中考数学常用公式定理梳理汇总

合集下载

中考数学常用代数公式和几何结论汇总

中考数学常用代数公式和几何结论汇总

中考数学常用代数公式和几何结论汇总数学常用代数公式:1. 一元一次方程的解:ax + b = 0,解为x = -b/a。

2. 二元一次方程的解:ax + by = c,dx + ey = f,解为x = (ce- bf)/(ae - bd),y = (af - cd)/(ae - bd)。

3. 二次方程的解:对于ax^2 + bx + c = 0,解为x = (-b ±√(b^2 - 4ac))/(2a)。

4. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2- 2ab + b^25. 平方和公式:a^2 + b^2 = (a + b)^2 - 2ab。

6. 三角恒等式:sin^2θ + cos^2θ = 1,1 + tan^2θ = sec^2θ,1 + cot^2θ = cosec^2θ。

7. 二项式定理:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b +C(n, 2)a^(n-2)b^2 + ... + C(n, n-1)ab^(n-1) + C(n, n)b^n。

数学常用几何结论:1.垂直平分线定理:垂直平分线将一条线段垂直且平分为两段相等的线段。

2.角平分线定理:角平分线将一个角平分为两个相等的角。

3.三角形内角和公式:三角形内角和为180°。

4.三角形的外角等于其对内角的补角。

5.三角形中,边长越长,则其对应的夹角越大。

6.等腰三角形的底角相等,顶角为一组内角和减去底角。

7.利用等腰三角形性质能够确定角平分线、垂心和垂直平分线等。

这些只是数学常用的一些代数公式和几何结论,还有很多其他的公式和结论可以应用在数学问题中。

熟练掌握这些公式和结论,可以帮助解决各种数学题目。

中考数学公式大全归纳

中考数学公式大全归纳

中考数学公式大全归纳1.代数部分:- 二次方程的根公式:若ax²+bx+c=0,则 x= (-b±√(b²-4ac))/(2a)。

-四则运算:加减乘除的计算规则。

- 一元一次方程:ax+b=0,解为 x= -b/a。

-平方差公式:(a+b)(a-b)=a²-b²。

- 完全平方公式:(a+b)²=a²+2ab+b²。

- 分配律:a(b+c)=ab+ac。

- 因式分解公式:ab+ac=a(b+c)。

-平均值公式:(a+b)/22.几何部分:-直角三角形勾股定理:直角三角形两直角边的平方和等于斜边的平方。

- 正弦定理:a/sinA=b/sinB=c/sinC。

- 余弦定理:c²=a²+b²-2abcosC。

-面积公式:三角形的面积=(底边×高)/2-相似三角形的定理:对应角相等,对应边成比例。

-圆的面积公式:圆的面积=πr²,其中r为半径。

-圆的周长公式:圆的周长=2πr。

3.概率与统计部分:-互斥事件概率公式:P(A或B)=P(A)+P(B)。

-独立事件概率公式:P(A和B)=P(A)×P(B)。

-全概率公式:P(A)=P(A,B)×P(B)+P(A,B')×P(B'),其中B'为B的补事件。

-随机事件平均值公式:事件A的平均值=事件A发生次数/实验次数。

-取值范围:最大值=数列中的最大数,最小值=数列中的最小数。

4.函数部分:-y=x+b为一次函数的一般式,其中b为常数。

- y=kx 为比例函数的一般式,其中 k 为常数。

- y=ax²+bx+c 为二次函数的一般式,其中 a、b、c 为常数。

-y=a^x为指数函数的一般式,其中a为常数。

- y=loga(x) 为对数函数的一般式,其中 a 为底数,x 为真数。

中考数学公式大全归纳

中考数学公式大全归纳

中考数学公式大全归纳下面整理了一些中考数学的常用公式,希望能对你的学习有所帮助。

1.代数和式:- 一次项和:(a + b)^2 = a^2 + 2ab + b^2- 平方差:(a - b)^2 = a^2 - 2ab + b^2-平方差公式:a^2-b^2=(a+b)(a-b)- 完全平方公式:(a + b)^ 2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^22.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA,b^2 = a^2 + c^2 - 2ac*cosB,c^2 = a^2 + b^2 - 2ab*cosC- 正弦函数定义:sinA = 对边/斜边- 余弦函数定义:cosA = 邻边/斜边- 正切函数定义:tanA = 对边/邻边3.相似三角形:-边长比相等-对应角相等4.数列:-等差数列通项公式:an = a1 + (n - 1)d-等差数列求和公式:Sn = (a1 + an)n/2-等比数列通项公式:an = a1 * q^(n-1),其中q为公比-等比数列求和公式:Sn=a1(q^n-1)/(q-1)5.平面几何:-面积公式:矩形的面积=长*宽,三角形的面积=底边*高/2,梯形的面积=上底加下底的和*高/2,圆的面积=π*r^2-周长公式:正方形的周长=4*边长,矩形的周长=2*(长+宽),圆的周长=2*π*r6.平面解析几何:-中点公式:x=(x1+x2)/2,y=(y1+y2)/2-距离公式:两点之间的距离d=√((x2-x1)^2+(y2-y1)^2)7.三角函数:- 余角公式:sin(90° - A) = cosA,cos(90° - A) = sinA- 和差化积公式:sin(A + B) = sinA * cosB + cosA * sinB,cos(A + B) = cosA * cosB - sinA * sinB- 积化和差公式:sinA * sinB = (cos(A - B) - cos(A + B))/2,cosA * cosB = (cos(A - B) + cos(A + B))/28.指数与幂:- 指数运算公式:a^m * a^n = a^(m + n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n-幂运算公式:a^(-m)=1/a^m,(1/a)^m=1/a^m以上是一些中考数学常用的公式,希望能对你的学习有所帮助。

中考数学公式定理汇总

中考数学公式定理汇总

中考数学公式定理汇总1. 两点间距离公式:设两点坐标分别为(x1,y1)和(x2,y2),则两点间距离公式为d=√[(x2-x1)²+(y2-y1)²]。

2. 勾股定理:直角三角形斜边的平方等于两直角边长度的平方和。

即a²+b²=c²(其中c为斜边,a、b为两直角边)。

3. 相似三角形定理:若两个三角形的对应角相等,那么它们的对应边成比例。

4. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC,其中a、b、c分别为三角形的三个边长。

5. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。

6. 集合论基本公式:①并集公式:A∪B表示A和B的并集,其中A、B为两个集合,则A∪B={x|x∈A∨x∈B};②交集公式:A∩B表示A和B的交集,其中A、B为两个集合,则A∩B={x|x∈A∧x∈B};③差集公式:A-B表示A与B的差集,其中A、B为两个集合,则A-B={x|x∈A∧x∉B}。

7. 均值不等式:对于任意非负实数a1、a2、……、an,则有(a1+a2+……+an)/n≥√(a1a2……an),即算术平均数大于等于几何平均数。

8. 对数基本公式:①a^m*a^n=a^(m+n);②(a^m)^n=a^(mn);③a^(m-n)=a^m/a^n;④loga(m*n)=logam+logan;⑤loga(m/n)=logam-logan;⑥loga(m^n)=n*logam。

9. 斯涅尔定理:(1)光线从光疏介质到光密介质中以一定角度射入后,会向法线方向弯曲;(2)入射角和折射角之比是一个定值,称为折射率n,即n=sin(i)/sin(r)。

10. 三角函数基本公式:sin(-x)=-sinx,cos(-x)=cosx,tan(-x)=-tanx,cot(-x)=-cotx。

11. 欧拉公式:e^(ix)=cosx+i*sinx。

初三数学重点公式、定理

初三数学重点公式、定理

中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a ≥0丨a 丨=a ;a ≤0丨a 丨=-a .如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972准确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a ×10n 的形式(其中1≤a <10,n 是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a +b )(a -b )=a 2-b 2.②(a ±b )2=a 2±2ab +b 2.③(a +b )(a 2-ab +b 2)=a 3+b 3.④(a -b )(a 2+ab +b 2)=a 3-b 3;a 2+b 2=(a +b )2-2ab ,(a -b )2=(a +b )2-4ab .6、幂的运算性质:①a m ×a n =a m +n .②a m ÷a n =a m -n .③(a m )n =a mn .④(ab )n =a n b n .⑤()n =n . ⑥a -n =1n a,特别:()-n =()n .⑦a 0=1(a ≠0).如:a 3×a 2=a 5,a 6÷a 2=a 4,(a 3)2=a 6,(3a 3)3=27a 9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1. 7、二次根式:①()2=a (a ≥0),②=丨a 丨,③=×,④=(a >0,b ≥0).如:①(3-)2=45.②=6.③a <0时,=-a.④的平方根=4的平方根=±2.〔平方根、立方根、算术平方根的概念〕8、一元二次方程:对于方程:ax 2+bx +c =0:①求根公式是x =242b b ac a-±-,其中△=b 2-4ac 叫做根的判别式.当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②假设方程有两个实数根x 1和x 2,并且二次三项式ax 2+bx +c 可分解为a (x -x 1)(x -x 2). ③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0.9、一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标即一次函数在y 轴上的截距).当k >0时,y 随x 的增大而增大(直线从左向右上升);当k <0时,y 随x 的增大而减小(直线从左向右下降).特别:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点.10、反比例函数y =(k ≠0)的图象叫做双曲线.当k >0时,双曲线在一、三象限(在每一象限,从左向右降);当k <0时,双曲线在二、四象限(在每一象限,从左向右上升).因此,它的增减性与一次函数相反. 11、统计初步:〔1〕概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. 〔2〕公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……,n x 的方差为2s ,那么2s =222121.....nx xx xx xn标准差:方差的算术平方根.数据1x 、2x ……,n x 的标准差s ,那么s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。

27条初中数学公式定理集锦

27条初中数学公式定理集锦

一、有理数1、相反数与绝对值(1)数a的相反数是-a。

若a、b互为相反数,则a+b=0;反之,若a+b=0,则a、b互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣=或∣a∣=-a(a<0),-a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于0,负数小于0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律5、科学记数法把一个大于10的数记作a ×10n的形式,其中a 大于或等于1且小于10,即1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么a+c=b+c ,a-c=b-c(2)如果a=b ,那么ac=bc ;如果a=b ,那么a c =bc (c ≠0)2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1)直线公理:两点确定一条直线. (2)线段公理:两点之间,线段最短. 2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a的相反数是-a,这里a表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.七、平面直角坐标系各象限内点的坐标特点P(a,b)①点在第一象限,则a>0,b>0; ②点在第二象限,则a<0,b>0;○3点在第三象限,则a<0,b<0; ④点在第四象限,则a>0,b<0 角平分线上点的特点 P(a,b)①在一、三象限的角平分线上,a=b ; ②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点 P(a,b) ①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b );○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a ,b ); ○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b ) 与坐标轴平行的直线上的点的坐标特点○1与x 轴平行的直线上的所有点的纵坐标相同; ○2与y 轴平行的直线上的所有点的横坐标相同 八、二元一次方程组a 1x+b 1y=c 1, 对于二元一次方程组a 2x+b 2y=c 2.(1) 当a 1a 2 ≠b 1b 2(a 2,b 2≠0)时,方程组有唯一解.(2) 当a 1a 2 =b 1b 2 =c 1c 2 (a 2,b 2,c 2≠0)时,方程组有无数组解.(3) 当a 1a 2 =b 1b 2 ≠c 1c 2(a2,b2,c2≠0)时,方程组无解.九、不等式与不等式组1.不等式性质性质1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b ,那么a ±m>b ±m.性质2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且m>0,那么am>bm 或a m >bm.性质3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么am<bm 或a m <bm.2.一元一次不等式组的解集不等式组(a<b )数轴表示解集口诀x>a ,x>bx>b同大取大x<a ,x<bx<a同小取小ababa ba b十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边.3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.6、多边形的内角和与外角和(1)n边形的内角和是(n-2)×180°.(2)n边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定2.三角形的性质及判定十三、整式的乘法与因式分解1.幂的有关法则2.乘法公式3.因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即 A B =A ·M B ·M ,A B = A ÷M B ÷M (其中M 是不等于0的整式) 2.分式的运算法则(1) 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.即b a ·d c =bdac .(2) 除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘.即b a ÷d c =b a ·c d =bcad.(3) 乘方法则:把分子、分母分别乘方.为正整数).(4) 加减法法则:①同分母的分式相加减,分母不变,把分子相加减.即a c ±b c =a ±bc:②异分母分式相加减,先通分,变为同分母分式,再加减.即a b ±d c =ac bc ±bd bc =ac ±bdbc.十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是a ,b,斜边长为c,那么a 2+b 2=c 2.2.勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么 这个三角形就是直角三角形.十七、平行四边形1.几种特殊四边形常用的判定方法2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质Oxy OxyOxyOxy Oxy Oxy十九、数据的分析1. 平均数(1) 平均数: 对于n 个数n 个数的平均数. (2) 加权平均数:若n 则x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n叫做这n 个数的加权平均数 2. 数据的波动程度(1) 极差:一组数据的最大值与最小值的差(2) 方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用s 2来表示,计算公式x 1-⎺x )2+(x 2-⎺x )2+…+(x n -⎺x )2]. (3) 标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.公式:. 二十、一元二次方程1. 一元二次方程的解法2. —元二次方程根的判别式ax 2+bx+c=0(a ≠0) 的判别式△= b 2-4ac .(1) △>0,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根.(2) △=0,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3) △<0,一元二次方程ax 2+bx+c=0(a ≠0) 没有实数根.3. 一元二次方程根与系数的关系已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2, 则有二十—、二次函数2. 二次函斂y=a(x-h)+k(a ≠0)的性质3. 二次函数y=ax +bx+c 的性质(1) a 的符号:由抛物线的开口方向确定 ○1开口向上○2开口向下。

中考数学全套公式整理

中考数学全套公式整理

中考数学全套公式整理1.整数运算公式-加法:a+b=c-减法:a-b=c-乘法:a×b=c-除法:a÷b=c-绝对值:,a,=c,当a≥0时,a,=a;当a<0时,a,=-a2.分数运算公式- 分数相加:a/b + c/d = (ad + bc)/bd- 分数相减:a/b - c/d = (ad - bc)/bd- 分数相乘:a/b × c/d = ac/bd- 分数相除:a/b ÷ c/d = ad/bc-分数的倒数:1/(a/b)=b/a3.方程与不等式公式- 一元一次方程:ax + b = 0,解为x = -b/a- 一元二次方程:ax² + bx + c = 0,解为x = (-b±√(b²-4ac))/(2a)- 一元一次不等式:ax + b < 0 或 ax + b > 0,解为x < -b/a 或x > -b/a- 一元二次不等式:ax² + bx + c < 0 或ax² + bx + c > 0,解为x > (-b±√(b²-4ac))/(2a)4.几何公式-周长公式:矩形周长=2(长+宽),正方形周长=4×边长,圆周长=2πr-面积公式:矩形面积=长×宽,正方形面积=边长²,圆面积=πr²-三角形面积公式:底边长×高÷2-相似三角形定理:对应的角相等,则对应的边成比例-同位角定理:平行线被截取的两条直线上同位角相等-圆内接四边形定理:圆内接四边形的对角和相等5.百分数与角度-百分数与小数的转化:百分数=小数×100%,小数=百分数÷100%-百分数与分数的转化:百分数=分子÷分母×100%,分数=百分数×分母÷100%-角度与弧度的转化:角度=弧度×180°/π,弧度=角度×π/180°6.平方与立方- 平方公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²- 立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³,(a - b)³ = a³ - 3a²b + 3ab² - b³7.线性函数和比例函数-直线的斜率公式:k=Δy/Δx-平行线的斜率关系:两条平行线的斜率相等-垂直线的斜率关系:两条垂直线的斜率之积为-1- 比例函数:y = kx,其中k为常数,表示y与x成比例关系8.统计学相关公式-平均数公式:平均数=总和÷数据个数-中位数公式:将数据按从小到大排列,如果数据个数为奇数,则中位数为中间的数;如果数据个数为偶数,则中位数为中间两个数的平均数-众数公式:出现频次最多的数-极差公式:极差=最大值-最小值-方差公式:方差=((数据1-平均数)²+(数据2-平均数)²+...+(数据n-平均数)²)÷n-标准差公式:标准差=√方差。

中考数学必背知识点及公式

中考数学必背知识点及公式

中考数学必背知识点及公式
1. 一次函数的标准式:y = kx + b;斜率 k 的计算公式:k =
(y2 - y1) ÷ (x2 - x1)
2. 二元一次方程组:ax + by = c;dx + ey = f;解法有消元法和代入法。

3. 垂直、平行线的判定方法:(1)两条直线斜率乘积等于-1,则它们垂直;(2)两条直线斜率相等,则它们平行。

4. 三角形内角和公式:三角形内角和等于 180 度。

5. 相似三角形边长、角度的关系:(1)相似三角形的对应边
长成比例;(2)相似三角形的对应内角相等。

6. 直角三角形中的三角函数公式:正弦函数:sinθ = 对边 ÷斜边;余弦函数:cosθ = 邻边 ÷斜边;正切函数:tanθ = 对边 ÷
邻边。

7. 平面坐标系中两点间的距离公式:√[(x2 - x1)² + (y2 - y1)²]
8. 平行四边形的面积公式:S = 底 ×高。

9. 三角形的面积公式:S = 底 ×高 ÷ 2。

10. 圆的周长公式:C = 2πr 或C = πd (其中 r 为圆的半径,d
为圆的直径)。

11. 圆的面积公式:S = πr²。

12. 锐角三角形中任意两边的关系:两边之和大于第三边。

13. 任意三角形中角度与对边的关系:(1)任意两边之间的夹角小于对应的角的大小;(2)任意两角之间的棱长比大于角对应的正弦值。

初中中考数学常用公式及重要性质和定理(重新整理)

初中中考数学常用公式及重要性质和定理(重新整理)

【中考必备】初中几何定理必背总结大全1、过两点有且只有一条直线。

2 、两点之间线段最短。

3 、同角或等角的补角相等。

4、同角或等角的余角相等。

5 、同一平面内,过一点有且只有一条直线和已知直线垂直。

6 、直线外一点与直线上各点连接的所有线段中,垂线段最短。

7 、平行公理 :(1在同一平面内,不相交的两条直线收做平行线。

(2经过直线外一点,有且只有一条直线与这条直线平行。

8 、如果两条直线都和第三条直线平行,这两条直线也互相平行。

9 、同位角相等,两直线平行。

10 、内错角相等,两直线平行。

11 、同旁内角互补,两直线平行。

12、两直线平行,同位角相等。

13 、两直线平行,内错角相等。

14 、两直线平行,同旁内角互补。

15 、定理 :三角形两边的和大于第三边。

16 、推论 :三角形两边的差小于第三边。

17 、三角形内角和定理 :三角形三个内角的和等于 180°18 、推论 1 :直角三角形的两个锐角互余。

19 、推论 2 :三角形的一个外角等于和它不相邻的两个内角的和。

20 、推论 3 :三角形的一个外角大于任何一个和它不相邻的内角。

21 、全等三角形的对应边、对应角相等。

22、边角边公理 :有两边和它们的夹角对应相等的两个三角形全等(SAS 23 、角边角公理 :有两角和它们的夹边对应相等的两个三角形全等(ASA 24 、推论 :有两角和其中一角的对边对应相等的两个三角形全等 (AAS 25 、边边边公理 :有三边对应相等的两个三角形全等(SSS26 、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(HL27 、定理 1 :在角的平分线上的点到这个角的两边的距离相等(垂线段长 28 、定理 2 :到一个角的两边的距离相同的点,在这个角的平分线上。

29 、角的平分线是到角的两边距离相等的所有点的集合。

30 、等腰三角形的性质定理 :等腰三角形的两个底角相等。

31 、推论 1:等腰三角形顶角的平分线平分底边并且垂直于底边。

初中中考数学常用公式及重要性质和定理

初中中考数学常用公式及重要性质和定理

初中中考数学常用公式及重要性质和定理数学是一门高效的科学,而公式则是数学思想的高效表达方式。

在初中中考数学中,掌握常用公式、重要性质和定理是很重要的。

下面我将重新整理并详细介绍常用公式、重要性质和定理。

一、常用公式:1.直角三角形的勾股定理:设直角三角形的两直角边分别为a、b,斜边为c,则有a²+b²=c²。

2. 二次函数的解法公式:设二次函数为y = ax² + bx + c,其中a ≠ 0,则它的解法公式为x = [-b ± √(b² - 4ac)] / (2a)。

3.等差数列的通项公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则有aₙ=a₁+(n-1)d。

4.等差数列的前n项和公式:设等差数列的首项为a₁,公差为d,前n项的和为Sn,则有Sn=(n/2)(a₁+aₙ)。

5. 平方差公式:(a + b)² = a² + 2ab + b²。

6. 两角和、差公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB。

7.梯形面积公式:设梯形的上底长度为a,下底长度为b,高为h,则梯形的面积为S=(a+b)h/28.圆的周长公式:设圆的半径为r,则圆的周长L=2πr。

9.圆的面积公式:设圆的半径为r,则圆的面积S=πr²。

二、重要性质和定理:1.三角形内角和定理:设三角形的三个内角分别为A、B、C,则有A+B+C=180°。

2.三角形面积公式:设三角形的底边为a,对应高为h,则三角形的面积S=1/2×a×h。

3.三角形的相似性质:若两个三角形的对应角相等,则这两个三角形相似。

4.三角形的勾股定理:设三角形的三个边长分别为a、b、c,其中c为斜边,则有a²+b²=c²。

九年级数学常见的公式与定理

九年级数学常见的公式与定理

一、代数公式1. 一元一次方程:ax+b=0,其中a和b为实数,a≠0,解为x=-b/a。

2. 一元二次方程:ax^2+bx+c=0,其中a、b和c为实数,a≠0,解为x=(-b±√(b^2-4ac))/2a。

3.因式分解公式:a^2-b^2=(a+b)(a-b)。

4. 完全平方公式:(a+b)^2=a^2+2ab+b^25. 二次完全平方公式:a^2-2ab+b^2=(a-b)^26. 立方公式:(a+b)^3=a^3+3a^2b+3ab^2+b^37. 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)。

二、几何公式1.勾股定理:直角三角形斜边的平方等于两条直角边的平方和。

c^2=a^2+b^22.同位角定理:同位角互相相等,即对应角、内错角、同旁内角、同旁外角。

3.平行线性质:同位角相等、内错角相等、同旁内角和为180°、同旁外角互补。

4. 钝角三角函数定理:在锐角三角函数的定义域内,sin(90°-θ)=cosθ,cos(90°-θ)=sinθ。

5. 锐角三角函数定理:在锐角三角函数的定义域内,sin(180°-θ)=sinθ,cos(180°-θ)=-cosθ,tan(180°-θ)=-tanθ。

6.圆的面积公式:S=πr^2,其中S为圆的面积,r为半径。

7.直角三角形斜边长公式:斜边长c=√(a^2+b^2),其中a、b为直角三角形的直角边。

8. 30°、45°、60°三角函数值:sin30°=1/2,sin45°=cos45°=1/√2,sin60°=√3/2,cos30°=√3/2,cos60°=1/2,tan30°=1/√3,tan45°=1,tan60°=√3三、概率论公式1.组合公式:C(n,m)=n!/(m!(n-m)!),其中C(n,m)表示从n个元素中选取m个元素的组合数。

初中数学中考常用几何公式定理大全

初中数学中考常用几何公式定理大全

初中数学中考常用几何公式定理大全初中数学中考常用几何公式定理大全1、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)&divide;2 S=L&times;h2、(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d3、 (2)合比性质如果a/b=c/d,那么(a&plusmn;b)/b=(c&plusmn;d)/d4、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n&ne;0),那么(a+c+…+m)/(b+d+…+n)=a/b5、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例6、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例7、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边8、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例9、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似10、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)11、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似12、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)13、判定定理3 三边对应成比例,两三角形相似(SSS)14、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似15、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比16、性质定理2 相似三角形周长的比等于相似比17、性质定理3 相似三角形面积的比等于相似比的平方18、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值19、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

数学中考公式归纳

数学中考公式归纳

数学中考公式归纳一、数与式。

1. 有理数的运算律。

- 加法交换律:a + b=b + a- 加法结合律:(a + b)+c=a+(b + c)- 乘法交换律:ab = ba- 乘法结合律:(ab)c=a(bc)- 乘法分配律:a(b + c)=ab+ac2. 幂的运算公式。

- 同底数幂相乘:a^m· a^n=a^m + n(m,n为正整数)- 同底数幂相除:a^m÷ a^n=a^m - n(a≠0,m,n为正整数,m>n) - 幂的乘方:(a^m)^n=a^mn(m,n为正整数)- 积的幂:(ab)^n=a^nb^n(n为正整数)- 商的幂:((a)/(b))^n=frac{a^n}{b^n}(b≠0,n为正整数)3. 整式乘法公式。

- 平方差公式:(a + b)(a - b)=a^2-b^2- 完全平方公式:(a± b)^2=a^2±2ab + b^24. 二次根式的性质。

- √(a^2)=| a|=a(a≥0) -a(a<0)- √(ab)=√(a)·√(b)(a≥0,b≥0)- √(frac{a){b}}=(√(a))/(√(b))(a≥0,b>0)二、方程与不等式。

1. 一元二次方程ax^2+bx + c = 0(a≠0)的求根公式。

- x=frac{-b±√(b^2)-4ac}{2a},其中Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

2. 一元一次不等式组的解集确定方法(设a < b)- x > a x > b的解集是x > b(同大取大)- x < a x < b的解集是x < a(同小取小)- x > a x < b的解集是a < x < b(大小小大中间找)- x < a x > b的解集是无解(大大小小找不到)三、函数。

初中数理化公式定律大全

初中数理化公式定律大全

初中数理化公式定律大全一、数学公式定律1.二次方程的求解公式(欧拉公式):对于二次方程ax^2 + bx + c = 0,其求解公式为:x = (-b ±√(b^2-4ac))/(2a)2.勾股定理:直角三角形中,a^2+b^2=c^2,其中a和b为直角边的长度,c为斜边的长度。

3.三角函数的基本关系:对于任意角θ(θ为弧度制),sin^2θ + cos^2θ = 1,tanθ = sinθ/cosθ。

4.等差数列求和公式:对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数,其和Sn的求解公式为:Sn = (n/2)(a1 + an)5.等比数列求和公式:对于等比数列an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数,其和Sn的求解公式为:Sn=a1*(r^n-1)/(r-1)6.梯形面积公式:对于梯形的上底a,下底b和高h,其面积S的求解公式为:S=(a+b)*h/27.三角形面积公式:对于三角形的底边长b和高h,其面积S的求解公式为:S=b*h/28.圆的周长和面积公式:对于圆的半径r,其周长C和面积A的求解公式分别为:C=2πr,A=πr^29.定积分的定义:对于函数f(x)在区间[a,b]上的定积分的定义为:∫[a, b] f(x)dx = lim(n→∞) Σ(k=1→n) f(xk)Δx,其中Δx = (b-a)/n,xk为[a+(k-1)Δx, a+kΔx]上的任意一点。

10.泰勒级数展开:对于函数f(x)在x=a处的泰勒级数展开为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...二、物理公式定律1.牛顿第一定律(惯性定律):任何物体都保持静止或匀速直线运动,直到外力强迫其改变状态。

2.牛顿第二定律(运动定律):物体所受合力等于质量与加速度的乘积,即 F = ma,其中F为合力,m为物体质量,a为加速度。

中考数学公式总结归纳

中考数学公式总结归纳

中考数学公式总结归纳数学是一个涉及逻辑思维和计算能力的学科,它也是中考必考科目之一、为了帮助学生更好地备考数学中考,下面对中考数学常用的公式和定理进行总结和归纳。

一、整数的四则运算公式:1.加法公式:a+b=b+a。

2.减法公式:a-b=-(b-a)。

3.乘法公式:a×b=b×a。

4.除法公式:a÷b=a/b,其中b≠0。

二、有理数的乘方公式:1.有理数的乘方公式:a^m×a^n=a^(m+n),其中a是有理数,m和n 是整数。

2.幂的乘方公式:(a^m)^n=a^(m×n),其中a是有理数,m和n是整数。

3.幂的倒数公式:a^(-m)=1/a^m,其中a是有理数,m是正整数。

三、二次根式的计算公式:1.二次根式的乘法公式:√a×√b=√(a×b),其中a和b是非负实数。

2.二次根式的除法公式:√a/√b=√(a/b),其中a是非负实数,b 是正实数。

3.二次根式的化简公式:√(a^m)=a^(m/2),其中a是非负实数,m是偶数。

四、三角函数的基本关系:1. 正弦函数的定义:sinθ = 对边 / 斜边。

2. 余弦函数的定义:cosθ = 邻边 / 斜边。

3. 正切函数的定义:tanθ = 对边 / 邻边。

4. 三角函数的互余关系:sinθ = cos(90° - θ),cosθ =sin(90° - θ),tanθ = 1/tan(90° - θ)。

五、圆的常用公式:1.圆的周长公式:C=2πr,其中C是圆的周长,r是圆的半径。

2.圆的面积公式:S=πr^2,其中S是圆的面积,r是圆的半径。

3.弧长公式:L=2πr(θ/360°),其中L是圆的弧长,r是圆的半径,θ是弧所对的圆心角的度数。

六、直角三角形的求解公式:1.勾股定理:c^2=a^2+b^2,其中c是斜边,a和b是直角边。

2. 正弦定理:a / sinA = b / sinB = c / sinC,其中 a, b, c 是三角形的边长,A, B, C 是对应的角度。

中考数学必考公式定律整理

中考数学必考公式定律整理

中考数学必考公式定律整理中考数学是考察学生对数学基本概念、定理和方法的掌握程度的一门科目。

在备考中,整理并熟记一些重要的公式和定律对学生来说非常重要。

下面是一些常见的中考数学必考公式和定律的整理:1.四则运算公式-加法和减法的交换律:a+b=b+a,a-b≠b-a-乘法和除法的交换律:a×b=b×a,a÷b≠b÷a-加法和乘法的结合律:(a+b)+c=a+(b+c),(a×b)×c=a×(b×c)2.整式公式-a²-b²=(a+b)(a-b)- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²- a² + b² = (a + b)² - 2ab- a³ - b³ = (a - b)(a² + ab + b²)- a³ + b³ = (a + b)(a² - ab + b²)3.平方根公式- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²-a²-b²=(a+b)(a-b)4.二次方程公式- 一元二次方程ax² + bx + c = 0的解公式为:x = (-b ± √(b² - 4ac)) / (2a)5.百分数和比例-百分数的计算公式:百分数=(部分/总数)×100%-比例的计算公式:部分/总数=n/1006.倍数和因数-一个数a是另一个数b的倍数,当且仅当b是a的一个因数。

-如果一个数a能被另一个数b整除,则a是b的倍数,b是a的因数。

中考数学公式定理大全

中考数学公式定理大全

中考数学公式定理大全1.多边形的内角和定理:任何一个n边形的内角和等于(n-2)×180°2.一次函数的标准方程:y = kx + b3.两点间距离公式:AB=√((x₂-x₁)²+(y₂-y₁)²)4.平面直角坐标系上两点的中点坐标公式:M((x₁+x₂)/2,(y₁+y₂)/2)5.点到直线的距离公式(点A(x₁,y₁),直线Ax+By+C=0):d=,Ax₁+By₁+C,/√(A²+B²)6.一元二次方程的解法:-b ± √(b² - 4ac) / (2a)7.同底数幂的乘法法则:xᵐ*xⁿ=x^(m+n)8.同底数幂的除法法则:xᵐ/xⁿ=x^(m-n)9.幂的乘幂规则:(xᵐ)ⁿ=x^(m*n)10.倒数的幂规则:(1/x)ⁿ=1/xⁿ11.对数的定义:如果aⁿ=x,那么就写作logₐx = n,其中a称为底数,x称为真数,n 称为对数。

12.对数的乘法法则:logₐ(xy) = logₐx + logₐy13.对数的除法法则:logₐ(x/y) = logₐx - logₐy14.对数的换底公式:logₐb = logcb / logca15.几何中,两角平分线定理:如果一条射分线把一个角分成两个相等的小角,那么这条射分线就是这个角的角平分线。

16.反比例函数:y=k/x。

其中k是常数。

17.三角形的面积公式:S = 1/2 * a * b * sinC18.三角形的余弦定理:c² = a² + b² - 2ab * cosC19.三角形的正弦定理:a / sinA =b / sinB =c / sinC20.三角形的中线定理:AD²=AB²/4+AC²/4-BC²/421.内切圆和外接圆的性质:a是三角形的边长,r是内切圆半径,R是外接圆半径。

中考数学必用公式整理

中考数学必用公式整理

中考数学必用公式整理中考数学是一个相对来说比较实用的学科,其中需要运用到的公式也相对较多。

下面是一些必备的数学公式整理,供同学们参考:1.代数公式-a²-b²=(a+b)(a-b)- (a+b)²=a²+2ab+b²- (a-b)²=a²-2ab+b²- (a+b)³=a³+3a²b+3ab²+b³- (a-b)³=a³-3a²b+3ab²-b³- a³+b³=(a+b)(a²-ab+b²)- a³-b³=(a-b)(a²+ab+b²)-a⁴-b⁴=(a²+b²)(a²-b²)- (a+b)⁴=a⁴+4a³b+6a²b²+4ab³+b⁴- (a-b)⁴=a⁴-4a³b+6a²b²-4ab³+b⁴2.数列公式-等差数列前n项和公式:Sn=n(a₁+an)/2-等差数列通项公式:an=a₁+(n-1)d-等差数列求和公式:Sn=(a₁+an)n/2-等比数列前n项和公式:Sn=a₁(1-qⁿ)/(1-q)-等比数列通项公式:an=a₁qⁿ⁻¹-等比数列求和公式:Sn=a₁(1-qⁿ)/(1-q) 3.几何公式-三角形面积公式:S=1/2×底×高-直角三角形勾股定理:c²=a²+b²-等腰三角形的面积公式:S=1/2×底×高-三角形内角和公式:α+β+γ=180°-三角形外角和公式:α+β-γ=180°-正方形的面积公式:S=a²-长方形的面积公式:S=长×宽-圆的面积公式:S=πr²-圆的周长公式:C=2πr4.函数公式- 一次函数方程:y=ax+b- 二次函数方程:y=ax²+bx+c-一次函数斜率公式:a=(y₂-y₁)/(x₂-x₁) -二次函数顶点公式:x=-b/2a-二次函数轴对称公式:x=-b/2a- 二次函数判别式公式:D=b²-4ac5.概率公式-事件的概率:P(A)=n(A)/n(S)-加法原理:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法原理:P(A∩B)=P(A)×P(B,A)-条件概率:P(B,A)=P(A∩B)/P(A)-互斥事件:P(A∩B)=0-完全事件:P(A∪B)=16.统计学公式-众数:一组数中出现次数最多的那个数-中位数:将一组数按照大小进行排序后的中间数-极差:一组数中最大值与最小值之间的差-平均数:一组数的和除以它们的个数-方差:一组数与它们的平均数之差的平方的平均数-标准差:方差的平方根以上是中考数学必备的一些公式,同学们在备考时可以将这些公式进行整理和复习,以便在考试时能够灵活运用。

九年级数学定理、公式汇总(背记版)

九年级数学定理、公式汇总(背记版)

重点公式汇总(背记版):一元二次方程一般形式:ax ²+bx+c =0 (a ≠0) 求根公式:a ac b b x 242-±-=(Δ=b 2-4a c ≥0) 判别法则:当Δ>0时,方程总有两个不相等的实数根当Δ= 0时,方程总有两个相等的实数根当Δ<0时,方程没有实数根韦达定理:若方程有两个实数根x 1和x 2,则x 1+x 2=a b -, x 1x 2=ac (需Δ≥0)增长(降低)率公式b x 1a n =±)(二次函数:一般形式y=ax 2+bx+c (a ≠0) 对称轴:a b x 2-=顶点坐标是)4-4,2-2a b ac a b ( 顶点式y=a(x -h)2+k(a ≠0) 对称轴:x=h ,顶点坐标(h,k )交点式y=a(x -x 1)(x -x 2)(a ≠0) 对称轴:221x x x += 函数平移规律:左加右减对称轴变,上加下减最值变。

抛物线与x 轴的位置关系:对于抛物线y=ax 2+bx+cΔ<0时,它与x 没有交点.Δ=0时,它与x 轴只有一个交点(与x 轴相切).Δ>0时,它与x 轴有两个交点(x 1,0)和(x 2,0),其中x 1和x 2是方程ax 2+bx+c=0的两个根.两点之间的距离公式:22-12222)()-(),,(),,(111y y x x AB y x B y x A +=则有: 中点坐标公式:(221x x +,2y y 21+)圆①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

(“知二推三”) 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

②在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

③圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

中考数学必备公式大全

中考数学必备公式大全

中考数学必备公式大全一、代数公式1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^n−1b^1+C(n,2)a^n−2b^2+…+C(n,n−1)a^1b^(n −1)+C(n,n)a^0b^n2.因式分解公式:a^2−b^2=(a+b)(a−b)a^2+2ab+b^2=(a+b)^2a^2−2ab+b^2=(a−b)^2a^3+b^3=(a+b)(a^2−ab+b^2)a^3−b^3=(a−b)(a^2+ab+b^2)3.分式相关公式:倒数的倒数=本身 eg. a/b 的倒数的倒数 = b/a分式相乘,分子与分母相乘eg. (a/b) × (c/d) = (a×c) / (b×d)分式相除,分子与分母互换并相乘eg. (a/b) ÷ (c/d) = (a×d) / (b×c)相等分式的分子与分母对应相等,且不为0 eg. (a/b) = (c/d),a:c=b:d,ab≠0,cd≠04.求根公式:一元二次方程 ax^2 + bx + c = 0 的根公式为 x = (−b ±√(b^2−4ac)) / 2a二、几何公式1.三角形公式:(1)三角形的面积公式:S=1/2×底×高(2)三角形的海伦公式:c=a+b+c/2,S=√(c×(c−a)×(c−b)×(c−c))(3)三角形内角和公式:三角形内角之和等于180°(4)三角形的斜边关系:a^2+b^2=c^2(直角三角形)(5)正弦定理:a/sinA = b/sinB = c/sinC = 2R(R为外接圆半径)(6)余弦定理:c^2 = a^2 + b^2 - 2abcosC2.平面图形面积公式:(1)矩形的面积公式:S=长×宽(2)正方形的面积公式:S=边长×边长(3)平行四边形的面积公式:S=底×高(4)梯形的面积公式:S=(上底+下底)×高/2(5)圆的面积公式:S=πr^2(r为半径)3.立体图形体积公式:(1)长方体的体积公式:V=长×宽×高(2)正方体的体积公式:V=边长×边长×边长(3)圆柱体的体积公式:V=πr^2×h(r为底面半径,h为高)(4)圆锥体的体积公式:V=1/3×πr^2×h(r为底面半径,h为高)三、概率与统计公式1.事件概率公式:(1)事件的概率:P(A)=n(A)/n(S)(A为事件,n(A)为事件A包含的样本点数,n(S)为样本空间中的样本点数)2.统计指标公式:(1)平均数:平均值=总和/样本个数(2)中位数:奇数个数字的中位数为中间那个数,偶数个数字的中位数为中间两个数之和的一半(3)众数:出现频率最高的数(4)范围:样本最大值减去样本最小值(5)方差:每个数与平均数之差的平方和除以样本个数(6)标准差:方差的平方根(7)百分位数:P%的百分位数是这样一个数值,它将数据分成两部分,较小部分中至少有P%的数据以上是中考数学必备公式的大致集合,希望对你的备考有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学常用公式定理梳理汇总1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =()()()222121.....nx x xx xx n 轾-+-++-犏臌标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =一组数据的方差越大,这组数据的波动越大,越不稳定。

12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。

(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。

③大量的重复实验时频率可视为事件发生概率的估计值; 13、锐角三角函数:①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =,∠A 的正切:tan A =.并且sin 2A +cos 2A =1.0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小. ②余角公式:sin (90º-A )=cos A ,cos (90º-A )=sin A . ③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=, tan30º=,tan45º=1,tan60º=.④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tan α=.14、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P 1(a ,-b ),P 关于y 轴对称的点为P 2(-a ,b),关于原点对称的点为P 3(-a ,-b ).l(2)坐标平移:若直角坐标系内一点P (a ,b )向左平移h 个单位,坐标变为P (a -h ,b ),向右平移h 个单位,坐标变为P (a +h ,b );向上平移h 个单位,坐标变为P (a ,b +h ),向下平移h 个单位,坐标变为P (a ,b -h ).如:点A (2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A (7,1). 15、二次函数的有关知识:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .4.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔(0>∆)⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切; ③没有交点⇔(0<∆)⇔抛物线与x 轴相离. (3)平行于x 轴的直线与抛物线的交点同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐 标为k ,则横坐标是k c bx ax =++2的两个实数根.(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-1、多边形内角和公式:n 边形的内角和等于(n -2)180º(n ≥3,n 是正整数),外角和等于360º2、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

如图:a ∥b ∥c ,直线l 1与l 2分别与直线a 、b 、c 相交与点A 、B 、C D 、E 、F ,则有,,AB DE AB DE BC EFBC EF AC DF AC DF===(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

相关文档
最新文档