比例伺服阀工作原理

合集下载

比例-伺服阀工作原理

比例-伺服阀工作原理

典型电---气比例阀、伺服阀的工作原理电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。

压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。

由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。

还取决于执行元件的负载大小。

因此精确地控制气体流量往往是不必要的。

单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。

电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。

但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。

电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。

一、滑阀式电---气方向比例阀流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。

图示即为这类阀的结构原理图。

它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。

位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。

控制放大器的主要作用是:1)将位移传感器的输出信号进行放大;2)比较指令信号Ue和位移反馈信号U f U;3)放大,转换为电流信号I输出。

此外,为了改善比例阀的性能,控制放大器还含有对反馈信号Uf的处理环节。

比如状态反馈控制和PID调节等。

带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传Uf=0。

若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。

力士乐比例伺服阀的工作原理及应用领域

力士乐比例伺服阀的工作原理及应用领域

力士乐比例伺服阀的工作原理及应用领域力士乐比例伺服阀的工作原理及应用领域一、力士乐比例伺服阀的工作原理力士乐伺服阀是一种控制流量的阀门 ,通过电子控制技术对阀门的位置和开度进行控制,实现准确的流量控制。

其主要工作原理是将电子信号转换为机械运动,通过机械运动控制流体的流动,从而实现对流量的控制。

伺服阀通常由一一个由电磁铁驱动的活塞组成,当电流通过电磁铁时,活塞会向一个方向移动,从而改变阀广]的位置和开度。

这种控制方式比传统的机械控制方式更加精确。

伺服阀还可以通过反馈回路控制阀[ ]的位置和开度,从而实现更为准确的流量控制。

二、力士乐伺服阀的应用领域由于伺服阀具有精准的流量控制能力,它在许多领域都有广泛应用。

以下是几个应用领域的例子:1. 伺服阀通常被用来控制液压缸和液压马达的运动,以及调节飞机的姿态和高度。

2.机器人控制:在机器人控制领域,伺服阀可以用来控制机器人的肢体运动,并精确控制机器人的位置和速度。

3.工厂自动化:在工厂自动化领域,伺服阀可以控制流体的流量,从而实现精确的工业过程控制。

4. 伺服阀工业:在汽车工业中,伺服阀可以控制制动器的压力,从而调节车辆制动的力度和灵敏度。

总之,伺服阀在许多领域都有广泛应用,它可以精确地控制流量,从而实现更为准确的流体控制。

关于力士乐伺服阀的作用,伺服阀这个很多人还不知道,今天来为大家解答以上的问题,现在让我们一起来看看吧!1、伺服阀和比例阀,都是通过调节输入的电信号模拟量,从而无极调节液压阀的输出量,例如压力,流量,向。

2、( 伺服阀也有脉宽调制的输入方式)。

3、但这两种阀的结构不同。

4、伺服阀依靠调节电信号,控制力矩马达的动作 ,使衔铁产生偏转,带动前置阀动作,前置阀的控制油进入主阀,推动阀芯动作。

5、比例阀是调节电信号,使衔铁产生位移,带动先导阀芯动作,产生的控制油再去推动主阀芯。

6、伺服阀的结构非常复杂,前置阀有喷嘴挡板式,有射流管式,主阀芯还带有位移反馈。

伺服阀的工作原理及应用

伺服阀的工作原理及应用

伺服阀的工作原理及应用伺服阀是一种利用电磁力来控制液压流量的装置,广泛应用于机械工程、航空航天、汽车工业以及其他液压系统中。

它通过调节流体流量来控制执行器的位置和速度,从而实现对系统的精确控制。

本文将介绍伺服阀的工作原理及其在各个领域的应用。

首先,让我们来了解伺服阀的工作原理。

伺服阀由阀芯、阀座、电磁铁以及定向阀组成。

当电磁铁通电时,产生的电磁力会使阀芯与阀座分离,从而打开流体通道。

通过改变电磁铁的通电状态,可以控制阀芯的位置,从而调节流体的流量。

伺服阀的工作原理与一个负反馈控制系统类似。

当执行器达到设定的位置或速度时,反馈信号将被传送回来,通过比较反馈信号与设定值,控制系统将相应地调整电磁铁的通电状态,使阀芯位置逐渐接近设定值。

这种闭环控制系统可以实现高度精确的位置和速度控制。

接下来,我们来看一下伺服阀的应用领域。

伺服阀被广泛应用于需要精确控制位置和速度的系统中。

在机械工程中,伺服阀被用于控制工业机械、机器人以及其他自动化设备。

例如,在自动化生产线上,伺服阀被用于控制机械臂的位置和运动速度,从而实现高效的生产。

在航空航天领域,伺服阀被用于控制飞机的液压系统。

它们能够精确地控制飞行器的操作和动力系统,包括起落架、襟翼和刹车系统。

由于伺服阀能够快速响应和高度精确的控制,它们在飞机的操纵系统中起到了至关重要的作用。

在汽车工业中,伺服阀被广泛应用于汽车刹车系统和液压悬挂系统。

伺服阀能够根据司机的踏板操作精确地控制刹车力度,从而提供安全和可靠的刹车体验。

在液压悬挂系统中,伺服阀能够实现对车身的主动控制,提供更平稳的行驶和更舒适的乘坐体验。

此外,伺服阀还被应用于医疗设备、舞台设备和工程机械等领域。

在医疗设备中,伺服阀被用于控制手术机器人的精确运动,提供高度精确的手术操作和治疗。

在舞台设备中,伺服阀被用于控制灯光和音响设备,实现精确的舞台效果。

在工程机械中,伺服阀被用于控制挖掘机、起重机和压力机等设备,提供高效、安全的工作。

比例调节阀工作原理

比例调节阀工作原理

比例调节阀工作原理比例调节阀(Proportional Control Valve)是一种常用的工业自动控制装置,用于调节流体介质(如液体或气体)的流量,以满足系统的控制要求。

它采用了比例控制的原理,根据输入的控制信号和反馈信号的差异,调整阀门的开度,以达到所需的流量调节效果。

1.控制信号输入:比例调节阀通常通过电气信号(电压或电流)来控制。

信号源可以是一个自动控制系统,如PLC(可编程逻辑控制器)或DCS(分布式控制系统),也可以是手动调节的操作控制器。

控制信号的大小和方向(正向或反向)根据系统的要求而定,通常是以标准信号的形式输入。

2.控制信号转换:控制信号首先被电动执行器接收,并经过一系列的电子、电气或机械装置进行转换。

这些装置可以将信号的大小和方向转化为适当的力或力矩,并传递给阀门的开关机构。

通常,电动执行器中会配备一个电动驱动装置(如电机或电磁线圈),该装置能够将电气信号转化为机械动作。

3.阀门动作:阀门的开关机构将电动执行器传递过来的力或力矩转化为阀门的开度。

阀门通常采用一个旋转式的阀芯来控制介质的流量,阀芯的旋转角度与阀门的开度成正比。

阀芯的旋转由执行器内部的马达或电磁线圈控制,其转动力矩与电动执行器接收到的控制信号成正比。

4.反馈控制:比例调节阀通常还配备有一个反馈机构,用于监测阀门的实际开度,并将其反馈给控制系统。

反馈信号通常由一个位置传感器提供,可以通过测量阀门芯的位置来获取。

控制系统通过比较控制信号和反馈信号的差异来确定阀门的开度是否符合要求,如果不符合,控制系统将调整控制信号的大小和方向,进而调整阀门的开度,以使它与系统的要求相匹配。

以上就是比例调节阀的主要工作原理。

比例调节阀通常用于需要精确控制流量的应用,如化工、电力、冶金和石油等行业中的流程控制系统。

它的主要优点是响应速度快、精度高、可靠性好,并能够适应不同的工作环境和介质。

液压比例伺服阀的工作原理

液压比例伺服阀的工作原理

液压比例伺服阀的工作原理
液压比例伺服阀是一种用于控制液压系统中液压执行元件的阀门。

它的工作原理是通过改变阀芯的位置来调节液压流量和压力,从而控制液压执行元件的运动。

液压比例伺服阀由阀体、阀芯、驱动电磁铁、反馈电位器和控制电路组成。

驱动电磁铁通过控制电路产生电流,电流的大小决定了驱动电磁铁的磁场强度。

当驱动电磁铁通电时,产生的磁场将阀芯吸引或推动,使阀芯的位置发生变化。

阀芯的位置变化会改变阀体内的流道连接情况,从而调节液压流量和压力。

当阀芯向一侧移动时,阀体的流道与液压源连接,液压油通过阀体流道进入液压执行元件,从而产生相应的运动。

当阀芯向另一侧移动时,阀体的流道与液压油回油口连接,液压执行元件的液压油通过回油口排出。

反馈电位器用于检测阀芯的位置,并将位置信息反馈给控制电路。

控制电路根据反馈信息调整驱动电磁铁的电流,使阀芯的位置保持在设定的位置,从而实现对液压执行元件的精确控制。

总的来说,液压比例伺服阀通过改变阀芯的位置,调节液压流量和压力,从而控制液压执行元件的运动。

它具有快速响应、高精度和稳定性好等特点,广泛应用于工程机械、冶金设备、航空航天等领域。

典型电气比例阀伺服阀的工作原理

典型电气比例阀伺服阀的工作原理

典型电气比例阀伺服阀的工作原理电气比例阀是将电气信号转化为液压信号的装置,通过调节电流或电压信号的大小来控制液压系统的流量。

电气比例阀一般由电磁比例阀和液控比例阀两部分组成。

1.电磁比例阀的工作原理:电磁比例阀基本上是由电磁操纵部分和主阀部分组成。

当电磁操纵部分受到电气信号的控制时,通过对电流的调节,产生力矩以移动阀芯,进而控制主阀的开度。

当主阀开度改变时,液体流量也会相应改变。

2.液控比例阀的工作原理:液控比例阀通过电磁阀内的液控比例环路,使电磁阀的流量与输入电流成正比。

液控比例阀内部有一个液体引导径向凹槽,引导凹槽上有一个弹簧推力盘,推力盘下面有一个直径较小的圆柱体,柱体的上表面和底表面之间有一个微小的液腔间隙。

当电流通过电磁阀线圈时,产生的液压力作用在柱体上,使其下移,改变推力盘上液控端的压力,从而得到输入电流与输出流量的比例关系。

伺服阀是一种根据控制信号在阀芯上施加力来控制流量或压力的装置,其工作过程通过反馈控制闭环实现。

伺服阀的工作原理可简单概括为以下几个步骤:1.控制信号输入:控制信号通过电气线路输入到伺服阀的控制电磁阀上。

2.控制电磁阀操作:控制电磁阀接收到控制信号后,将其转化为阀芯上的力。

这个力会使阀芯移动,改变主阀的开度。

3.主阀调节:通过改变主阀的开度,液压介质的流量或压力得以调节。

4.反馈控制:伺服阀的主阀位置会通过反馈器进行实时监测,并以信号的形式返回给控制电气系统。

这个反馈信号可以与控制信号进行比较,从而实现闭环控制。

伺服阀的反馈控制系统能够根据控制信号和反馈信息的差异,自动调整阀芯位置,使得输出流量或压力与设定值匹配。

总结:典型电气比例阀和伺服阀的工作原理分别是通过调节电流或电压信号的大小或通过控制信号在阀芯上施加力来改变液压系统的流量或压力。

其中,电气比例阀是根据电气信号来控制液压系统的流量,而伺服阀是通过反馈控制闭环来控制流量或压力。

这两种阀门装置在工业控制系统中起到了非常重要的作用。

伺服阀工作原理范文

伺服阀工作原理范文

伺服阀工作原理范文伺服阀是一种比例控制阀,在工业自动化领域广泛应用。

它通过电气信号控制液压或气压传动阀芯,实现介质的流量或压力的实时调节。

以下是伺服阀的工作原理的详细介绍。

伺服阀的结构由阀体、阀芯、位置传感器、执行器等部件组成。

阀体用于容纳介质并定位阀芯,阀芯的运动通过执行器实现。

位置传感器用于检测阀芯的位置,并将信号反馈给控制系统,从而实现闭环控制。

伺服阀的工作原理可以分为以下四个主要步骤:1.传感器检测:位置传感器测量阀芯的位置,并将信号传输给控制系统。

通过对阀芯位置的准确检测,控制系统可以得知阀芯的目标位置和实际位置之间的差异。

2.控制系统计算:控制系统接收传感器信号并根据设定的目标值计算控制信号。

通过根据差异来计算控制信号,控制系统可以实现阀芯位置的闭环控制,使其快速、准确地达到目标位置。

3.控制信号输出:控制系统根据计算结果产生相应的控制信号,然后将其输出给执行器。

执行器接收到控制信号后,通过电磁力或气动力将阀芯定位到目标位置。

4.阀芯位置调节:执行器根据控制信号的作用对阀芯进行移动,从而调节流量或压力。

当阀芯接近目标位置时,执行器会减小或消除控制信号,以实现阀芯的稳定控制。

伺服阀具有以下几个特点:1.高精度:由于采用闭环控制,伺服阀的控制精度很高,可以达到亚毫米量级。

2.高可靠性:伺服阀的关键部件采用优质材料和精湛制造工艺,具有较高的耐压和耐磨性,从而能够在恶劣工作环境下长时间稳定运行。

3.快速响应:控制系统通过实时计算控制信号,能够实现对阀芯位置的快速调节,从而快速响应工业过程中的变化需求。

4.大范围调节:伺服阀可以根据不同的工况要求,在很大的流量或压力范围内进行精确调节。

5.多种控制方式:伺服阀可以通过模拟电信号、数字信号、PLC控制等多种方式进行控制,使其在工业自动化系统中易于集成和应用。

总之,伺服阀通过控制信号的调节,实现对阀芯位置的控制,从而调节介质的流量或压力。

它具有高精度、高可靠性、快速响应、大范围调节和多种控制方式的优势,被广泛应用于工业自动化控制系统中。

比例阀的工作原理

比例阀的工作原理

比例阀的工作原理
比例阀是一种常用的控制阀,其工作原理是通过调节流体通过阀门的截面积来实现流量的控制。

具体工作原理如下:
1. 内部结构:比例阀由阀体、阀芯和驱动器组成。

阀体内部包含进口和出口通道,以及与通道连接的阀座。

阀芯则位于阀体内部,可以在阀座上移动。

2. 运动控制:比例阀的阀芯受到外部驱动器的控制,驱动器可以通过电流或压力信号来控制阀芯的位置。

当驱动器接收到输入信号时,会相应地调整阀芯的位置。

3. 流体控制:通过调节阀芯的位置,比例阀可以控制流体通过阀门的截面积。

当阀芯离开阀座时,流体可以通过阀门的截面积增大,从而增加流量;反之,阀芯靠近阀座时,截面积减小,流量减小。

4. 反馈控制:为了确保阀门的稳定运行,比例阀通常配备反馈控制功能。

这意味着阀芯的位置可以被检测并反馈给驱动器,使其能够实时调整阀芯的位置,并保持所需的流量控制。

通过以上工作原理,比例阀可以精确地控制流体流量,广泛应用于工业自动化系统中,如液压系统、气动系统、流体控制系统等。

《伺服阀与比例阀》课件

《伺服阀与比例阀》课件

伺服阀和比例阀的工作原理
伺服阀通过调节阀芯的位置来控制流体流量和压力,而比例阀则根据输入信号的大小调节阀芯的开度来控制流 量。
伺服阀的组成部分及其功能
伺服阀包括阀体、阀芯和传动装置。阀体提供流体通道,阀芯控制流体流量和压力,传动装置将输入信号转化 为阀芯位置调节。
伺服阀的调节方式和控制原则
伺服阀可以通过手动控制、反馈控制或自动控制来实现精确的流量和压力调节。其控制原则基于反馈信号的比 较和调整。制、反馈系统和数字控制等。
伺服阀和比例阀的控制系统
伺服阀和比例阀通常作为控制系统的关键组成部分,用于实现流量和压力的 精确控制。
伺服阀和比例阀的控制系统的 框图
伺服阀和比例阀的控制系统通常由输入信号、控制器、阀芯驱动和反馈信号 组成,框图显示了各个组件之间的关系。
伺服阀和比例阀控制系统的稳态和动态特 性
伺服阀和比例阀的控制系统在稳态和动态操作下具有不同的特性,稳态保持恒定输出,动态响应能够快速调节。
比例阀的控制精度和响应特性
比例阀可以实现很高的控制精度,并具有快速的响应特性,适用于对流量要求较高的应用。
伺服阀和比例阀的性能比较
伺服阀和比例阀在控制精度、响应速度和适用范围等方面具有不同的特点和 性能,可以根据具体需求选择。
伺服阀和比例阀在工业控制领域的应用案 例
伺服阀和比例阀在机械加工、印刷机械、液压系统等领域有广泛的应用,提高了生产效率和质量。
伺服阀和比例阀的未来发展趋 势
伺服阀和比例阀的未来发展趋势包括智能化、节能环保、数字化控制等方面 的创新和应用。
伺服阀与比例阀
这个PPT课件将介绍伺服阀和比例阀的基本知识和应用,以及它们之间的区别。 我们将探讨它们的结构、工作原理、调节方式和控制系统,以及它们在工业 控制领域的应用案例和未来发展趋势。

伺服阀的工作原理

伺服阀的工作原理

伺服阀的工作原理
伺服阀的工作原理是利用阀芯和阀座之间的控制压力差来控制介质的流量或压力。

当控制信号作用于伺服阀的电磁铁,电磁铁会产生磁场,吸引或释放阀芯。

在伺服阀内部,有一个控制腔和一个控制口。

当控制腔中的压力不变时,阀芯静止在某个位置。

控制腔的压力来自控制信号和反馈信号的差异,由阀芯的位置决定。

当控制信号改变时,控制腔的压力也随之改变,从而使阀芯移动。

阀芯的移动会改变控制口的开启程度,进而改变通过伺服阀的介质流量或压力。

当阀芯向一个方向移动时,控制口的开启程度增加,从而使介质流量或压力增大。

当阀芯向另一个方向移动时,控制口的开启程度减小,从而使介质流量或压力减小。

伺服阀的工作原理依赖于控制信号的改变来实现对介质流量或压力的精确控制。

控制信号的变化可以通过调节电磁铁中的电流来实现,从而调节阀芯的位置和控制腔压力的变化。

这样,伺服阀可以根据不同的控制要求,实现精确的流量或压力控制。

伺服比例阀工作原理

伺服比例阀工作原理

伺服比例阀工作原理
伺服比例阀(Servo Proportional Valve)是一种常用于流量控制和压力控制的液压元件。

其工作原理是利用电磁感应的力来控制阀芯的位置,从而调整流量或压力的大小。

伺服比例阀由电磁比例动作器和阀芯组成。

电磁比例动作器是一个由线圈和磁芯构成的电磁铁,在电源通电时会产生磁场。

阀芯是一个带有阀口的金属柱,通过电磁比例动作器和弹簧的力来调节阀口的大小和位置。

当电源通电时,电磁铁产生的磁场会吸引磁芯,使阀芯向开口方向移动。

相应地,阀口逐渐打开,流量或压力逐渐增大。

当电源断电时,磁场消失,弹簧的力会使阀芯返回原来的位置,阀口关闭,停止流量或降低压力。

通过改变电源的电压大小,可以控制电磁铁的磁场强度,从而控制阀芯的位置。

通过调整阀芯的位置,可以实现流量或压力的精确控制。

伺服比例阀的工作原理使其能够应用于各种液压系统中,如工业机械、汽车、航空等领域。

其优点是具有精确的控制、快速响应和可靠性高。

伺服阀与比例阀工作原理

伺服阀与比例阀工作原理
伺服阀 电液比例阀
华中科技大学
伺服阀
伺服阀是一种根据输入信号及输出信号反馈量连续 成比例地控制流量和压力的液压控制阀.根据输入 信号的方式不同,又分电液伺服阀和机液伺服阀.
电液伺服阀将小功率的电信号转换为大功率的液压 能输出,实现执行元件的位移、速度、加速度及力 的控制.
机液伺服阀的输入信号是机动或手控的位移. 伺服阀控制精度高,响应速度快,特别是电液伺服系
输出,常称为力矩马达或力马达.
图中上部分为力矩马达.
▪ 液压放大器接受小功率的转角
或位移信号,对大功率的液压油
进行调节和分配,实现控制功率
的转换和放大.图中有喷嘴挡板
〔前置级和主滑阀两级.
▪ 反馈平衡机构使阀输出的流量
或压力与输入信号成比例.图中
反馈弹簧杆11为反馈机构.
华中科技大学
▪ 机液伺服阀
▪ 轴向柱塞泵的手动伺服变量机 构主要零件有伺服阀阀芯1、伺 服阀阀套2、变量活塞5等.伺服阀 芯与控制杆挂在一起,伺服阀套与 变量活塞刚性连成一体.伺服阀油 口a 通过油道b 与变量活塞下腔 相通;油口e 通过油道f 与变量活 塞上腔相通.变量活塞下腔通有泵 的压力油,上腔为密闭容腔,上下 腔面积比为2:1.
统容易实现计算机控制,在航空航天、军事装备中 得到广泛应用.但加工工艺复杂,成本高,对油液污染 敏感,维护保养难,民用工业应用较少.
华中科技大学
▪ 电液伺服阀的组成和工作原理 〔见动画
▪ 电液伺服阀由电气-机械转换
装置、液压放大器和反馈〔平
衡机构三部分组成.
▪ 电气—机械转换装置将输入的
电信号转换为转角或直线位移
▪ 放大级由阀体、主阀芯、左右端盖、
阻尼螺钉和弹簧等零件组成.控制压力 油经阻尼孔作用在主阀芯的端面时,液 压力将克服弹簧力使阀芯移动,开启阀 口,沟通油道.主阀开口大小取决于输入 电流的大小.

比例控制阀工作原理

比例控制阀工作原理

比例控制阀工作原理
比例控制阀工作原理:比例控制阀是一种通过调节流体或气体的流量,来实现控制系统中指定参数的稳定性和精度的控制装置。

其工作原理如下:
1. 压力调节:比例控制阀内置一个压力传感器,它可以测量压力信号并将其转化为电信号。

这个电信号可以通过调整比例控制阀的压力输出来直接控制流量,从而完成压力调节。

2. 位置控制:比例控制阀的进口和出口之间拥有一个活塞,通过调整活塞的位置来控制流量大小,从而达到位置控制的效果。

3. 电子控制:比例控制阀一般配备了电子控制器,可以通过壳体上的控制面板或由计算机远程控制来调节输出流量。

这种方式被广泛应用于工业生产线以及流体控制系统(如水力工程、天然气管道等)中。

总之,比例控制阀的工作原理是通过应用不同的控制方法来改变流体或气体的流量大小,从而实现流体控制系统中的精确控制。

moog伺服阀原理

moog伺服阀原理

moog伺服阀原理
Moog伺服阀是一种基于电液比例控制技术的装置,用于精确
控制液压系统中的流量和压力。

它采用电气信号来改变控制电磁铁的位置,从而调整伺服阀的开度,进而控制液体流过阀芯的量。

Moog伺服阀采用双塞活塞结构,通过液压力的平衡来控制流
量和压力。

在伺服阀内部有两个传动塞,分别由两个电磁铁驱动。

当一个塞向上移动,液体从供给口流入,当一个塞向下移动,液体则从控制口流出。

通过控制两个塞的移动,就可以精确地控制液压系统中的流量和压力。

Moog伺服阀的工作原理是基于电液比例控制的闭环反馈系统。

在工作时,不断测量控制口处的压力并与设定值进行比较,然后通过相应的反馈信号来调整电磁铁的位置和伺服阀的开度,以使压力保持在设定范围内。

这种反馈控制方式可以实现高精度和稳定的控制效果。

Moog伺服阀的应用非常广泛,特别是在一些对流量和压力要
求较高的工业自动化系统中。

它可以用于液压系统的速度控制、位置控制、力控制等方面。

其稳定性和精确性使得它成为许多工程和科研领域中不可或缺的元件。

总之,Moog伺服阀利用电气信号控制液压力来调节流量和压力,通过闭环反馈系统实现高精度和稳定的控制效果。

它广泛应用于各种工业自动化系统中,为实现精确控制提供了可靠的解决方案。

伺服比例阀工作原理

伺服比例阀工作原理

伺服比例阀工作原理
伺服比例阀是一种通过控制阀芯位置来控制流量和压力的装置。

它由一个电磁比例阀和一个伺服阀组成。

工作原理如下:
1. 电磁比例阀:伺服比例阀的控制信号来自一个电磁比例阀,该阀根据输入的电流信号来控制阀芯的位置。

阀芯位置的改变会改变液压流量和压力。

2. 伺服阀:伺服阀是一个气动机械装置,通过控制插入阀芯的气压来调节阀芯位置。

当电磁比例阀接收到控制信号后,它会产生气压信号,将气压传递给伺服阀。

伺服阀会根据气压信号来调整阀芯的位置。

3. 阀芯位置控制:通过改变阀芯位置,伺服比例阀可以调节液压系统中的流量和压力。

当阀芯位于某个位置时,液压油会通过阀芯的通道流过,从而控制流量。

同时,改变阀芯位置也会影响阀的开口面积,从而调节液压系统中的压力。

4. 反馈控制:伺服比例阀会不断地对阀芯位置进行反馈,以保持阀芯在目标位置。

这个反馈控制可以通过一些传感器来实现,例如位置传感器或压力传感器。

这些传感器会监测阀芯的位置和液压系统中的压力,并将这些信息反馈给伺服比例阀,以进行修正控制。

通过以上的工作原理,伺服比例阀可以精确地控制液压系统中的流量和压力,以满足特定的工作要求。

伺服阀、比例阀原理

伺服阀、比例阀原理

伺服阀的工作原理下面介绍两种主要的伺服阀工作原理。

3.3.1力反馈式电液伺服阀力反馈式电液伺服阀的结构和原理如图28所示,无信号电流输入时,衔铁和挡板处于中间位置。

这时喷嘴4二腔的压力pa =pb,滑阀7二端压力相等,滑阀处于零位。

输入电流后,电磁力矩使衔铁2连同挡板偏转θ角。

设θ为顺时针偏转,则由于挡板的偏移使pa >pb,滑阀向右移动。

滑阀的移动,通过反馈弹簧片又带动挡板和衔铁反方向旋转(逆时针),二喷嘴压力差又减小。

在衔铁的原始平衡位置(无信号时的位置)附近,力矩马达的电磁力矩、滑阀二端压差通过弹簧片作用于衔铁的力矩以及喷嘴压力作用于挡板的力矩三者取得平衡,衔铁就不再运动。

同时作用于滑阀上的油压力与反馈弹簧变形力相互平衡,滑阀在离开零位一段距离的位置上定位。

这种依靠力矩平衡来决定滑阀位置的方式称为力反馈式。

如果忽略喷嘴作用于挡板上的力,则马达电磁力矩与滑阀二端不平衡压力所产生的力矩平衡,弹簧片也只是受到电磁力矩的作用。

因此其变形,也就是滑阀离开零位的距离和电磁力矩成正比。

同时由于力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是通过滑阀的流量与输入电流成正比,并且电流的极性决定液流的方向,这样便满足了对电液伺服阀的功能要求。

图28 力反馈式伺服阀的工作原理1—永久磁铁;2—衔铁;3—扭轴;4—喷嘴;5—弹簧片;6—过滤器;7—滑阀;8—线圈;9—轭铁由于采用了力反馈,力矩马达基本上在零位附近工作,只要求其输出电磁力矩与输入电流成正比(不象位置反馈中要求力矩马达衔铁位移和输入电流成正比),因此线性度易于达到。

另外滑阀的位移量在电磁力矩一定的情况下,决定于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了方便。

采用了衔铁式力矩马达和喷嘴挡板使伺服阀结构极为紧凑,并且动特性好。

但这种伺服阀工艺要求高,造价高,对于油的过滤精度的要求也较高。

所以这种伺服阀适用于要求结构紧凑,动特性好的场合。

气比例阀、伺服阀的工作原理

气比例阀、伺服阀的工作原理

典型电---气比例阀、伺服阀的工作原理电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。

压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。

由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。

还取决于执行元件的负载大小。

因此精确地控制气体流量往往是不必要的。

单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。

电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。

但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。

电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。

一、滑阀式电---气方向比例阀流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。

图示即为这类阀的结构原理图。

它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。

位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。

控制放大器的主要作用是:1)将位移传感器的输出信号进行放大;2)比较指令信号Ue和位移反馈信号U f,得到两者的差植3)放大,转换为电流信号I输出。

此外,为了改善比例阀的性能,控制放大器还含有对反馈信号Uf和电压差U的处PID调节等。

带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传感器的反馈电压Uf=0。

若阀芯受到某种Uf,控制放大器将得到的U=-Uf放大后输出给电流比例电磁铁,电磁Ue>0,则电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型电---气比例阀、伺服阀的工作原理电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。

压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。

由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。

还取决于执行元件的负载大小。

因此精确地控制气体流量往往是不必要的。

单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。

电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。

但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。

电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。

一、滑阀式电---气方向比例阀流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。

图示即为这类阀的结构原理图。

它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。

位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。

控制放大器的主要作用是:1)将位移传感器的输出信号进行放大;2)比较指令信号Ue和位移反馈信号U f U;3)放大,转换为电流信号I输出。

此外,为了改善比例阀的性能,控制放大器还含有对反馈信号Uf的处理环节。

比如状态反馈控制和PID调节等。

带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传Uf=0。

若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。

若指令Ue>0,则电压差增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。

而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。

此时。

Ue=Uf=KfX(Kf为位移传感器增益)上式表明阀芯位移X与输入信号Ue成正比。

若指令电压信号Ue<0,通过上式类似的反馈调节过程,使阀芯左移一定距离。

阀芯右移时,气源口P与A口连通,B口与排气口连通;阀芯左移时,P与B连通,A与排气口连通。

节流口开口量随阀芯位移的增大而增大。

上述的工作原理说明带位移反馈的方向比例阀节流口开口量与气流方向均受输入电压Ue的线性控制。

这类阀的优点是线性度好,滞回小,动态性能高。

二、滑阀式二级方向伺阀下图所示为一种动圈式二级方向伺服阀。

它主要由动圈式力马达、喷嘴挡板式气动放大器、滑阀式气动放大器、反馈弹簧等组成。

喷嘴档板气动放大器做前置级,滑阀式气动放大器做功率级。

这种二级方向伺服阀的工作原理是:在初始状态,左右两动圈式力马达均无电流输入,也无力输出。

在喷嘴气流作用下,两挡板使可变节流器处于全开状态,容腔3、7内压力几乎与大气压相同。

滑阀阀芯被装在两侧的反馈弹簧5、6推在中位,两输出口A、B与气源口P和排气口O均被隔开。

当某个动圈式马达有电流输入是(例如右侧力马达),输出与电流I成正比的推力Fm将挡板推向喷嘴,使可变节流器的流通面积减小,容腔6内的气压P6升高,升高后的P6又通过喷嘴对档板产生反推力Ff。

当Ff 与Fm平衡时,P6趋于稳定,其稳定值乘以喷嘴面积Ay等于电磁力。

另一方面,P6升高使阀芯两侧产生压力差,该压力差作用于阀芯断面使阀芯克服反馈弹簧力左移,并使左边反馈弹簧的压缩量增加,产生附加的弹簧力Fs,方向向右,大小与阀芯位移X成正比。

当阀芯移动到一定位置时,弹簧附加作用力与7、3容腔的压差对阀芯的作用力达到平衡,阀芯不在移动。

此时同时存在阀芯和挡板的受力平衡方程式:Fs=KsX=(P6-P5)AxFf=P6Ay=KiI式中KS----反馈弹簧刚度Ax----阀芯断面积Kf----动圈式力马达的电流增益。

在上述的调节过程中,左侧的喷嘴挡板始终处于全开状态,可以认为P5=0,代入后整理上述两式可得X=(AxKi/AyKs)*I阀芯位移与输入电流成正比。

当另一侧动圈式马达有输入时,通过上述类似的调节过程,阀芯将向相反方向移动一定距离。

当阀芯左移时,气源口P与输出口A连通,B口通大气;阀芯右移时,P与B通,A口通大气。

阀芯位移量越大,阀口开口量也越大。

这样就实现了对气流的流动方向和流量的控制。

这类阀采用动圈式马达,动态性能好,缺点是结构比较复杂。

三、动圈式压力伺服阀图示是一种压力伺服阀,其功能是将电信号成比例地转换为气体压力输出。

主要组成部分有:动圈式力马达1、喷嘴2、挡板3、固定节流口4、阀芯5、阀体6、复位弹簧7、租尼孔8等。

初始状态时,力马达无电流输入,喷嘴与挡板处在全开位置,控制腔内的压力与大气压几乎相等。

滑阀阀芯在复位弹簧推力的作用下处在右位,这时输出口A与排气口通,与气源口P断开。

当力马达有电流I输入时,力马达产生推力Fm(=KiI),将挡板推向喷嘴,控制腔内的气压P9升高。

P9的升高使挡板产生反推力,直至与电磁力Fm相平衡时P9才稳定,这时Fm=Iki=P9Ay+Yksy式中Ay----喷嘴喷口面积;Y----挡板位移;Ksy----力马达复位弹簧刚度。

另一方面,P9升高使阀芯左依,打开A口与P口,A口的输出压力P10升高,而P10经过阻尼孔8被引到阀芯左腔,该腔内的压力P11也随之升高。

P11作用于阀芯左端面阻止阀芯移动,直至阀芯受力平衡,这时(P9-P11)Ax=(X+X0)Ksx式中 A x----阀芯断面积;X----阀芯位移;X0----滑阀复位弹簧的预压缩量;Ksx----滑阀复位弹簧刚度。

由以上两式可得到P11=[P9Ax-(X+X0)Ksx]/Ax=(Iki-Yksy)/Ay-(X+X0)Ksx/Ax由设计保证,使工作时阀芯有效行程X与弹簧预压缩量X0相比小得多,可忽略不计,同时挡板位移量Y 在调节过程中变化很小,可近似为一常数,则上式简化为P11=KI+C其中K=Ki/Ay,称为电-气伺服阀的电流—压力增益,而C=-(X0Ksx/Ax+Yksy/Ay)是一常数。

由上式可见,P11与输入电流成线性关系。

阀芯处于平衡时,P10=P11,因此伺服阀的输出压力与输入电流成线性关系。

四、脉宽调制伺服阀与模拟式伺服阀不同,脉宽调制气动伺服控制是一种数字式伺服控制,采用的控制阀是开关式气动电磁阀。

脉宽调制气动伺服系统如图所示。

输入的模拟信号经脉宽调制器调制成具有一定频率和一定幅值的脉冲信号,经数字放大后控制气动电磁阀。

电磁阀输出的是具有一定压力和流量的气动脉冲信号,但已具有足够的功率,能借助气动执行元件对负载做功。

脉冲信号必须通过低通滤波器还原成模拟信号去控制负载。

低通滤波器可以是气动执行元件,也可以是负载本身。

采用前者滤波方式的称脉宽调制线性化系统,采用后者滤波的是依靠负载的较大惯性,它不能响应高频的脉冲信号,只能响应脉宽调制信号的平均效果。

负载响应的平均效果是与脉宽调制信号的调制量成正比的,其控制机理是:对于一个周期的脉冲波,设正脉冲和负脉冲的时间分别为T1和T2,周期为T,脉冲幅值为Ym ,则一个周期内的平均输出Ya为Ya=Ym(T1-T2)/T=YmKm式中Km=(T1-T2)/T称调制量(也称调制系数)。

一个周期的脉冲波及调制量与平均输出的关系如下图。

由于调制量Km与输入的模拟信号U成正比(这正是控制系统所要求的),因此平均输出与输入的模拟信号之间存在线性关系。

在脉宽调制气动伺服系统中,脉宽调制伺服阀完成信号的转换与放大作用,其常见的结构有四通滑阀型和三通球阀型。

下图所示为滑阀式脉宽调制伺服阀的结构原理图。

滑阀两端各有一个电磁铁,脉冲信号电流加在两个电磁铁上,控制阀芯按脉冲信号的频率往复运动。

脉宽调制伺服阀的性能主要是动态响应和对称性要求。

假设加在电磁铁上的是方波脉冲信号,从电磁铁接到信号到执行元件开始动作这段时间称信号的延迟时间。

延迟时间包括三部分,一是电磁线圈中电流由零逐渐增大到衔铁开始运动的电流增长时间;二是衔铁与阀芯一起运动的时间;三是从节流口打开、执行元件工作腔进行放气到执行元件开始动作的固定容器充放时间。

前两部分时间是由脉宽调制伺服阀决定。

脉宽调制气动伺服的工作频率一般是十几赫兹到二三十赫兹。

为了满足动态响应快的特点,要求延迟时间越短越好,一般控制在1~2ms以内。

所谓对称性要求,对四通滑阀,阀芯往复运动的响应要一致,即加在两个电磁铁上的脉冲信号在传递过程中延迟时间应基本相同,两输出口的压力与流量应基本相同;对三通球阀,对应脉冲信号上升沿下降沿的延迟时间应基本相同,球阀的充气过程和排气过程应基本相同。

由于三通球阀与差动气缸匹配,其对称性不如四通滑阀好。

为了提高四通滑阀的快速响应,常采用力反馈来提高阀芯反向运动的速度。

图所采用的是弹簧反馈的形式。

当信号反向时,弹簧力帮助阀芯反向运动,当阀芯运动过了中位,弹簧力改变,起阻止阀芯运动的作用,并能减轻阀芯到位的冲击力,降低噪声。

也有采用气压反馈的形式,其作用原理是一样的。

脉宽调制控制与模拟控制相比有很多优点:控制阀在高频开关状态下工作,能消除死区、干摩擦等非线性因素;控制阀加工精度要求不高,降低了控制系统成本;控制阀节流口经常处于全开状态,抗污染能力强,工作可靠。

缺点是功率输出小,机械振动和噪声较。

电—气比例伺服系统的应用实例一、柔性定位伺服气缸图示为一柔性定位气缸(又称位置伺服控制系统)。

该系统可以根据输给的电信号使气缸活塞在任意位置定位。

位置伺服控制系统由电—气方向比例阀由气缸1、2、位移传感器3、控制放大器4等组成。

该系统的基本原理是通过控制放大器、电—气比例阀、气缸的调节作用,使输入电压信号Ue与气缸位移反馈信号Uf(Uf与气缸位移之间是线性关系)之差U减小并趋于零,以实现气缸位移对输入信号的跟踪。

调节过程如下:若给定的输入信号Uf大于反馈信号Uf>0,控制放大器输出电流I增大,使-电—气比例阀的阀芯左移,气源口与A口之间的节流面积增大,气缸A力Pa升高并推动活塞右移。

气缸活塞的右移又使反馈电压信号Uf U几乎为零(采用PID调节的控制放大器可将稳态偏差调节至零)。

当给定的Uf U<0,同样通过类似于上述的调节过程使偏差趋于零。

因U=0即Ue=Uf=KX(K为常数)这就实现了输入信号Uf对气缸活塞位移X的比例控制。

上述的调节过程是在一段很短的时间内完成的,故只要输入信号Ue的主要频率分量在系统的频宽之内,气缸活塞位移就可以跟踪Ue的变化。

相关文档
最新文档