土的压缩与固结

合集下载

土的压缩与固结

土的压缩与固结

第四章土的压缩与固结4.1简介固结的过程经常与压实的过程相混淆。

通过减少空隙中空气的体积,压实过程增加非饱和土的密度(参见图4.1)。

然而,固结是一个与时间相关的,通过排出空隙中的水,而使饱和土的密度增加的过程(参见图4.1)。

固结通常与粉砂和粘土等幼粒土有关。

粗粒土,如砂和砾石,由于其高渗透性,也经历了固结,但在以更快的速度。

饱和粘土的固结由于其低渗透速度却慢得多。

固结理论预测的沉降量与沉降速度,以确保成立可压缩土层结构的可维护性。

4.2单向固结模型因为水可以在饱和土中任何方向流动,固结的过程中基本上三维。

然而,在大多数领域的情况下,因为在水平方向上土的区域巨大,土中水将不能够通过水平流动流出。

因此,水流的方向主要是竖向或一维的。

结果是,土层在竖向方向进行单向固结沉降(1-D)。

图4.2显示了一个简单的单向固结模型。

弹簧是类似于土骨架。

弹簧越不易弯曲,它将越难压缩。

因此,硬土将比软土经受更少的压缩。

土的硬度影响其固结沉降的幅度。

阀门开口尺寸类似于土的渗透性。

较小的开口,将需要更长的时间来排水和消散压力。

因此,幼粒土的完全固结比粗粒土需要花费更长的时间。

土壤的渗透性,影响其固结的速度。

4.3单向固结试验一维(1-D)固结试验由固结仪执行。

固结仪如图4.3所示。

土样是在一个环刀中(通常高度为20毫米和直径80毫米),它被限制在钢性护环,沉浸在水浴中。

竖向荷载用于压缩试样,并允许水排出放置在样本顶部和底部的透水石。

4.3.1时间相关的固结对于每一个竖向荷载增量,土样的竖向沉降通过百分表来记录。

图4.4显示了竖向沉降的时间关系,竖向总应力,超孔隙水压力和竖向有效应力。

最初,竖向载荷的100%是由孔隙水来承担,因为土样低渗透性,孔隙水是无法很快地流出空隙。

因此,立即加竖向荷载后,土样很少有沉降。

只有当有一个有效应力增加,土壤的沉降是有可能的,这反过来又要求通过驱逐孔隙水,减少土的孔隙率。

几秒钟后,孔隙水开始流出空隙。

第4章土的压缩性及固结理论

第4章土的压缩性及固结理论

侧限压缩试验(又称固结试验):在压缩过程 侧限压缩试验(又称固结试验):在压缩过程 ): 中只发生竖向变形,不发生侧向变形。 中只发生竖向变形,不发生侧向变形。
(1)试验装置: 试验装置:
4
(2)试验方法: 试验方法:
常规压缩试验(慢速压缩试验法),分 级 常规压缩试验(慢速压缩试验法),分5级 ), 加荷: 、 加荷:50、100、200、300、400 KPa 每级荷 、 、 、 载恒压24h 或变形速率 或变形速率<0.005mm/h,测定每级 载恒压 , 荷载稳定时的总压缩量 ⊿h ,计算出相应的稳定 孔隙比。 孔隙比。
30
∂u ∂u cv 2 = − ∂z ∂t
2
奥地利学者太沙基(K.Terzaghi,1925)公式 可用于求解一维侧限应力状态下,饱和粘性土地基 受外荷载作用下发生渗流固结过程中任意时刻的土 骨架及孔隙水的应力分布情况。
31
该方程属抛物线型偏微分方程,用分离变量法解此方 程,得通解为:
初始条件、边界条件如下:
24
(5)孔隙比的变化与有效应力的变化成正比即压缩 系数a保持不变。 (6)外荷载一次瞬时施加,且在固结过程中保持不 变。 (7)土体变形完全是孔隙水压力消散引起的。
25
2. 一维固结微分方程的建立 外荷一次施加后单位时间内流入和流出微单元体的 水量:
26
∂h q′ = kiA = k − dxdy ∂z 2 ∂h ∂ h q′′ = k − − 2 dxdy ∂z ∂z
18
4.2.3 弹性模量及其试验测定 弹性模量E: 弹性模量 :正应力与弹性(即可恢复)正应变的比值。 测定方法: 测定方法:采用三轴仪进行三轴重复压缩试验,以应力一

土力学土的压缩性与固结理论

土力学土的压缩性与固结理论

z
1 E0
[ z
(
y
x)]
Es
z z
z
z
Es
1 E0
[
z
2k0
z
]
z
Es
β
E0
(1 2k0 )Es
(1
2
1 )Es
(1
2
2
1
)Es
E0 Es
三、土的弹性模量
土体地无侧限条件下瞬时压缩的应力应变模量,称为弹性 模量。
一般采用室内三轴压缩试验或单轴压缩无侧限抗压强度试验得到 的应力—应变关系曲线所确定的初始切线模量或相当于现场荷载 条件下的再加荷模量。
力的关系曲线,称为回弹 曲线。
回弹曲线bc并不沿压缩曲线回升,而要平缓得多,这 说明土受压缩发生变形,卸压回弹,但变形不能全部恢复,
其中可恢复的部分称为弹性变形,不能恢复的称为残余变 形。
若再重新逐级加压,则可测得再压缩曲线。土在重复
荷载作用下,在加压与卸压的每一级重复循环中都将走新
的路线,形成新的滞后环。
❖ (2) 压缩指数Cc 土体在侧限条件下孔隙比减小量与竖向有效压应力常用对数值增 量的比值,即e-lgp曲线中某一压力段的斜率。
Cc
lg
e1 p2
e2 lg
p1
Cc<0.2时, 低压缩土; 0.2≤Cc<0.4MPa-1时,中压缩性; Cc≥0.4时, 高压缩性土
❖ (3)压缩模量
是土体在完全侧限条件下,竖向附加应力与竖向应变的比值, 或称侧限模量,用Es表示。
E0
(1
2)
p1b s1
沉降影响系数 地基土的泊松比
b 承压板的边长或直径 s1 与所取定的比例界限p1相对应的沉降

土的压缩与固结

土的压缩与固结

5-1 概 述
土体变形
体积变形 形状变形
在附加应力作用下,地基土将产生体积缩小,从而引起 建筑物基础的竖直方向的位移(或下沉)称为沉降。
5-1 概 述
• 沉降: 在附加应力作用下,地基土产生体积缩小,
从而引起建筑物基础的竖直方向的位移(或下 沉)称为沉降 • 某些特殊性土由于含水量的变化也会引起体 积变形,如湿陷性黄土地基,由于含水量增高 会引起建筑物的附加下沉,称湿陷沉降。相反 在膨胀土地区,由于含水量的增高会引起地基 的膨胀,甚至把建筑物顶裂。
墨西哥某宫殿
左部:1709年;右部:1622年;地基:20多米厚的粘 土
5-1 概 述
接触
由于沉降相互影响,两栋相邻的建筑物上部接触
5-1 概 述
修建新建筑物:引起原有建筑物开裂
5-1 概 述
高层建筑物由于不均匀沉降而被爆破拆除
地基的沉降及不均匀沉降
(墨西哥城)
5-2 土的压缩特性
要求的工程。
原位测试方法包括: 载荷试验、静力触探试验、旁压试验等
载荷试验示意图
反压重物
反力梁
千斤顶 百分表
基准梁
荷载板
载荷试验结果分析图-地基土的变形模量
s (1 2 )bp0 / E0 E0 (1 2 )bp1 / s1
5-2 土的压缩特性
二、单向固结模型
单向固结:饱和土体在某一压力作用下,压缩随着孔隙水 的逐渐向外排出而增长。如果孔隙水只沿一个方向排出, 土的压缩也只在一个方向发生(一般指竖直方向),此时 的固结为单向固结。
5-1 概 述
• 基础沉降量或沉降差的大小首先与土的压缩性有 关,易于压缩的土,基础的沉降大,而不易压缩 的土,则基础的沉降小。

第5章 土的压缩性和固结理论

第5章  土的压缩性和固结理论

5.2.1 土的压缩试验和压缩曲线
室内压缩试验是在图5-1所示的常规单向压缩仪上进行的。
图5-1 常规单向压缩仪及压缩试验示意图
5.2.1 土的压缩试验和压缩曲线
试验时,用金属环刀取高为20mm、直径为50mm(或30mm)的土样, 并置于压缩仪的刚性护环内。土样的上下面均放有透水石。在上透 水石顶面装有金属圆形加压板,供施荷。压力按规定逐级施加,后 一级压力通常为前一级压力的两倍。常用压力为:50,100,200, 400和800kPa。施加下一级压力,需待土样在本级压力下压缩基本 稳定(约为24小时),并测得其稳定压缩变形量后才能进行。(先 进的实验设备可实现连续加荷。)
上述观点还可从图5-6所示的回弹和再压缩曲线得到印证。由于土样在 pb作用下已压缩稳定,故在b点卸压后再压缩的过程中当土样上的压 力小于pb,其压缩量就较小,因而再压缩曲线段cd较压缩曲线平缓, 只有当压力超过pb,土样的压缩量才较大,曲线才变陡。
因此,土的压缩性与其沉积和受荷历史(即应力历史)有密切关系。
压缩曲线是压缩试验的主要成果,表示的是各级压力作用下 土样压缩稳定时的孔隙比与相应压力的关系。
绘制压缩曲线,须先求得对应于各级压力的孔隙比。
孔隙比的计算
由实测稳定压缩量计算孔隙比的方法如下: 设土样在前级压力p1作用下压缩稳定后的高度为H1,孔隙比为e1;
在本级压力p2作用下的稳定压缩量为ΔH(指由本级压力增量Δp= p2- p1引起的压缩量),高度为H2=H1 -ΔH ,孔隙比为e2 。
然而,与连续介质弹性材料不同,土的变形模量与试验条件, 尤其是排水条件密切相关。对于不同的排水条件,E0具有不同的值。 这与弹性力学不同,故取名为变形模量。
从压缩模量Es计算E0

土力学 第5章 土的压缩与固结

土力学 第5章 土的压缩与固结

地下水 位
持力层
下卧层
工程事故——建筑物倾斜、严重下沉、墙体开裂和地基断裂
地基变形值——沉降量、沉降差、倾斜、局部倾斜 地基变形要求:地基变形值<规范允许值
土具有变形特性
荷载作用
荷载大小
地基发生沉降 一致沉降 (沉降量) 差异沉降 (沉降差)
土的压缩特性 地基厚度
建筑物上部结构产生附加应力
影响建筑物的安全和正常使用
a △ p s H 1 e1 △p s H Es
△e e1 e2 压缩系数 a △p △p
压缩模量 E S
1 e1 a
此三个公式都可以计算压缩量、沉降量
a △ p s H 1 e1
△p s H Es
F
填土
一层土的沉降量是这样 计算,
地下水位
黏土
多层土的总沉降量如何 计算呢?
工程实例 墨西哥某宫殿 存在问题: 沉降2.2米 ,且左右两 部分存在明 显的沉降差 。 地基:20多米厚的黏土
由于沉降相互影响,两栋相邻的建筑物上部接触
基坑开挖,引起地面、阳台裂缝
修建新建筑物:引起原有建筑物开裂
高层建筑物由于不均匀沉降而被爆破拆除
47m
39
150 194 199 175 87
0.9 0.8 0.7 0.6 0
△e
△p
100
200 300 400
p (kPa)
为了便于应用和比较,通常采用压力间隔由 p1 100kPa 增加 到 p 2 200kPa 时所得的压缩系数 a12 来评价土的压缩性。
(课本第77页)
压缩模量——是土在无侧向变形条件下,竖向应力 与应变的比值。 土的压缩模量可根据下式计算:

土的压缩与固结

土的压缩与固结

4. 土的压缩与固结4—1 概述⏹沉降:在附加应力作用下,地基土产生体积缩小,从而引起建筑物基础的竖直方向的位移(或下沉)称为沉降⏹某些特殊性土由于含水量的变化也会引起体积变形,如湿陷性黄土地基,由于含水量增高会引起建筑物的附加下沉,称湿陷沉降。

相反在膨胀土地区,由于含水量的增高会引起地基的膨胀,甚至把建筑物顶裂。

除此之外某些大城市,如墨西哥、上海等由于大量开采地下水使地下水位普遍下队从而引起整个城市的普遍下沉。

这可以用地下水位下降后地层的自重应力增大来解释。

当然,实际问题也是很复杂的,还涉及工程地质、水文地质方面的问题。

⏹如果地基土各部分的竖向变形不相同,则在基础的不同部位会产生沉降差,使建筑物基础发生不均匀沉降。

⏹基础的沉降量或沉降差(或不均匀沉降)过大不但会降低建筑物的使用价值,而且往往会造成建筑物的毁坏。

为了保证建筑物的安全和正常使用,我们必须预先对建筑物基础可能产生的最大沉降量和沉降差进行估算。

如果建筑物基础可能产生的最大沉降量和沉降差,在规定的允许范围之内,那么该建筑物的安全和正常使用一般是有保证的;否则,是没有保证的。

对后一种情况,我们必须采取相应的工程措施以确保建筑物的安全和正常使用。

⏹基础沉降量或沉降差的大小首先与土的压缩性有关,易于压缩的土,基础的沉降大,而不易压缩的土,则基础的沉降小。

⏹基础的沉降量与作用在基础上的荷载性质和大小有关。

一般而言,荷载愈大,相应的基础沉降也愈大;而偏心或倾斜荷载所产生的沉降差要比中心荷载为大。

⏹在这一章里,我们首先讨论土的压缩性;然后介绍目前工程中常用的沉降讨算方法;最后介绍沉降与时间的关系。

4-2 土的压缩特性⏹压缩:土在压力作用下,体积将缩小。

这种现象称为压缩。

⏹固结:土的压缩随时间增长的过程称为固结目前我们在研究土的压缩性,均认为土的压缩完至是由于孔隙中水和气体向外排出而引起的⏹瞬时沉降指在加荷后立即发生的沉降⏹饱和粘土在很短的时间内,孔隙中的水来不及排出,加之土体中的土粒和水是不可压缩的,因而瞬时沉降是在没有体积变形的条件下发生的,它主要是由于土体的侧向变形引起的⏹瞬时沉降一般不予考虑⏹对于控制要求较高的建筑物,瞬时沉降可用弹性理论估算。

土力学 第四章 土的压缩与固结

土力学 第四章 土的压缩与固结

4.2土的压缩特性 (土的压缩试验与压缩性指标)
一.室内压缩试验(1)
一、室内压缩试验 土的室内压缩试验亦
称固结试验,是研究土压 缩性的最基本的方法。室 内压缩试验采用的试验装 置为压缩仪。
整理课件
试验一时.将室切内有土压样缩的环试刀验置于(刚2性护)环中,由于金属
环刀及刚性护环的限制,使得土样在竖向压力作用下只能 发生竖向变形,而无侧向变形。在土样上下放置的透水石 是土样受压后排出孔隙水的两个界面。压缩过程中竖向压 力通过刚性板施加给土样,土样产生的压缩量可通过百分 表量测。常规压缩试验通过逐级加荷进行试验,常用的分 级加荷量p为:50、100、200、300、400kPa。
2.地基土按固结分类
前期固结应力pc:土在历史上曾受到过的最大的、垂直的
有效应力 四. 土的应力历史(4)
超固结比OCR :前期固结应力与现有有效应力之比,即
OCR= pc/p1
正常固结土: OCR=1 pc=p1
超固结土: OCR>1,OCR愈大,土受到的超固结作用愈强,
在其他条件相同的情况下,其压缩性愈低。 pc> p1
作用下再压缩稳定后的孔隙比,相应地可绘制出再压
缩曲线,如图4-6(a)中cdf曲线所示。可以发现其中df
段像是ab段的延续,犹如其间没有经过卸载和再压的
过程一样。
整理课件
二. 压缩性指标(10)
(a)e-p曲线;
(b)e-lgp曲线
图 4-3 土的回弹—在压缩曲线 整理课件
三、 现场载荷试验及变形模量(1)
2.由于孔隙水的排出而引起的压缩对于饱和粘性土来说是
需要时间的,土的压缩随时间增长的过程称为土的固结。
这是由于粘性土的透水性很差,土中水沿着孔隙排出速度

第四章土的压缩与固结

第四章土的压缩与固结

n
Es
S = Si
i=1
i1 p0
b
a
i p0
zi-1
e zi f
zi Hi
c
d
附加应力分布图面积
αi ,αi-1 —为平均附加应力系数(可查表4.4.1)
Zi、 zi-1 —为从基底算至所求土层i的底面、顶面
沉降计算深度: S / 0.025 S
S /由计算深度向上取厚度为 z 的土层沉降计算值;
Es
Β查表4.3.1
4.3、用e~p曲线法计算地基的最终沉降量 4.3.1分层总和法
分层总和法的基本思路是: 将压缩层范围内地基分层, 计算每一分层的压缩量, 地面
然后累加得总沉降量。
➢分层总和法有两种基本方法: e~p曲线法和e~lgp曲线法。
S e1 e2 H 1 e1
d
基底
➢基础中心处的沉降代表基础的沉降。
Δp
s/h1
e1 e2 a e1 e2
1 e1
S
h2
e2
e1
s h1
(1
e1 )
a e1 e2 p2 p1
1 e1 a
Vv 2
hv 2
Vs
hs
侧限状态下地基土的压缩变形计算
s
S
e1
e2
e2
H
e1
h1
(1
e1 )
1 e1
S a / (p2 p1 ) H
a e1 e2
d p0
d
基底
σci
σci
σci1 2
σ zi
σ zi
σzi1 2
si
zi
Hi
附加应力
沉降计算深度

土的压缩与固结

土的压缩与固结
岩土工程研究所
第四章 土的压缩与固结
二、单向压缩量公式
加Δp之前:p1, V1=(1+e1)Vs 加Δ p稳定之后:p1+ Δ p,V2=(1+e2)Vs,S=H-H’ 由Δp引起的单位体积土体的体积变化:
V 1 V 2(1e1)V s(1e2)V se1e2
V 1
(1e1)V s
1e1
岩土工程研究所
10000-20000
500-4000
密实砂
50000-80000
4000-8000 密实砂砾石 100000-200000
8000-15000
岩土工程研究所
第四章 土的压缩与固结
(五)应力历史对粘性土压缩性的影响 所谓应力历史,就是土体在历史上曾经受到过的应力状态。 固结应力是指能够使土体产生固结或压缩的应力。就地基土而言,能够 使土体产生固结或压缩的应力主要有两种:其一是土的自重应力;其二 是外荷在地基内部引起的附加应力。 我们把土在历史上曾受到过的最大有效应力称为前期固结应力,以pc表 示;而把前期固结应力与现有有效应力poˊ之比定义为超固结比,以OCR 表示,即OCR=pc/ poˊ。对于天然土,当OCR>1时,该土是超固结土; 当OCR=1时,则为正常固结土。如果土在自重应力po作用下尚未完全固 结,则其现有有效应力poˊ小于现有固结应力po,即poˊ< po,这种土称为 欠固结土。
岩土工程研究所
第四章 土的压缩与固结
4-4 地基沉降计算的e~p曲线法
一、分层总和法简介 实际计算地基土的压缩量时,只须 考虑某一深度范围内内土层的压缩 量,这一深度范围内的土层就称为 “压缩层”。对于一般粘性土,当 地基某深度的附加应力σz 与自重应 力σs之比等于0.2时,该深度范围内 的土层即为压缩层;对于软粘土, 则以σz / σs=0.1为标准确定压缩层 的厚度。

土力学课件第四章土的压缩与固结

土力学课件第四章土的压缩与固结
堤防的沉降和滑坡风险。
THANKS
感谢观看
房屋建设中的土的压缩与固结问题
总结词
房屋建设中的土的压缩与固结问题主要表现在地基沉降和建筑物开裂两个方面。
详细描述
在房屋建设中,地基的沉降会导致建筑物开裂,影响建筑物的安全性和使用寿命。为了解决这个问题,需要在施 工前进行土质勘察和试验,了解土的压缩性和固结性,采取适当的措施进行地基处理,如桩基、扩基等,以减小 地基沉降。
表示土体的固结性能越好。
土的固结系数与土的渗透性、压 缩性、应力历史等因素有关。
土的固结系数可以通过室内试验 和原位观测等方法进行测定。
03 土的压缩与固结 的关系
土的压缩与固结的相互影响
土的压缩
土在压力作用下体积减小的性质 。主要由于土中孔隙体积减小。
土的固结
土体在外力作用下,经过排水、排 气、气泡的破裂和合并等过程,使 孔隙体积减小,土体逐渐被压缩的 过程。
土压力计算
在挡土墙设计、基坑支护等工程中, 需要考虑土压力对结构的影响,而土 压力与土的压缩和固结密切相关。
土的压缩与固结的研究展望
深入研究土的微观结构和孔隙分布对 压缩和固结的影响机制,建立更为精 确的理论模型。
考虑环境因素对土的压缩和固结的影 响,如温度、湿度、气候变化等。
发展新型的试验技术和测试方法,以 更准确地测定土的压缩和固结性能。
01
02
03
04
土的矿物成分
不同矿物成分的土具有不同的 压缩性,例如粘土矿物具有较
高的压缩性。
孔隙比
孔隙比越大,土的压缩性越高 。
含水率
含水率越高,土的压缩性越大 。
应力状态
在较低应力水平下,土的压缩 性较小,随着应力水平的增加

4土的压缩与固结

4土的压缩与固结

σ z (1 + e1 )
体积
σz
孔隙
e1
1+e1 e2 1+e2
土粒
1
三、土的压缩性指标
(五)应力历史对粘性土压缩性的影响 应力历史:土体在历史上曾经受到过的应力状态。 应力历史:土体在历史上曾经受到过的应力状态。 固结应力:能够使土体产生固结或压缩的应力,以p0表示。 表示。 固结应力:能够使土体产生固结或压缩的应力, 前期固结应力:土在历史上曾受到过的最大有效应力, 前期固结应力:土在历史上曾受到过的最大有效应力, 以pc表示。 表示。 超固结比:前期固结应力与现有有效应力poˊ之比, 之比, 超固结比:前期固结应力与现有有效应力 以OCR表示,即OCR=pc/ poˊ。 表示, 表示
z n = b ( 2 . 5 − 0 . 4 ln b )
2
(σ si )上
(σ si )下
(σ zi )上
σ zi=
(σ zi )上 + (σ zi )下
2
i
(σ zi )下
σs
沉降计算深度
σ z = 0.1σ s ( 0.2σ s )
地面
(6)求第 分层的压缩量。 分层的压缩量。 )求第i分层的压缩量
p1i=σ si → e1 p2i=σ si +σ zi → e2
计算地基的沉降时, 计算地基的沉降时,在地 可能产生压缩的土层深度内, 基可能产生压缩的土层深度内, 土的特性和应力状态的变化将 按土的特性和应力状态的变化将 地基分为若干( ) 地基分为若干(n)层,假定每 一分层土质均匀且应力沿厚度均 匀分布, 匀分布,然后对每一分层分别计 算其压缩量S 算其压缩量 i,最后将各分层的 压缩量总和起来, 压缩量总和起来,即得地基表面 的最终沉降量S, 的最终沉降量 ,这种方法称为 分层总和法。 分层总和法。

高等土力学土的压缩与固结

高等土力学土的压缩与固结

p av 0.434
av
Cc p
lg
p2 p1
av
Cc p
0.434
2)变形模量和压缩模量的关系:
由虎克定律:
x
1 E0
x
y
z
y
1 E0
y
z
x
压缩试验时: x y 0
则可得:
x
y
1
z
K0 z
又由虎克定律:
z
1 E0
z
x
y
可得:
z
z
E0
22
1
1
对于压缩试验:
z
z
Es
所以:
z
Es
z
E0
1
2 2 1
由此可得:
E0
1
1
1
2
Es
1
2 2 1
Es
Es
5.2.3 沉降产生原因和类型
1. 引起地基沉降的可能原因
2. 沉降的类型
• 瞬时沉降Si • 固结沉降Sc • 次压缩(固结)沉降Ss
5.2.4 瞬时沉降和次压缩沉降
1、瞬时沉降
h k u vk
z w z
dQ
k
w
2u z 2
dzdxdydt
➢ dt时间内微元体的体积变化为:
dV Vv dt eVs dt 1 e dzdxdydt
t
t
1 e1 t
又由: de a:
d
则可得: e a
t t
根据有效应力原理:
e a a u au
t t
t
t
所以有:
2)固结方程
(1) 连续性条件:dt时间内微元体的排水量的变化等于微元体在dt时间内的 竖向压缩量。

土的压缩与固结

土的压缩与固结
量为各层沉降量之和: SSi
理论上不够完备,缺乏统一理论; 单向压缩分层总和法是一个半经验性方法。
分层总和法的基本思路是:将压缩层范围内地基分层,计算每一分层的 压缩量,然后累加得总沉降量。 分层总和法有两种基本方法:e~p曲线法和e~lgp曲线法。
2、计算公式:
各分层沉降量:
S iiH i e 1 1 i e e 1 i2 iH i a i(1 p 2 ie 1 ip 1 i)H i E p siH i i
Es

' z
e z 1 e0
a e '
Es

1
e0 a
侧限压缩模量单位:Kpa ,Mpa
• 体积压缩系数:土在完全侧限条件下体积应变增量与压力增量
之比,
mv

av 1 + e0
• 压缩模量 完全侧限时,土的应力与应变之比。
Es

1 e0 av
E

【解】(1)由L/B=10/5=2<10可知,属于空间问题,且为中心荷载,所 以基底压力为
p=P/(L×B)=1000/(10×5)=200kPa 基底净压力为
pn=p-γD=200-20 ×1.5=170kPa (2)因为是均质土,且地下水位在基底以下2.5m处,取分层厚度 Hi=2.5m。 (3)求各分层面的自重应力(注意:从地面算起)并绘分布曲线见图4 -12(a)
(2)将地基分层。2~4m, <=0.4b, 土层交 界面,地下水位,砂土可不分层;
(3)计算地基中的自重应力分布。从地面 (4)计算地基中竖向附加应力分布。 (5)按算术平均求各分层平均自重应力和 平均附加应力。(注意:也可以直接计算各 土层中点处的自重应力及附加应力)

土的压缩性及固结理论

土的压缩性及固结理论

土的压缩性5.1概述土体压缩性——土在压力(附加应力或自重应力)作用下体积缩小的特性。

土体压缩包括:(1)土粒本身和孔隙水的压缩; (2)孔隙气体的压缩;(3)孔隙水、气排出,使得孔隙体积减小。

上面(1)的压缩不到压缩量的1/400,忽略;(2)的压缩量也很小,忽略。

地基土的压缩实质土的固结——土体在压力作用下其压缩量随时间增长的过程。

土体的压缩性指标:压缩系数、压缩模量。

压缩性指标测定方法:(1)室内试验测定,如侧限条件的固结试验;(2)原位测试测定,如现场[静]载荷试验。

5.2固结试验及压缩性指标 一、固结试验及压缩性指标 1.压缩试验和压缩曲线减少。

会被压缩,也会被排出部分);)不变;但会被排出(孔隙水体积(不变;土粒体积(v as V V V V ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ω)a s E(1)侧限压缩试验(固结试验)侧限——限制土样侧向变形,土样只能发生竖向压缩变形。

通过金属环刀来实现。

试验目的——研究测定试样在侧限与轴向排水条件下的变形和压力,或孔隙比和压力的关系,变形和时间的关系,以便计算土的各项压缩指标。

试验设备——固结仪(压缩仪)。

试验方法:逐级加压固结,以便测定各级压力作用下土样压缩稳定后的孔隙比。

(2)e -p 曲线要绘制e -p 曲线,就必须求出各级压力作用下的孔隙比。

如何求?看示意图:设试样截面积为A ,如图:依侧限压缩试验原理可知:土样压缩前后试样截面积A 不变,土粒体积不变,令,有或——分别为土粒比重、土样的初始含水量和初始密度。

利用上式计算各级荷载作用下达到的稳定孔隙比,可绘制如i p i e i p i e i e s V 1=sV iii i i i e H H e H e H e A H e A H +∆-=+=+⇒⎭⎬⎫+=+=1111100000)1(1000000e H H e e e e e H H ii i i +∆-=⇒+-=∆1)1(000-+=ρρωws G e 00ρω、、s G i p i e下图所示的e -p 曲线,该曲线亦被称为压缩曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h 0
t 0
附加应力:σz=p 超静孔压: u0 = σz=p 附加有效应力:σ’z=0
0t
附加应力:σz=p 超静孔压: 0 < u <p
附加有效应力:
0 < σ’z < p
t
附加应力:σz=p 超静孔压: u =0 附加有效应力:σ’z=p
9-2 土的压缩特性
二、单向固结模型
饱和土体在某一压力作用下的固结过程就是土体中 各点的超静孔隙水应力不断消散、附加有效应力相应增加 的过程,或者说超静孔隙水应力逐渐转化为有效应力的过 程,而在转化过程中,任一时刻任一深度处的应力始终遵 循有效应力原理。
土的压缩与固结
河海大学 岩土工程研究所 Research Institute of Geotechnical Engineering,
Hohai Univerczity
9-0 概 述
土体变形体 形积 状变 变形 形
在附加应力作用下,地基土将产生体积缩小,从而引起 建筑物基础的竖直方向的位移(或下沉)称为沉降。
(二)压缩系数
e
1.0
0.9
e1
0.8 e
e2
0.7
p
0.6
p1
p2
e~p曲线
av
e1 e2 p2 p1
e p
p(kPa)
9-2 土的压缩特性
三、土的压缩性指标
(二)压缩系数
e
1.0
0.9
e1
0.8
e2
0.7
0.6
e
p
e ''
p(kPa)
p1
p 2 p ''
e~p曲线
p
'' 1
p
'' 2
9-2 土的压缩特性
p(lg,kPa)
9-2 土的压缩特性
三、土的压缩性指标
(四)其它压缩性指标
体积压缩系数mV:土体在单位应力作用下单位体积
的体积变化。
mV
V pV
1 e1 1 e2 p 1 e1
e1 e2
p 1 e1
e p
1
1 e1
av
1 e1
p
孔隙 土粒
体积
e1 1+e1 e2 1+e2
(四)其它压缩性指标
变形模量E :土体在无侧限条件下应力与应变之比。
x
x E
E
y z
土体本构模型——弹性非线性。
y
y EEΒιβλιοθήκη y xzz E
E
x y
Ezz 1122 Es1122
9-3 单向压缩量公式
一、无侧向变形条件下单向压缩量计算假设
(1)土的压缩完全是由于孔隙体积减小导致骨架变形的 结果,土粒本身的压缩可忽略不计;
AA ' (AAs)u
' (1 As )u
A
u ' u ' u 'u u ' u
a
a
u (1)u
9-2 土的压缩特性
一、土的压缩与固结
压缩:在外力作用下,土体体积缩小的现象。
在外力作用下,土体体积为什么会缩小呢? 1、土粒本身和孔隙中水的压缩变形; 2、孔隙气体的压缩变形; 3、孔隙中的水和气体有一部分向外排出。
V1
HA HA H
9-3 单向压缩量公式
二、单向压缩量公式
高度
H
p1
体积
e 1V s
高度
S
H' Vs
(2)土体仅产生竖向压缩,而无侧向变形;
(3)土层均质且在土层厚度范围内,压力是均匀分布的。
9-3 单向压缩量公式
二、单向压缩量公式
高度
H
p1
体积
e 1V s
高度
S
H' Vs
p1
p 1 体积
e 2V s
Vs
V 1 V 2(1e1)V s(1e2)V se1e2
V 1
(1e1)V s
1e1
V1V2 HAH'ASAS
p3
p2
p1
t
e
e e
e
0 1 2
e3
t
9-2 土的压缩特性
三、土的压缩性指标
(一)室内固结试验与压缩曲线
e
e
1.0 1.0
0.9
0.9
0.8
0.8
0.7
0.7
0.6 0 100 200 300 400
e~p曲线
p(kPa)
100
1000
e~lgp曲线 p(lg,kPa)
9-2 土的压缩特性
三、土的压缩性指标
1
9-2 土的压缩特性
三、土的压缩性指标
(四)其它压缩性指标
压缩模量ES :土体在无侧向变形条件下,竖向应力
与竖向应变之比。
Es
p z
p
e1 e2
A
p 1 e1
e1 e2
1 e1 A
p 1 e1 1 e1
e
av
1 mv
p
孔隙 土粒
体积
e1 1+e1 e2 1+e2
e
1.0 0.9
1
Cc
Cc
e1e2 lgp2 lgp1
lg
e p1p1p
0.8
0.7
100
1000
e~lgp曲线 p(lg,kPa)
9-2 土的压缩特性
三、土的压缩性指标
(三)压缩指数与回弹再压缩指数
e
塑性 变形
弹性 变形
初始压缩曲线
再压缩曲线
A 初始压缩曲线
回弹曲线
e
1
Cc
1 CS
P(kPa)
三、土的压缩性指标
(二)压缩系数
e
1.0
e 1 0.9
0.8 e
e2
0.7
p
av12
e1e2 p2 p1
e 100
土的类别 a1-2 (MPa-1) 高压缩性土 >=0.5
中压缩性土 0.1-0.5
0.6
低压缩性土
<0.1
p1
p2
e~p曲线
p(kPa)
9-2 土的压缩特性
三、土的压缩性指标
(三)压缩指数与回弹再压缩指数
固结:土的压缩随时间增长的过程。
9-2 土的压缩特性
二、单向固结模型
单向固结:饱和土体在某一压力作用下,压缩随着孔隙水 的逐渐向外排出而增长。如果孔隙水只沿一个方向排出, 土的压缩也只在一个方向发生(一般指竖直方向),此时 的固结为单向固结。
9-2 土的压缩特性
二、单向固结模型
p
h p w
p
hh p
9-1 有效应力原理
把饱和土体中由孔隙水来承担或传递的应力定义为 孔隙水应力,常以u表示。
uwhw
把通过粒间的接触面传递的应力称为有效应力。
Ns
FS
NS
A
把孔隙水应力和有效应力之和称为总应力。
u
NS
FS
9-1 有效应力原理
A: 土单元的截面积
As:颗粒接触点的截面积 A=AS+Aw
Aw: 孔隙水的截面积
1
9-2 土的压缩特性
三、土的压缩性指标
(四)其它压缩性指标
压缩模量ES :土体在无侧向变形条件下,竖向应力
与竖向应变之比。
低压缩性 中压缩性 高压缩性
Es 15MPa Es 4 ~15MPa Es 4MPa
p
孔隙 土粒
体积
e1 1+e1 e2 1+e2
1
9-2 土的压缩特性
三、土的压缩性指标
9-2 土的压缩特性
三、土的压缩性指标
(一)室内固结试验与压缩曲线
滤纸 滤纸
透水石
百分表 传压板 透水石 水槽
由于刚性护环所 限,试样只能在竖向 产生压缩,而不能产 生侧向变形,故称为 单向固结试验或侧限
环刀 固结试验。
护环
试样
9-2 土的压缩特性
三、土的压缩性指标
(一)室内固结试验与压缩曲线
P
相关文档
最新文档