结果和关系曲线,对传感器的性能进行分析。

十、思考题
1. 根据实际测试的数据与理论上推导的公式相比较,结论如何?
2. 对桥路测量线路有何特别的要求?为什么?
注意事项:
1. 在更换应变片时应将电源关闭,以免损坏应变片。

2. 在实验过程中如果发现电压表发生过载,应将量程扩大或将差放增益减小。

3. 直流稳压电源不能打的过大,以免损坏应变片或造成严重自热效应。

4. 接全桥时请注意区别各应变片的工作状态方向,保证R1与R3工作状态相同,R2与R4工作状态相同。

5. 在本实验中只能将放大器接成差动形式,否则系统不能正常工作。

相关文档
最新文档