(完整)初中数学行程问题应用题
行程问题(火车过桥问题)三道典型例题(附解题思路及答案)
行程问题(火车过桥问题)三道典型例题(附解题思路及答案)我们在研究一般行程问题时,都不考虑运动物体的长度,但是当研究火车过桥过隧道问题时,有一火车的长度太长,所以不能忽略不计。
火车过桥问题主要有以下几个类型:1、最简单的过桥问题,火车过桥。
例:一列长120米的火车,通过长400米的桥,火车的速度是10米/秒,求火车通过桥需多长时间?解题思路:火车行的路程是一个车长+桥长,然后利用公式时间=路程÷速度即可求出通过桥的时间。
答案:(120+400)÷10=52(秒)答:火车通过桥需要52秒。
2、两列火车错车问题。
例(1):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,当两车错车时,甲车一乘客,看到乙车火车头从她的窗前经过,到乙车车尾离开他的窗户,共用时8秒,求乙车的长度。
解题思路:这类问题类似于相遇问题,路程是乙车车长,然后利用公式路程=速度和x时间算出乙车车长。
答案:(20+25)x8=360(米)答:乙车长360米。
例(2):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从两车车头到两车车尾离开,需要多少时间?解题思路:这类问题类似于相遇问题,路程是两车车长,然后利用公式时间=路程÷速度和算出错时间。
答案:(200+250)÷(25+20)=10(秒)答:需要10秒。
3、两列火车超车问题。
例:两列火车同向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从乙车车头追上甲车车尾到乙车车尾离开甲车头需多少时间?解题思路;此类问题相当于追及问题。
追及路程是两车的车长和,然后利用追及问题公式追及时间=追及路程÷速度差求出时间。
答案: (250+200)十(25-20)=90(秒)答:需要90秒。
(完整)初中数学行程问题应用题
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?2、甲乙两辆汽车同时从东站开往西站。
甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?4、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。
货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?5、快车与慢车同时从甲、乙两地相对开出,经过12小时相遇。
相遇后快车又行了8小时到达乙地。
慢车还要行多少小时到达甲地?6、两地相距380千米。
有两辆汽车从两地同时相向开出。
原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?7、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。
如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?8“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?9、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。
一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?10、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。
七年级数学配套应用题专项训练
七年级数学配套应用题专项训练一、行程问题1. 题目甲、乙两人从相距36千米的两地相向而行。
如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇。
甲、乙两人每小时各走多少千米?解析设甲每小时走公式千米,乙每小时走公式千米。
当甲比乙先走2小时,甲先走的路程为公式千米,两人共同走的时间是公式小时,共同走的路程为公式千米,可得到方程公式。
当乙比甲先走2小时,乙先走的路程为公式千米,两人共同走的时间是3小时,共同走的路程为公式千米,可得到方程公式。
对第一个方程进行化简:公式,即公式,两边同时乘以2得到公式。
对第二个方程进行化简:公式,即公式。
用公式减去公式:公式公式公式,解得公式。
把公式代入公式,得到公式,公式,公式,解得公式。
2. 题目一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
解析设船在静水中的速度为公式千米/小时。
顺水速度公式船在静水中的速度+水流速度,即公式千米/小时;逆水速度公式船在静水中的速度-水流速度,即公式千米/小时。
根据路程 = 速度×时间,且两个码头之间的距离不变。
顺水航行的路程为公式千米,逆水航行的路程为公式千米,则公式。
展开方程得公式。
移项可得公式,解得公式。
两码头之间的距离为公式千米。
二、工程问题1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析把这项工程的工作量看作单位“1”。
甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。
两人合作4天完成的工作量为公式。
先计算括号内的值:公式。
那么两人合作4天完成的工作量为公式。
剩下的工作量为公式。
乙单独完成剩下的工作量需要的时间为公式天。
2. 题目某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。
初中数学《一次函数应用—行程问题》典型例题及答案解析
初中数学《一次函数应用—行程问题》典型例题及答案解析一、单选题1.一辆汽车和一辆摩托车分别从A,B两地去同一个城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:①摩托车比汽车晚到1h;②A,B两地的路程为20km;③摩托车的速度为45km/h,汽车的速度为60km/h;④汽车出发1小时后与摩托车相遇,此时距B地40千米.其中正确结论的个数是()A.2个B.3个C.4个D.1个【答案】B【解析】试题解析:分析图象可知(1)4−3=1,摩托车比汽车晚到1h,正确;(2)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,正确;(3)摩托车的速度为(180−20)÷4=40km/h,汽车的速度为180÷3=60km/h,故(3)错误;(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;故正确的有3个,故选B.2.小明的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是().A.B.C.D.【答案】D【解析】爷爷从家里到公园这一过程,y随着x的增大而增大;打太极这一过程,y保持不变;沿原路漫步回家这一过程,y随着x的增大而减小.故选D.点睛:此题主要根据函数的增减性进行判断.3.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的函数表达式是()A.Q=40B.Q=40C.Q=40D.Q=40【答案】C【解析】汽车油箱内有油40L,每行驶100km耗油10L,汽车行驶过程中油箱内剩余的油量与行驶路程之间的函数表达式为: Q=40故选: C.4.甲从P地前往Q地,乙从Q地前往P地.设甲离开P地的时间为t( 小时),两人距离Q地的路程为S( 千米),图中的线段分别表示S与t之间的函数关系.根据图象的信息,下列说法正确的序号是( )①甲的速度是每小时80千米;②乙的速度是每小时50千米;③乙比甲晚出发1小时;④甲比乙少用2.25小时到达目的地;⑤图中a的值等于A.①②③④⑤B.①③④⑤C.①③⑤D.①③【答案】C【解析】①由图甲走了300千米,耗时3.75/小时.正确.②由图知乙走了300千米,耗时5/小时.错误.③乙在前一个小时路程没变,所以乙比甲晚出发1小时,正确.④由图知,5-3.75=1.25小时.错误.⑤由题意得,上下两个三角形相似,解得a 正确. 所以①③⑤正确.点睛:本题也可以根据图象信息,在直角坐标系下,看懂横纵坐标所表示的意义及其关系,把两个一次函数解析式求出来,函数的k 就是速度(可解决①②),函数的交点问题,只需要联立一次函数解析式(可解决⑤).5.目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分后,水龙头滴出y 毫升的水,请写出y 与x 之间的函数关系式是( )A . 0.05y x =B . 5y x =C . 100y x =D . 0.05100y x =+【答案】B【解析】由题意得,一分钟滴水1000.055⨯=,所以5y x = 选B.6.在一条笔直的公路上,依次有A 、B 、C 三地.小军、小扬从A 地同时出发匀速运动,小军以2千米/分的速度到达B 地立即返回A 地,到达A 后小军原地休息,小扬途经B 地前往C 地.小军与小扬的距离s (单位:千米)和小扬所用的时间t (单位:分钟)之间的函数关系如图所示.下列说法:①小军用了4分钟到达B 地;②当t=4时,小军和小扬的距离为4千米;③C 地与A 地的距离为10千米;④小军、小扬在5分钟时相遇.其中正确的个数为( )A . 1个B . 2个C . 3个D . 4个【答案】C【解析】试题解析:由图可知,小军到达B 所用的时间为4分钟,故①正确;当小扬与小军相距8千米时,小军刚好返回A 地,则此时小军行驶的总的时间为8分钟,故小扬的速度为8÷8=1千米/分,∴当t=4时,小军和小扬的距离为:4×(2-1)=4千米,故②正确;∴C 地与A 地的距离为:1×10=10千米,故③正确;∴小军和小扬相遇的时间为:8×2÷(1+2)=分钟,故④错误;故选C .7.甲乙两车分别从M 、N 两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S (千米)与甲车所用时间t (小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是( )A . M 、N 两地的路程是1000千米;B . 甲到N 地的时间为4.6小时;C . 甲车的速度是120千米/小时;D . 甲乙两车相遇时乙车行驶了440千米.【答案】C【解析】试题解析: 0t =时, 560,S = ,M N ∴两地的路程560千米.A 错误. 甲车的速度为()5604401120km/h.-÷= C 正确. 设乙车的速度为km/h v , 则()()12031440.v +⨯-= 解得100.v =乙车行驶速度为100km/h. 甲车到达N 地的时间为.B 错误. ∵甲车出发1小时后乙车出发,∴乙车出发312-=小时后与甲车相遇. 甲乙两车相遇时乙车行驶了1002200⨯=千米.D 错误.故选:C.8.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象.下列结论中,错误的是( )A . 轮船的速度为20 km /hB . 快艇的速度为40 km /hC . 轮船比快艇先出发2 hD . 快艇不能赶上轮船【答案】D【解析】试题解析:观察图象,该函数图象表示的是路程与之间的函数关系,可知轮船出发4小时后被快艇追上,在4小时时快艇和轮船行驶的路程相等,所以错误的是第四个结论.故选D .9.汽车由A 地驶往相距120 km 的B 地,它的平均速度是30 km /h ,则汽车距B 地的路程s(km )与行驶时间t(h )的函数关系式及自变量t 的取值范围是( )A . s =120-30t(0≤t≤4)B . s =120-30t(t >0)C . s =30t(0≤t≤4)D . s =30t(t <4)【答案】A【解析】平均速度是30km/h ,∴t 小时行驶30tkm ,∴S=120-30t ,∵时间为非负数,汽车距B 地路程为非负数,∴t≥0,120-30t≥0,解得0≤t≤4.故选A .10.小明和小亮在同一条笔直的道路上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y (米)与小亮出发的时间t (秒)之间的函数关系如图所示,则下列结论错误的是( ).A . 8a =B . 92b =C . 123c =D . 当20t =时, 10y =【答案】D【解析】根据题意, 0t =时,小明出发2秒行驶的路程为8米, 所以,小明的速度824=÷=米/秒,∵先到终点的人原地休息,∴100秒时,小亮先到达终点, ∴小亮的速度5001005=÷=米/秒,∴a=8÷(5-4)=8(秒),()51004100292b =⨯-⨯+=(米), 100924123c =+÷=(秒), ∴小明出发123秒时到达了终点,故A 、B 、C 均正确, 小亮出发20秒,小亮走了205100⨯=米,小明走了22488⨯=米,1008812-=米, ∴小亮在小明前方12米,故D 错误.故选D.【点睛】本题主要考查一次函数的应用,能正确地识图,明确图中的拐点的含义是解题的关键.11.甲乙两辆车分别从A 、B 二地相对开出,2)。
行程问题应用题大全
行程问题应用题大全1. 题目:火车行程假设小明乘坐火车旅行,从A地出发到B地,全程需要3小时。
在途中,火车经过C地,小明在C地停留了20分钟。
请问小明在C地停留的时刻是多少?解析:假设小明在A地出发的时刻为t0,则到达B地的时刻是t0+3小时。
因此,在途中经过C地的时刻是(t0+3小时)/2,再加上停留的20分钟,则小明在C地停留的时刻为(t0+3小时)/2 + 20分钟。
2. 题目:飞机行程小红乘坐飞机旅行,从A地飞往B地,全程需要5小时。
飞机在途中经过C地,小红在C地停留了1小时20分钟,然后继续飞往B地。
请问小红在B地的时刻是多少?解析:假设小红在A地起飞的时刻为t0,则到达C地的时刻是t0+5小时。
在C地停留1小时20分钟后,小红再次起飞,需要飞行的时间是5小时。
因此,小红在B地的时刻是(t0+5小时)+1小时20分钟+5小时。
3. 题目:汽车行程假设小李乘坐汽车旅行,从A地出发到B地,全程需要6小时。
汽车在途中经过C地,小李在C地停留了45分钟。
请问小李在A地出发的时刻是多少?解析:假设小李在A地出发的时刻为t0,则到达C地的时刻是t0+6小时。
因此,小李在C地停留的时刻是(t0+6小时)+45分钟。
根据题目要求,我们需要求得小李在A地出发的时刻,即t0。
可以通过逆推的方法得到t0,即t0 = (t0+6小时)+45分钟-6小时。
4. 题目:步行行程小张步行旅行,从A地出发到B地,全程需要2小时。
在途中,小张在C地停留了30分钟。
请问小张在C地停留的时刻是多少?解析:假设小张在A地出发的时刻为t0,则到达B地的时刻是t0+2小时。
因此,在途中经过C地的时刻是(t0+2小时)/2,再加上停留的30分钟,则小张在C地停留的时刻为(t0+2小时)/2 + 30分钟。
5. 题目:骑行行程假设小王骑自行车旅行,从A地出发到B地,全程需要1小时30分钟。
自行车在途中经过C地,小王在C地停留了15分钟。
应用题专项训练之行程问题(含答案)
应用题专项训练三知识回顾1.行程问题速度×时间=路程时间相同时,路程比等于速度比路程相同时时间比等于速度比的反比2.相遇问题速度和×相遇时间=相遇路程3.追及问题速度差×追及时间=相差路程4.火车过桥桥长+车长=路程速度×过桥时间=路程5.流水行船船速:在静水中的速度水速:河流中水流动的速度顺水船速:船在顺水航行时的速度逆水速度:船在逆水航行时的速度顺水船速=船速+水速=逆水船速+水速×2行程问题常用的解题方法有⑴公式法⑵图示法⑶比例法⑷分段法⑸方程法典型应用题例1、甲、乙两辆汽车从两地相向而行,甲车每小时行85千米,乙车每小时行76千米,甲车开出2小时,乙车才开出,又过了4小时两车相遇,两地间的距离是多少千米?例2、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?甲乙所行的路程比=甲乙的速度比=56:48=7:6 东西两地相距多少千米?(32+32)÷(7-6)×(7+6)=832千米解:设东西两地相距X千米。
(X÷2+32)÷56=(X÷2-32)÷48 (+32)÷56=()÷48 56=48+32) 7=6+32) =3X+192 =192+224 =416 X=832 答:东西两地相距832千米。
例3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?设全程X千米。
1/2X-8=X-4×32 1/2X-8=X-128 1/2X=X-128+8 1/2X=X-120 120=1/2 X x=240240-32×4=112(千米)112÷56=2(小时)2+4=6(小时)例4、小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“这样我和小狗就同时到达终点了!”亲爱的小朋友,你说小猴会如愿以偿吗?【解析】小猴不会如愿以偿.第一次,小狗跑了100米,小猴跑了90米,所以它们的速度比为100:9010:9=;那么把小狗的起跑线往后挪10米后,小狗要跑110米,当小狗跑到终点时,小猴跑了91109910⨯=米,离终点还差1米,所以它还是比小狗晚到达终点.例5、甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).例6、甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.【分析】甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为4:3,那么在3小时内的路程之比也是4:3;又两人路程之和为35千米,所以甲所走的路程为4352034⨯=+千米,即A,B两地间的距离为20千米.例7、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
初中数学行程问题类题目及答案(完美版)
行程问题归纳1 •小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的丄倍原路步行回家.由于时间关系小明拿到作业后同样以之2前跑步的速度赶往学校,并在从家岀发后23分钟到校(小刚被爸爸追上时交流时间忽略不计)・两人之间相距的路程y (米)与小刚从家出发到学榜的减柠射问r (0轴)问的函豹i A米关系如图所示,则小刚家到学校的路程为2960 X,【解答】解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17- 15=2 (分钟),•••爸爸追上小刚后以原速的丄倍原路步行回家,2•••小刚打完电话到与爸爸相遇用的时间为1分钟,Y由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,•••小刚和爸爸相遇之后跑步的1分和爸爸2分钟上的路程是720米,•••小刚后来的速度为:1040 - 720=320 (米份钟)则小刚家到学校的路程为:1040+(23 - 17)×320=l040+6X320= 1040+1920=2960(•米), 故答案为:2960.2•已知A.B.C三地顺次在同一直线上,甲、乙两人均骑车从A地岀发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲.乙同时从B地以各自原速继续向C地行驶•当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A4地,而甲也立即提速为原速的号■倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y3(米)与甲出发的时间/(分)之间的函数关系如图所示,则下列说法①甲、乙提速前的速度分别为300米/分、400米/分;C两地相距7200米:③甲从A地到C地共用时2614 H甲乙两人刚开始的速度之差为:9∞÷ (23-14) =IOO (米/分),设甲刚开始的速度为X米/分,乙刚开始的速度为(x+100)米/分,IZV= (14-5)× (x+100),解得,X= 300,则丹IOo=400,即甲、乙提速前的速度分别为300米/分、400米/分.故①正确;A> B两地之间的距离为:300X12 = 3600 (米),A. (7两地之间的距离为:400× (23 - 5) =7200 (米),故②正确:•••当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A地,而甲也立即提速4为原速的垒倍继续向C地行驶,3.•・后来乙的速度为:400×-∣-=5∞ (米/分),甲的速度为300×-⅛-=400 (米/分),•••甲从A地到C地共用时:23+(7200 - (23 - 2) X300)÷400=25^ (分钟),故③错误;4.∙.当甲到达C地时,乙距A地:7200- (25丄-23)×500=6075 (米),故④正确.4综上所述,正确的有①②④.3.尊老助老是中华民族的传统美徳,我校的小艾同学在今年元旦节前往家附近的敬老院,为老人们表演节目送上新年的祝福.当小艾同学到达敬老院时,发现拷音乐的U盘没有带,于是边打电话给爸爸边往家走,请爸爸能帮忙送来.3分钟后,爸爸在家找到了(/盘并立即前往敬老院,相遇后爸爸将U盘交给小艾,小艾立即耙速度提髙到之前的1.5倍跑回敬老院, 这时爸爸遇到了朋友,停下与朋友交谈了2分钟后,爸爸以原来的速度前往敬老院观看小艾的表演.爸爸与小艾的距离y (米)与小艾从敬老院出发的时间X (分)之间的关系如图所小艾的原来的速度为:180÷ (11-9)÷ 1.5=60 (米/分钟),爸爸的速度为:(990- 60×3)÷ (9 - 3) - 60=75 (米/分钟),9分钟的时候,小艾离敬老院的距离为:60X9=540 (米),小艾最后回到敬老院的时间为:9+540÷ (60X1.5) =15 (分钟),当小艾回到敬老院时,爸爸离敬老院还有:540- (15 - 11)×75=240 (米),故答案为:240.4•甲、乙分別骑摩托车同时沿同一条路线从A地岀发B地,已知爪B两地相距280亦,他们出发2小时的时候乙的摩托车坏了,乙立即开始修车,甲车继续行驶,当甲第一次与乙相遇时,乙还在修车,乙修好车继续按原速前往B地.乙到达B地5小时后,甲车到达B地.整4个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y(千米)与甲出发的时间X(小时)之间的关系如图所示,则当乙车修好时,甲车距B地的路程为130千米.【解答】解:Y甲车速度=—=40千米/时,T•••甲车走完全程时间=型=7小时,40•••乙车速度=40+ 5严! =70千米耐,7—4 4设乙车修了兀小时,由题意可得:70 ・40X丄殳=20, ∙∙∙x=工,4 4 4•••当乙车修好时,甲车距B地的路程=280-40× (2+2.) =I30千米,45.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一泄的速度匀速前往铁山坪体验“飞越丛林”・出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车.取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的仝倍匀速按原路赶往铁山坪,由3于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y (千米)与乙车行驶时间X (小时)之间的部分图象如图所示,则乙车岀发—郑小时到达目的地.【解答】解:设甲车的速度为“千米/小时,乙车回家时即加=5, ∙'∙α=40, b=45, 设/小时两车相距3千米,(4)×45X∣=⅞÷3÷ (-∣-⅛) ×40,尸舒,6.小亮和妈妈从家岀发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线岀发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续 前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相 所以家到长嘉汇的距离为:60X (18 - 2) =960 (米), 由(18・12=6分钟)可知妈妈返回找到相机行走路程为6X50=300 (米),此时设小亮在长嘉汇等妈妈的时间为f 分钟,由图象知小亮与妈妈会合所用时间为27 -18=9分钟可建立方程如下:60X (9 -/) +50X9—960- (600- 300),解得 /=5.5(分钟),•••小亮开始返回时,妈妈离家的距离为:50X (18+5.5 - 6X2) =575 (米)・设 a=Sm f b=9m (m>0),由图象得乙车行畔小时两边相碍千米, ×8ι机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最可知是小亮到达长嘉汇所经历的时间, (分)7•甲、乙两人开车分别从A、B两地同时岀发到AB之间的C地办事(A、B、C三地在一条直线上)已知甲出发0.5小时时发现忘给乙带重要文件,于是立刻返回A地,拿文件后马上向C地赶去(中间拿文件的时间忽略不计).乙得知情况后决泄先见到甲拿到文件再返回C 地办事.两人分别在C地用了10分钟办完事后各自回出发地.已知甲、乙的速度始终保持不变,两人之间的距离y (单位:千米)与甲出发的时间X (单位:小时)的部分数关系如图所示,则当甲办完事再次返回到A地时乙距B地50千米.【解答】解:乙的速度为:460- 360=100 (千米耐),甲的速度为:(460-370- 100X0.5)÷O.5=8O (千米/时),甲从出发到两人相遇所用时间为:(460-100)÷ (8O+146°4J(千米)•••A、C两地距离为:80× (3- D + (100 - 80)÷(^370360甲从A地到C地的时间为:220÷80=2.75 (小时),甲从出发到返回所需时间为十.75+⅛=护小时),当甲办完事再次返回到A地时,乙与B地的距离为「00X (f- 护=5° (米故答案为:50.&某周末,大海和大成两家人同时开车从国奥村岀发,以一泄的速度匀速前往渝北统景镇风景区参加蹦极勇敢者挑战.出发15分钟后,大海发现忘带身份证,便掉头以另一速度匀速回国奥村去取(大海掉头.取身份证的时间忽略不计),大成仍以原速继续前行.大海回家取了身份证后,立即以返回速度畤倍匀速按原路赶往统景镇,在大海以加速后的速度匀速赶往统景镇期间,大成在途中TB伽司的距离【解答】解:设两家出发时,速度是“千米/小时,大海返回国奥村时速度是b 千米/小时, 由图象得:~~y t=("~~609"=8b, — z>^∙∙b 9(∕n>0)>设X 小时,两车的距离是辿千米,9根据题意得:45X 空任丄)=込40 (厂丄)Q, f=53,312 ; 3 12 9 36则国奥村与统景镇相距:(⅛-⅛) × 45X4=60 (千米),36 3639•暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了 15分钟, 为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不讣),小明家小亮的速度为:-^^=80 (千米/小时),^60^•••小明家的速度是90千米/小时,设小明加速后的速度为m 千米/小时, 根据题意得: —36 ^ 6O )⅛-⅛- ⅛⅛ 4,9Ir=V追上小亮家后以提髙后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间×8O= (-51- 1.05)加+0.8X90,20 20加=IoO, lf,2-0. 8×90 , k05f =O l(小时),=6 (分),80 100即小明家比小亮家早到景区6分钟.10•华师大一附中是各地中学生游学的向往之地,现有一组游学小分队从武汉站下车,计划骑自行车从武汉站到华中师大一附中,出发一段时间后,发现有贵重物品落在了武汉站,于是安排小李骑自行车以原速返回,剩下的成员速度不变向华中师大一附中前进.小李取回物后,改乘出租车追赶车队(取物品、等车时间忽略不计),小李在追赶上自行车队后仍乘坐出租车•再行驶10分钟后遭遇堵车,在此期间,自行车队反超出租车・拥堵30分钟后交通恢复正常,出租车以原速开往华中师大一附中,最终出租车和自行车队同时到达设自行车队和小李行驶时间为t分钟,与武汉站距禽5千米,S与/ AX kt m相遇到出租车堵车结朿,经过了22.5分钟.【解答】解:自行车速度8÷30=^ (千米/分钟), 15自行车到达终点用时为:20÷县=75 (分钟),15出租车到达洪崖洞用时75 - 3O- 30=15 (分钟);出租车速度20÷15=寻(千米/分钟),设自行车出发X分钟第一次相遇,根据题意得寻∙2Z∙∣∙(∕-30)'解得= 37.5’设第二次相遇时间为y,则(37. 5+10-30),15 3解得y=52.5, 75 - 52 - 5=22.5 (分钟)・所以第二次相遇后,出租车还经过了22.5分钟到达.。
初一行程问题及解答
初一行程问题及解答1.轮船在两个码头之间航行,顺水航行需要4小时,逆水行驶需要5小时,水流的速度是2千米/时,求轮船在静水中的行驶速度用方程解应用题2.甲,乙两站相距360千米,一列慢车从甲站开出,每小时行驶48千米;一列快车从乙站开出,每小时行驶72千米,慢车先开出25分钟,两车相向而行,慢车开几小时与快车相遇用方程解应用题3.一个人从甲村走到乙村.如果他每小时走4千米,那么走到预定的时间,离乙村还有0.5千米;如果他每小时走5千米,那么比一定时间少用半小时就可以到达乙村.求预定时间是多少小时,甲村到一寸的路程是多少千米用方程解应用题4.一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进,突然一号队员以45千米/小时的速度独自行进,行进10千米后调转车头,仍以45千米/小时的速度往回骑,直到与其他队员会和.一号队员从离队开始到与队员重新会和,经过多长时间用方程解应用题5.某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路.虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟.求甲、乙两地的距离.6.甲、乙两站相距380km,一列慢车从甲站开出,每小时行驶48km,一列快车从乙站开出,每小时行驶72km,慢车先开25分钟.两车相向而行,慢车开出多长时间后与快车相遇7.一队学生从学校出发去部队军训,行进速度是5千米/时,走了45千米时,一名通讯员按原路返回学校报信,然后他随即追赶队伍,通讯员的速度是14千米/时,他距部队6千米处追上队伍.问学校到部队的距离是多少8.某人原计划骑车以每小时12千米的速度由A第到B地,这样便可在规定的时间到达,但他因有事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定的时间早4分钟到B地,求AB两地距离.9.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米.两车从车头相遇到车尾相离需多少时间10.矿山爆破为了确保安全,点燃引火线后人要在爆破前转移到3000米以外的安全地带,引火线燃烧的速度是0.8厘米每秒,人离开的速度是5米/秒,问引火线至少需要多少厘米11.甲,乙两人相距22.5千米,且分别以2.5km/h相向而行,同时甲所带的小狗以每小时7.5千米的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙,……直到甲乙相遇,求小狗所走的路程.12.育红学校七年级的学生步行到郊区野营,一班的学生组成前队,步行速度为4千米/小时,二班的学生组成后队,速度为6千米/小时,前队出发一小时后后队才出发,,同时后队派一名联络员骑自行车在两队之间不断的来回联络,他骑自行车的速度为12千米/小时,问联络员骑了多少路答案1.设轮船静水中速度为X则x+24=x-25 得X=182.设为X小时相遇则72x+2548/60+48x=360 得X3.设预定时间为X4x+0.5=5x-0.5 得X甲乙距离:4x+0.54.设X则35x+x-10/4545=105.设甲乙两地的距离为x千米则:x/10=x+8/12-1/66x=5x+8-10x=30 所以甲乙两地之间的距离为30千米6.设慢车开出X小时后与快车相遇,则 48X+72X-25/60=380 X=41/127.设学校到部队的距离是X千米,则 X-6-45/514=X-6+45 X=1018.设AB两地距是X千米,则 X/12=X/15+20/60+4/60 X=249.设需X小时,则 60+75X=150+120/1000 X=0.00210.设需要X厘米,则 X/0.8=3000/5 X=48011.设小狗所走的路程为X千米,则 X/7.5=22.5/2.52 X=33.7512.设二班追上一班用了x小时,得:4x+1=6x13.解,得:x=2 联络员骑的路程为212=24千米。
(完整版)七年级数学应用题专题---行程问题【精】整理版
行程问题1:甲、乙两地相距416千米,一辆汽车从甲地开往乙地,每小时行32千米,汽车开出半小时后,一辆摩托车从乙地开往甲地,速度是汽车的1.5倍,问摩托车开出几小时后才能与汽车相遇?2:甲、乙两人相距80千米,甲骑自行车每小时行20千米,乙骑摩托车每小时行60千米,摩托车在自行车后面,两人同时出发,同向行驶,问乙经过多少时间追上甲。
3:一只轮船,在甲、乙两地之间航行,顺水用8小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度。
4:自行车环城赛,一圈12千米,已知甲的速度是乙的5/7,两人同时同地出发后2小时30分相遇,问乙比甲每分钟快多少千米?5:一条山路,从山下到山顶,走了1小时还差1千米,从山顶到册下,50分钟可以走完,已知下山速度是上山速度的1.5倍,上山、下山每小时各走了多少千米?这条山路有多少千米?6:一架飞机在两个城市之间飞行,顺风时需要5小时30分钟,逆风时需要6小时,已知风速是每小时24千米,求两城市之间的距离?7:甲、乙两人骑自行车从相距75千米的两地相向而行,3小时后相遇,若甲比乙每小时多走2千米,求甲、乙的速度及各自所走的距离?8:一条环形跑道长400米,甲骑车,平均速度为550米/分,乙跑步平均速度为250米/分。
⑴两人同时同向从同地出发经过多少分钟两人再相遇。
⑵两人同时同地背向出发经过多少分钟相遇?9:甲、乙两人沿一公路自西向东前进,速度分别为3千米/小时和5千米/小时,甲于中午12时经过A地,乙于下午2时经过A地,则乙追上甲时离A地多远10:若敌我相距15千米,且敌军于1小时前以每小时4千米的速度逃跑,现我军以每小时7千米的速度追击,问几小时可以追上?11:甲骑自行车从A地出发,以每小时12千米的速度驶向B地,经过15分钟后,乙骑自行车从B地出发,以每小时14千米的速度驶向A地,两人相遇时,乙已超过中点1.5千米,求A、B两地距离。
12:一个学生用每小时5千米的速度前进,可以及时从家里返回学校,走了全程度的1/3,他搭上了速度是每小时20千米的公共汽车,因此比规定时间早2小时到达学校。
七年级数学行程问题应用题精选
一行程问题1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇?(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。
(1)几秒后,甲在乙前面2米?(2)如果甲让乙先跑4米,几秒可追上乙?4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。
a)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇?b)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇?c)甲、乙同时同地同向出发,经过多长时间二人首次相遇?d)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇?5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米?二盈亏问题工作量与折扣问题8.用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩?9毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?10 将一批货物装入一批箱子中,如果每箱装10件,还剩下6件;如果每箱装13件,那么有一只箱子只装1件,这批货物和箱子各有多少?11有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问小景对了几题?12.修一条路,A 队单独修完要20天,B 队单独修完要12天。
七年级行程问题应用题(全、新)
七年级行程问题应用题(全、新)
根据题目要求,文档的主要目标是解答七年级行程问题应用题。
以下是对该题目的解答。
题目背景
考虑以下行程问题应用题:
假设小明要从A市出发,依次经过B市、C市和D市,最后
到达E市。
现在他需要根据以下条件进行安排行程:
1. 从B市到C市有一种交通方式(例如火车或汽车),需要1
小时。
2. 从C市到D市有另一种交通方式(例如公共汽车或飞机),需要2小时。
3. 从D市到E市有第三种交通方式(例如火车或船),需要3
小时。
现在的问题是,小明从A市出发,经过以上四个城市,最后到达E市,整个行程需要多长时间?
解答思路
我们可以通过计算每段行程的时间,再求和得到整个行程的时间。
1. 首先,小明从A市到B市的行程时间未知,假设为x小时。
2. 从B市到C市的行程需要1小时。
3. 从C市到D市的行程需要2小时。
4. 从D市到E市的行程需要3小时。
那么,整个行程的时间可以表示为:x + 1 + 2 + 3 = x + 6 小时。
结论
根据以上计算,小明从A市出发,经过B市、C市和D市,
最后到达E市,整个行程需要x + 6 小时。
这里的x表示从A市到
B市的行程时间,具体值需要根据实际情况给出。
请注意,以上解答仅供参考,具体情况可能需要根据实际题目要求进行调整。
行程问题应用题及答案
行程问题应用题及答案行程问题应用题及答案行程问题一直是数学应用题的必考点,那么,下面是小编给大家整理收集的行程问题应用题及答案,内容仅供参考。
行程问题应用题及答案一1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。
问:羊再跑多远,马可以追上它?2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
8、AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?9、甲乙两车同时从AB两地相对开出。
第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离B地的距离是AB全程的1/5。
初中列方程解应用题(行程问题)专题
初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。
我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。
原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。
下面我们将行程问题归归类,由易到难,逐步剖析。
1. 单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。
甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】310080=-x x .例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。
求火车的速度和长度。
【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:【等量关系式】火车min 1行驶的路程=桥长+火车长;火车s 40行驶的路程=桥长-火车长 【列出方程组】⎩⎨⎧-=+=y x y x 100040100060举一反三:1.小明家和学校相距km15。
小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min/m,再乘公共汽车到学校,发现比步行的时间缩短了km/40,求小明从家到学校用了多长时间。
20,已知公共汽车的速度为hmin2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km1)km/260.求提速后的火车速度。
八年级数学应用题30道
八年级数学应用题30道一、行程问题1. 甲、乙两人相距30千米,甲的速度是每小时5千米,乙的速度是每小时4千米,两人同时相向而行,几小时后两人相遇?解析:设x小时后两人相遇。
根据路程 = 速度×时间,甲走的路程为5x千米,乙走的路程为4x千米,两人相向而行,总路程为30千米,可列方程5x +4x=30,即9x = 30,解得x=(10)/(3)小时。
2. 一艘轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流速度为每小时2千米,求轮船在静水中的速度。
解析:设轮船在静水中的速度为x千米/小时。
顺水速度 = 静水速度+水流速度,即(x + 2)千米/小时;逆水速度=静水速度水流速度,即(x-2)千米/小时。
根据两个码头之间的距离相等,可列方程4(x + 2)=5(x 2),展开得4x+8 = 5x-10,移项得5x-4x=8 + 10,解得x = 18千米/小时。
二、工程问题3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:设两人合作需要x天完成。
把这项工程的工作量看作单位“1”,甲的工作效率为(1)/(10),乙的工作效率为(1)/(15),两人合作的工作效率为((1)/(10)+(1)/(15)),根据工作量=工作效率×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3 + 2)/(30))x=1,即(1)/(6)x = 1,解得x = 6天。
4. 某工程队修一条路,原计划每天修400米,25天完成,实际20天就完成了任务,实际每天修多少米?解析:这条路的总长度为400×25 = 10000米。
设实际每天修x米,根据实际工作总量 = 实际工作效率×实际工作时间,可列方程20x=10000,解得x = 500米。
三、利润问题5. 某商品的进价为每件20元,售价为每件30元,每月可卖出180件;如果售价每上涨1元,那么每月就少卖10件,售价定为多少元时,每月的利润最大?解析:设售价定为x元(x≥30),则每件的利润为(x 20)元,销售量为180-10(x 30)=180 10x+300=480 10x件。
初中数学行程问题类题目及答案(完美版)
小中初数学教案等集合行程问题归纳1.小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小刚从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小刚家到学校的路程为 2960 米. 【解答】解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17﹣15=2(分钟),∵爸爸追上小刚后以原速的倍原路步行回家, ∴小刚打完电话到与爸爸相遇用的时间为1分钟, ∵由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,∴小刚和爸爸相遇之后跑步的1分和爸爸2分钟走的路程是720米,∴小刚后来的速度为:1040﹣720=320(米/分钟)则小刚家到学校的路程为:1040+(23﹣17)×320=1040+6×320=1040+1920=2960(米),故答案为:2960. 2.已知A 、B 、C 三地顺次在同一直线上,甲、乙两人均骑车从A 地出发,向C 地匀速行驶.甲比乙早出发5分钟,甲到达B 地并休息了2分钟后,乙追上了甲.甲、乙同时从B 地以各自原速继续向C 地行驶.当乙到达C 地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C 地行驶,到达C 地就停止.若甲、乙间的距离y(米)与甲出发的时间t (分)之间的函数关系如图所示,则下列说法①甲、乙提速前的速度分别为300米/分、400米/分;②A 、C 两地相距7200米;③甲从A 地到C 地共用时26分钟;④当甲到达C 地时,乙距A 地6075米;其中正确的是 ①②④ .12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,即甲、乙提速前的速度分别为300米/分、400米/分.故①正确;A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),故②正确;∵当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,∴后来乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),∴甲从A地到C地共用时:23+[7200﹣(23﹣2)×300]÷400=25(分钟),故③错误;∴当甲到达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),故④正确.综上所述,正确的有①②④.3.尊老助老是中华民族的传统美德,我校的小艾同学在今年元旦节前往家附近的敬老院,为老人们表演节目送上新年的祝福.当小艾同学到达敬老院时,发现拷音乐的U盘没有带,于是边打电话给爸爸边往家走,请爸爸能帮忙送来.3分钟后,爸爸在家找到了U盘并立即前往敬老院,相遇后爸爸将U盘交给小艾,小艾立即把速度提高到之前的1.5倍跑回敬老院,这时爸爸遇到了朋友,停下与朋友交谈了2分钟后,爸爸以原来的速度前往敬老院观看小艾的表演.爸爸与小艾的距离y(米)与小艾从敬老院出发的时间x(分)之间的关系如图所示,则当小艾回到敬老院时,爸爸离敬老院还有240米.教案等集合练习9分钟的时候,小艾离敬老院的距离为:60×9=540(米),小艾最后回到敬老院的时间为:9+540÷(60×1.5)=15(分钟),当小艾回到敬老院时,爸爸离敬老院还有:540﹣(15﹣11)×75=240(米), 故答案为:240.4.甲、乙分别骑摩托车同时沿同一条路线从A 地出发B 地,已知A 、B 两地相距280km ,他们出发2小时的时候乙的摩托车坏了,乙立即开始修车,甲车继续行驶,当甲第一次与乙相遇时,乙还在修车,乙修好车继续按原速前往B 地.乙到达B 地小时后,甲车到达B 地.整个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y (千米)与甲出发的时间x (小时)之间的关系如图所示,则当乙车修好时,甲车距B 地的路程为 130 千米. 【解答】解:∵甲车速度==40千米/时,∴甲车走完全程时间==7小时,∴乙车速度=40+=70千米/时, 设乙车修了x 小时,由题意可得:70(﹣x )﹣40×=20,∴x =,∴当乙车修好时,甲车距B 地的路程=280﹣40×(2+)=130千米,5.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一定的速度匀速前往铁山坪体验“飞越丛林”.出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车、取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的倍匀速按原路赶往铁山坪,由于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y (千米)与乙年数学测试题车行驶时间x (小时)之间的部分图象如图所示,则乙车出发小时到达目的地.【解答】解:设甲车的速度为a 千米/小时,乙车回家时的速度是b 千米/小时,a =b ,,设a =8m ,b =9m (m >0),由图象得乙车行驶小时两边相距千米, ﹣=, m =5,∴a =40,b =45,设t 小时两车相距3千米,=+3+(t ﹣)×40,t =,6.小亮和妈妈从家出发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线出发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最终与妈妈会合,小亮和妈妈的速度始终不变,如图是小亮和妈妈两人之间的距离y (米)与妈妈出发的时间x (分钟)的图象;则小亮开始返回时,妈妈离家的距离为 575 米. 【解答】解:妈妈的速度为:100÷2=50(米/分),小亮的速度为:[100+50(12﹣2)]÷(12﹣2)=60(米/分),相遇时行走的路程为:12×50=600(米),观察图象在x =18时,小亮和妈妈的相距最大,可知是小亮到达长嘉汇所经历的时间,所以家到长嘉汇的距离为:60×(18﹣2)=960(米),由(18﹣12=6分钟)可知妈妈返回找到相机行走路程为6×50=300(米),此时设小亮在长嘉汇等妈妈的时间为t 分钟,由图象知小亮与妈妈会合所用时间为27﹣18=9分钟可建立方程如下: 60×(9﹣t )+50×9═960﹣(600﹣300),解得t =5.5(分钟), ∴小亮开始返回时,妈妈离家的距离为:50×(18+5.5﹣6×2)=575(米).小中初数学教案等集合向C 地赶去(中间拿文件的时间忽略不计).乙得知情况后决定先见到甲拿到文件再返回C 地办事.两人分别在C 地用了10分钟办完事后各自回出发地.已知甲、乙的速度始终保持不变,两人之间的距离y (单位:千米)与甲出发的时间x (单位:小时)的部分数关系如图所示,则当甲办完事再次返回到A 地时乙距B 地 50 千米. 【解答】解:乙的速度为:460﹣360=100(千米/时), 甲的速度为:(460﹣370﹣100×0.5)÷0.5=80(千米/时), 甲从出发到两人相遇所用时间为:(460﹣100)÷(80+100)+1=3(小时), ∴A 、C 两地距离为:80×(3﹣1)+(100﹣80)÷()=220(千米),甲从A 地到C 地的时间为:220÷80=2.75(小时), 甲从出发到返回所需时间为:1+2.75+=(小时),当甲办完事再次返回到A 地时, 乙与B 地的距离为:100×(﹣﹣)=50(米). 故答案为:50.8.某周末,大海和大成两家人同时开车从国奥村出发,以一定的速度匀速前往渝北统景镇风景区参加蹦极勇敢者挑战.出发15分钟后,大海发现忘带身份证,便掉头以另一速度匀速回国奥村去取(大海掉头、取身份证的时间忽略不计),大成仍以原速继续前行.大海回家取了身份证后,立即以返回速度的倍匀速按原路赶往统景镇,在大海以加速后的速度匀速赶往统景镇期间,大成在途中加油耽搁了5分钟,结果大海先到达目的地,两车之间的距离y (千米)与大成开车时间x (小时)之间的部分图象如图所示,则国奥村与统景镇相距 60 千米.测试题9a =8b ,, 设a =8m ,b =9m (m >0),()•8m ﹣()=, m =5,∴a =8m =40,b =9m =45,设x 小时,两车的距离是千米, 根据题意得:45×=+40(t ﹣)+,t =, 则国奥村与统景镇相距:(﹣)×=60(千米),9.暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了15分钟,为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不计),小明家追上小亮家后以提高后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间的距离s (km )与出发时间t (h )之间的函数关系图象,则小明家比小亮家早到景区 6 分钟. 【解答】解:设出发时小明家的速度是a 千米/小时,小亮家的速度是b 千米/小时,且a >b ,由题意得:0.8(a ﹣b )=8,a =b +10,小明家因故停下来休息了15分钟,可知A (1.05,12),小亮的速度为:=80(千米/小时),∴小明家的速度是90千米/小时,设小明加速后的速度为m 千米/小时,根据题意得:×80=(﹣1.05)m +0.8×90,小中初数学m =100,﹣﹣1.05,=0.1(小时),=6(分), 即小明家比小亮家早到景区6分钟. 10.华师大一附中是各地中学生游学的向往之地,现有一组游学小分队从武汉站下车,计划骑自行车从武汉站到华中师大一附中,出发一段时间后,发现有贵重物品落在了武汉站,于是安排小李骑自行车以原速返回,剩下的成员速度不变向华中师大一附中前进.小李取回物后,改乘出租车追赶车队(取物品、等车时间忽略不计),小李在追赶上自行车队后仍乘坐出租车,再行驶10分钟后遭遇堵车,在此期间,自行车队反超出租车.拥堵30分钟后交通恢复正常,出租车以原速开往华中师大一附中,最终出租车和自行车队同时到达设自行车队和小李行驶时间为t 分钟,与武汉站距离s 千米,s 与t 的函数关系如图所示,则从第二次相遇到出租车堵车结束,经过了 22.5 分钟.【解答】解:自行车速度8÷30=(千米/分钟), 自行车到达终点用时为:20÷=75(分钟),出租车到达洪崖洞用时75﹣30﹣30=15(分钟); 出租车速度20÷15=(千米/分钟), 设自行车出发x 分钟第一次相遇,根据题意得 ,解得=37.5,设第二次相遇时间为y ,则, 解得y =52.5,75﹣52﹣5=22.5(分钟).所以第二次相遇后,出租车还经过了22.5分钟到达.。
初一数学上册:一元一次方程解决应用题【行程问题】
初一数学上册:一元一次方程解决应用题【行程问题】知识点1、行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2、行程问题基本类型相遇问题:快行距+慢行距=原距追及问题:快行距-慢行距=原距航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系专项练习1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为_____。
解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:X/8-X/40=3.62、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系(1)速度15千米行的总路程=速度9千米行的总路程(2)速度15千米行的时间+15分钟=速度9千米行的时间-15分钟方法一:设预定时间为x小/时,则列出方程是:15(x-0.25)=9(x+0.25)方法二:设从家里到学校有x千米,则列出方程是:X/15+15/60=X/9-15/603、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?等量关系:①两种情形下火车的速度相等②两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。
解:⑴行人的速度是:3.6km/时=3600米÷3600秒=1米/秒骑自行车的人的速度是:10.8km/时=10800米÷3600秒=3米/秒⑵方法一:设火车的速度是X米/秒,则26×(X-3)=22×(X-1) 解得X=4方法二:设火车的车长是x米,则(X+22×1)/22=(X+26×3)/264、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
经典行程问题的应用题(含详细参考答案)
经典行程问题的应用题(含详细参考答案)2020年7月1、有一客船从甲港开往乙港,货船从乙港开往甲港,两船同时出发,10小时相遇,相遇后继续行驶2小时,此时客船离乙港420千米,货船离甲港580千米。
甲、乙两港相距几千米?2、.如图,A、C两地相距3千米,C、B两地相距8千米.甲、乙两人同时从C地出发,甲向A地走,乙向B地走,并且到达这两地又都立即返回.如果乙的速度是甲的速度的2倍,那么当甲到达D地时,还未能与乙相遇,他们相距1千米,这时乙距C地______千米.3、甲乙两人分别驾车从A、B两地同时相向而行,第一次相遇时甲行了全程的5分之3,相遇后两人继续前进,甲和乙分别到达A、B两地后又立即返回,第2次相遇地点和第一次相距120千米,A、B两地相距多少千米?4、甲乙两车分别从A.B两地同时相向出发,已知甲车速度与乙车的速度比为4:3,C在A.B之间,甲乙两车到达C地时间分别是上午8:00和下午3:00,问:甲乙两辆车相遇时间是什么时间?5、有一个200米的环形跑道,甲、乙两人同时从同一地点同方向出发.甲以每秒0.8米的速度步行,乙以每秒2.4米的速度跑步,乙在第2次追上甲时用了多少秒?6、甲乙丙3人都要从A地到B地,A,B 2地相距42千米,甲骑摩拖车,一次只能带一个人,摩拖车每小时行36千米,人步行每小时行4千米。
如果采用摩拖车和步行相结和的办法,3人同时从A地出发,全部到达B地,最快要多长时间?7、已知一条船从甲码头到乙码头往返一次需要2小时,由于返回时间是顺水,比去时每小时可多行驶8千米,因此第2小时比第1小时多行驶6千米.那么,甲乙两码头相距多少千米?8、小明从甲地到乙地,去时每时走5千米,回来是每时走7千米,来回共用了4时。
小明去时用了多长时间?9、货车和客车同时从甲乙两地相对开出,客车行完全程要10小时,货车行完全程要12小时,两车在离中点35千米处相遇,甲,乙两地相距多少千米?10、甲乙两个学生放学回家,甲比乙多走1/5的路,而乙走的时间比甲少1/11,甲乙两个学生回家速度的比是多少?11、甲乙两车同时从两地相向而行,甲车每小时行80千米,乙车8小时可以行完全程。
一元一次方程应用题——行程问题
1. 某人从家里骑自行车到学校。
假设每小时行15千米,可比预定的时间早到15分钟;假设每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于多少分钟.3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?4.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分钟,逆风飞行需要3小时,求两城市间距离?5.轮船在静水中的速度是20千米/小时,从甲港顺流到乙港需8小时,返航时行走了6小时在距甲港68千米处发生故障,求水流速度?6.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问两车同时开出,相向而行,出发后多少小时相遇?7.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?8.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?9.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?10.小红和小军两人同时从各自的家里出发去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用61小时在途中某点相遇,那么小军每分钟走多少米?11.A 、B 两地相距80米,甲从A 地出发,每秒走1米,乙从B 地出发每秒走1.5米,如甲先走15米,求乙出发后多少秒与甲相遇?12.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离
中点32千米处相遇,求东西两地的距离是多少千米?
2、甲乙两辆汽车同时从东站开往西站。
甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?
3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?
4、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。
货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?
5、快车与慢车同时从甲、乙两地相对开出,经过12小时相遇。
相遇后快车又行了8小时到达乙地。
慢车还要行多少小时到达甲地?
6、两地相距380千米。
有两辆汽车从两地同时相向开出。
原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?
7、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。
如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?
8、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?
9、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。
一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?
10、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。
小勇继续以每小时10千米的速度前进,用2.5小时跑完余下的路程,求小刚的速度?
11、甲、乙两人在相距90千米的直路上来回跑步,甲的速度是每秒钟跑3米,乙的速度是每秒钟跑2米。
如果他们同时分别在直路两端出发,当他们跑了10分钟,那么在这段时间内共相遇了多少次?
12、男、女两名运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。
两人同时从A点出发,在A、B之间不停地往返奔跑。
如果男运动员上坡速度是每秒3米,下坡速度每秒5米;女运动员上坡速度每秒2米,下坡速度每秒3米,那么两人第二次迎面相遇的地点离A点多少米?
13、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。
某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。
问再过多少秒后,甲、乙两人相遇?。