质粒DNA的提取与酶切鉴定

合集下载

质粒提取及双酶切鉴定内切酶内切重组质粒

质粒提取及双酶切鉴定内切酶内切重组质粒

纯化质粒
通过吸附、洗涤等步骤进一步 纯化质粒DNA。
02 双酶切鉴定
双酶切鉴定的原理
酶切原理
双酶切鉴定基于限制性内切酶对DNA的特异性切割,通过两种不同的限制性内 切酶对质粒进行切割,产生特定的DNA片段。
产物分析
通过电泳分析切割后的DNA片段,判断是否出现预期的酶切产物,从而确定重 组质粒是否正确。
酶切效率计算
通过比较酶切前后的质粒浓度,可以计算出酶切效率。
重组质粒鉴定
通过对比酶切后的质粒片段和预期的重组质粒片段, 可以初步判断重组质粒是否被成功构建。
序列分析
对重组质粒进行序列分析,可以进一步确认重组质粒 的准确性。
实验结果分析注意事项
确保电泳结果的可信度
01
在分析电泳结果时,应排除假阳性或假阴性的可能,确保结果
筛选与鉴定
通过特定的筛选和鉴定方法,如菌落PCR、酶切分析和电泳检测 等,对重组质粒进行筛选和鉴定。
内切酶内切重组质粒的步骤
酶切反应
将重组质粒与适量的内切酶混合,进行酶切 反应。
胶回收
通过凝胶电泳分离酶切产物,并使用胶回收 试剂盒回收目的片段。
连接反应
将两个不同的DNA片段进行连接,形成新的 重组分子。
质粒提取及双酶切鉴定 内切酶内切重组质粒
目录
CONTENTS
• 质粒提取 • 双酶切鉴定 • 内切酶内切重组质粒 • 实验结果分析
01 质粒提取
质粒提取方法
01
02
03
碱裂解法
利用高pH值环境下质粒 DNA与细胞基因组DNA 的变性差异,将二者分离。
煮沸法
通过加热使细胞破裂,释 放质粒DNA,再通过离心 将质粒DNA与其他细胞成 分分离。

基础生物化学实验实验六 质粒DNA的提取(碱裂解法)及酶切分析)

基础生物化学实验实验六 质粒DNA的提取(碱裂解法)及酶切分析)

(2) 挑选单菌落,在无菌条件下放入5 ml LB液体培养基中 (100 g /ml氨苄青霉素),200-300 rpm,37℃过夜培养。 (3) 取1.5 ml菌液(其余菌液加入25%的灭菌甘油,放入对 应编号的1.5 ml离心管中,-70℃ 下作菌种保存),5000 g离心5 min。 (4) 弃上清夜,加入100 l预冷的溶液I,悬浮沉淀,室温 放 置5 min。 (5) 加入200 l 新鲜的溶液II,边加边震荡,但不能剧烈, 冰上放置5 min。 (6) 加入75 l溶液III,震荡混匀,冰上放置5 min。 (7) 12000 g 离心5 min。 (8) 取上清液,加入两倍体积的预冷无水乙醇,12000 g离 心10 min。 (9) 用1 ml 70%的乙醇洗涤沉淀,空气中放置3-5 min。 (10) 用30-50 l TE溶解,用紫外分光光度计进行DNA含量 测定,EB琼脂糖(1.4%)凝胶电泳分析。
实验六 质粒DNA的提取(碱裂解法)及酶分析
(1) 溶液配制: 溶液 I 50 mmol/L 葡萄糖 25 mmol/L Tris-Cl (pH 8.0) 10 mmol/L EDTA (pH 8.0) 溶液 II 0.2 mol/L NaOH 0.5% SDS 溶液 III 3 mol/L KAc (用冰醋酸调 pH值至5.0)
质粒DNA的酶切分析参照相关酶的说明书 操作步骤进行

质粒DNA提取与酶切方法的比较研究

质粒DNA提取与酶切方法的比较研究

结论总的来说,各种质粒DNA提取方法和酶切方法都有其优缺点。在选择方 法时,应根据具体的研究需求和实验条件进行选择。常规提取方法虽然操作繁琐, 但成本低廉且产量高;快速提取方法和生物素法则具有快速、简便和高纯度的优 点,但成本较高。对于酶切方法,单一酶切操作简便但适用范围有限;双酶切和 全酶切则能实现复杂切割,但操作较复杂且成本较高。
(2)双酶切
双酶切是使用两种不同的限制性内切核酸酶对DNA进行切割。该方法可实现 对复杂基因组或多个位点的精确切割,适用范围更广。但是,双酶切操作相对复 杂,需要更多时间进行优化和调整。
(3)全酶切
全酶切是使用一种或多种限制性内切核酸酶以及修饰酶等对DNA进行切割。 该方法可根据实验需求对DNA进行的优点是高度灵活,适用范围广泛。然而,全酶切需要更多的实验设计和操 作技巧,且成本较高。
比较研究
1、操作难易程度及成本
在操作难易程度方面,快速提取方法和生物素法相对简单,而常规提取方法 较为繁琐。在成本方面,生物素法和快速提取方法所需试剂和设备成本较高,而 常规提取方法成本较低。
2、纯度和产量
在纯度方面,生物素法和快速提取方法纯度较高,而常规提取方法纯度相对 较低。在产量方面,常规提取方法和快速提取方法产量较高,而生物素法产量较 低。
质粒DNA提取方法
1、常规提取方法
常规提取方法是一种经典的分步提取方法,包括裂解细胞、分离质粒DNA、 洗涤和纯化等步骤。该方法的主要优点是适用范围广,可从各种细胞中提取质粒 DNA。但是,该方法操作繁琐,提取周期较长,需要使用大量试剂和设备。
2、快速提取方法
快速提取方法是通过优化常规提取方法中的某些步骤,实现快速、简单的质 粒DNA提取。该方法主要优点是操作简便、快速,可减少试剂和设备的使用。但 快速提取方法可能会牺牲一些纯度或产量。

质粒的提取及酶切实验报告

质粒的提取及酶切实验报告

质粒的提取及酶切实验报告
一、实验目标
本实验旨在提取低分子量DNA、质粒,通过酶切实验检测质粒DNA片段长度,并处理实验结果。

二、实验原理
1、质粒DNA提取:使用特定的提取试剂,先提取溶菌酶凝胶中的质粒DNA;
2、质粒DNA酶切:采用酶切的方法,对质粒DNA进行切割,形成小片段;
3、质粒DNA测序:采用测序仪对质粒DNA片段进行测序,从而确定其长度。

三、实验材料
1、提取试剂:主要由蛋白酶、乙腈、缓冲液、EDTA等混合而成;
2、PCR反应液:主要由dNTP、聚合酶、反应缓冲液等组成;
3、酶:主要由DNA内切酶和DNA外切酶组成;
4、测序仪:用于测序质粒DNA的片段长度;
四、实验步骤
1、提取质粒DNA:将实验样品放入提取试剂中,加热30分钟,然后用混合物洗涤一次,最后离心得到清澈的液体,含有提取的质粒DNA;
2、进行PCR反应:将提取的质粒DNA作为反应液™添加到PCR管中,在适当温度下反应10分钟;
3、酶切:将PCR管中的反应液加入内切酶和外切酶中,在规定温度下酶切1小时;
4、离心质粒DNA片段:将酶切后的反应液离心,以得到质粒DNA片段;
5、进行测序:将质粒DNA片段放置于测序仪中,逐一测序后得到结果;
五、实验结果及分析
实验结果:
质粒DNA片段长度:
0.31kbp、0.48kbp、0.51kbp、0.58kbp、0.68kbp等。

遗传学 实验四 质粒DNA的提取与鉴定

遗传学 实验四  质粒DNA的提取与鉴定

实验四质粒DNA的提取与鉴定一、实验目的1、熟悉细菌的培养和质粒的扩增。

2、学习和掌握从大肠杆菌中提取质粒DNA的原理和方法以及琼脂糖凝胶电泳鉴定质粒DNA的技术。

二、实验原理质粒广泛存在与原核细胞中,大多是双联的共价闭合环状DNA分子,长度可以从1kb 到200kb不等,是染色体外寄生性的自主复制子,在细胞分裂时能恒定地传递给子代细胞。

在分子生物学研究中,为了迅速扩增和提取大量的质粒DNA,通常使用松弛型(其复制受宿主的控制不严格,在宿主细胞中拷贝数较多)质粒。

从大肠杆菌中分离质粒的方法很多,常见的有煮沸法和碱变性抽提法。

碱变性抽提法是基于染色体DNA与质粒DNA的变性与复兴差异而达到分离的目的。

在pH高达12.5的条件下,染色体DNA的氢键断裂、双螺旋解开而变性;质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状结构的两条互补链未完全分离,当用pH4.8的醋酸钾高盐缓冲液调节pH至中性时,变形的质粒DNA又恢复到原来的构型,通过离心保留在溶液中,而染色体DNA不能复性,形成缠绕的网状结构,与不稳定的大分子RNA、蛋白质等一起沉淀出来。

在抽屉过程中,由于各种因素的影响,同一质粒DNA可能呈现以下不同的构型:①超螺旋型,即共价闭合环状DNA(cccDNA);②一条链发生一处或多处断裂,致使另一条链发生自由旋转,分子内的扭曲折叠消失,形成松弛的分子即开环DNA(ocDNA);③两条链都发生了随机的断裂成为线状DNA。

在这三种构型中,cccDNA由于扭曲折叠,体积很小,在具有分子筛效应的琼脂糖凝胶电泳中受到阻力最小,迁移速度最快;ocDNA因扭曲状态被破坏而呈松弛的环状,迁移速度较慢;线状DNA受到的阻力最大,迁移速度最慢。

DNA分子在琼脂糖凝胶中泳动时,除受分子构型的影响,还受所带净电荷多少的影响。

因此在鉴定质粒DNA纯度时,应尽量减少电荷效应。

增大凝胶浓度可以在一定程度上降低电荷效应,分子的迁移速度主要取决于受凝胶阻滞程度的差异,由此将不同构型的质粒DNA 分开。

质粒DNA的提取酶切及检测

质粒DNA的提取酶切及检测

加入150uL溶液III(轻轻混匀),冰上静置5min质粒DNA复性
12000rpm,离心5min,取上清记录体积到一新管
上清加等体积的酚:氯仿:异戊醇(振荡混匀)
12000rpm,离心15min,取上清记录体积到一新管
(可省略)上清加等体积的氯仿:异戊醇(振荡混匀)
12000rpm,离心2min,取上清记录体积到一新管
醋酸中和NaOH,因为长时间的碱性条 件会打断DNA。
▪ 平衡酚:氯仿(1:1)
作用:酚使蛋白质的变性,但是水饱和酚 的比重略比水重,不利于含质粒的水相的 回收;但加入氯仿后可以增加比重,使得 酚/氯仿始终在下层,方便水相的回收。
▪ 乙醇:除去DNA水化层,使DNA沉淀
▪ TE缓冲液:溶解DNA
Relaxed circle Linearized form Super-coiled form
四、实验结果与讨论
根据观察结果,绘图。 分析自提质粒的情况以及酶切情况。
相关知识
基因工程又称DNA重组技术 外源基因通过体外重组后,导入受体细胞内, 使这个基因能够在受体细胞内复制、转录、翻 译、表达的操作
包括基因的分离、重组、转移、基因在受体细 胞内的保持、转录、翻译表达等全过程
基因工程四要素:目的基因、工具酶、载体、 受体细胞
常用到的工具酶
限制性内切酶 连接酶 聚合酶 逆转录酶 DNA酶和RNA酶
平头末端: II型酶切割方式的另一种是在同一位置 上切割双链,产生平头末端。例如EcoRV 的识别位置是:
5’…… GAT’|ATC …… 3’
3’…… CTA’|TAG …… 5’
切割后形成5’…… GAT和ATC …… 3’、 3’…… CTA和TAG …… 5’。这种末端同 样可以通过DNA连接酶连接起来。

质粒DNA的提取与酶切电泳鉴定.ppt

质粒DNA的提取与酶切电泳鉴定.ppt
8、彻底弃上清,将管口敞开倒置于卫生纸上使所有液体流出,加入 1ml70%乙醇洗沉淀一次,4℃下12000 rpm离心2分钟。
9、吸除上清液,将管倒置于卫生纸上使液体流尽,室温开盖放置1015min,使乙醇挥发殆尽。
10、将沉淀溶于30-50μl TE缓冲液(pH8.0,含20μg/mlRNaseA)中, 储于-20℃冰箱中。
5、加入350μl预冷的溶液Ⅲ,盖紧管口,反复颠倒离心管5次,出现白色 沉淀,使沉淀混匀, 4℃ 12000rpm 离心10分钟。
6、上清液移入干净离心管中,加入等体积的酚/氯仿(1:1),振荡混 匀,4℃下12000 rpm离心2分钟。
7、将上层水相移入干净离心管中,加入2倍体积的无水乙醇,振荡混 匀后室温放置2分钟,然后4℃下12000 rpm离心5分钟。
2、取2 ml培养液倒入1.5ml EP管中(分次加入,离心), 4℃ 12000 rpm 离心30s -1min,弃去上清;
3、用涡旋混匀器使菌体沉淀重悬浮于250μl冰预冷的溶液Ⅰ。
4、加入新配制的溶液Ⅱ250μl,盖紧管口,快速温和颠倒离心管5次,菌 液变得透亮,以混匀内容物(千万不要振荡)。
11、 酶切鉴定并将没有酶切的质粒与酶切的质粒进行琼脂糖凝胶电泳。 (酶切体系一般1-2ul提取的质粒,10×buffer,相应的酶,余下加水, 一般鉴定所用的酶切体系建议10ul)
质粒提取关键:
基因组DNA与质粒DNA的有效分离 (碱裂解法)
高pH使质粒DNA和染色体DNA变性,同时沉淀蛋白 质。再将pH值调至中性,质粒DNA较小,很容易复性 成双链。而染色体DNA较大,不会复性,缠结成网状 不溶物质,从而可以通过离心除去。
注意事项:
实验方法
碱裂解法

实验二-质粒DNA的提取及酶切

实验二-质粒DNA的提取及酶切

实验二质粒DNA的提取及酶切(8学时,6小时)一、实验目的:通过本实验学习和掌握碱裂解法提取和酶切质粒的技术与方法。

二、实验原理:碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA之间在拓扑学上的差异而达到分离目的。

环状闭合的质粒DNA在限制性内切酶的作用下成为线状质粒DNA,内切酶能识别DNA分子中某一特定的核苷酸序列。

三、仪器、材料、试剂(一)仪器:1、恒温摇床2、台式离心机3、高压灭菌锅4、振荡器(二)材料:1、含PUC-18质粒的大肠杆菌2、乙二胺四乙酸(EDTA)3、三羟甲基氨基甲烷(Tris) 4.葡萄糖 5.氢氧化钠(NaOH) 6.十二烷基硫酸钠(SDS) 7、乙酸钾(KAc) 8、冰醋酸(HAc) 9、盐酸(HCl) 10、Tris饱和酚11、氯仿12、异戊醇13、乙醇14、胰RNA酶15、氨苄青霉素16、离心管(三)试剂:1、溶液І (pH8.0) 2、溶液Ⅱ3、溶液Ш4、TE缓冲液(pH8.0)5、0.5mol/LEDTA6、氯仿:异戊醇(V:V=24:1)7、Tris饱和酚:氯仿:异戊醇(V:V:V=25:24:1)8、70%乙醇9、胰RNA酶10、ECOR I酶四、实验步骤(一)质粒DNA的提取1、先在3mL LB液体培养基中加入3uL羧苄青霉素(终浓度50ug/mL),然后接入一个含puc-18质粒的大肠杆菌单菌落,37℃震荡培养过夜。

2、取过夜培养的菌液1mL加入1.5mL离心管中,4000r/min,倒出培养液,将所有菌体细胞收集在一个离心管中。

3、加入100µl溶液І于含菌体细胞的小指管中,旋涡震荡将细菌沉淀悬浮,室温放置10min。

4、加入200µl溶液Ⅱ(新鲜配置),轻轻混匀内容物,溶液逐渐变清亮后加入溶液Ш(千万不可用旋涡震荡器,裂解时间不超过5min)。

5、加入150µl溶液Ш(冰上预冷),盖紧管口,轻轻混匀数次。

质粒DNA提取、定量、酶切与PCR鉴定

质粒DNA提取、定量、酶切与PCR鉴定

限制性内切酶
影响酶切反应的因素
➢ 底物DNA的纯度:主要污染DNA 的某些物质,如酚、氯仿、乙醇等 均能抑制酶反应; ➢ 反应系统:主要是反应缓冲液中的离子强度,如NaCl和Mg2+, 合适 离子强度可以激发酶切反应; ➢ 反应体积:一般应尽量小,且酶切反应中甘油浓度应低于5%; ➢ 保温时间与温度:温度改变会使酶识别错误;
DNA样品较纯,符合实验要求 RNA污染 有蛋白质或其它杂质的污染
实验仪器
核酸蛋白检测仪(Eppendorf BioPhotometer plus)
比色杯
数据处理
测量次数 1 2 3
平均值
质粒DNA浓度
(μg/ml)
Ratio值
(A260/A280)
定量检测
第三部分 酶切鉴定
DNA Restriction Enzyme Digestion
溶液反应温度 升至中温72℃ ,在 Taq酶作 用下,以dNTP 为原料,引物 为复制起点, 模板DNA的一 条单链在解链 和退火之后延 伸为一条双链
延伸
72˚C
实验原理
变性
95˚C
加热使模板DNA 在高温下90℃-95 变性,双链解链
退火
Tm-5˚C
降低溶液温 度,使合成 引物在低温 (35-70℃, 一般低于模 板Tm值的5℃ 左右),与 模板DNA互补 退火形成部 分双链
✓ 注意:我们接下来要用的eppendorf公司生产的紫外分光光 度计,会根据样品的稀释倍数自动算出质粒DNA的最终浓度 和Ratio值.
实验方法
2.根据在260nm以及在280nm的读数比值估计核酸的 纯度(Ratio=A260/A280)
• Ratio= 1.8 • Ratio>1.9 • Ratio<1.6

质粒DNA的提取与酶切

质粒DNA的提取与酶切

生物化学实验报告质粒DNA的提取与酶切质粒DNA的提取与酶切一实验原理碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。

碱裂解法从大肠杆菌制备质粒是分子生物学研究的常规技术,碱法质粒抽提用到三种溶液:溶液I:50 mM葡萄糖、25 mM Tris-Cl 、10 mM EDTA,pH 8.0;溶液II:0.2 N NaOH、1% SDS;(临用前混合)溶液III :3 M 醋酸钾、2 M 醋酸。

1、溶液I的作用:对于任何生物化学反应,首先要控制好溶液的pH,因此选用适当浓度和适当pH值的Tris-Cl溶液。

加入的葡萄糖可以使悬浮后的大肠杆菌不会快速沉积到管子底部。

EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,可以抑制DNase的活性和微生物生长。

此步骤菌体一定要悬浮均匀,不能有结块,否则会降低抽提得率。

2、溶液II的作用:NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱后几乎在瞬间就会溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。

SDS也呈碱性,但如果只用SDS,达不到彻底溶解细胞的作用,加入SDS主要为下一步做铺垫。

这一步操作要注意两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。

3、溶液III的作用:SDS在高盐浓度下发生沉淀,同时SDS能与蛋白质结合,平均两个氨基酸上结合一个SDS分子,所以沉淀也将溶液中的大部分蛋白质沉淀下来。

溶液中的K+置换了SDS中的Na+而形成了不溶性的PDS,高浓度的盐使沉淀更完全。

同时,由于基因组DNA很长,容易被PDS共沉淀。

质粒DNA提取与限制性内切酶酶切鉴定

质粒DNA提取与限制性内切酶酶切鉴定
一、实验目的和应用价值
为了检验大肠杆菌质粒是否有目的基因,我们先要用碱法提取出高纯度的大肠杆菌质粒DNA并且进行限制性核酸内切酶酶切,然后,我们要进行酶切产物的电泳以及紫外线分光光度法检测DNA。目前这些技术已经广泛应用于基因克隆技术的检验克隆产物阶段。
二、实验原理
(1)首先利用质粒DNA和染色体DNA分子量的差异来进行的。质粒小,为双链、闭环的超螺旋DNA分子,复性容易,而染色体DNA大,不易复性,导致这两种DNA提取不同的方法。因而利用碱法提取质粒DNA,先从混合物中分离出来,然后逐步纯化即可得。
三、实验基本流程
第一部分
1、将1.5ml大肠杆菌培养液加于EP管,然后以12000rpm×60s离心;
2、弃上清,再重复一次;
3、加入150ul溶液I,充分重悬;
4、加入200ul溶液II,立即、轻柔振荡数次;
5、加入150μl冰溶液III,震荡10s,冰浴3~5min后以12000rpm×10min离心;
4、酶切时加入的DNA溶液体积不能太大,防止DNA溶液中其它成分会干扰酶反应。
5、在紫外分光光度调零的时候,要先选定波长260nm(样品中RNA浓度)或280nm(样品中DNA浓度)。若数值一直在波动,则表明仪器不稳定,应该立即停止使用。
五、实验结果
1、在质粒酶切电泳中,1孔Marker出现多条带状;2孔已酶切质粒出现双条带状,但是短条带比长条带更明显;而3孔未酶切质粒只有一条带状,并且长度介于已酶切质粒两个条带之间。
-
10-
1-质粒DNA酶切较完全;2-有一部分质粒DNA被酶切了,而有另一部分无;3-质粒DNA被酶切了,但是另一部分太少,所以显现清楚;4-未酶切的质粒DNA。

质粒DNA的提取、酶切及检测

质粒DNA的提取、酶切及检测

医学课件ppt
10
溶液II,0.2 N NaOH / 1% SDS;
NaOH是最佳的溶解细胞的试剂,这是 由于细胞膜发生了从双层膜结构向微囊 结构的相变化所导致。SDS是为下一步 操作做的铺垫。
医学课件ppt
11
溶液III,3 M醋酸钾/ 2 M醋酸。
钾离子置换了SDS中的纳离子形成了不 溶性的PDS,而高浓度的盐,使得沉淀 更完全。钾钠离子置换所产生的大量沉 淀自然就将绝大部分蛋白质沉淀了,大 肠杆菌的基因组DNA也一起被共沉淀。 因为基因组DNA太长了。
医学课件ppt
14
加入150uL溶液III(轻轻混匀),冰上静置5min质粒DNA复性
12000rpm,离心5min,取上清记录体积到一新管
上清加等体积的酚:氯仿:异戊醇(振荡混匀)
12000rpm,离心15min,取上清记录体积到一新管
(可省略)上清加等体积的氯仿:异戊醇(振荡混匀)
12000rpm,离心2min,取上清记录体积到一新管
❖ 用一个字母代表菌株或型,如流感嗜血菌 Rd菌株用d,即Hind。
❖ 如果一种特殊的寄主菌株,具有几个不同 的限制与修饰体,则以罗马数字表示,如 HindⅠ, HindⅡ,HindⅢ等。
医学课件ppt
19
II型限制性内切酶能识别专一的核苷酸顺序, 并在该顺序内的固定位置上切割双链。由于 这类限制性内切酶的识别和切割的核苷酸都 是专一的。因此,这种限制性内切酶是DNA 重组技术中最常用的工具酶之一。这种酶识 别的专一核苷酸顺序最常见的是4个或6个核 苷酸,少数也有识别5个核苷酸以及7个、8 个、9个、10个和11个核苷酸的。 II 型限 制性内切酶的识别顺序是一个回文对称顺序, 即有一个中心对称轴,从这个轴朝二个方向 “读”都完全相同。这种酶的切割可以有两 种方式:

质粒DNA的提取与酶切

质粒DNA的提取与酶切

质粒DNA的提取与酶切生物化学实验报告质粒DNA的提取与酶切质粒DNA的提取与酶切一实验原理碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。

碱裂解法从大肠杆菌制备质粒是分子生物学研究的常规技术,碱法质粒抽提用到三种溶液:溶液I:50 mM葡萄糖、25 mM Tris-Cl 、10 mM EDTA,pH 8.0;溶液II:0.2 N NaOH、1% SDS;(临用前混合)溶液III :3 M 醋酸钾、 2 M 醋酸。

1、溶液I的作用:对于任何生物化学反应,首先要控制好溶液的pH,因此选用适当浓度和适当pH值的Tris-Cl溶液。

加入的葡萄糖可以使悬浮后的大肠杆菌不会快速沉积到管子底部。

EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,可以抑制DNase 的活性和微生物生长。

此步骤菌体一定要悬浮均匀,不能有结块,否则会降低抽提得率。

2、溶液II的作用:NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱后几乎在瞬间就会溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。

SDS也呈碱性,但如果只用SDS,达不到彻底溶解细胞的作用,加入SDS主要为下一步做铺垫。

这一步操作要注意两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。

3、溶液III的作用:SDS在高盐浓度下发生沉淀,同时SDS能与蛋白质结合,平均两个氨基酸上结合一个SDS分子,所以沉淀也将溶液中的大部分蛋白质沉淀下来。

溶液中的K+置换了SDS中的Na+而形成了不溶性的PDS,高浓度的盐使沉淀更完全。

同时,由于基因组DNA很长,容易被PDS共沉淀。

实验六 质粒DNA的提取与酶切

实验六 质粒DNA的提取与酶切

实验六质粒DNA的提取与酶切姓名:mangogola质粒是一种双链的共价闭合DNA分子,它是染色体外能够稳定遗传的因子。

质粒具有复制和控制机构,能够在细胞质中独立自主地进行复制,并使子代细胞保持他们恒定的拷贝数。

目前质粒已广泛用于DNA分子无性繁殖的运载体,同时也是研究DNA结构和功能的较好模型。

质粒一般来自细菌,分离和纯化的方法有很多但都包括以下几个步骤:细菌培养和质粒扩增、菌体裂解、质粒DNA的纯化。

细菌裂解时常用溶菌酶和SDS或氢氧化钠和SDS的混合物作为裂解液,这样染色体DNA可以形成折叠状结构附着在细胞膜碎片上,离心时容易沉出,质粒DNA存在于上清液中,其中还含有可溶性蛋白和RNA等,用蛋白酶或核糖核酸酶使他们降解,通过碱性酚和氯仿-异戊醇混合液抽提除去蛋白等杂质。

质粒的酶切使用限制性内切酶,它是一类识别双链DNA中特殊核苷酸序列并使每条链的一个磷酸二酯键断开的内切脱氧核糖核酸酶。

限制性内切酶产生的DNA片段末端有两种形式:粘性末端和平齐末端。

影响限制性内切酶作用效率的影响因素有:DNA甲基化、DNA 纯度、酶用量、反应温度以及反应的缓冲体系等等。

一.实验过程1.细菌培养无菌条件下用接种环挑取少量冻结的菌种接到平皿上(可平板划线分离单菌落),37℃培养8-12h。

用牙签挑取单菌落接入含有氨苄青霉素溶液的液体培养基中,封口,37℃振荡培养6-12h。

2.碱裂解法提取质粒DNA连续取1ml菌体两次通过离心累积至一个EP管中。

将细菌沉淀重悬于100uL预冷的溶液Ⅰ中,振荡器上剧烈震荡混匀。

加入200uL新配制的溶液Ⅱ,盖紧管口,快速颠倒混匀5次,不要震荡,将离心管置于冰上5min。

加入150uL预冷的溶液Ⅲ盖紧管口,倒置后温和震荡10s,之后将离心管置于冰上3-5min。

4℃,12000g离心5min,上清液转移至一新管中。

加入等量的苯酚-氯仿-异戊醇混合溶液,震荡1-2min。

4℃,12000g离心2min,上清液转移至一新管中。

质粒dna酶切实验报告

质粒dna酶切实验报告

质粒dna酶切实验报告实验报告:质粒DNA酶切实验一、实验目的1. 熟悉质粒DNA的抽提方法及质量检测方法。

2. 掌握酶切反应中各种试剂的使用方法和浓度。

3. 学习构建质粒的操作技术,合理选择酶切酶和酶切条件,成功制备目标DNA 片段。

二、实验原理质粒是宿主细胞负责复制、分离和基因表达的非必需DNA分子,通常还携带有特定的基因片段。

酶切反应是一种通过酶解水解代表性结构的方法,主要应用于DNA检测、分析和改造等方面。

在质粒DNA酶切实验中,需要先将质粒DNA利用DNA抽提试剂提取,之后与适当的酶切酶混合进行酶切反应,最终得到目标DNA片段。

三、实验步骤1. 取200µl E.coli DH5α预菌液,离心5min,弃去上清液,用PBS洗菌2次。

2. 加入200µl胰蛋白酶,37°C水浴混合反应5min,离心1min,上清液弃掉。

3. 加入200µl重组核酸缓冲液,同样37°C水浴混合反应5min,离心1min,上清液弃掉。

4. 加入50µl重组蛋白酶K,65°C水浴下混合反应50min,离心5min(13000r/min),上清液弃掉。

5. 加入50µl除菌水,65°C混匀5min后,离心5min,上清液收集起来,质粒DNA抽提完成。

6. 按照要求将质粒DNA加入载体质粒pUC19中,加入合适的限制酶进行酶切反应。

7. 通过琼脂糖凝胶电泳法将分子量合适的目标DNA片段筛选出来。

四、实验结果本次实验成功提取了质粒DNA,并利用限制酶EcoRI和BamHI进行了酶切反应。

最终,经琼脂糖凝胶电泳检测,成功得到目标DNA片段,质量均匀、纯度高。

五、实验总结本次实验通过对质粒DNA的抽提和酶切反应,加深了对质粒结构及酶切法原理的理解,并提高了实验操作的技术能力及分析数据的能力。

在今后的实验中,将继续加强实验操作,探究更多质粒DNA的构建与酶切方法,为基因检测及分析领域提供更多有效的技术支持。

动物分子生物学实验6重组质粒DNA的提取及插入DNA的酶切鉴定

动物分子生物学实验6重组质粒DNA的提取及插入DNA的酶切鉴定
564
125
四、实验步骤
接含质粒的单菌落于3ml LB Amp+液体培养基中 370C,190rpm振荡培养过夜
取1.5ml菌液入1.5ml的dorf管中 6000rpm、离心2min,弃上清,收集菌体 100uL溶液I悬浮菌体(充分振荡),室温(或冰浴)
10min 加入200uL溶液II(轻轻混匀),冰上静置5min裂解菌体
3 将细菌沉淀悬浮于100μL溶液Ⅰ中,充分混匀,室 温放置10 min。
4 加200μL溶液Ⅱ(新鲜配制),盖紧管盖,混匀内 容物,将离心管放冰上5 min。
5 加入150μL溶液Ⅲ(冰上预冷),盖紧管口,颠倒数 次使混匀。冰上放置15min。
6 12 000r/min,离心10 min,将上清转至另一离心管中。 向上清中加入等体积酚:氯仿 (1:1)(去蛋白),反复 混匀,12 000r/min,离心5 min,将上清转至另一离心 管中。转移时小心!(total volume: 400 μL)
- 原核细胞 - 繁殖力强, 2-30 分细胞分裂、加倍
DNA
基因组107bp, 编码约2000种蛋白质
质粒(plasmid)
- 染色体外的稳定遗传因子
- 双链、闭环的DNA分子,大小1-200 kb 不等 - 存在于细菌、放线菌和真菌细胞中
- 具有自主复制和转录能力,并表达所携带的遗传信息
DNA
*溶液II 0.2mol/L溶液(3M, pH=4.8):
60mL的5mol/L KAc, 11.5ml冰醋酸, 28.5mL H2O
*饱和酚(pH8.0 Tris-HCl饱和) *氯仿 *3M乙酸钠溶液(pH5.2) * TE缓冲液:
10mmol/L,Tris-HCl, 1mmol/L,EDTA , pH8.0, * 100%乙醇与70%乙醇
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、加入200L新配制的溶液II, 盖紧管口,快速颠倒离心管, 以混匀 内容物,冰上放置3-5min;
溶液II中的NaOH与SDS可裂解细胞,使DNA变性以及SDS使蛋白变 性并形成交联的网状结构
5、加入150l溶液III, 加盖后颠倒6-7次混匀,冰上放置2~3min; 溶液III为低pH的醋酸钾缓冲液,中和NaOH,以便使部分变性的闭环
试剂: LB培养基 氨苄青霉素贮存液:浓度50-100mg/mL; 溶液I: 50mmol/L葡萄糖,10mmol/L EDTA (pH8.0),
25mmol/L Tris-HCl (pH8.0); 溶液II: 0.2mol/L NaOH, 1%SDS (现配现用); 溶液III: 乙酸钾溶液(3M, pH=4.8)( 60mL的5mol/L KAc, 11.5ml
冰醋酸,28.5mL H2O); RNase A: 10mg/ml; TE缓冲液: 10mmol/L,Tris-HCl, 1mmol/L,EDTA,pH8.0;
5×TBE缓冲液:0.45mol/L Tris-硼酸,0.01 mol/L EDTA, pH 8.0; 10×Loading buffer:1% SDS, 0.05%溴酚兰,50%的甘油; 无水乙醇;70%乙醇; 标准分子量片段; 核酸内切酶 EcoR I (TaKaRa); EcoR I酶解缓冲液(10× buffer H); 琼脂糖; 溴化乙啶(EB)染色液(10mg/ml)。
质粒复性,而细菌染色体DNA不能正确复性
6、12000 g离心6 min,将上清移入另一干净的Ep管中; 7、加2倍上清体积(约1mL)的无水乙醇, 振荡混匀,室温放 置2min. 8、12000g离心10min,弃上清液,再用70%的乙醇洗涤 一次, 12000g离心1min,离心管倒置于吸水纸上扣干, 然后在中空浓缩系统上干燥质粒; 9、加入40L含50 g/mL RNase A的灭菌蒸馏水或TE 缓 冲液溶解提取物,室温放置直到质粒完全溶解(约8min), 存于-20℃或直接用于酶切。
四、碱裂解法小量制备质粒DNA
1、挑取转化筛选的带有目的质粒的大肠杆菌接种到液体培养基 中,37℃震荡培养12~16小时;
2、将1.5mL菌液加入Ep离心管中,12000 g离心30 Sec,弃上清液, 在吸水纸上扣干; 离心时间不能太长,以免影响下一步的菌体悬浮
3、加入100L预冷的溶液I ,于涡旋振荡器上振荡悬浮细菌细胞, 尽量使细胞分散; 溶液I中的葡萄糖的作用是增大让一让的粘度,减少提取过程 中的机械剪切力,防止染色体DNA 的断裂;EDTA的作用是与 二价离子(Ca2+)结合,降低DNase对DNA的降解
实验四 质粒DNA的提取与酶切鉴定
一. 实验目的和要求
1、了解质粒DNA的特性,掌握碱裂解法从大肠杆菌细胞中分离、 提取质粒DNA的方法; 2、掌握限制性内切酶的特性、酶解和琼脂糖凝胶电泳的操作方法;
通过本实验了解限制性内切酶在分子生物学研究中的意义与作用。
二.实验原理
1、碱裂解法小量制备质粒DNA:碱裂解法是基于线性大分子染 色体DNA与小分子环形质粒DNA的变性复性的差异达到分离目 的的,在pH12.0~12.6的碱性环境中,线型染色体DNA和环型 质粒DNA氢键会发生断裂,双链解开而变性,但质粒DNA由于 其闭合环型结构,氢键仅发生部分断裂,而且其互补链不完全分 离 ; 当 将 pH 值 调 节 到 中 性 并 在 高 盐 浓 度 下 , 已 分 开 的 染 色 体 DNA互补链不能复性而交联形成不溶的网状结构,通过离心,大 部分染色体DNA、不稳定的大分子RNA和蛋白质-SDS复合物等 一起沉淀下来而被除去,而部分变性的闭合环状的质粒DNA在中 性条件下很快复性,恢复到原来的构型,呈可溶性状态保存与溶 液中,离心后上清中便含有所需要的质粒DNA。
在20 L 反应液中反应1h,使1 g DNA完全消化所需的酶量.
2、轻轻混匀, 4000g离心10秒 ,置于37℃水浴中酶解2-3h。
3、酶解完成后,电泳检测酶切结果。
六、 实验结果报告
1、质粒浓度的计算(紫外分光光度计法) 紫外分光光度法测定核酸含量 双链DNA含量=OD260nm×样品稀释倍数×50ug/ml=ug/m1 样品
质粒图谱:
五、 提取质粒的酶切鉴定与琼脂糖凝胶电泳
1、在1.5mL Ep管中依次加入下列溶液于1.5ml离心管中
提取质粒DNA4Βιβλιοθήκη 0 L10× buffer H
1.0 l
EcoR I
1.0 l (2.0 U)
dd H2O
4.0 L
10 L
1U: 1单位酶通常定义为,在建议缓冲液及温度下,
2、质粒提取与酶切鉴定电泳结果,贴上打印实验照片并标明 照片上各DNA条带的含义。
七、思考题
1、根据DNA限制酶的识别切割特性,催化条件及是否具有修饰 酶活性可分为几种类型?其中II类限制性内切酶有何特性?
2、在用碱裂解法小量制备质粒过程中I液、II液与III液的作用是什 么?
2、限制性内切酶:又称为内切酶或限制酶,是一类能识别双链 DNA分子特异性核酸序列的DNA水解酶,是体外剪切基因片段 的重要工具,主要存在于原核生物中。根据限制酶的识别切割特 性, 催化条件及是否具有修饰酶活性可分为Ⅰ、Ⅱ、III型三大类, Ⅰ类和III类限制性内切酶,在同一蛋白分子中兼有甲基化作用及 依赖ATP的限制性内切酶活性。Ⅰ类限制性内切酶结合于特定识 别位点,但却随机地切割回转到被结合处的DNA。Ⅲ类限制性内 切酶在识别位点上切割,然后从底物上解离下来。故Ⅰ类和Ⅲ限 制酶在基因工程中基本不用,II类酶在分子克隆中使用广泛。
(4)、有不同来源的限制性内切酶可以识别相同的序列,甚至切割 的位点也相同,称为同裂酶或异源同工酶,如Hpa II与Msp I;有 的识别位点不同,但对DNA切割后可产生相同的粘性末端,称为同 尾酶,如BamH I与Bgl II。
三.实验材料与设备:
超净工作台、电热恒温水浴、分光光度计、恒温培养箱、恒温振荡 器、移液器、微型离心管等、台式冷冻高速离心机、旋涡震荡器、 电泳仪、电泳槽、紫外透射仪,凝胶成像仪、冰箱、制冰机等; 1.5mL 与0.5mL Eppendorf 管、Tip头 、烧杯、量筒
其基本特点如下:
(1)、专一性地识别并切割特定的核苷酸序列,如EcoR I识别与
切割序列为
5`····GAATTC····3`
3`····CTTAAG····5`
(2)、识别的核苷酸数目大多数为4~6个,少数识别8~13个;
(3)、识别序列大多数为二重对称(回文序列),大多数酶产生
的是具有凸出的粘性末端:
相关文档
最新文档