五点法作图正弦函数
正弦、余弦函数的五点作图
五点作图法仅选取了五个点,可能无法完全准确地反映函数的细节特征,特别是在函数变化较为复杂 或周期较长的情况下,误差可能会比较大。
对正弦、余弦函数的理解和掌握
理解
正弦、余弦函数是三角函数的基本形式 ,它们在周期性和对称性方面具有显著 特点。通过五点作图法,可以更好地理 解这些特点,从而加深对三角函数的认 识。
连接各点形成函数图像
根据五点作图法,使用平滑的曲线连 接这五个关键点。
绘制时要注意曲线的连续性和平滑度, 确保能够真实反映函数的变化趋势。
04
正弦、余弦ห้องสมุดไป่ตู้数的五点作图实践
选取五个关键点
周期起点
选取一个周期内的起点,通常 为$x=0$或$x=pi$。
极值点
在正弦和余弦函数中,极值点 分别为$x=frac{pi}{2}$和 $x=frac{3pi}{2}$。
目的和重要性
目的
通过五点作图法,可以快速、准 确地绘制正弦、余弦函数的图形 ,有助于理解函数的性质和变化 规律。
重要性
在实际应用中,了解正弦、余弦 函数的图形对于解决各种问题具 有重要的意义,如振动分析、信 号处理、控制系统设计等。
02
正弦、余弦函数的定义和性质
正弦函数定义和性质
定义
正弦函数是三角函数的一种,定义为y=sinx,x∈R。
正弦、余弦函数的五点作 图
• 引言 • 正弦、余弦函数的定义和性质 • 五点作图法介绍 • 正弦、余弦函数的五点作图实践 • 结论
01
引言
主题简介
正弦、余弦函数是三角函数中的基本 函数,它们在数学、物理和工程等领 域有着广泛的应用。
五点作图法是一种常用的作图方法, 通过选取五个特定的点来绘制函数的 图形。
五点作图法课件
C 将 新疆 王新敞
y=-sin2x
图象上的横坐标变为原来的
1
倍,纵坐标变为原来的相反数,
奎屯
2
即得到 y=sinx 的图象
D 将 新疆 王新敞
y=-3sin2x
图象上的横坐标缩小一倍,纵坐标扩大到原来的
1
倍,
奎屯
3
且变为相反数,即得到 y=sinx 的图象
•五点作图法
•7
三、练习
2 将函数 新疆 王新敞
•3
二、知识点
2、五点法的应用,根据图象求函数解析式;
由函数 y=Asin(ωx+ )+b 的图象求其解析式,一般来说,如对所求 函数式中的 A、ω、 不加限制(如 A、ω的正负,角 的范围等),那么
所求的函数式应有无数多个不同的形式(这是由于所求函数是周期函数所
致),因此这类问题多以 A>0, ω>0, | |< 形式出现,我们解这类题
y=f(x)的图象沿
x
轴向右平移
,再保持图象上的纵坐标不变,
奎屯
3
而横坐标变为原来的 2 倍,得到的曲线与 y=sinx 的图象相同,则 y=f(x)是(C )
A
新疆 王新敞
y=
sin(
2x+
)
奎屯
3
B
新疆 王新敞
y=
sin(
2x-
)
奎屯
3
2 C
新疆 王新敞
y=
sin(
2x+
)
奎屯
3
2 D
新疆 王新敞
T
ωx + :称为相位 新疆 王新敞
x=0 时的相位 称为初相
奎屯
•五点作图法
正弦函数的图像(五点法)
1
0
x -1
0
x
1
-1
二、新知
在研究三角函数的图象和性质时,我们常用弧度制来度量角, 记为χ,表示自变量,用y表示函数值,于是正弦函数表示为
y=sinχ, χ∈R
y
1
0
p
2
π
3p
2π
x
2
-1
y=sinχ,x ∈[ 0, 2π ]
五点法作图 (0,0) (p,0) (2p,0)
y
( p ,1) 2
6
3
因此,换种思考路径,即采用平移线段的方法。
回忆三角函数线:
A'(-1,0)
B(0,1) y
P(cos,sin) N1
x
O M A(1,0)
B'(0,-1)
把单位圆12等分,可以得到对应于
2p 5p π 7p 4 p 3p 5 p
36
6323
y
0
11 p
6y
p pp
6 32 2π 的正弦线
小结:
作正弦函数图象的简图的 方法是:
“五点法”
正弦函数y=sinx的图象 (五点法)
正弦函数:我们常用弧度制来度量角,记为χ, 表示自变量,用y表示函数值,于是正弦函数 表示为y=sinχ, χ∈R
如何来作 正弦函数 的图象呢?
平移正弦线
思考:
时(都,Ⅱ有作)唯出做一相函的对数y值应图和的象它y的值对方,应法,s是i因n1此、p我列们表=1想2、/到2描,当点x而取3、si连n0线p。=任p60意..8给66p ,1) 2
1
x
0p
π
3p
2π
2
2
-1
5.4.1正弦函数、余弦函数的图象课件高中数学人教A版必修第一册
由图象可知: = sin , �� = cos 的图象在
区间 −2π, π 的交点个数为3.
故选:A.
)
典型例题
题型四:与三角函数有关的零点问题
1
2
【对点训练4】函数 = sin + 2|sin |, ∈ [0,2π]的图象与直线 = 的交点共有
必修第一册 第五章
三角函数
第五章 三角函数
5.4.1 正弦函数、余弦函数的图象
正弦函数、余弦函数的定义
将角的弧度视为自变量x,角的三角函数值为y,则
函数y=sin x叫做正弦函数,
弧 唯一确定
函数y=cos x叫做余弦函数,
度
二者的定义域均为R。
角
单位圆上任意一点在圆周上旋转一周就回到原来的位置:
+ 2 )( ∈ )
2
3
+ 2 ,
故选:B
2
3
+ 2)( ∈ ).
典型例题
题型四:与三角函数有关的零点问题
【例4】函数 = sin , = cos 的图象在区间 −2π, π 的交点个数为(
A.3
B.4
C.5
D.6
【答案】A
【解析】分别作出 = sin , = cos 在区间
【答案】4
【解析】当 ∈ [0, π]时,求得 = 3sin ,
当 ∈ [π, 2π]时,求得 = −sin ,
在同一坐标系中画出画出两个函数的图象,结合图
象,即可求解.
由题意,函数 = sin + 2|sin |, ∈ [0,2π],
当 ∈ [0, π]时,sin ≥ 0,
2
三角函数的图象与性质
三角函数的图象与性质一、基础知识1.用五点法作正弦函数和余弦函数的简图 (1)“五点法”作图原理:在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).函数y =sin x ,x ∈[0,2π],y =cos x ,x ∈[0,2π]的五个关键点的横坐标是零点和极值点(最值点).(2)五点法作图的三步骤:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质三角函数性质的注意点(1)正、余弦函数一个完整的单调区间的长度是半个周期;y =tan x 无单调递减区间;y =tan x 在整个定义域内不单调.(2)要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.二、常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z );若为奇函数,则有φ=k π (k∈Z ).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z );若为奇函数,则有φ=k π+π2 (k∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ).第一课时 三角函数的单调性 考点一 求三角函数的单调区间[典例] (2017·浙江高考)已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ). (1)求f ⎝⎛⎭⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间. [解] (1)由题意,f (x )=-cos 2x -3sin 2x =-2⎝⎛⎭⎫32sin 2x +12cos 2x =-2sin ⎝⎛⎭⎫2x +π6, 故f ⎝⎛⎭⎫2π3=-2sin ⎝⎛⎭⎫4π3+π6=-2sin 3π2=2. (2)由(1)知f (x )=-2sin ⎝⎛⎭⎫2x +π6. 则f (x )的最小正周期是π. 由正弦函数的性质,令π2+2k π≤2x +π6≤3π2+2k π(k ∈Z), 解得π6+k π≤x ≤2π3+k π(k ∈Z),所以f (x )的单调递增区间是⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z).[题组训练]1.函数y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调递减区间为________. 解析:作出y =|tan x |的示意图如图,观察图象可知,y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调递减区间为⎝⎛⎦⎤-π2,0和⎝⎛⎦⎤π2,π. 答案:⎝⎛⎦⎤-π2,0,⎝⎛⎦⎤π2,π 2.函数g (x )=-cos ⎝⎛⎭⎫-2x +π3⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π2,π2的单调递增区间为________. 解析:g (x )=-cos ⎝⎛⎭⎫-2x +π3=-cos ⎝⎛⎭⎫2x -π3, 欲求函数g (x )的单调递增区间,只需求函数y =cos ⎝⎛⎭⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π(k ∈Z),得k π+π6≤x ≤k π+2π3(k ∈Z).故函数g (x )的单调递增区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z). 因为x ∈⎣⎡⎦⎤-π2,π2, 所以函数g (x )的单调递增区间为⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2. 答案:⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2 3.(2019·金华适应性考试)已知函数f (x )=3cos 2x -2sin 2(x -α),其中0<α<π2,且f ⎝⎛⎭⎫π2=-3-1.(1)求α的值;(2)求f (x )的最小正周期和单调递减区间.解:(1)由已知得f ⎝⎛⎭⎫π2=-3-2sin 2⎝⎛⎭⎫π2-α=-3-2cos 2α=-3-1,整理得cos 2α=12. 因为0<α<π2,所以cos α=22,α=π4.(2)由(1)知,f (x )=3cos 2x -2sin 2⎝⎛⎭⎫x -π4 =3cos 2x -1+cos ⎝⎛⎭⎫2x -π2 =3cos 2x +sin 2x -1 =2sin ⎝⎛⎭⎫2x +π3-1. 易知函数f (x )的最小正周期T =π. 令t =2x +π3,则函数f (x )可转化为y =2sin t -1.显然函数y =2sin t -1与y =sin t 的单调性相同, 当函数y =sin t 单调递减时, 2k π+π2≤t ≤2k π+3π2(k ∈Z),即2k π+π2≤2x +π3≤2k π+3π2(k ∈Z),解得k π+π12≤x ≤k π+7π12(k ∈Z).所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+π12,k π+7π12(k ∈Z).考点二 求三角函数的值域(最值)[典例] (1)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3(2)(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. [解析] (1)当x ∈⎣⎡⎦⎤0,π2时, 2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 所以函数f (x )的值域为⎣⎡⎦⎤-32,3. (2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1], 因此当cos x =32时,f (x )max =1. [答案] (1)B (2)1[变透练清]1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝⎛⎭⎫2x -π6,则f (x )在区间⎣⎡⎦⎤0,π2上的值域为________.解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, cos ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,1, 故f (x )=3cos ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-332,3.答案:⎣⎡⎦⎤-332,32.(变条件)若本例(2)中函数f (x )的解析式变为:函数f (x )=sin x +cos x +sin x cos x ,则f (x )的最大值为________.解析:设t =sin x +cos x (-2≤t ≤2), 则sin x cos x =t 2-12,y =t +12t 2-12=12(t +1)2-1,当t =2时,y =t +12t 2-12取最大值为2+12.故f (x )的最大值为22+12.答案:22+123.已知函数f (x )=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f (x )的值域是⎣⎡⎦⎤-12,1,则实数a 的取值范围是________.解析:由x ∈⎣⎡⎦⎤-π3,a ,知x +π6∈⎣⎡⎦⎤-π6,a +π6. ∵x +π6∈⎣⎡⎦⎤-π6,π2时,f (x )的值域是⎣⎡⎦⎤-12,1, ∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π. 答案:⎣⎡⎦⎤π3,π考点三 根据三角函数单调性确定参数[典例] (1)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( )A.π4 B.π2C.3π4D .π(2)若f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π2,2π3上是增函数,则ω的取值范围是________.[解析] (1)f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4, 当x ∈⎣⎡⎦⎤-π4,3π4,即x -π4∈⎣⎡⎦⎤-π2,π2时, y =sin ⎝⎛⎭⎫x -π4单调递增, 则f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减. ∵函数f (x )在[-a ,a ]是减函数, ∴[-a ,a ]⊆⎣⎡⎦⎤-π4,3π4,∴0<a ≤π4, ∴a 的最大值是π4.(2)法一:因为x ∈⎣⎡⎦⎤-π2,2π3(ω>0), 所以ωx ∈⎣⎡⎦⎤-πω2,2πω3, 因为f (x )=2sin ωx 在⎣⎡⎦⎤-π2,2π3上是增函数, 所以⎩⎪⎨⎪⎧-πω2≥-π2,2πω3≤π2,ω>0,故0<ω≤34.法二:画出函数f (x )=2sin ωx (ω>0)的图象如图所示.要使f (x )在⎣⎡⎦⎤-π2,2π3上是增函数, 需⎩⎨⎧-π2ω≤-π2,2π3≤π2ω,ω>0,即0<ω≤34.[答案] (1)A (2)⎝⎛⎦⎤0,34[解题技法]已知三角函数的单调区间求参数范围的3种方法(1)求出原函数的相应单调区间,由所给区间是所求某区间的子集,列不等式(组)求解. (2)由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.[题组训练]1.若函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,且|φ|<π2在区间⎣⎡⎦⎤π6,2π3上是单调递减函数,且函数值从1减少到-1,则f ⎝⎛⎭⎫π4=________.解析:由题意知T 2=2π3-π6=π2,故T =π,所以ω=2πT=2,又因为f ⎝⎛⎭⎫π6=1,所以sin ⎝⎛⎭⎫π3+φ=1. 因为|φ|<π2,所以φ=π6,即f (x )=sin ⎝⎛⎭⎫2x +π6. 故f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π2+π6=cos π6=32. 答案:322.(2019·贵阳检测)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________.解析:由π2<x <π,得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆⎣⎡⎦⎤π2,3π2, 所以⎩⎨⎧π2ω+π4≥π2,ω+π4≤3π2,解得12≤ω≤54.答案:⎣⎡⎦⎤12,54[课时跟踪检测]A 级1.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) D.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z),得k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z). 2.y =|cos x |的一个单调递增区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[0,π] C.⎣⎡⎦⎤π,3π2 D.⎣⎡⎦⎤3π2,2π解析:选D 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的部分不变,即得y =|cos x |的图象(如图).故选D.3.已知函数y =2cos x 的定义域为⎣⎡⎦⎤π3,π,值域为[a ,b ],则b -a 的值是( ) A .2 B .3 C.3+2D .2- 3解析:选B 因为x ∈⎣⎡⎦⎤π3,π,所以cos x ∈⎣⎡⎦⎤-1,12,故y =2cos x 的值域为[-2,1],所以b -a =3.4.(2019·西安八校联考)已知函数f (x )=cos(x +θ)(0<θ<π)在x =π3时取得最小值,则f (x )在[0,π]上的单调递增区间是( )A.⎣⎡⎦⎤π3,πB.⎣⎡⎦⎤π3,2π3 C.⎣⎡⎦⎤0,2π3 D.⎣⎡⎦⎤2π3,π解析:选A 因为0<θ<π,所以π3<π3+θ<4π3,又因为f (x )=cos(x +θ)在x =π3时取得最小值,所以π3+θ=π,θ=2π3,所以f (x )=cos ⎝⎛⎭⎫x +2π3.由0≤x ≤π,得2π3≤x +2π3≤5π3.由π≤x +2π3≤5π3,得π3≤x ≤π,所以f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤π3,π. 5.(2018·北京东城质检)函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最小值为( ) A .1 B.1-32C.32D .1- 3解析:选A 函数f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12. ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6. 当2x -π6=5π6时,函数f (x )取得最小值为1.6.(2019·广西五市联考)若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为1,则ω=( )A.14 B.13C.12D.32解析:选C 因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎡⎦⎤0,π3上单调递增,则f (x )max =f ⎝⎛⎭⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12. 7.函数y =sin x -cos x 的定义域为________.解析:要使函数有意义,需sin x -cos x ≥0,即sin x ≥cos x , 由函数的图象得2k π+π4≤x ≤2k π+5π4(k ∈Z),故原函数的定义域为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z). 答案:⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 8.函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为________.解析:因为f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x =1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112,而sin x∈[-1,1],所以当sin x =1时,f (x )取最大值5.答案:59.函数f (x )=2sin ⎝⎛⎭⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为________. 解析:因为0≤x ≤9,所以0≤π6x ≤3π2,即-π3≤π6x -π3≤7π6,所以-32≤sin ⎝⎛⎭⎫π6x -π3≤1, 故f (x )的最大值为2,最小值为-3,它们之和为2- 3. 答案:2- 310.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.解析:法一:由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数 的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二:由题意,得f (x )max =f ⎝⎛⎭⎫π3=sin π3ω=1. 由已知并结合正弦函数图象可知,π3ω=π2,解得ω=32.答案:3211.已知函数f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )的单调递增区间;(2)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值. 解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z.故函数f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z. (2)因为当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, 所以-1≤sin ⎝⎛⎭⎫2x +π4≤22,所以-2≤f (x )≤1, 所以当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.12.已知函数f (x )=12sin 2x -32cos 2x -32.(1)求函数f (x )的最小正周期和最大值; (2)讨论函数f (x )在⎣⎡⎦⎤π6,2π3上的单调性.解:(1)因为函数f (x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 所以函数f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π, 从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增;当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增,在⎣⎡⎦⎤5π12,2π3上单调递减.B 级1.已知函数f (x )=2sin ⎝⎛⎭⎫x +7π3,设a =f ⎝⎛⎭⎫π7,b =f ⎝⎛⎭⎫π6,c =f ⎝⎛⎭⎫π3,则a ,b ,c 的大小关系是________(用“<”表示).解析:函数f (x )=2sin ⎝⎛⎭⎫x +π3+2π=2sin ⎝⎛⎭⎫x +π3, a =f ⎝⎛⎭⎫π7=2sin 10π21, b =f ⎝⎛⎭⎫π6=2sin π2, c =f ⎝⎛⎭⎫π3=2sin 2π3=2sin π3, 因为y =sin x 在⎣⎡⎦⎤0,π2上单调递增,且π3<10π21<π2, 所以sin π3<sin 10π21<sin π2,即c <a <b . 答案:c <a <b2.(2018·四川双流中学模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在⎝⎛⎭⎫π2,π上单调递减,则ω=________.解析:由f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,可知函数f (x ) 的图象关于直线x =π4对称, ∴π4ω+π4=π2+k π,k ∈Z , ∴ω=1+4k ,k ∈Z ,又∵f (x )在⎝⎛⎭⎫π2,π上单调递减, ∴T 2≥π-π2=π2,T ≥π, ∴2πω≥π,∴ω≤2, 又∵ω=1+4k ,k ∈Z ,∴当k =0时,ω=1. 答案:13.已知函数f (x )=2a sin ⎝⎛⎭⎫x +π4+a +b . (1)若a =-1,求函数f (x )的单调递增区间;(2)若x ∈[0,π],函数f (x )的值域是[5,8],求a ,b 的值. 解:(1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z),得2k π+π4≤x ≤2k π+5π4(k ∈Z),所以f (x )的单调递增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z). (2)因为0≤x ≤π,所以π4≤x +π4≤5π4,所以-22≤sin ⎝⎛⎭⎫x +π4≤1,依题意知a ≠0. ①当a >0时,有{ 2a +a +b =8,b =5, 所以a =32-3,b =5. ②当a <0时,有{ b =8,2a +a +b =5,所以a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.第二课时 三角函数的周期性、奇偶性及对称性考点一 三角函数的周期性[典例] (1)(2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( )A.π4 B.π2C .πD .2π(2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则正整数k 的值为________. [解析] (1)由已知得f (x )=tan x 1+tan 2x=sin x cos x 1+⎝⎛⎭⎫sin x cos x 2=sin xcos x cos 2x +sin 2x cos 2x =sin x cos x =12sin 2x ,所以f (x )的最小正周期为T =2π2=π.(2)由题意知1<πk <2,即π2<k <π.又因为k ∈N *,所以k =2或k =3. [答案] (1)C (2)2或3[解题技法]1.三角函数最小正周期的求解方法 (1)定义法;(2)公式法:函数y =A sin(ωx +φ)(y =A cos(ωx +φ))的最小正周期T =2π|ω|,函数y =A tan(ωx+φ)的最小正周期T =π|ω|;(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y =|A sin(ωx +φ)|,y =|A cos(ωx +φ)|,y =|A tan(ωx +φ)|的周期均为T =π|ω|.(2)函数y =|A sin(ωx +φ)+b |(b ≠0),y =|A cos(ωx +φ)+b |(b ≠0)的周期均为T =2π|ω|.[题组训练]1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析:选A 因为y =cos|2x |=cos 2x , 所以该函数的周期为2π2=π;由函数y =|cos x |的图象易知其周期为π; 函数y =cos ⎝⎛⎭⎫2x +π6的周期为2π2=π; 函数y =tan ⎝⎛⎭⎫2x -π4的周期为π2,故最小正周期为π的函数是①②③. 2.若x =π8是函数f (x )=2sin ⎝⎛⎭⎫ωx -π4,x ∈R 的一个零点,且0<ω<10,则函数f (x )的最小正周期为________.解析:依题意知,f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫ωπ8-π4=0, 即ωπ8-π4=k π,k ∈Z ,整理得ω=8k +2,k ∈Z. 又因为0<ω<10,所以0<8k +2<10,得-14<k <1,而k ∈Z ,所以k =0,ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x -π4,f (x )的最小正周期为π. 答案:π考点二 三角函数的奇偶性[典例] 函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3C.5π6D.2π3[解析] 因为f (|x |)=f (x ),所以函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ是偶函数, 所以-π3+φ=k π+π2,k ∈Z ,所以φ=k π+5π6,k ∈Z ,又因为φ∈(0,π),所以φ=5π6. [答案] C[解题技法] 判断三角函数奇偶性的方法三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.[题组训练]1.(2018·日照一中模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上单调递增的奇函数是( ) A .y =sin ⎝⎛⎭⎫2x +3π2 B .y =cos ⎝⎛⎭⎫2x -π2 C .y =cos ⎝⎛⎭⎫2x +π2 D .y =sin ⎝⎛⎭⎫π2-x解析:选C y =sin ⎝⎛⎭⎫2x +3π2=-cos 2x 为偶函数,排除A ;y =cos ⎝⎛⎭⎫2x -π2=sin 2x 在⎣⎡⎦⎤π4,π2上为减函数,排除B ;y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 为奇函数,在⎣⎡⎦⎤π4,π2上单调递增,且周期为π,符合题意;y =sin ⎝⎛⎭⎫π2-x =cos x 为偶函数,排除D.故选C.2.若函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________. 解析:f (x )=3cos(3x -θ)-sin(3x -θ) =2sin ⎝⎛⎭⎫π3-3x +θ =-2sin ⎝⎛⎭⎫3x -π3-θ, 因为函数f (x )为奇函数, 所以-π3-θ=k π,k ∈Z ,即θ=-k π-π3,k ∈Z ,故tan θ=tan ⎝⎛⎭⎫-k π-π3=- 3. 答案:- 3考点三 三角函数的对称性[典例] (1)已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( ) A .关于点⎝⎛⎭⎫π3,0对称 B .关于点⎝⎛⎭⎫5π3,0对称 C .关于直线x =π3对称D .关于直线x =5π3对称(2)(2018·江苏高考)已知函数y =sin(2x +φ)⎝⎛⎭⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为________.[解析] (1)因为函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期是4π,而T =2πω=4π,所以ω=12, 即f (x )=2sin ⎝⎛⎭⎫x 2+π6.令x 2+π6=π2+k π(k ∈Z),解得x =2π3+2k π(k ∈Z), 故f (x )的对称轴为x =2π3+2k π(k ∈Z),令x 2+π6=k π(k ∈Z),解得x =-π3+2k π(k ∈Z). 故f (x )的对称中心为⎝⎛⎭⎫-π3+2k π,0(k ∈Z),对比选项可知B 正确. (2)由题意得f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=±1, ∴2π3+φ=k π+π2(k ∈Z ),∴φ=k π-π6(k ∈Z ). ∵φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π6. [答案] (1)B (2)-π6[解题技法]三角函数图象的对称轴和对称中心的求解方法求三角函数图象的对称轴及对称中心,须先把所给三角函数式化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再把(ωx +φ)整体看成一个变量,若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称轴,则只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称中心的横坐标,则只需令ωx +φ=k π(k ∈Z ),求x .[题组训练]1.若函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0对称,则|φ|的最小值为( ) A.π6 B.π4C.π3D.π2解析:选A 由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π=3cos ⎝⎛⎭⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z. 取k =0,得|φ|的最小值为π6.2.(2018·长春质检)函数f (x )=2sin(2x +φ)⎝⎛⎭⎫0<φ<π2,且f (0)=1,则下列结论中正确的是( )A .f (φ)=2B.⎝⎛⎭⎫π6,0是f (x )图象的一个对称中心 C .φ=π3D .x =-π6是f (x )图象的一条对称轴解析:选A 由f (0)=1且0<φ<π2,可得φ=π6,故选项C 错误;可得f (x )=2sin ⎝⎛⎭⎫2x +π6,把x =π6代入f (x )=2sin ⎝⎛⎭⎫2x +π6,得f (φ)=2,选项A 正确;f ⎝⎛⎭⎫π6=2,f (x )取得最大值,选项B 错误;而f ⎝⎛⎭⎫-π6=-1,非最值,选项D 错误,故选A. 3.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. 解析:∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴,∴f ⎝⎛⎭⎫π6=±2. 答案:2或-2[课时跟踪检测]A 级1.下列函数中,周期为2π的奇函数为( ) A .y =sin x 2cos x2B .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x解析:选A y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,故B 、C 、D 都不正确,故选A.2.已知函数f (x )=sin ⎝⎛⎭⎫3x +π6-1,则f (x )的图象的一条对称轴方程是( ) A .x =π9B .x =π6C .x =π3D .x =π2解析:选A 令3x +π6=k π+π2,k ∈Z ,解得x =k π3+π9,k ∈Z ,当k =0时,x =π9.因此函数f (x )的图象的一条对称轴方程是x =π9.3.(2018·南宁二中、柳州高中联考)同时具有以下性质:“①最小正周期是π;②图象关于直线x =π3对称;③在⎣⎡⎦⎤-π6,π3上是增函数;④图象的一个对称中心为⎝⎛⎭⎫π12,0”的一个函数是( )A .y =sin ⎝⎛⎭⎫x 2+π6 B .y =sin ⎝⎛⎭⎫2x +π3 C .y =sin ⎝⎛⎭⎫2x -π6 D .y =sin ⎝⎛⎭⎫2x -π3 解析:选C 因为最小正周期是π,所以ω=2,排除A 选项;当x =π3时,对于B ,y=sin ⎝⎛⎭⎫2×π3+π3=0,对于D ,y =sin ⎝⎛⎭⎫2×π3-π3=32,因为图象关于直线x =π3对称,所以排除B 、D 选项,对于C ,sin ⎝⎛⎭⎫2×π3-π6=1,sin ⎝⎛⎭⎫2×π12-π6=0,且在⎣⎡⎦⎤-π6,π3上是增函数,故C 满足条件.4.函数f (x )=cos ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为π,则f (x )满足( ) A .在⎝⎛⎭⎫0,π3上单调递增 B .图象关于直线x =π6对称C .f ⎝⎛⎭⎫π3=32D .当x =5π12时有最小值-1解析:选D 由函数f (x )=cos ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为π,得ω=2,则f (x )=cos ⎝⎛⎭⎫2x +π6.当x ∈⎝⎛⎭⎫0,π3时,2x +π6∈⎝⎛⎭⎫π6,5π6,显然此时f (x )不单调递增,故A 错误;当x =π6时,f ⎝⎛⎭⎫π6=cos π2=0,故B 错误;f ⎝⎛⎭⎫π3=cos 5π6=-32,故C 错误;当x =5π12时,f ⎝⎛⎭⎫5π12=cos ⎝⎛⎭⎫5π6+π6=cos π=-1,故D 正确.5.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2内单调递减 B .f (x )在⎝⎛⎭⎫π4,4π3内单调递减 C .f (x )在⎝⎛⎭⎫0,π2内单调递增 D .f (x )在⎝⎛⎭⎫π4,4π3内单调递增解析:选A 由题意知f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4. ∵f (x )的最小正周期为π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎫2x +φ+π4. 由f (x )=f (-x )知f (x )是偶函数, 因此φ+π4=k π+π2(k ∈Z).又∵|φ|<π2,∴φ=π4,∴f (x )=2cos 2x .当0<2x <π,即0<x <π2时,f (x )单调递减.故选A.6.(2018·昆明调研)已知函数f (x )=sin ωx 的图象关于点⎝⎛⎭⎫2π3,0对称,且f (x )在⎣⎡⎦⎤0,π4上为增函数,则ω=( )A.32 B .3 C.92D .6解析:选A 因为函数f (x )=sin ωx 的图象关于点⎝⎛⎭⎫2π3,0对称,所以2ω3π=k π(k ∈Z),即ω=32k (k ∈Z),① 又因为函数f (x )=sin ωx 在区间⎣⎡⎦⎤0,π4上为增函数, 所以π4≤π2ω且ω>0,所以0<ω≤2,② 由①②得ω=32. 7.若函数f (x )=cos ⎝⎛⎭⎫ωx +π6(ω∈N *)的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为________.解析:因为f ⎝⎛⎭⎫π6=0,所以cos ⎝⎛⎭⎫π6ω+π6=0, 即πω6+π6=π2+k π(k ∈Z),故ω=2+6k (k ∈Z), 又因为ω∈N *,故ω的最小值为2.答案:28.若函数y =2sin(3x +φ)⎝⎛⎭⎫|φ|<π2图象的一条对称轴为x =π12,则φ=________. 解析:因为y =sin x 图象的对称轴为x =k π+π2(k ∈Z), 所以3×π12+φ=k π+π2(k ∈Z), 得φ=k π+π4(k ∈Z). 又因为|φ|<π2, 所以k =0,故φ=π4. 答案:π49.若函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π3=________. 解析:由题设及周期公式得T =πω=π,所以ω=1,即f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3,所以f ⎝⎛⎭⎫π3=⎪⎪⎪⎪sin 2π3=32. 答案:3210.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.解析:f (x )=3sin ⎝⎛⎭⎫π2x +π4的周期T =2π×2π=4, f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值,故|x 1-x 2|的最小值为T 2=2. 答案:211.已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4. (1)求函数的最大值及相应的x 值集合;(2)求函数f (x )的图象的对称轴与对称中心.解:(1)当sin ⎝⎛⎭⎫2x -π4=1时,2x -π4=2k π+π2,k ∈Z , 即x =k π+3π8,k ∈Z ,此时函数取得最大值为2. 故f (x )的最大值为2,使函数取得最大值的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =3π8+k π,k ∈Z . (2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+12k π,k ∈Z , 即函数f (x )的图象的对称轴为x =3π8+12k π,k ∈Z. 由2x -π4=k π,k ∈Z ,得x =π8+12k π,k ∈Z , 即对称中心为⎝⎛⎭⎫π8+12k π,0,k ∈Z.12.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间. 解:由f (x )的最小正周期为π,得T =2πω=π, 所以ω=2,所以f (x )=sin(2x +φ).(1)当f (x )为偶函数时,有φ=π2+k π(k ∈Z). 因为0<φ<2π3,所以φ=π2. (2)因为f ⎝⎛⎭⎫π6=32, 所以sin ⎝⎛⎭⎫2×π6+φ=32,即π3+φ=π3+2k π或π3+φ=2π3+2k π(k ∈Z), 故φ=2k π或φ=π3+2k π(k ∈Z), 又因为0<φ<2π3,所以φ=π3, 即f (x )=sin ⎝⎛⎭⎫2x +π3. 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z), 得k π-5π12≤x ≤k π+π12(k ∈Z), 故f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z).B 级1.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4内单调递增 B .偶函数且在⎝⎛⎭⎫0,π2内单调递增 C .偶函数且在⎝⎛⎭⎫0,π2内单调递减 D .奇函数且在⎝⎛⎭⎫0,π4内单调递减 解析:选D 因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,所以8π3+φ=k π+π2,k ∈Z , 即φ=k π-13π6,k ∈Z. 又因为-π2<φ<π2,所以φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x , 所以该函数为奇函数且在⎝⎛⎭⎫0,π4内单调递减,故选D. 2.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0,x ∈R ).若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为( )A.12B .2 C.π2 D.π2解析:选D 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z , 所以ω2=π4+2k π,k ∈Z. 又ω-(-ω)≤12·2πω, 即ω2≤π2,即ω2=π4,所以ω=π2. 3.已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1,x ∈R .(1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值; (3)当x ∈⎣⎡⎦⎤π4,π2时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围.解:(1)因为f (x )=-cos ⎝⎛⎭⎫π2+2x -3cos 2x=sin 2x -3cos 2x=2⎝⎛⎭⎫12sin 2x -32cos 2x =2sin ⎝⎛⎭⎫2x -π3, 故f (x )的最小正周期为T =2π2=π. (2)由(1)知h (x )=2sin ⎝⎛⎭⎫2x +2t -π3. 令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z), 得t =k π2+π3(k ∈Z), 又t ∈(0,π),故t =π3或5π6. (3)当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3,所以f(x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m<f(x)+3,所以2-3<m<1+3,即-1<m<4.故实数m的取值范围是(-1,4).。
正弦函数、余弦函数地图像(附问题详解)
正弦函数、余弦函数的图象[学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.知识点一 正弦曲线正弦函数y =sin x (x ∈R )的图象叫正弦曲线.利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π2,…,2π等角的正弦线.③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合.⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象.在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π2,-1),(2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图.思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下:只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象.知识点二 余弦曲线余弦函数y =cos x (x ∈R )的图象叫余弦曲线.根据诱导公式sin ⎝⎛⎭⎫x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图).要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象.思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象?答案题型一 “五点法”作图的应用例1 利用“五点法”作出函数y =1-sin x (0≤x ≤2π)的简图. 解 (1)取值列表:(2)描点连线,如图所示:跟踪训练1 作函数y =sin x ,x ∈[0,2π]与函数y =-1+sin x ,x ∈[0,2π]的简图,并研究它们之间的关系. 解 按五个关键点列表:利用正弦函数的性质描点作图:由图象可以发现,把y =sin x ,x ∈[0,2π]的图象向下平移1个单位长度即可得y =-1+sin x ,x ∈[0,2π]的图象.题型二 利用正弦、余弦函数图象求定义域 例2 求函数f (x )=lg sin x +16-x 2的定义域.解 由题意得,x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0, 即⎩⎪⎨⎪⎧-4≤x ≤4,sin x >0,作出y =sin x 的图象,如图所示.结合图象可得定义域:x ∈[-4,-π)∪(0,π).跟踪训练2 求函数f (x )=lg cos x +25-x 2的定义域.解 由题意得,x 满足不等式组⎩⎪⎨⎪⎧cos x >025-x 2≥0, 即⎩⎪⎨⎪⎧cos x >0-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得定义域:x ∈⎣⎡⎭⎫-5,-32π∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤32π,5.题型三 利用正弦、余弦函数图象判断零点个数例3 在同一坐标系中,作函数y =sin x 和y =lg x 的图象,根据图象判断出方程sin x =lg x 的解的个数.解 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.跟踪训练3 方程x 2-cos x =0的实数解的个数是 .答案 2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.数形结合思想在三角函数中的应用例4 函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据图可得k 的取值范围是(1,3).1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴 C .直线y =xD .直线x =π22.用五点法画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A .(π6,12)B .(π2,1)C .(π,0)D .(2π,0)3.函数y =sin x ,x ∈[0,2π]的图象与直线y =-12的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2= .4.利用“五点法”画出函数y =2-sin x ,x ∈[0,2π]的简图.5.已知0≤x ≤2π,试探索sin x 与cos x 的大小关系.一、选择题1.函数y =-sin x ,x ∈⎣⎡⎦⎤-π2,3π2的简图是( )2.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( ) A .重合B .形状相同,位置不同C .关于y 轴对称D .形状不同,位置不同3.方程sin x =x10的根的个数是( )A .7B .8C .9D .10 4.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )5.如图所示,函数y =cos x |tan x |(0≤x <3π2且x ≠π2)的图象是( )6.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 二、填空题 7.函数y =log 12sin x 的定义域是 . 8.函数y =2cos x +1的定义域是 . 9.函数f (x )=sin x +116-x 2的定义域为 . 10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为 . 三、解答题11.用“五点法”画出函数y =12+sin x ,x ∈[0,2π]的简图.12.根据y =cos x 的图象解不等式: -32≤cos x ≤12,x ∈[0,2π].13.分别作出下列函数的图象. (1)y =|sin x |,x ∈R ; (2)y =sin|x |,x ∈R .当堂检测答案1.答案 D 2.答案 A 3.答案 3π解析 如图所示, x 1+x 2=2×3π2=3π.4.解 (1)取值列表如下:(2)描点连线,图象如图所示:5.解 用“五点法”作出y =sin x ,y =cos x (0≤x ≤2π)的简图.由图象可知①当x =π4或x =5π4时,sin x =cos x ;②当π4<x <5π4时,sin x >cos x ;③当0≤x <π4或5π4<x ≤2π时,sin x <cos x .课时精炼答案一、选择题 1.答案 D 2.答案 B解析 根据正弦曲线的作法可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象只是位置不同,形状相同.3.答案 A解析 在同一坐标系内画出y =x10和y =sin x 的图象如图所示:根据图象可知方程有7个根.4.答案 D 解析 由题意得y =⎩⎨⎧2cos x ,0≤x ≤π2或32π≤x ≤2π,0,π2<x <32π.显然只有D 合适.5.答案 C解析 当0≤x <π2时,y =cos x ·|tan x |=sin x ;当π2<x ≤π时,y =cos x ·|tan x |=-sin x ; 当π<x <3π2时,y =cos x ·|tan x |=sin x ,故其图象为C. 6.答案 D解析 作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形为如图所示的阴影部分. 利用图象的对称性可知该阴影部分的面积等于矩形OABC 的面积,又∵OA =2,OC =2π,∴S 阴影部分=S 矩形OABC =2×2π=4π. 二、填空题7.答案 {x |2k π<x <2k π+π,k ∈Z }解析 由log 12sin x ≥0知0<sin x ≤1,由正弦函数图象知2k π<x <2k π+π,k ∈Z .8.答案 ⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z .9.答案 (-4,-π]∪[0,π]解析 ⎩⎪⎨⎪⎧ sin x ≥0,16-x 2>0⇒⎩⎪⎨⎪⎧2k π≤x ≤2k π+π,-4<x <4 ⇒-4<x ≤-π或0≤x ≤π. 10.答案 ⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈⎣⎡⎦⎤π4,5π4. 三、解答题11.解 (1)取值列表如下:(2)描点、连线,如图所示.12.解 函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为 {x |π3≤x ≤5π6或7π6≤x ≤5π3}.实用文档文案大全 13.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧ sin x (x ≥0),-sin x (x <0). 其图象如图所示,。
正弦函数、余弦函数的图像及五点法作图
正弦函数、余弦函数的图像及五点法作图
【余弦函数y=cosx的图象】
用几何法作余弦函数的图象,可以用“反射法”将
角 与 终xx点的轴A余的作弦 正x轴线 半的“ 轴垂竖 成线立4,”角它[的把与直坐前线标面,轴所又向作过下的余平直弦移线线,交O过于1OAA1的′作,
那么 O1 A与AA′长度相等且方向同时为正,我们就 把余弦线 O1 A“竖立”起来成为AA′,用同样的方 法,将其它的余弦线也都“竖立”起来.再将它们 平移,使起点与x轴上相应的点x重合,则终点就是 余弦函数图象上的点.]
解:按五个关键点列表
利用正弦函数的特征描点画图:
正弦函数、余弦函数的图像及五点法作图
【变形训练】
1、作出 y cos x, x 0, 2 的简图
解:按五个关键点列表
x
0
2
π
3
2π
2
cosx 1
0
-1
0
1
-cosx -1
0
1曲线连接起来.
y=cosx的图象. 正弦函数y=sinx的图象和余弦函数y=cosx的图象 分别叫做正弦曲线和余弦曲线.
正弦函数、余弦函数的图像及五点法作图
【余弦函数y=cosx的图象】
-6 -5 -6 -5
-4 -3 -4 -3
-2 -
-2
-
y y=sinx
1
o
-1
y y=cosx
1
正弦函数、余弦函数的图像及五点法作图
【余弦函数y=cosx的图象】
也可以用“旋转法”把角 的余弦线“竖立”(把
角置诱x=x,导si的n则公x余的式O弦1图cM线o象s1与Ox向1OM左1sM按i平n长(逆移x度时 2相2针)单等方,还位,向可即方旋以得向转把余相2正弦同到弦函.O)函数1M根数1据位
6知识讲解_正弦函数的图象与性质_提高
正弦函数的图象与性质【学习目标】1.借助单位圆,理解正弦线的概念及意义;2.了解作正弦函数图象的三种方法,会用“五点法”作出正弦函数的图象;3.理解正弦函数在区间]2,0[π上的性质(如单调性、周期性、最大值和最小值以及与x 轴的交点等). 【要点梳理】要点一:单位圆中的正弦线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆O 相交于点P (x,y ),过P 作PM 垂直x 轴于M ,则线段MP 叫作α的正弦线.要点诠释:(1)由三角函数定义知,P (cos α,sin α),故sin α=MP .(2)正弦是用有向线段MP 表示的,正弦线的方向表示正弦值的符号;同y 轴一致,向上为正,向下为负.M 为始点,P 是终点.(3)当角α的终边在x 轴上时,M 与P 重合,此时正弦线变成一个点,sin α=0. 要点二:正弦函数的画法 1.描点法:按照列表、描点、连线三步法作出正弦函数图象的方法. 2.几何法利用三角函数线作出正弦函数在]2,0[π内的图象,再通过平移得到x y sin =的图象.3.五点法先描出正弦曲线的波峰、波谷和三个平衡位置这五个点,再利用光滑曲线把这五点连接起来,就得到正弦曲线在一个周期内的图象.在确定正弦函数x y sin =在]2,0[π上的图象形状时,起关键作用的五个点是)0,2(),1,23(),0,(),1,2(),0,0(ππππ-要点诠释:熟记正弦函数图象起关键作用的五点. 要点三:正弦曲线(1)定义:正弦函数sin ()y x x R =∈的图象叫做正弦曲线. (2)图象要点诠释:(1)由正弦曲线可以研究正弦函数的性质.(2)运用数形结合的思想研究与正弦函数有关的问题,如[]0,2x π∈,方程lg sin x x =根的个数. 要点四:正弦函数的性质正弦函数y =sinx 定义域:R值域及最值:值域为[-1,1],当22x k ππ=+时,max 1y =,当22x k ππ=-时,min 1y =-.奇偶性:奇函数周期性:最小正周期2π 单调区间: 增区间减区间 k ∈Z对称中心: ()0k π,k ∈Z对称轴:2x k ππ=+k ∈Z要点诠释:(1)正弦函数的值域为[]1,1-,是指整个正弦函数或一个周期内的正弦曲线,如果定义域不是全体实数,那么正弦函数的值域就可能不是[]1,1-,因而求正弦函数的值域时,要特别注意其定义域.(2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求sin()y x =-的单调递增区间时,应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先求定义域.【典型例题】 类型一:“五点法”作正弦函数的图象例1.用五点法作出函数2sin y x =-,[0,2]x π∈的图象. 【思路点拨】取[0,2]π上五个关键的点(0,2)、(2π,1)、(,2)π、3(,3)2π、(2π,2).描点作图(如下图).[22]22k k ππππ-+,3[22]22k k ππππ++,【总结升华】 在精确度要求不太高时,我们常常先找出这五个关键点,再用光滑的曲线将它们连接起来,即可得到函数的简图,这种近似的“五点法”是非常实用的.举一反三:【变式1】用“五点法”作出函数y=-sin x (0≤x ≤2π)的简图: 【解析】 列表:x 0 2π π32π 2πsin x 0 1 0 -1 0 -sin x-11描点作图,如图:类型二:三角函数图象的应用例2.根据正弦曲线求满足3sin 2x ≥-的x 的范围. 【思路点拨】先在一个周期内求出x 的范围,然后加上周期的整数倍. 【解析】在同一坐标系内作出函数y=sin x 与3y =-的图象,如下图.观察在一个周期的闭区间3,22ππ⎡⎤-⎢⎥⎣⎦内的情形,满足3sin 2x ≥-的4,33x ππ⎡⎤∈-⎢⎥⎣⎦.因为正弦函数的周期是2π,所以满足3sin x ≥的x 的范围是42,2()33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【总结升华】(1)一般地,对于y=sin x ,观察其一个周期常常是[0,2π]或3,22ππ⎡⎤-⎢⎥⎣⎦;对于y=cos x ,观察其一个周期常常是[0,2π]或[-π,π].(2)数形结合是重要的数学思想,它能把抽象的问题形象化、直观化,平时解题时要注意运用.(3)正、余弦函数的图象有很多重要的应用,其中利用正弦函数的图象求角的范围(即解三角不等式)是基本的应用之一,要注意结合函数的图象特点和正、余弦函数的周期性等进行求解.举一反三:【变式1】已知3,22x ππ⎡⎤∈-⎢⎥⎣⎦,解不等式3sin 2x ≥-.【解析】画出函数y=sin x ,3,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象,画出函数32y =-的图象,如下图,两函数的图象交于A 、B 两点,其中3,32A π⎛⎫-- ⎪ ⎪⎝⎭,43,32B π⎛⎫- ⎪ ⎪⎝⎭,故满足3sin 2x ≥-的x 的取值范围是4,33ππ⎡⎤-⎢⎥⎣⎦.例3.(1)方程lg sin x x =的解的个数为( ) A .0 B .1 C .2 D .3(2)若函数()sin 2|sin |f x x x =+,x ∈[0,2π]的图象与直线y=k 有且仅有两个不同的交点,求k 的取值范围.【答案】 (1)D (2)1<k <3【解析】 (1)作出lg y x =与sin y x =的图象,当52x π=时,5lg 12y π=<,5sin 12y π==,当92x π=时,9lg 12y π=>,lg y x =与sin y x =再无交点.如图所示,由图知有三个交点,∴方程有三个解.(2)3sin (0)()sin (2)x x f x x x πππ≤≤⎧=⎨-<≤⎩.图象如图,由图象可知1<k <3.【总结升华】利用函数图象讨论不等式的解集和方程的实数根的个数,既直观又简捷,这就是我们常说的“数形结合”思想在解题中的应用,请认真体会.举一反三:【变式1】当k 为何值时,方程sin x+2|sin x|=k 有一解、两解、三解、四解?【解析】由图象易知k=3时,方程有一解;1<k <3时,方程有两解;k=1或k=0时,方程有三解;0<k <1时,方程有四解.类型三:正弦函数的定义域与值域例4.求函数)sin(cos lg x y =的定义域.【解析】由πππ+<<⇒>k x k x 2cos 20)sin(cos (k ∈Z ). 又∵-1≤cosx ≤1,∴0<cosx ≤1. 故所求定义域为2222k k ππππ⎛⎫-+⎪⎝⎭,.【总结升华】求三角函数的定义域要注意三角函数本身的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步都保持恒等,即不能改变原函数的自变量的取值范围.举一反三:【变式1】已知)(x f 的定义域为[0,1),求)(cos x f 的定义域.【思路点拨】求函数的定义域:要使0≤cosx <1,这里的cosx 以它的值充当角. 【解析】0≤cosx <12222k x k ππππ⇒-≤≤+,且()2x k k Z π≠∈.∴所求函数的定义域为[22)(22]22k k k k k Z ππππππ-+∈,,,. 例5.求下列函数的值域: (1)y=|sin x|+sin x ; (2)2sin 23y x π⎛⎫=+⎪⎝⎭,,66x ππ⎡⎤∈-⎢⎥⎣⎦; 【解析】 (1)∵2sin (sin 0)|sin |sin 0 (sin 0)x x y x x x ≥⎧=+=⎨<⎩,又∵-1≤sin x ≤1,∴y ∈[0,2],即函数的值域为[0,2]. (2)∵66x ππ-≤≤,∴20233x ππ≤+≤. ∴0sin 213x π⎛⎫≤+≤ ⎪⎝⎭.∴02sin 223x π⎛⎫≤+≤ ⎪⎝⎭, ∴0≤y ≤2.∴函数的值域为[0,2].【总结升华】 一般函数的值域求法有:观察法、配方法、判别式法、反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质.举一反三: 【变式1】求函数y=3sin 2x -4sin x+1,,3x ππ⎡⎤∈⎢⎥⎣⎦的值域. 【答案】1,13⎡⎤-⎢⎥⎣⎦【解析】22213sin 4sin 13sin 33y x x x ⎛⎫=-+=-- ⎪⎝⎭,令t=sin x ,因为,3x ππ⎡⎤∈⎢⎥⎣⎦,所以t ∈[0,1], 221333y t ⎛⎫=-- ⎪⎝⎭,t ∈[0,1],所以1,13y ⎡⎤∈-⎢⎥⎣⎦.类型四:函数奇偶性的判断例6.判断下列函数的奇偶性:(1)21sin cos ()1sin x xf x x+-=+.(2)()lg(sin f x x =. 【解析】(1)由1+sin x ≠0,即sin x ≠-1,∴22x k ππ≠-(k ∈Z ),∴原函数的定义域不关于原点对称,∴21sin cos ()1sin x xf x x+-=+既不是奇函数也不是偶函数.(2)函数定义域为R .()lg(sin lg(sin ()f x x x f x -=-+==-+=-,∴函数()lg(sin f x x =为奇函数.【总结升华】判断函数奇偶数时,必须先检查定义域是否是关于原点的对称区间.如果是,再验证()f x -是否等于()f x -或()f x ,进而判断函数的奇偶性;如果不是,则该函数必为非奇非偶函数.举一反三:【变式1】关于x 的函数)(x f =sin(x+ϕ)有以下命题: ①对任意的ϕ,)(x f 都是非奇非偶函数; ②不存在ϕ,使)(x f 既是奇函数,又是偶函数; ③存在ϕ,使)(x f 是奇函数; ④对任意的ϕ,)(x f 都不是偶函数.其中一个假命题的序号是_____.因为当ϕ=_____时,该命题的结论不成立. 【思路点拨】当ϕ=2k π,k ∈Z 时,)(x f =sinx 是奇函数. 当ϕ=2(k+1)π,k ∈Z 时x x f sin )(-=仍是奇函数.当ϕ=2k π+2π,k ∈Z 时,)(x f =cosx ,当ϕ=2k π-2π,k ∈Z 时,)(x f =-cosx ,)(x f 都是偶函数.所以②和③都是正确的.无论ϕ为何值都不能使)(x f 恒等于零.所以)(x f 不能既是奇函数又是偶函数.①和④都是假命题.【解析】①,k π(k ∈Z );或者①,2π+k π(k ∈Z );或者④,2π+k π(k ∈Z )。
正弦函数、余弦函数的图象 课件
正弦曲线与余弦曲线及其画法
函数
y=sinx
y=cosx
图象
图象 画法
五点法
五点法
关键 五点
(0,0),π2,1 ,(π,0),32π,-1 ,(0,1),π2,0 ,(π,-1),32π,0 ,
(2π,0)
(2π,1)
1.“几何法”和“五点法”画正、余弦函数图象的优缺点 (1)“几何法”就是利用单位圆中正弦线和余弦线做出正、余弦 函数图象的方法.该方法作图较精确,但较为烦琐. (2)“五点法”是画三角函数图象的基本方法,在要求精度不高 的情况下常用此法,要切实掌握好.与五点法作图有关的问题经常 出现在高考试题中.
类型一 用“五点法”作三角函数的图象 [例 1] 用“五点法”作出下列函数的简图:
(1)y=sinx+12,x∈[0,2π]; (2)y=1-cosx,x∈[0,2π].
【解】 (1)按五个关键点列表:
x
0
π -1 0
12+sinx
1 2
3 2
1 2
-12
1 2
1.正弦曲线和余弦曲线的关系
2.“几何法”和“五点法”画正、余弦函数图象的优缺点 (1)“几何法”就是利用单位圆中正弦线和余弦线作出正、余弦 函数图象的方法.该方法作图较精确,但较为烦琐. (2)“五点法”是画三角函数图象的基本方法,在要求精度不高 的情况下常用此法.
1.用“五点法”画 y=sinx,x∈[-2π,0]的简图时,正确的 五个点应为( )
|自我尝试| 1.下列对函数 y=cosx 的图象描述错误的是( ) A.在[0,2π]和[4π,6π]上的图象形状相同,只是位置不同 B.介于直线 y=1 与直线 y=-1 之间 C.关于 x 轴对称 D.与 y 轴只有一个交点
5.4.1 正弦函数、余弦函数的图象
(1)正弦函数y=sin x的图象关于x轴对称.( × )
(2)正弦函数y=sin x与函数y=sin(-x)的图象完全相同.( × )
(3)余弦函数y=cos x的图象与x轴有无数个交点.( √ )
(4)余弦函数y=cos x的图象与y=sin x的图象形状和位置都不
一样.( × )
?
画出两个函数的图象,观察它们交点的个数,即得方程根的个
数.
?
解:先用“五点法”画出函数y=sin x的图象,再在同一平面直角
,- ,(1,0),(10,1) ,并用光滑曲线连接得到
坐标系内描出
y=lg x的图象,如图.
由图象可知方程lg x=sin x的解的个数为3.
答案:D
?
反思感悟
1.对于方程解的个数问题,常借助函数的图象用数形结合的方
1+2sin x
0
1
1
3
在平面直角坐标系中描出五点(0,1),
π
0
1
-1
-1
, ,(π,1),
2π
0
1
,- ,(2π,1),
然后用光滑的曲线连接起来,就得到 y=1+2sin x,x∈[0,2π]的
图象,如图所示.
?
(2)列表:
x
cos x
2+cos x
描点连线,如图.
0
1
3
0
2
π
-1
1
0
2
2π
1
3
?
反思感悟
1.“五点法”是画与三角函数有关的函数的图象的常用方
课件5:1.4.1 正弦函数、余弦函数的图象
谢谢!!!
解:按五个关键点列表:
x
0
π 2
π
3π 2
2π
sin x
0 1 0 -1 0
-1+sin x -1 0 -1 -2 -1
描点并将它们用光滑的曲线连接起来(如图所示).
课后总结
1.五点法是画三角函数图象的基本方法,要熟练掌握, 与五点法作图有关的问题是高考常考知识点之一.
2.正弦函数图象的画法 描点法—五点法. 函数 y=sin x(x∈[0,2π])的图象上起关键作用的五个点为:
关键点依次是:__(0__,__0_)_, π2,A , (π,0) , 32π,-A ,
(2π,0) .
2.作正弦曲线的步骤 做正弦函数 y=sin x,x∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系 y 轴的左侧画单位圆,如图所示. ②把单位圆分成 12 等份(等份越多,画出的图象越精确).过单位圆
_(_0_,__0_)__, π2,1 , (π,0) , 3函数 y=sin x,x∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系 y 轴的左侧画单位圆. ②把单位圆分成 12 等份(等份越多,画出的图象越精确). ③找横坐标. ④找纵坐标. ⑤连线:用平滑的曲线将这些点依次从左到右连接起来, 即得 y=sin x,x∈[0,2π]的图象.
上的各分点作 x轴 的垂线,可以得到对应于 0,π6,3π,π2,…,2π
等角的正弦线.
③找横坐标:把 x 轴上从 0 到 2π(2π≈6.28)这一段分成 12 等份. ④找纵坐标:将正弦 线对应平移,即可得到相应点的纵坐标.
⑤连线:用平滑的曲线将这些点依次从左到右连接起来,即得 y= sin x,x∈[0,2π]的图象.
三角函数的图象与性质要点梳理五点法作图原理
5.(2009·四川文,4)已知函数f(x)=sin( x )
2
(x∈R),下面结论错误的是(D )
A.函数f(x)的最小正周期为2
B.函数f(x)在区间
0
,
2
上是增函数
C.函数f(x)的图象关于直线x=0对称
D.函数f(x)是奇函数
解析 ysix n ()co x, sT2 ,A正确;
4
4
所以定义域为 { x|2 k x5 2 k ,k Z }.
44
探究提高 (1)对于含有三角函数式的(复合)函数 的定义域,仍然是使解析式有意义即可. (2)求三角函数的定义域常常归结为解三角不等 式(或等式). (3)求三角函数的定义域经常借助两个工具,即单 位圆中的三角函数线和三角函数的图象,有时也 利用数轴.
质
y=cos x
定义域
R
R
y=tan x
{x| xk,
2
(k∈Z)
图象
值域
[-1,1]
[-1,1]
R
对称性
对称轴: xk 对称轴:xk 对称中心:
(k Z)
2
;
对称中心:
(kZ) ;对称中
心:
(k ,0) 2
( k ,0) 2
(k Z)
(k,0)k(Z)
4 的不等式确定
2k x 2k 3 (k Z),
24
2
即 2k 3 x 2k 7 (k Z),
4
4
2k x 2k (k Z),
2
4
2
即 2k x 2k 3 (k Z).
正弦函数的图像(五点法)
6
3
因此,换种思考路径,即采用平移线段的方法。
回忆三角函数线:
A'(-1,0)
B(0,1) y
P(cos,sin) N1
x
O M A(1,0)
B'(0,-1)
把单位圆12等分,可以得到对应于
2p 5p π 7p 4 p 3p 5 p
36
6323
y
0
11 p
6y
p pp
6 32 2π 的正弦线
如下图所示. y
1
0 p π 3p 2π
x
2
2
-1
例1 用五点法作函数y=sinx+1, x ∈ (0,2p) 上的图象
x
0
p
2
p
3p 2p
2
Sinx 0 1 0 -1 0
Sinx+1 1 2 1 0 1
y
2
1
x
0
p
p
3p
2p
2
2
-1
例题分析
例 用“五点法”画出下列函数在区间[0,2π]的简图。
正弦函数y=sinx的图象 (五点法)
正弦函数:我们常用弧度制来度量角,记为χ, 表示自变量,用y表示函数值,于是正弦函数 表示为y=sinχ, χ∈R
如何来作 正弦函数 的图象呢?
平移正弦线
思考:
时(都,Ⅱ有作)唯出做一相函的对数y值应图和的象它y的值对方,应法,s是i因n1此、p我列们表=1想2、/到2描,当点x而取3、si连n0线p。=任p60意..8给66p3出不一p易个2描x的点值,,
( 3p ,1) 2
1
x
0p
π
3p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦函数图象
梁翠琼
一、教学目标:
1.知识与技能的掌握
(1)学会用列表、描点、连线的方法作出正弦函数的图象;
(2)掌握五点法作正弦函数的简图;
(3)掌握形如sin y k x b =+的函数图象简图的画法。
2.过程与方法的思考
(1)学会画图的一般步骤,培养动手能力; (2)会用“五点法”画正弦函数。
3.情感态度与价值观的培养
通过本节课的学习学会善于寻找,观察数学知识之间的内在联系.培养学生从特殊到一般与从一般到特殊的辩证思想方法。
二、重点和难点:
1.用列表、描点、连线的方法作出正弦函数的图象以及利用五点法画正弦函数的简图为本节课的教学重点;
2.用五点法画形如sin y k x b =+的函数图象简图。
三、学习过程
1. 情境导入
问题一:如何画一般函数的图象?
学生思考回答作图步骤:(Ⅰ)列表; (Ⅱ)描点 (Ⅲ)连线。
问题二:那我们能否通过描点法画正弦函数在[0,2]π内的图像, 教师与学生一起尝试描点法画图.
描点法在取函数值时,取得点越多,画出的函数图象就会越准确。
2.学导结合
(1)描点法画图: 列表------- 描点---- 连线
6
π
3
π2
π
3
2π6
5ππ
67π34π23π35π6
11ππ
20
2
12
30
1
2
1-2
3
-
2
12
30
2
1-23
-1-x
y
[]
π2,0,sin ∈=x x y
(2)如何作正弦函数y =Sinx, x ∈R 的图象呢?
学生思考,老师点拨.
因为终边相同的角的三角函数值相同,所以
sin ,[2,2(1)),,0y x x k k k Z k ππ=∈+∈≠的图像,与函数 sin ,[0,2)y x x π=∈一致.于是我们
只要将sin ,[0,2)y x x π=∈的图像像左向右平行移动(每次2π个单位长度)就可以得到正弦函数y =Sinx ,x ∈R 的图象
(3)探究深化
①“五点法”作简图:
教师提出问题:观察y=Sinx ,x ∈[0,2π]的图象,在作图连线过程中起关键作用的是哪几个点? 能否利用这些点作出正弦函数的简图? 引导学生得到五个关键点。
学生回答:关键五点:(0,0)、(2
π
,1)、(π,0)、
(32π ,-1)、(2π,0)。
教师总结:事实上,只要指出这五个点,y=Sinx ,x ∈[0,2π]的图象形状就基本定位了。
因此在精确度要求不高时,我们就常先找出这五个关键点,然后用光滑的曲线将它们连结起来,就得到函数的简图,这种作图的方法称为“五点法”作图。
注:五个关键点中,重点应突出点的横坐标,纵坐标即相应函数值;
画简图时应掌握曲线的形状及弯曲的“方向”。
②例题讲解
例1、用五点作图法画出函数:y=-Sinx ,x ∈[0,2π]的简图 (1)列表(取五个关键点) (2)描点 x Sinx -sinx
例2、用五点作图法画出函数:y=1+Sinx ,x ∈[0,2π]的简图 (1)列表(取五个关键点) (2)描点 (3)光滑曲线连接
x Sinx
1+sinx
③巩固练习
用五点作图法画出下列函数在[0,2π]的简图: (1)y= sinx+2 (2) y= sinx - 1
四、课堂总结:
1.利用描点法画正弦函数图像 2.能用五点法画正弦函数简图
1
-1
π
2
3π
π
2y=-sinx x ∈[0,2π]
2
π
x
y . . .
.
.
五、课后练习
•尝试用画正弦函数图象的方法---描点法画余弦函数的图象。
•如果余弦函数的图象也能用五点法作图,那么用哪五个点?。