(-)三年高考真题精编解析一专题17 椭圆及其综合应用

合集下载

三年高考(2020)高考数学试题分项版解析专题17椭圆理(含解析)

三年高考(2020)高考数学试题分项版解析专题17椭圆理(含解析)

专题17椭圆考纲解读明方向考纲解读考点内容解读 要求 常考题型 预测热度1.椭圆的定义及其标准方程掌握 选择题 解答题★★★2.椭圆的几何性质掌握椭圆的定义、几何图 形、标准方程及简单性质掌握填空题 解答题 ★★★3.直线与椭圆的位置关系掌握 解答题 ★★★分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程 2能熟练运用几何性质(如范围、对 称性、顶点、离心率)解决相关问题 3能够把直线与椭圆的位置关系的问题转化为方程组解的问题 ,判断位 置关系及解决相关问题 4本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主 ,与 向量等知识的综合起来考查的命题趋势较强 ,分值约为12分,难度较大.2020年咼考全景展示【答案】D详解:因为 "叽为等腰三角形所以卩0市2=2&由AP 斜率为6得, tanAPAF 2 二 巴 A ainAPAF 2 二 COSA PAF 2 二6 订131.【2020年理数全国卷II 】已知x y,耳/是椭圆「丁訂心旳的左,右焦点,是」的左顶点,点在过|且斜率为aB.的直线上, 1r 一 d ;;,贝y 的离心率为A.C.D.【解析】分析:先根据条件得 PR=2c,再利用正弦定理得a,c 关系,即得离心率由正弦定理得sim.PAf 2AF 2 sin£APF 2所以 选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于 心:詞的方程或不等式,再根据卜;':订的关系消掉£得到的关系式,而建立关于应绥的方程或不等式,要充分利用椭圆和双曲线的几何性质、 点的坐标的范围等.2 .【2020年浙江卷】已知点 F (0 , 1),椭圆4 +y 2=mm >1)上两点A , B 满足川「=2也,则当m F _____________ 时, 点B 横坐标的绝对值最大. 【答案】5【解析】分析先根1S 条件得到"坐标间的关系,代入椭圆方程解得歩的纵坐标」即得F 的福坐折关于從 的函数关系,晶后扌魁®二次函数性质确定最值朝去.i 羊解;设机%化莎},由和=2而甯-冷=23 -乃=2仕- 1)“ -yi = 2上-3・因为上占在椭圆上:所仪手+百=忆于■疋=r +总比-3)£ =玳上手+山-f}1 = 了与亍+ F 孑=m 对应相减得Ji =宁,疋=- 10m+ 9] 4j 当且仅当用=5吋取最大值.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为 在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个 于函数最值的探求来使问题得以解决W : —— + = 1(口 > I )A 0)3.【2020年理北京卷】已知椭圆线与椭圆M 的四个交点及椭圆 M 的两个焦点恰为一个正六边形的顶点,则椭圆 M 的离心率为 ___________双曲线N 的离心率为 ___________ . 【答案】^2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中 •关系,即得双曲线 N 的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为 ,再根据椭圆定义得卜一匸^力],解得椭圆M 的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为汀认I ,再根据椭圆定义得 : ,所以椭和:|x=±-^圆M 的离心率为双曲线N 的渐近线方程为加,由题意得双曲线 N 的一条渐近线的(或者多个)变量的函数,然后借助.若双曲线N 的两条渐近由八計、诂尸,可得ab =6,从而a =3, b =2•所以,椭圆的方程为(n)设点P 的坐标为(X 1,y 1),点Q 的坐标为(X 2, y 2).由已知有y 1>y 2>0,故卩叮八泊=倾斜角为 n n 2n ——=tan - = 3』 / 3m + n m + 3 m——=4* AC = 2.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于I;虫箱的方程或不等式,再根据卜黒的关系消掉E 得到的关系式,而建立关于|怎冷•:的方程或不等式,要充分利用椭圆和双曲线的几何性质、 点的坐标的范围等.4.【2020年理数天津卷】设椭圆 (a >b >0)的左焦点为F ,上顶点为B 已知椭圆的离心率为 3 ,点A 的坐标为顾,且丨皿一;. (I )求椭圆的方程; (II )设直线l与椭圆在第一象限的交点为 P,且I 与直线AB 交于点Q 若(O 为原点),求k 的值.11【答案】(i )|;(n )2或想【解析】分析:(I)由题意结合椭圆的性质可得 a =3, b =2.则椭圆的方程为.(n)设点P 的坐儿=i\可得.由1 •据此得到关于k 的方程,解方程可得 k 的值为 或标为(X 1 ,yj ,点Q 的坐标为(X 2, y 2).由题意可得5y 1=9y 2.由方程组1°2k11详解:(I)设椭圆的焦距为2c ,由已知知,又由a 2=b 2+c 2,可得2a =3b .由已知可得,I":-打,■‘,X i ,因为sin^OAB 而/ 71 1叔1_曾•OA两,故1饨| =佝2.由|卩Q厂4呵°,可得5y i=9y2.由方程组,y-kx, x2 y2—+ 5-^U q 4消去X , 可得J恣1=瓷易知直线AB的方程为x+y - 2=0,由方程组•消去2kx,可得.由5y i=9y2,可得5 (k+1)=,两边平方,整理得11 = 0,解得丹―旳.又t= 11 1 11或 厉•所以,k 的值为2或函’点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力, 重视根与系数之间的关系、 弦长、斜率、三角形的面积等问题.W(1, m)(m > 0).为 上一点,且悴;“阳咔感:剧.证明:两, , 成等差数列,并求该数 列的公差.【答案】(1)【解析】分析:⑴ 设而不求,利用点建法进行证明。

三年高考2016_2018高考数学试题分项版解析专题17椭圆文含解析201811241274

三年高考2016_2018高考数学试题分项版解析专题17椭圆文含解析201811241274

专题 17 椭圆 文考纲解读明方向考纲解读考点内容解读要求常考题型 预测热度选择题1.椭圆的定义及其标准方程掌握★★★ 解答题掌握椭圆的定义、几何图形、2.椭圆的几何性质 掌握标准方程及简单性质填空题 解答题★★★ 3.直线与椭圆的位置关系 掌握 解答题 ★★★分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质 (如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化 为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性 质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为 12分,难度较大.2018年高考全景展示1.【2018年全国卷 II 文】已知 , 是椭圆 的两个焦点, 是 上的一点,若,且,则的离心率为A. B. C. D.【答案】D【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2 ,则当m=___________时,点B横坐标的绝对值最大.【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数关系,最后根据二次函数性质确定最值取法.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个) 变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年天津卷文】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】(Ⅰ) ;(Ⅱ) .【解析】分析:(I)由题意结合几何关系可求得.则椭圆的方程为. (II)设点P的坐标为,点M的坐标为,由题意可得.易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.所以,椭圆的方程为.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4.【2018年文北京卷】已知椭圆的离心率为,焦距为.斜率为k 的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D. 若C,D和点共线,求k.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.详解:(Ⅰ)由题意得,所以,又,所以,所以,所以椭圆的标准方程为.(Ⅱ)设直线的方程为,由消去可得,则,即,设,,则,,则,易得当时,,故的最大值为.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到 三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式 变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关 系求解.2017年高考全景展示1.【2017浙江,2】椭圆x y 的离心率是22194A .133B . 53C . 23D . 59【答案】B 【解析】 试题分析: e 9 4 5,选 B .3 3【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于 a ,b ,c 的 方程或不等式,再根据 a ,b ,c 的关系消掉b 得到 a ,c 的关系式,建立关于 a ,b ,c 的方程或不等2.【2017课标 1,文 12】设 A 、B 是椭圆 C :xy221长轴的两个端点,若 C 上存在点M 满3m足∠AMB =120°,则 m 的取值范围是A .(0,1] [9, )B . (0, 3] [9, )C .(0,1] [4, )D . (0, 3] [4, )【答案】A 【解析】【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是a利用条件确定 a ,b 的关系,求解时充分借助题设条件 AMB 120 转化为 tan 603b,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论. 3.【2017课标 3,文 11】已知椭圆 C :xy2 2 221,(a >b >0)的左、右顶点分别为 A1,A 2,a b且以线段 A 1A 2为直径的圆与直线bx ay 2ab 0相切,则 C 的离心率为()A .63B . 33 C . 231 3D .【答案】A【解析】以线段 A 1A 2 为直径的圆是 x 2 y 2 a 2 ,直线bx ay 2ab 0与圆相切,所以圆心a2 b2,整理为a2 3b2 ,即c 2 a 2 , 62 ce ,故选A.3 a 36【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,而建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2017课标II,文20】设O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N,点P满足NP 2NM(1)求点P的轨迹方程;(2)设点Q在直线x 3上,且OP PQ 1.证明过点P且垂直于OQ的直线l过C的左焦点F.【答案】(1)(2)见解析【解析】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程,(2)证明直线过定点问题,一般方法以算代证:即证,先设P(m,n),则需证3 3m tn 0,根据条件OP PQ 1 可得 3m m 2 tn n2 1,而,代入即得3 3m tn 0.(2)由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得 3m m 2 tn n2 1,又由(1)知,故3 3m tn 0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F【考点】求轨迹方程,直线与椭圆位置关系【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.5.【2017北京,文19】已知椭圆C的两个顶点分别为A(−2,0),B(2,0),焦点在x轴上,离心率为32.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【答案】(Ⅰ)x24y2 1 ;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)根据条件可知ac 32, ,以及b2 a2 c2 ,求得椭圆方程;(Ⅱ)a 2设M(m,n) ,则D(m, 0), N(m, n),根据条件求直线DE的方程,并且表示直线BN的方程,并求两条直线的交点,根据1BDySEN21BDES BD yBDN2,根据坐标表示面积比值.(Ⅱ)设M(m,n) ,则D(m, 0), N(m, n). 由题设知m 2,且n 0 .直线AM的斜率kAMmn2,故直线DE的斜率kDEm 2.n8所以直线DE的方程为m 2y (x m) .n【考点】1.椭圆方程;2.直线与椭圆的位置关系.【名师点睛】本题对考生计算能力要求较高,重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用a,b,c,e的关系,确定椭圆方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再根据面积的几何关系,从而求解面积比值,计算结果,本题易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.6.【2017江苏,17】如图,在平面直角坐标系xOy中,椭圆x y2 2E: 1(a b 0) 的左、右焦a b2 2点分别为F,1 F,离心率为212,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F作直线PF的垂线l,过点F作直线1 1 12 PF的垂线l.2 2(1)求椭圆E的标准方程;(2)若直线E的交点Q在椭圆E上,求点P的坐标.9【答案】(1)x y (2) (4 7 , 37 )2214377【解析】解:(1)设椭圆的半焦距为 c .因为椭圆 E 的离心率为 1 2 ,两准线之间的距离为 8,所以 c a 1 , 2 2a 2 c8 ,解得 a 2,c 1,于是b a 2 c 2 3 , 因此椭圆 E 的标准方程是x y.22143由①②,解得1 x1 x22x x y,所以,Q ( x ,) .yy1 x2 0 因为点Q 在椭圆上,由对称性,得yy ,即 x 2 y 2 或 x 2y 2.0 0 1 0 0 1 0又 P 在椭圆 E 上,故x y.2 2 014 3x y1 2 22 2x y 10 0由,解得x y2 20 014 3x y1 2 22 2x y 10 04 7 3 7x y ;x y, 2 2 ,无解.0 00 07 74 31104 7 3 7( , )7 7 .因此点P的坐标为【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程.2016年高考全景展示1.【2016高考新课标1文数】直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离1为其短轴长的,则该椭圆的离心率为()41 12 3(A)(B)(C)(D)3 2 3 4【答案】B考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式, 再转化为关于a,c的齐次方程,方程两边同时除以a的最高次幂,转化为关于e的方程,解方程求e.2.[2016高考新课标Ⅲ文数]已知O为坐标原点,F是椭圆C:x y2 22 2 1(a b 0) 的左焦a b点,A, B分别为C的左,右顶点.P为C上一点,且PF x轴.过点A的直线l与线段PF 交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()(A)13(B)12(C)23(D)34【答案】A【解析】考点:椭圆方程与几何性质.11【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得 a ,c 的值,进而求得 e 的值;(2)建立 a ,b ,c 的齐次等式,求得 殊位置,求出 e .b a或转化为关于 e 的等式求解;(3)通过特殊值或特3.【2016高考新课标 2文数】已知 A 是椭圆 E :x y 的左顶点,斜率为 k k >022143的直线交 E 与 A , M 两点,点 N 在 E 上, MA NA . (Ⅰ)当 AM AN 时,求 AMN 的面积; (Ⅱ)当 AM AN 时,证明: 3 k 2.144 49 【答案】(Ⅰ);(Ⅱ)3 2,2 .【解析】试题分析:(Ⅰ)先求直线 AM 的方程,再求点 M 的纵坐标,最后求 AMN 的面积;(Ⅱ) 设M x 1, y 1 ,,将直线 AM 的方程与椭圆方程组成方程组,消去 y ,用 k 表示1, 1x ,从而表示1| AM |,同理用 k 表示| AN |,再由 2 AM AN 求 k .M (x , y ),则由题意知 试题解析:(Ⅰ)设11y 10 .由已知及椭圆的对称性知,直线 AM 的倾斜角为又 A ( 2, 0) ,因此直线 AM 的方程为 y x 2 .4,将 x y 2代入x y 得227y 2 12y 0, 143解得 y 0或 12 12y,所以 y .177因此 AMN 的面积2 1 12 12 144 S.AMN2 774912考点:椭圆的性质,直线与椭圆的位置关系.【名师点睛】本题中2 k3 2 3 2tk kt,分离变量t,得t3k2k 1k 233,解不等式,即求得实数k的取值范围.4.【2016高考北京文数】(本小题14分)已知椭圆C:x y2 22 2 1过点A(2,0),B(0,1)两点.a b(I)求椭圆C的方程及离心率;(Ⅱ)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【答案】(Ⅰ)x24; 3y2 1 e (Ⅱ)见解析.2【解析】试题分析:(Ⅰ)根据两顶点坐标可知a,b的值,则亦知椭圆方程,根据椭圆性质及离心率公式求解;(Ⅱ)四边形A 的面积等于对角线乘积的一半,分别求出对角线A , 的值求乘积为定值即可.13试题解析:(I )由题意得, a 2,b 1.所以椭圆 C 的方程为 x 2 4y 2 1.又 c a 2 b 2 3 ,所以离心率 e c3 . a 2x令 y 0,得0 xy0 1x ,从而 0 A 2 x 2 y 1 0 . 所以四边形 A 的面积1S A21x 2y21 0 02 y 1 x 20 x 4y 4x y 4x 8y 422 0 0 0 0 0 02 x y x 2y 20 0 0 02x y 2x 4y 40 0 0 0 x y x 2y 20 0 0 02.从而四边形A 的面积为定值.考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证14明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.15。

【新】三年高考(2016-2018)高考数学试题分项版解析 专题17 椭圆 理(含解析)

【新】三年高考(2016-2018)高考数学试题分项版解析 专题17 椭圆 理(含解析)

专题17 椭圆考纲解读明方向 考纲解读分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1.【2018年理数全国卷II 】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D. 【答案】D【解析】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为为等腰三角形,,所以PF 2=F 1F 2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年理北京卷】已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N的离心率为__________.【答案】 2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N 的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2018年理数天津卷】设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.【答案】(Ⅰ);(Ⅱ)或【解析】分析:(Ⅰ)由题意结合椭圆的性质可得a=3,b=2.则椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由题意可得5y1=9y2.由方程组可得.由方程组可得.据此得到关于k的方程,解方程可得k的值为或详解:(Ⅰ)设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.所以,椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2.由方程组消去x,可得.易知直线AB的方程为x+y–2=0,由方程组消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.所以,k的值为或点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2018年全国卷Ⅲ理】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d ,则.②将代入①得.所以l 的方程为,代入C 的方程,并整理得.故,代入②解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到,求出m 得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大。

三年高考2015_2017高考数学试题分项版解析专题17椭圆及其综合应用理20171102338

三年高考2015_2017高考数学试题分项版解析专题17椭圆及其综合应用理20171102338

专题17 椭圆及其综合应用1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .59【答案】B 【解析】试题分析:e ==,选B .2.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3B .3C .3D .13【答案】A 【解析】试题分析:以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即:d a ==,整理可得223a b =,即()222223,23a a c a c =-=,从而22223c e a ==,椭圆的离心率c e a ===故选A .【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式e =ca; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A 【解析】4.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )34【答案】A 【解析】试题分析:由题意设直线的方程为()y k x a =+,分别令x c =-与0x =得点||()F M k ac =-,||OE ka =,由O B E C B ∆∆,得1||||2||||OE OB FM BC =,即2(c )k a ak a a c=-+,整理,得13c a =,所以椭圆离心率为13e =,故选A . 考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.5.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.【答案】22325()24x y -+=【解析】设圆心为(,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是.【解析】由题意得,),C(,),22b b B ,因此22222)()0322b c c a e -+=⇒=⇒ 考点:椭圆离心率【名师点睛】椭圆离心率的考查,一般分两个层次,一是由离心率的定义,只需分别求出,a c ,这注重考查椭圆标准方程中量的含义,二是整体考查,求,a c 的比值,这注重于列式,即需根据条件列出关于,a c 的一个齐次等量关系,通过解方程得到离心率的值.7.【2017课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2,P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此134,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,在设直线l 的方程,当l 与x 轴垂直,通过计算,不满足题意,再设设l :y kx m =+(1m ≠),将y kx m=+代入2214x y +=,写出判别式,韦达定理,表示出12k k +,根据121k k +=-列出等式表示出和m的关系,判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b+>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

三年高考(2016_2018)高考数学试题分项版解析专题17椭圆理(含解析)

三年高考(2016_2018)高考数学试题分项版解析专题17椭圆理(含解析)

专题17 椭圆考纲解读明方向 考纲解读考点内容解读要求常考题型 预测热度1.椭圆的定义及其标准方程 掌握 选择题 解答题★★★2.椭圆的几何性质掌握填空题 解答题★★★3.直线与椭圆的位置关系 掌握椭圆的定义、几何图形、标准方程及简单性质掌握 解答题 ★★★分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1.【2018年理数全国卷II 】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D. 【答案】D【解析】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为为等腰三角形,,所以PF 2=F 1F 2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年理北京卷】已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】 2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2018年理数天津卷】设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.【答案】(Ⅰ);(Ⅱ)或【解析】分析:(Ⅰ)由题意结合椭圆的性质可得a=3,b=2.则椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由题意可得5y1=9y2.由方程组可得.由方程组可得.据此得到关于k的方程,解方程可得k的值为或详解:(Ⅰ)设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.所以,椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2.由方程组消去x,可得.易知直线AB的方程为x+y–2=0,由方程组消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.所以,k的值为或点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2018年全国卷Ⅲ理】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到,求出m 得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大。

三年高考2018_2020高考数学试题分项版解析专题17椭圆文含解析74

三年高考2018_2020高考数学试题分项版解析专题17椭圆文含解析74

专题17 椭圆文考纲解读明方向考纲解读考点内容解读要求常考题型预测热度1.椭圆的定义及其标准方程掌握椭圆的定义、几何图形、标准方程及简单性质掌握选择题解答题★★★2.椭圆的几何性质掌握填空题解答题★★★3.直线与椭圆的位置关系掌握解答题★★★分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1.【2018年全国卷II文】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.【答案】D【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m 的函数关系,最后根据二次函数性质确定最值取法.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年天津卷文】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】(Ⅰ);(Ⅱ).【解析】分析:(I)由题意结合几何关系可求得.则椭圆的方程为.(II)设点P的坐标为,点M的坐标为,由题意可得.易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.所以,椭圆的方程为.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4.【2018年文北京卷】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点共线,求k.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.详解:(Ⅰ)由题意得,所以,又,所以,所以,所以椭圆的标准方程为.(Ⅱ)设直线的方程为,由消去可得,则,即,设,,则,,则,易得当时,,故的最大值为.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.2017年高考全景展示1.【2017浙江,2】椭圆22194x y+=的离心率是A.133B.53C.23D.59【答案】B 【解析】试题分析:945e -==,选B . 【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于c b a ,,的方程或不等式,再根据c b a ,,的关系消掉b 得到c a ,的关系式,建立关于c b a ,,的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞UB .(0,3][9,)+∞UC .(0,1][4,)+∞UD .(0,3][4,)+∞U【答案】A 【解析】【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定b a ,的关系,求解时充分借助题设条件ο120=∠AMB 转化为360tan =≥οba,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.3.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A 6B 3C 2D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离222abd a a b ==+,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,63c e a ==,故选A.【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2017课标II ,文20】设O 为坐标原点,动点M 在椭圆C上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =u u u r u u u u r(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F.【答案】(1)(2)见解析【解析】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程,(2)证明直线过定点问题,一般方法以算代证:即证,先设 P (m ,n ),则需证330m tn +-=,根据条件1OP PQ ⋅=u u u r u u u r可得2231m m tn n --+-=,而,代入即得330m tn +-=.(2)由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则,.由得2231m m tn n --+-=,又由(1)知,故330m tn +-=.所以,即.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F【考点】求轨迹方程,直线与椭圆位置关系【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.5.【2017北京,文19】已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x 轴上,离心率为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.【答案】(Ⅰ)2214x y += ;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)根据条件可知32,2c a a ==,以及222b a c =- ,求得椭圆方程;(Ⅱ)设(,)M m n ,则(,0),(,)D m N m n -,根据条件求直线DE 的方程,并且表示直线BN 的方程,并求两条直线的交点,根据1212E BDEBDNN BD y S S BD y ∆∆⋅⋅=⋅⋅ ,根据坐标表示面积比值.(Ⅱ)设(,)M m n ,则(,0),(,)D m N m n -. 由题设知2m ≠±,且0n ≠.直线AM 的斜率2AM n k m =+,故直线DE 的斜率2DE m k n+=. 所以直线DE 的方程为2()m y x m n+=--.【考点】1.椭圆方程;2.直线与椭圆的位置关系.【名师点睛】本题对考生计算能力要求较高,重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用,,,a b c e 的关系,确定椭圆方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再根据面积的几何关系,从而求解面积比值,计算结果,本题易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.6.【2017江苏,17】 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E的标准方程;(2)若直线E的交点Q在椭圆E上,求点P的坐标.【答案】(1)221 43x y+=(2)4737(,)77【解析】解:(1)设椭圆的半焦距为c.因为椭圆E的离心率为12,两准线之间的距离为8,所以12ca=,228ac=,解得2,1a c==,于是223b a c=-=,因此椭圆E的标准方程是22143x y+=.由①②,解得21,xx x yy-=-=,所以21(,)xQ xy--.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得004737,x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P 的坐标为4737(,)77.【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程.2016年高考全景展示1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34【答案】B考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A 【解析】考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得b a 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e . 3.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =时,证明:32k <<.【答案】(Ⅰ)14449;(Ⅱ)()32,2. 【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=.考点:椭圆的性质,直线与椭圆的位置关系. 【名师点睛】本题中22233k tk k t =++,分离变量t ,得()332132k k t k -=>-,解不等式,即求得实数k 的取值范围.4.【2016高考北京文数】(本小题14分)已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.【答案】(Ⅰ)2214x y +=;32=e (Ⅱ)见解析. 【解析】试题分析:(Ⅰ)根据两顶点坐标可知a,b 的值,则亦知椭圆方程,根据椭圆性质及离心率公式求解;(Ⅱ)四边形ABNM 的面积等于对角线乘积的一半,分别求出对角线,AN BM 的值求乘积为定值即可. 试题解析:(I )由题意得,2a =,1b =.所以椭圆C的方程为2214xy+=.又223c a b=-=,所以离心率3cea==.令0y=,得01xxyN=--,从而0221xxyNAN=-=+-.所以四边形ABNM的面积12S=AN⋅BM00002121212x yy x⎛⎫⎛⎫=++⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x yx y x y++--+=--+00000000224422x y x yx y x y--+=--+2=.从而四边形ABNM的面积为定值.考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.。

高中文科数学(2017-2015)三年高考真题汇编:椭圆及其相关的综合问题解析版

高中文科数学(2017-2015)三年高考真题汇编:椭圆及其相关的综合问题解析版

高中文科数学(2017-2015)三年高考真题汇编:椭圆及其相关的综合问题1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .59【答案】B【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于c b a ,,的方程或不等式,再根据c b a ,,的关系消掉b 得到c a ,的关系式,建立关于c b a ,,的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A 【解析】试题分析:当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A .【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定b a ,的关系,求解时充分借助题设条件 120=∠AMB 转化为360tan =≥ ba,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.3.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【答案】A【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )(A )13 (B )12 (C )23 (D )34【答案】B 【解析】试题分析:如图,由题意得在椭圆中,11OF c,OB b,OD 2b b 42===⨯= 在Rt OFB ∆中,|OF ||OB ||BF ||OD |⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B.考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .5.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .6.【2015高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =( )(A )3(B )6(C )9(D )12 【答案】B【解析】∵抛物线2:8C y x =的焦点为(2,0),准线方程为2x =-,∴椭圆E 的右焦点为(2,0),∴椭圆E 的焦点在x 轴上,设方程为22221(0)x y a b a b+=>>,c=2,∵12c e a ==,∴4a =,∴22212b a c =-=,∴椭圆E 方程为2211612x y +=,将2x =-代入椭圆E 的方程解得A (-2,3),B (-2,-3),∴|AB|=6,故选B. 【考点定位】抛物线性质;椭圆标准方程与性质【名师点睛】本题是抛物线与椭圆结合的基础题目,解此类问题的关键是要熟悉抛物线的定义、标准方程与性质、椭圆的定义、标准方程与性质,先由已知曲线与待确定曲线的关系结合已知曲线方程求出待确定曲线中的量,写出待确定曲线的方程或求出其相关性质.7.【2015高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .B .3(0,]4C .D .3[,1)4【答案】A【考点定位】1、椭圆的定义和简单几何性质;2、点到直线距离公式.【名师点睛】本题考查椭圆的简单几何性质,将4AF BF +=转化为142AF AF a +==,进而确定a 的值,是本题关键所在,体现了椭圆的对称性和椭圆概念的重要性,属于难题.求离心率取值范围就是利用代数方法或平面几何知识寻找椭圆中基本量,,a b c 满足的不等量关系,以确定ca的取值范围. 8.【2015高考广东,文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .2 【答案】C【考点定位】椭圆的简单几何性质.【名师点晴】本题主要考查的是椭圆的简单几何性质,属于容易题.解题时要注意椭圆的焦点落在哪个轴上,否则很容易出现错误.解本题需要掌握的知识点是椭圆的简单几何性质,即椭圆22221x y a b +=(0a b >>)的左焦点()1F ,0c -,右焦点()2F ,0c ,其中222a b c =+.9.【2015高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线b y xc=的对称点Q 在椭圆上,则椭圆的离心率是.【解析】设()F ,0c 关于直线b y x c =的对称点为(,)Q m n ,则有1222n bm c cn b m c⎧⋅=-⎪⎪-⎨+⎪=⨯⎪⎩,解得3222222,c b bc bc m n a a --==,所以3222222(,)c b bc bcQ a a --在椭圆上,即有32222422(2)(2)1c b bc bc a a b --+=,解得222a c =,所以离心率c e a ==【考点定位】1.点关于直线对称;2.椭圆的离心率.【名师点睛】本题主要考查椭圆的离心率.利用点关于直线对称的关系,计算得到右焦点的对称点,通过该点在椭圆上,代入方程,转化得到关于,a c 的方程,由此计算离心率.本题属于中等题。

名师解读高考真题系列-高中数学理数:专题17 椭圆及其

名师解读高考真题系列-高中数学理数:专题17 椭圆及其

一、选择题1.【椭圆的简单几何性质,双曲线的简单几何性质】【2016,浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A2. 【椭圆方程与几何性质】【2016,新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13B.12C.23D.34【答案】A 二、非选择题3. 【椭圆离心率】【2016,江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是_______________.4. 【圆锥曲线综合问题】【2016,新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 5. 【椭圆、抛物线的标准方程及其几何性质,直线与圆锥曲线的位置关系,二次函数的图象和性质】【2016,山东理数】平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>E :22x y =的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+yx ;(Ⅱ)(i )略;(ii )12S S 的最大值为49,此时点P 的坐标为)41,22(6. 【椭圆的标准方程和几何性质,直线方程】【2016,天津理数】设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.【答案】(Ⅰ)22143x y +=(Ⅱ)),46[]46,(+∞--∞7. 【圆与椭圆的位置关系,椭圆的离心率】【2016,浙江理数】如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.【答案】(I )22221a k a k +(II )02e <≤.8. 【椭圆的性质,直线与椭圆的位置关系】【2016,新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ)).9. 【椭圆方程及其性质,直线与椭圆的位置关系】【2016,北京理数】已知椭圆C :22221+=x y a b(0a b >>),(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1. (1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)略. 10. 【椭圆的标准方程及其几何性质】【2016,四川理数】已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T . (Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=.11. 【椭圆的几何性质,圆的方程】【2015,新课标1,理14】一个圆经过椭圆221164x y +=错误!未找到引用源。

三年高考2016 2018高考数学试题分项版解析专题17椭圆理含解析73

三年高考2016 2018高考数学试题分项版解析专题17椭圆理含解析73

三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析73考纲解读明方向考纲解读分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1.【2018年理数全国卷II】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D永定元年,周文育等败于沌口,为王琳所获。

琳乘胜将略南中诸郡,遣猛与李孝钦等将兵攻豫章,进逼周迪,军败,为迪斩执。

寻遁归王琳。

王琳败,还朝。

天嘉二年,授通直散骑常侍、永阳太守。

迁安成王府司马。

光大元年,授壮武将军、庐陵内史。

太建初,迁武毅将军、始兴平南府长史,领长沙内史。

1 / 16【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理,得D.所以,选点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则横坐标的绝对值最大.m=___________时,点B当【答案】5点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年理北京卷】已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________.;双曲线N的离心率为__________2【答案】【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭内史。

三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析

三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析

tanZ-PAF 2PF 2 sinjLPAF 2HF ; _ sin^APF 2专题17椭圆考纲解读明方向考纲解读考点内容解读 要求 常考题型 预测热度「1.椭圆的定义及其标准方程掌握选择题解答题★★★2.椭圆的几何性质掌握椭圆的定义、几何图 形、标准方程及简单性质掌握填空题 解答题★★★3.直线与椭圆的位置关系掌握 解答题 ★★★分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程 2能熟练运用几何性质(如范围、对 称性、顶点、离心率)解决相关问题 3能够把直线与椭圆的位置关系的问题转化为方程组解的问题 ,判断位 置关系及解决相关问题 4本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主 ,与 向量等知识的综合起来考查的命题趋势较强 ,分值约为12分,难度较大.2018年咼考全景展示2 2尢 y 『.'厂 的左,右焦点,’是.的左顶点,【答案】Da,c 关系,即得离心率.详解:因为 ■'为等腰三角形,,所以PF,=h F 2=2c,由二斜率为 得,F FC :21.【2018年理数全国卷II 】已知 , 是椭圆 '点在过•且斜率为2 1 A. B.C.£的直线上,1 D.为等腰三角形,1 4八,贝『的离心率为PR=2c,再利用正弦定理得 【解析】分析:先根据条件得C &S /.PAF 2 =由正弦定理得所以点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于-的方程或不等式,再根据■-的关系消掉•得到•的关系式,而建立关于」的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.X22. _______________________________________________________________________________________ 【20 18年浙江卷】已知点F(0 , 1),椭圆吨+y2=m(n>1)上两点A, B满足心=2朋,则当m=__________________________________ 时,点B横坐标的绝对值最大.【答案】5【解析】分折「先根据条件得到卓号坐标间的关系」代入椭圆方程解得B的纵坐标,即得号的横坐标关于出的邀数关系;最后根据二次函数性质确定最值取法.详解:设越口yj巩心由"=2西得-野=2珀1 —儿=20勺-3一划=2比-王因为鮎在椭圆上所以于+疋=也竽十疋=m t A于 + (2y2一3尸=m-••子+ 仏一于=食■4-Hr 4- 4 ^.4 + )'i -朋对应相减得儿=—.it = 一二訂十-10m + 9}兰4,当且仅当用=5时取最大倩点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.x2 y2x2y2附:— 1(优 > b > 0) N :—-—二13. 【2018年理北京卷】已知椭圆「,双曲线宀.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为________________________________ ; 双曲线N的离心率为________________ .【答案】' 1 2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为■,再根据椭圆定义得- ,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为-■■,再根据椭圆定义得' ,所以椭-- - --- 益二⑷ _ L y二± —X圆M的离心率为- 双曲线N的渐近线方程为':,由题意得双曲线N的一条渐近线的2 2 2 2 2n n、 m + n m + 3m—*/-——=tan — = 2/- e — ----------- = --------- - -- = 4, e = 2.倾斜角为^-■- 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于■-的关系消掉•得到•的关系式,而建立关于」 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2 2X X—+ — = 14.【2018年理数天津卷】设椭圆 ■(a >b >0)的左焦点为F ,上顶点为B 已知椭圆的离心率为点A 的坐标为■''',且-.(I )求椭圆的方程;(II )设直线l :'与椭圆在第一象限的交点为P,且I 与直线AB 交于点Q\AQ\ 5J2——slnzAOQ4(0为原点),求k 的值.c 5-详解:(I)设椭圆的焦距为 2c,由已知知•",又由a 2=b 2+c 2,可得2a =3b .由已知可得,■二■",由=二:可得ab =6,从而a =3, b =2.所以,椭圆的方程为 ;(n)设点P 的坐标为(X 1, yj ,点Q 的坐标为(X 2, y 2).由已知有y 1>y 2>0,故円小川"°° _儿一匕.又消去x ,可得 「’ •易知直线AB 的方程为x +y - 2=0,由方程组_2左_______的方程或不等式,再根据1^1【答案】兰+疋“ 1卫 (I ) ;;( n )或2 2 工* 才---- —=1【解析】分析:(I)由题意结合椭圆的性质可得a =3,b =2.则椭圆的方程为:.(n )设点P 的坐卩 y = kx^ 气2 a 2 x y =1 U g 46/c 标为(X i ,y i ),点Q 的坐标为(X 2, y 2).由题意可得5y i =9y 2.由方程组[y=kx.*方程组.可得 ■1.据此得到关于k 的方程,解方程可得 k 的值为 或y 1 —_-可得 ■'•由1 11X i ,\AQ\ =一—一因为''■而/ 0A =,故 |/":'!由,,可得 5y 1=9y 2.由方程组Fy = kx,拄 a 2 x y=1 . W 4y =杯尤、 "卩一2=0・消去2k = -x,可得I .由5y i=9y2,可得5 (k+1) = ■ ''' 111 1 11或 i .所以,k 的值为或'点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力, 重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.C — — = 15.【2018年全国卷川理】已知斜率为 的直线 与椭圆交于」, 两点,线段•的中点为M (1 ,(1)证明:;(2) 设’为•的右焦点,:'为•上一点,且;八厂「—证明:=,.「,••成等差数列,并求该数 列的公差.13J51 3J21k =------- ---------- ——【答案】(1)(2)【或【解析】分折:<1>设而不求,利用点差法进行证明。

三年高考2016_2018高考数学试题分项版解析专题17椭圆文含解析74.doc

三年高考2016_2018高考数学试题分项版解析专题17椭圆文含解析74.doc

专题17 椭圆 文考纲解读明方向考纲解读分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1.【2018年全国卷II 文】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为 A.B.C.D.【答案】D 【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m 的函数关系,最后根据二次函数性质确定最值取法.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年天津卷文】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】(Ⅰ);(Ⅱ).【解析】分析:(I)由题意结合几何关系可求得.则椭圆的方程为.(II)设点P的坐标为,点M的坐标为,由题意可得.易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.所以,椭圆的方程为.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4.【2018年文北京卷】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点共线,求k.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.详解:(Ⅰ)由题意得,所以,又,所以,所以,所以椭圆的标准方程为.(Ⅱ)设直线的方程为,由消去可得,则,即,设,,则,,则,易得当时,,故的最大值为.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.2017年高考全景展示1.【2017浙江,2】椭圆22194x y+=的离心率是A.3B.3C.23D.59【答案】B 【解析】试题分析:e ==B . 【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于c b a ,,的方程或不等式,再根据c b a ,,的关系消掉b 得到c a ,的关系式,建立关于c b a ,,的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A 【解析】【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定b a ,的关系,求解时充分借助题设条件 120=∠AMB 转化为360tan =≥ ba,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.3.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )ABC D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,3c e a ==,故选A.【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2017课标II ,文20】设O 为坐标原点,动点M 在椭圆C 上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F. 【答案】(1)(2)见解析【解析】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程,(2)证明直线过定点问题,一般方法以算代证:即证,先设 P (m ,n ),则需证330m tn +-=,根据条件1OP PQ ⋅=可得2231m m tn n --+-=,而,代入即得330m tn +-=.(2)由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则,.由得2231m m tn n --+-=,又由(1)知,故330m tn +-=.所以,即.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F【考点】求轨迹方程,直线与椭圆位置关系【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.5.【2017北京,文19】已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.【答案】(Ⅰ)2214x y += ;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)根据条件可知2,2c a a ==,以及222b a c =- ,求得椭圆方程;(Ⅱ)设(,)M m n ,则(,0),(,)D m N m n -,根据条件求直线DE 的方程,并且表示直线BN 的方程,并求两条直线的交点,根据1212E BDEBDNN BD y S S BD y ∆∆⋅⋅=⋅⋅ ,根据坐标表示面积比值.(Ⅱ)设(,)M m n ,则(,0),(,)D m N m n -. 由题设知2m ≠±,且0n ≠.直线AM 的斜率2AM n k m =+,故直线DE 的斜率2DE m k n+=. 所以直线DE 的方程为2()m y x m n+=--.【考点】1.椭圆方程;2.直线与椭圆的位置关系.【名师点睛】本题对考生计算能力要求较高,重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用,,,a b c e 的关系,确定椭圆方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再根据面积的几何关系,从而求解面积比值,计算结果,本题易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.6.【2017江苏,17】 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2)(77 【解析】解:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.由①②,解得20001,x x x y y -=-=,所以20001(,)x Q x y --.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为(,77.【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程.2016年高考全景展示1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34【答案】B考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A 【解析】考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得b a或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e . 3.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =2k <<.【答案】(Ⅰ)14449;(Ⅱ))2. 【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=.考点:椭圆的性质,直线与椭圆的位置关系. 【名师点睛】本题中22233k tk k t=++,分离变量t ,得()332132k k t k -=>-,解不等式,即求得实数k 的取值范围.4.【2016高考北京文数】(本小题14分)已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.【答案】(Ⅰ)2214x y +=;2=e (Ⅱ)见解析. 【解析】试题分析:(Ⅰ)根据两顶点坐标可知a,b 的值,则亦知椭圆方程,根据椭圆性质及离心率公式求解;(Ⅱ)四边形ABNM 的面积等于对角线乘积的一半,分别求出对角线,AN BM 的值求乘积为定值即可. 试题解析:(I )由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=.又c ==所以离心率c e a ==.令0y =,得001x x y N =--,从而00221x x y N AN =-=+-. 所以四边形ABNM 的面积12S =AN ⋅BM 00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x y x y x y ++--+=--+ 00000000224422x y x y x y x y --+=--+ 2=.从而四边形ABNM 的面积为定值.考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.。

三年高考2016_2018高考数学试题分项版解析专题17椭圆文含解析74.doc

三年高考2016_2018高考数学试题分项版解析专题17椭圆文含解析74.doc

专题17 椭圆 文考纲解读明方向考纲解读分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1.【2018年全国卷II 文】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为 A.B.C.D.【答案】D 【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m 的函数关系,最后根据二次函数性质确定最值取法.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年天津卷文】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】(Ⅰ);(Ⅱ).【解析】分析:(I)由题意结合几何关系可求得.则椭圆的方程为.(II)设点P的坐标为,点M的坐标为,由题意可得.易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.所以,椭圆的方程为.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4.【2018年文北京卷】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点共线,求k.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.详解:(Ⅰ)由题意得,所以,又,所以,所以,所以椭圆的标准方程为.(Ⅱ)设直线的方程为,由消去可得,则,即,设,,则,,则,易得当时,,故的最大值为.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.2017年高考全景展示1.【2017浙江,2】椭圆22194x y+=的离心率是A.3B.3C.23D.59【答案】B 【解析】试题分析:e ==B . 【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于c b a ,,的方程或不等式,再根据c b a ,,的关系消掉b 得到c a ,的关系式,建立关于c b a ,,的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A 【解析】【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定b a ,的关系,求解时充分借助题设条件 120=∠AMB 转化为360tan =≥ ba,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.3.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )ABC D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,3c e a ==,故选A.【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2017课标II ,文20】设O 为坐标原点,动点M 在椭圆C 上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F. 【答案】(1)(2)见解析【解析】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程,(2)证明直线过定点问题,一般方法以算代证:即证,先设 P (m ,n ),则需证330m tn +-=,根据条件1OP PQ ⋅=可得2231m m tn n --+-=,而,代入即得330m tn +-=.(2)由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则,.由得2231m m tn n --+-=,又由(1)知,故330m tn +-=.所以,即.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F【考点】求轨迹方程,直线与椭圆位置关系【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.5.【2017北京,文19】已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.【答案】(Ⅰ)2214x y += ;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)根据条件可知2,2c a a ==,以及222b a c =- ,求得椭圆方程;(Ⅱ)设(,)M m n ,则(,0),(,)D m N m n -,根据条件求直线DE 的方程,并且表示直线BN 的方程,并求两条直线的交点,根据1212E BDEBDNN BD y S S BD y ∆∆⋅⋅=⋅⋅ ,根据坐标表示面积比值.(Ⅱ)设(,)M m n ,则(,0),(,)D m N m n -. 由题设知2m ≠±,且0n ≠.直线AM 的斜率2AM n k m =+,故直线DE 的斜率2DE m k n+=. 所以直线DE 的方程为2()m y x m n+=--.【考点】1.椭圆方程;2.直线与椭圆的位置关系.【名师点睛】本题对考生计算能力要求较高,重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用,,,a b c e 的关系,确定椭圆方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再根据面积的几何关系,从而求解面积比值,计算结果,本题易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.6.【2017江苏,17】 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2)(77 【解析】解:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.由①②,解得20001,x x x y y -=-=,所以20001(,)x Q x y --.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为(,77.【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程.2016年高考全景展示1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34【答案】B考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A 【解析】考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得b a或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e . 3.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =2k <<.【答案】(Ⅰ)14449;(Ⅱ))2. 【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=.考点:椭圆的性质,直线与椭圆的位置关系. 【名师点睛】本题中22233k tk k t=++,分离变量t ,得()332132k k t k -=>-,解不等式,即求得实数k 的取值范围.4.【2016高考北京文数】(本小题14分)已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.【答案】(Ⅰ)2214x y +=;2=e (Ⅱ)见解析. 【解析】试题分析:(Ⅰ)根据两顶点坐标可知a,b 的值,则亦知椭圆方程,根据椭圆性质及离心率公式求解;(Ⅱ)四边形ABNM 的面积等于对角线乘积的一半,分别求出对角线,AN BM 的值求乘积为定值即可. 试题解析:(I )由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=.又c ==所以离心率c e a ==.令0y =,得001x x y N =--,从而00221x x y N AN =-=+-. 所以四边形ABNM 的面积12S =AN ⋅BM 00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x y x y x y ++--+=--+ 00000000224422x y x y x y x y --+=--+ 2=.从而四边形ABNM 的面积为定值.考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.。

三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析73.doc

三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析73.doc

专题17 椭圆考纲解读明方向 考纲解读分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1.【2018年理数全国卷II 】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D. 【答案】D【解析】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为为等腰三角形,,所以PF 2=F 1F 2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年理北京卷】已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】 2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2018年理数天津卷】设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.【答案】(Ⅰ);(Ⅱ)或【解析】分析:(Ⅰ)由题意结合椭圆的性质可得a=3,b=2.则椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由题意可得5y1=9y2.由方程组可得.由方程组可得.据此得到关于k的方程,解方程可得k的值为或详解:(Ⅰ)设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.所以,椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2.由方程组消去x,可得.易知直线AB的方程为x+y–2=0,由方程组消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.所以,k的值为或点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2018年全国卷Ⅲ理】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到,求出m 得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【2017浙江,2】椭圆22194x y +=的离心率是A .133B .53C .23D .59【答案】B 【解析】试题分析:94533e -==,选B .2.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C 2D .13【答案】A 【解析】试题分析:以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即:22d a a b==+,整理可得223a b =,即()222223,23a a c a c =-=,从而22223c e a ==,椭圆的离心率2633c e a ===, 故选A .【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式e =c a;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.【2016高考浙江理数】已知椭圆C 1:22x m+y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m <n 且e 1e 2>1 D .m <n 且e 1e 2<1 【答案】A 【解析】则很容易出现错误。

4.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A )13(B )12(C )23(D )34【答案】A 【解析】试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点||()FM k a c =-,||OE ka =,由OBECBM ∆∆,得1||||2||||OE OB FM BC =,即2(c)ka ak a a c=-+,整理,得13c a =,所以椭圆离心率为13e =,故选A .考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得b a或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .5.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b +=>>0的右焦点,直线2b y =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是.6【解析】由题意得33,),C(,),22b b B ,因此2222236()()0322b c c a e -+=⇒=⇒= 考点:椭圆离心率【名师点睛】椭圆离心率的考查,一般分两个层次,一是由离心率的定义,只需分别求出,a c ,这注重考查椭圆标准方程中量的含义,二是整体考查,求,a c 的比值,这注重于列式,即需根据条件列出关于,a c 的一个齐次等量关系,通过解方程得到离心率的值.7.【2017课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–13),P 4(13)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此134,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,在设直线l 的方程,当l 与x 轴垂直,通过计算,不满足题意,再设设l :y kx m =+(1m ≠),将y kx m=+代入2214x y +=,写出判别式,韦达定理,表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C的方程为2214x y +=.222(41)844k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m km k m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.8.【2017课标II ,理】设O为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=。

证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F 。

【答案】(1) 222x y +=。

(2)证明略。

【解析】试题分析:(1)设出点P 的坐标,利用2=NPNM得到点P 与点,M 坐标之间的关系即可求得轨迹方程为222x y +=。

(2)利用1OP PQ ⋅=可得坐标关系2231m m tn n --+-=,结合(1)中的结论整理可得0=OQ PF,即⊥OQ PF,据此即可得出题中的结论。

试题解析:(1)设()()00,,,P x y M x y ,设()0,0N x , ()()00,,0,NP x x y NM y =-=。

由2=NPNM得002,2x x y y ==。

因为()00,M x y 在C 上,所以22122x y +=。

因此点P 的轨迹方程为222x y +=。

(2)由题意知()1,0F -。

设()()3,,,Q t P m n -,则()()3,,1,,33OQ t PF m n OQ PF m tn =-=---⋅=+-, ()(),,3,OP m n PQ m t n ==---。

由1=OP PQ得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=。

所以0=OQ PF ,即⊥OQ PF 。

又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F 。

【考点】轨迹方程的求解;直线过定点问题。

9.【2017山东,理21】在平面直角坐标系xOy 中,椭圆E:22221x y a b+=()0a b >>的离心率为22,焦距为2.(Ⅰ)求椭圆E 的方程; (Ⅱ)如图,动直线l :132y k x =-交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M的半径为MC ,,OS OT 是M的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.【答案】(I )2212xy +=.(Ⅱ)SOT ∠的最大值为3π,取得最大值时直线l 的斜率为122k =±.【解析】试题分析:(I )本小题由22c e a ==,22c =确定,a b 即得.(Ⅱ)通过联立方程组2211,23,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩化简得到一元二次方程后应用韦达定理,应用弦长公式确定||AB 及 圆M 的半径r 表达式.试题解析:(I )由题意知2c e a==,22c =,所以2,1a b ==,因此椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y,联立方程2211,2x y y k x ⎧+=⎪⎪⎨⎪=⎪⎩ 得()22114210k x x +--=,由题意知0∆>,且()1212211221x x x x k +==-+,所以2AB x =-=.由题意可知圆M 的半径r为r =由题设知12k k =2k =因此直线OC的方程为y x =.联立方程221,2,x y y ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC ==.由题意可知1sin 21SOTrOC r OCr∠==++,而1OC r==2112t k =+,则()11,0,1t t>∈,因此1OC r===≥, 当且仅当112t=,即2t =时等号成立,此时1k =,所以1sin 22SOT∠≤,因此26SOT π∠≤,所以SOT ∠最大值为3π.综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为1k =.【考点】1.椭圆的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质.10.【2017天津,理19】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.(I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △6求直线AP 的方程.【答案】(1)22413y x +=,24y x =.(2)3630x -=,或3630x --=. 【解析】试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △6m ,得出直线AP 的方程.试题解析:(Ⅰ)解:设F 的坐标为(,0)c -.依题意,12ca=,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.(Ⅱ)解:设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x ,整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m m B m m -+-++.由2(1,)Q m -,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++.又因为APD △的面积为62,故221626232||2m m m ⨯⨯=+,整理得2326||20m m -+=,解得6||3m =,所以63m =±. 所以,直线AP 的方程为3630x y +-=,或3630x y --=. 【考点】直线与椭圆综合问题11.【2017江苏,17】如图,在平面直角坐标系xOy中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F , 2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2)【解析】解:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=, 解得2,1a c ==,于是b ==因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --, 从而直线1l 的方程:001(1)x y x y +=-+,① 直线2l 的方程:001(1)x y x y -=--. ②(第17由①②,解得20 01,xxx yy-=-=,所以21(,)xQ xy--.因为点Q在椭圆上,由对称性,得21xyy-=±,即22001x y-=或22001x y+=.又P在椭圆E上,故2200143x y+=.由220022001143x yx y⎧-=⎪⎨+=⎪⎩,解得004737,77x y==;220022001143x yx y⎧+=⎪⎨+=⎪⎩,无解.因此点P的坐标为4737(,)77.12.【2016高考新课标1卷】(本小题满分12分)设圆222150x y x++-=的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明EA EB+为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【答案】(Ⅰ)13422=+yx(≠y)(II))38,12[【解析】试题分析:根据EA EB+可知轨迹为椭圆,利用椭圆定义求方程;(II)分斜率是否存在设出直线方程,当直线斜率存在时设其方程为)0)(1(≠-=kxky,根据根与系数的关系和弦长公式把面积表示为x斜率k 的函数,再求最值.试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ).过点)0,1(B 且与l 垂直的直线m :)1(1--=x ky ,A 到m 的距离为122+k ,所以1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[. 当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[. 考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.13.【2016高考山东理数】(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>> 的离心率是32,抛物线E :22x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;(ii )12S S 的最大值为49,此时点P的坐标为)41,22(【解析】试题分析:(Ⅰ)根据椭圆的离心率和焦点求方程;(Ⅱ)(i)由点P的坐标和斜率设出直线l的方程和抛物线联立,进而判断点M在定直线上;(ii)分别列出1S,2S面积的表达式,根据二次函数求最值和此时点P 的坐标.试题解析:(Ⅱ)(i)设)0)(2,(2>mmmP,由yx22=可得xy=/,所以直线l的斜率为m,因此直线l的方程为)(22mxmmy-=-,即22mmxy-=.设),(),,(),,(2211yxDyxByxA,联立方程222241my mxx y⎧=-⎪⎨⎪+=⎩得014)14(4322=-+-+mxmxm,由0>∆,得520+<<m且1442321+=+mmxx,因此142223210+=+=mmxxx,将其代入22mmxy-=得)14(2220+-=mmy,因为mx y 4100-=,所以直线OD 方程为x m y 41-=. 联立方程⎪⎩⎪⎨⎧=-=mx x m y 41,得点M 的纵坐标为M 14y =-,即点M 在定直线41-=y 上.(ii )由(i )知直线l 方程为22m mx y -=,令0=x 得22m y -=,所以)2,0(2m G -,又21(,),(0,),22m P m F D ))14(2,142(2223+-+m m m m , 所以)1(41||2121+==m m m GF S ,)14(8)12(||||2122202++=-⋅=m m m x m PM S , 所以222221)12()1)(14(2+++=m m m S S ,令122+=m t ,则211)1)(12(2221++-=+-=t tt t t S S , 当211=t,即2=t 时,21S S 取得最大值49,此时22=m ,满足0>∆,所以点P 的坐标为)41,22(,因此12S S 的最大值为49,此时点P 的坐标为)41,22(. 考点:1.椭圆、抛物线的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质.14.【2015江苏高考,18】(本小题满分16分) 如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b+=>>的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.【答案】(1)2212x y +=(2)1y x =-或1y x =-+.【解析】试题分析(1)求椭圆标准方程,只需列两个独立条件即可:一是离心2,二是右焦点F 到左准线l 的距离为3,解方程组即得(2)因为直线AB 过F ,所以求直线AB 的方程就是确定其斜率,本题关键就是根据PC=2AB 列出关于斜率的等量关系,这有一定运算量.首先利用直线方程与椭圆方程联立方程组,解出AB 两点坐标,利用两点间距离公式求出AB长,再根据中点坐标公式求出C点坐标,利用两直线交点求出P 点坐标,再根据两点间距离公式求出PC长,利用PC=2AB解出直线AB斜率,写出直线AB方程.(2)当xAB⊥轴时,2AB=,又C3P=,不合题意.当AB与x轴不垂直时,设直线AB的方程为()1y k x=-,()11,x yA,()22,x yB,将AB的方程代入椭圆方程,得()()2222124210k x k x k+-+-=,则()221,2222112k kxk±+=+,C的坐标为2222,1212k kk k⎛⎫-⎪++⎝⎭,且()()()()()222222121212221112kx x y y k x xk+AB=-+-=+-=+.若0k=,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而0k≠,故直线CP的方程为222121212k ky xk k k⎛⎫+=--⎪++⎝⎭,则P点的坐标为()22522,12kk k⎛⎫+⎪-⎪+⎝⎭,从而()()2222311C12k kk k++P=+.因为C2P=AB,所以()()()2222223114211212k k kkk k+++=++,解得1k=±.此时直线AB方程为1y x=-或1y x=-+.【考点定位】椭圆方程,直线与椭圆位置关系差法”解决,往往会更简单。

相关文档
最新文档