LS-Dyna碰撞分析调试指南
汽车碰撞分析LS DYNA控制卡片设置共26页
![汽车碰撞分析LS DYNA控制卡片设置共26页](https://img.taocdn.com/s3/m/9dc282d202020740bf1e9bb1.png)
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
汽车碰撞分析LS DYNA控制卡片设置
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
LS-Dyna碰撞分析调试指南
![LS-Dyna碰撞分析调试指南](https://img.taocdn.com/s3/m/cf562c14dd88d0d232d46a38.png)
LS-DYNA 碰撞分析调试LS-DYNA碰撞计算模型的主要检查、调试项目有:a、质量增加百分比小于5%;b、总沙漏能小于5%;c、滑移界面能;d、检查各部件之间的连接、接触关系是否定义正确,检查模型的完整性;e、检查数值输出的稳定性。
一、质量缩放Mass scale的检查:质量缩放——对于时间步长小于控制卡片中设置的最小时间步长的单元,我们通常采取增加单元材料密度的方法来增大其时间步长,以减短模型的计算时间。
关于LS-DYNA中单元时间步长的计算方法请参见附录一。
1、初步检查。
让模型在dyna中运行2个时间步,在Hyper view中调出glstat文件并检查mass scaling项(质量增加应该小于5%);调出matsum文件并检查各部件的质量增加情况,对于质量增加过大以及有快速增长趋势的部件应检查此部件的网格质量和材料参数设置(质量增加一般是由于单元的特征长度太小或者是材料参数E、ρ设置错误,导致该单元的时间步长低于控制卡片中设置的最小时间步长,从而引起质量缩放)。
2、全过程检查。
调整模型使其符合初步检查的标准,计算模型至其正常结束。
再按[初步检查]的要求检查调试整个模型直至达到要求。
一个计算收敛的模型在其整个计算过程中,最大质量缩放应小于总质量的5% 。
二、沙漏能Hourglass energy的检查:沙漏能的出现是因为模型中采用了缩减积分引起的,我们常用的B-T单元采用的是面内单点积分,这种算法会引起沙漏效应(零能模式)。
具体介绍参见附录二。
检查:在dyna中计算模型至其正常结束。
在Hyper view中调出glstat文件并检查energy的total energy 、Hourglass energy两项,整个计算过程中沙漏能应小于总能量的5% 。
三、滑移界面能sliding interface energy的检查:滑移界面能是由摩擦和阻尼所引起的。
剧烈的滑动摩擦会引起大的正值的滑移界面能;未能检测到的穿透(undetected penetrations)常常会引起大的负值的滑移截面能。
LS-DYNA使用指南中文版本
![LS-DYNA使用指南中文版本](https://img.taocdn.com/s3/m/ce993951a6c30c2259019ed2.png)
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
第4章 LS-DYNA输出控制、分析和调试
![第4章 LS-DYNA输出控制、分析和调试](https://img.taocdn.com/s3/m/f0e3ac6933687e21af45a9df.png)
Dyna Deck 文件 任何错误必定在输入文件中 对该文件进行一个简单的浏览可以解决大量错误 浏览包括: » 写数字的地方是否写有* » 是否有材料参数 »对于各种单元类型有不正确的材料数 » 缺少初始或边界条件 » 所有附件的输入部分 当在启动时出现一个错误,首先是确定错误发生的部分是否正确 定义和适当的控制标记设定.
采样率比较
ASCII 输出文件 气囊统计 *DATABASE_ABSTAT »体积 »压力 » 内能 » 质量流动 »密度 » 温度 » 输出质量流动率 » 质量 边界节点力 *DATABASE_BNDOUT
» 当边界上施加有离散力时的边界条件节点力和能量
ASCII 输出文件
离散单元数据 *DATABASE_DEFORC »离散单元(弹簧和阻尼)的力和力矩 » 全局坐标 x,y,z » 合力resultant 单元数据 *DATABASE_ELOUT » 要求*DATABASE_HISTORY_option – 梁或系列梁 – 壳或系列壳 – 体或系列体
ASCII 输出文件 指定各种后处理器软件的输出
AVS 数据库 *DATABASE_AVSFLT
变形几何实体 *DATABASE_DEFGEO » 这种方式同时输出一个 Nastran Bulk 数据文件 (NASBDF)
===>能够读入到很多的前处理器中
MOVIE *DATABASE_MOVIE MPGS *DATABASE_MPGS
D3hsp中气囊-纺织材料
D3hsp中控制体积定义
D3hsp中控制体积定义
D3hsp中材料3的质量特性
total mass of material = 0.1426E-02 x-coordinate of mass center = 0.1000E+01 y-coordinate of mass center = 0.1500E+00 z-coordinate of mass center = 0.1389E-13
汽车碰撞分析LS_DYNA控制卡片设置
![汽车碰撞分析LS_DYNA控制卡片设置](https://img.taocdn.com/s3/m/9e448205e87101f69e319506.png)
控制卡片参数说明
*CONTROL_TIMESTEP(时间步长控制卡片) $ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MSIST 0.0 0.9 2 0.0 -0.001 0 1 1 $ DT2MSF DT2MSLC 计算所需时间步长时,要检查所有的单元。出于稳定性原因,用0.9(缺省)来 减小时间步:Δt = 0.9 l/c ,特征长度l,和波的传播速度c,都与单元的类型有关。 DTINIT:初始时间步长,如为0.0,由DYNA自行决定初始步长; TSSFAC:时间步长缩放系数,用于确定新的时间步长。默认为0.9,当计算不稳定时,可以减小该值,但同时 增加计算时间; ISDO:计算4节点壳单元时间步长的(不同的值对应特征长度的不同算法,推荐使用2,因为此选项可以获得 最大的时间步长,但有三角形单元存在时会导致计算不稳定); TSLIMT:壳单元最小时间步分配 ,使单元的时间步长控制在最小时间步长之上;只适用于使用 *mat_plastic_kinematic,*mat_power_law_plasticity*mat_strain_rate_dependent_plasticity,*mat_piecewise_linear_pla sticity等材料模型的壳单元,不建议使用该选项,因为使用DT2MS选项更好。 DT2MS:因质量缩放计算得到的时间步长。当设置为一个负值时,初始时间将不会小于TSSFAC*|DT2MS|。质 量只是增加到时间步小于TSSAFC*|DT2MS|的单元上。当质量缩放可接受时,推荐用这种方法。用这种方法时 质量增加是有限的,过多的增加质量会导致计算终止。当设置为正值时,初始时间步长不会小于DT2MS。单 元质量会增件或者减小以保证每一个单元的时间步都一样。这种方法尽管不会因为过多增加质量而导致计算终 止,但更难以作出合理的解释。默认为0.0,不进行质量缩放; LCTM:限制最大时间步长的Load-curve,该曲线定义最大允许时间步长和时间的关系(可选择) ; ERODE:当计算时间步长小于TSMIN(最小时间步长)时体单元和t-shell被自动删除。
LS-DYNA使用指南中文版本
![LS-DYNA使用指南中文版本](https://img.taocdn.com/s3/m/c64e88f44793daef5ef7ba0d4a7302768e996fba.png)
LS-DYNA使用指南中文版本第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYSBaicAnalyiGuide·ANSYSModelingandMehingGuide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDB某:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELA某:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNAASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSRE某PORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型1.3本手册使用指南本手册包含过程和参考信息,可从前到后选择性阅读。
LS-DYNA使用指南中文版本
![LS-DYNA使用指南中文版本](https://img.taocdn.com/s3/m/a223b10faf45b307e871977f.png)
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
LSDYNA使用指南中文本
![LSDYNA使用指南中文本](https://img.taocdn.com/s3/m/7152798d227916888586d71a.png)
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
LS-DYNA使用指南中文版本
![LS-DYNA使用指南中文版本](https://img.taocdn.com/s3/m/0eb5578bb84ae45c3a358c82.png)
L S-D Y N A使用指南中文版本(总146页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA 之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
汽车碰撞精确分析LSDYNA控制卡片设置
![汽车碰撞精确分析LSDYNA控制卡片设置](https://img.taocdn.com/s3/m/abd68f9458f5f61fb736668a.png)
THKCHG:在单面接触时考虑壳厚度的改变(默认时不考虑)。
ORIEN:在初始化时可选择性的对接触面部分自动再定位。
控制卡片参数说明
ENMASS:接触单元被腐蚀的质量处理。0-节点被移除,1-体单元节点被保留,2-体单元壳单元节点被保留。 USRSTR:每个接触面分配的存储空间,针对用户提供的接触控制子程序。 USRFRC:每个接触面分配的存储空间,针对用户提供的接触摩擦子程序。 NSBCS:接触搜寻的循环数(使用三维Bucket分类搜索),推荐使用默认项。 INTERM:间歇搜寻主面和从面接触次数。 XPENE:接触面穿透检查最大乘数,默认4.0。 SSTHK:在单面接触中是否使用真实壳单元厚度,默认0,不使用真实厚度。 ECDT:时间步长内忽略腐蚀接触。
16. DATABASE_BINARY_RUNRSF 设置如下:
控制卡片参数设置
17. DATABASE_BINARY_RUNRSF 设置如下:
控制卡片参数说明
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS
150
0
0.0
0.0
0.0
SLSFAC:滑动接触惩罚系数 ,默认为0.1。当发现穿透量过大时,可以调整该参数;
RWPNAL: 刚体作用于固定刚性墙时,刚性墙罚函数因子系数,为0.0时,不考虑刚体与刚性墙的作用,>0时, 刚体作用于固定的刚性墙,建议选择1.0;
ISLCHK:接触面初始穿透检查,为0或1(默认)时,不检查。为2时,检查。
后面将逐一介绍碰撞分析中经常用到的控制卡片,并对每个卡片的作 用进行说明。
控制卡片使用规则
卡片相应的使用规则如下:
LS-Dyna碰撞分析资料要点
![LS-Dyna碰撞分析资料要点](https://img.taocdn.com/s3/m/c3dd27d958f5f61fb7366653.png)
LS-DYNA 碰撞分析调试LS-DYNA碰撞计算模型的主要检查、调试项目有:a、质量增加百分比小于5%;b、总沙漏能小于5%;c、滑移界面能;d、检查各部件之间的连接、接触关系是否定义正确,检查模型的完整性;e、检查数值输出的稳定性。
一、质量缩放Mass scale的检查:质量缩放——对于时间步长小于控制卡片中设置的最小时间步长的单元,我们通常采取增加单元材料密度的方法来增大其时间步长,以减短模型的计算时间。
关于LS-DYNA中单元时间步长的计算方法请参见附录一。
1、初步检查。
让模型在dyna中运行2个时间步,在Hyper view中调出glstat 文件并检查mass scaling项(质量增加应该小于5%);调出matsum文件并检查各部件的质量增加情况,对于质量增加过大以及有快速增长趋势的部件应检查此部件的网格质量和材料参数设置(质量增加一般是由于单元的特征长度太小或者是材料参数E、ρ设置错误,导致该单元的时间步长低于控制卡片中设置的最小时间步长,从而引起质量缩放)。
2、全过程检查。
调整模型使其符合初步检查的标准,计算模型至其正常结束。
再按[初步检查]的要求检查调试整个模型直至达到要求。
一个计算收敛的模型在其整个计算过程中,最大质量缩放应小于总质量的5% 。
二、沙漏能Hourglass energy的检查:沙漏能的出现是因为模型中采用了缩减积分引起的,我们常用的B-T单元采用的是面内单点积分,这种算法会引起沙漏效应(零能模式)。
具体介绍参见附录二。
检查:在dyna中计算模型至其正常结束。
在Hyper view中调出glstat文件并检查energy的total energy 、Hourglass energy两项,整个计算过程中沙漏能应小三、滑移界面能sliding interface energy的检查:滑移界面能是由摩擦和阻尼所引起的。
剧烈的滑动摩擦会引起大的正值的滑移界面能;未能检测到的穿透(undetected penetrations)常常会引起大的负值的滑移截面能。
LS-DYNA使用指南中文版本
![LS-DYNA使用指南中文版本](https://img.taocdn.com/s3/m/9800ca397e21af45b307a89c.png)
第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
ANSYS LS-DYNA冲击碰撞分析
![ANSYS LS-DYNA冲击碰撞分析](https://img.taocdn.com/s3/m/30d197e05ff7ba0d4a7302768e9951e79b896900.png)
y0ຫໍສະໝຸດ Epp eff
Cowper-Symonds模型来考虑应变率的影响,如下
y
1
C
1
p
0
此时随动塑性模型可表示为:
r
1
1
p
c
(
0
f
h
(
p eff
))
本构取值
• 钢材的密度取为7850kg/m3, • 弹性模量为206GPa, • 泊松比取为0.3, • 初始屈服强度取为1650MPa, • 切线模量取1.18GPa, • 其中C和P都为Cowper-Symonds应变参数,分别取为40.4s-1和5,失
部分物理参数
自动接触(Automatic nodes-to-surface contact) 静摩擦系数:0.74 动摩擦系数:0.57 冲击速度:10m/s
3.材料模型
塑性随动强化模型(Plastic Kinematic Model)
本构模型
• 本构模型采用塑性随动强化模型(Plastic Kinematic Model),可描 述各向同性硬化(isotropic hardening)和随动硬化(kinematic hardening)以及二者结合的塑性模型,还可以考虑应变率的影响。
效应变取为0.05。
4.计划分享的 内容
APDL参数化分析,云计算等
计划分享的内容
• 让分析速度起飞——APDL参数化分析 • 最有效和经济的计算加速方式——云计算 • 地铁隧道下穿高层建筑的变形分析(ABAQUS) • 火车开过桥梁的动态受力分析 • 地震作用下某收费站的响应 • 博士生生活以及研究生求职
LS-DYNA使用指南
![LS-DYNA使用指南](https://img.taocdn.com/s3/m/220159619b6648d7c1c746d3.png)
ANSYS/LS-DYNA 使用指南前言本资料来源于互联网,据说来源于安世亚太,基本上是ANSYS 的帮助文件的翻译。
本人遂排版整理,对原文中的公式进行了编辑排版,并对部分错误进行了修改,当然,错误在所难免,仅供自己查阅学习。
版权归原作者所有!如有人非法用于商业用途,与本人无关。
人就一个字2009-5-7目录第一章引言 (1)1.1 显式动态分析求解步骤概述 (1)1.2 显式动态分析采用的命令 (1)1.3 本手册使用指南 (4)1.4 何处能找到显式动态例题 (5)1.5 其它信息 (5)第二章单元 (6)2.1 实体单元和壳单元 (7)2.1.1 SOLID164 (7)2.1.2 SHELL163 (8)2.1.3 通用壳单元算法 (8)2.1.4 薄膜单元算法 (9)2.1.5 三角型薄壳单元算法 (9)2.1.6 PLANE162 (12)2.2 梁单元和杆单元 (13)2.2.1 BEAM161 (13)2.2.2 LINK160 (14)2.2.3 LINK167 (14)2.3 离散单元 (15)2.3.1 COMBI165弹簧-阻尼单元 (15)2.3.2 MASS166 (16)2.4 一般单元特性 (16)第三章建模 (17)3.1 定义单元类型和实常数 (17)3.2 定义材料特性 (18)3.3 定义几何模型 (18)3.4 网格划分 (18)3.5 定义接触面 (20)3.6 建模的一般准则 (20)3.7 PART的定义 (21)3.7.1 Part集合 (24)3.8 自适应网格划分 (24)第四章加载 (28)4.1 一般载荷选项 (28)4.1.1 组元 (29)4.1.2 数组参数 (30)4.1.3 施加载荷 (31)4.1.4 数据曲线 (34)4.1.5 在局部坐标系中定义载荷 (36)4.1.6 指定Birth和Death时间 (37)4.2 约束和初始条件 (37)4.2.1 约束 (37)4.2.2 焊接 (39)4.2.3 初始速度 (39)4.3 耦合和约束方程 (41)4.4 非反射边界 (42)4.5 温度载荷 (42)4.6 动力松弛 (44)第五章求解特性 (46)5.1 求解过程 (46)5.2 LS-DYNA终止控制 (46)5.3 共享存储器并行处理 (47)5.4 求解控制和监控 (48)5.5 显示小尺寸单元 (50)5.6 编辑LS-DYNA的输入文件 (50)5.6.1 方法A (51)5.6.2 方法B (51)5.6.3 使用预先存在的FILE.K (52)第六章接触表面 (54)6.1 接触的定义 (54)6.1.1 列表,显示和删除接触实体 (57)6.2 接触选项 (58)6.2.1 定义接触类型 (59)6.2.2 定义接触选项 (60)6.3 接触搜索方法 (63)6.3.1 网格连接跟踪 (63)6.3.2 批处理方法 (63)6.3.3 限制接触搜索域 (63)6.4 壳单元的特殊处理 (64)6.5 接触深度控制 (64)6.6 接触刚度 (65)6.6.1 罚因子的选择 (65)6.6.2 对称刚度 (66)6.7 2D接触选项 (66)第七章材料模型 (67)7.1 定义显示动态材料模型 (69)7.2 显式动态材料模型的描述 (70)7.2.1线弹性模型 (70)7.2.2非线性弹性模型 (72)7.2.3 非线性无弹性模型 (74)7.2.4 压力相关的塑性模型 (86)7.2.5 泡沫模型 (90)7.2.6 状态方程 (94)7.2.7 离散单元模型 (104)7.2.8 刚性体模型 (107)第八章刚性体 (109)8.1 定义惯性特性 (109)8.2 加载 (111)8.3 变形体和刚性体部件间的转换 (111)8.4 节点刚体 (112)第九章沙漏 (113)第十章质量缩放 (115)第十一章子循环 (117)第十二章后处理 (119)12.1 输出控制 (119)12.1.1 结果文件(Jobname.RST)和时间历程文件(Jobname.HIS)的比较 (119)12.1.2 生成POST26的ComponentS (120)12.1.3 为POST26记录输出文件 (120)12.2 使用ANSYS/LS-DYNA的POST1 (121)12.2.1 动画结果 (121)12.2.2 单元数据输出 (122)12.2.3 自适应网格划分的处理结果 (123)12.3 在ANSYS/LS-DYNA中使用POST26 (124)第十三章重启动 (125)13.1 重启动Dump文件 (125)13.2 EDSTART 命令 (125)13.2.1 新分析 (126)13.2.2 简单重启动 (126)13.2.3 小型重启动 (126)13.2.4 完全重启动 (128)13.3 输出文件的影响 (130)第十四章显式-隐式顺序求解 (132)14.1 显式-隐式顺序求解 (132)第十五章隐式-显式顺序求解 (137)15.1 预载荷结构的隐式-显式顺序求解 (137)第十六章跌落测试模块 (142)16.1 简介 (142)16.2 选择DTM模块启动ANSYS (142)16.3 典型的跌落分析步骤 (143)16.3.1 基本的跌落测试分析步骤 (143)16.3.2 屏幕坐标的定义 (146)第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
汽车碰撞分析LS_DYNA控制卡片设置
![汽车碰撞分析LS_DYNA控制卡片设置](https://img.taocdn.com/s3/m/710b7d6bddccda38376baf36.png)
控制卡片参数说明
*CONTROL_TIMESTEP(时间步长控制卡片) $ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MSIST 0.0 0.9 2 0.0 -0.001 0 1 1 $ DT2MSF DT2MSLC 计算所需时间步长时,要检查所有的单元。出于稳定性原因,用0.9(缺省)来 减小时间步:Δt = 0.9 l/c ,特征长度l,和波的传播速度c,都与单元的类型有关。 DTINIT:初始时间步长,如为0.0,由DYNA自行决定初始步长; TSSFAC:时间步长缩放系数,用于确定新的时间步长。默认为0.9,当计算不稳定时,可以减小该值,但同时 增加计算时间; ISDO:计算4节点壳单元时间步长的(不同的值对应特征长度的不同算法,推荐使用2,因为此选项可以获得 最大的时间步长,但有三角形单元存在时会导致计算不稳定); TSLIMT:壳单元最小时间步分配 ,使单元的时间步长控制在最小时间步长之上;只适用于使用 *mat_plastic_kinematic,*mat_power_law_plasticity*mat_strain_rate_dependent_plasticity,*mat_piecewise_linear_pla sticity等材料模型的壳单元,不建议使用该选项,因为使用DT2MS选项更好。 DT2MS:因质量缩放计算得到的时间步长。当设置为一个负值时,初始时间将不会小于TSSFAC*|DT2MS|。质 量只是增加到时间步小于TSSAFC*|DT2MS|的单元上。当质量缩放可接受时,推荐用这种方法。用这种方法时 质量增加是有限的,过多的增加质量会导致计算终止。当设置为正值时,初始时间步长不会小于DT2MS。单 元质量会增件或者减小以保证每一个单元的时间步都一样。这种方法尽管不会因为过多增加质量而导致计算终 止,但更难以作出合理的解释。默认为0.0,不进行质量缩放; LCTM:限制最大时间步长的Load-curve,该曲线定义最大允许时间步长和时间的关系(可选择) ; ERODE:当计算时间步长小于TSMIN(最小时间步长)时体单元和t-shell被自动删除。
应用LS-DYNA进行汽车正面碰撞模拟分析
![应用LS-DYNA进行汽车正面碰撞模拟分析](https://img.taocdn.com/s3/m/1e6aaee45ef7ba0d4b733b01.png)
可分 , 在汽 车行业 中 , A C E仿 真分析快速 增长 部 信 息 , 节 点 、单 元信 息 、材料 与 状态 方 重 要的意 义 。根据 材料 的拉 伸 曲线定 义各 种 如
的需 求和机遇 主要是受碰 懂法规 的驱动 , 在 程信 息 以及接 触 、初 、边 值 条件 和载 荷信 息 材 料 的 弹性 模 量 、 泊 松 比 、切 向 模 量 、 破 如
它是 L —D S YNA 计算 DYNA。L -D S YNA 的 最新版 本 2 0 0 4年 8 件被 称为 关键 字文件 , 程序 的输 入数据 文 件 。该 文件 是一 个 AS I C I 4材料模拟 格式 的文本 文件 , 其中包 含所要 分析问题 的全 材 料参 数对 干碰 撞 模拟 的精 度具 有极 其 L - NA 的发 展与汽车碰 撞仿 真密不 S DY
因王 黟单元罐犬角 ( ud I IIzg ) 妻 QaI J 且l n t 糕h J I e 四边形单元 赣 角 ( ualllm ̄ l) O a I ll lh l r e i l g
< 3 1 5 >5 3
杨氏弹性摸盘
2O P 1 a G
三角 单元最太角 (" 糊∞n ma ) 1n i i m l I
动 力 冲击 问题 , 同时可 以 求解 传 热 、流 体及 间 。 流 固耦 合问题 。在工 程应 用领 域被 广泛 认可 1车身模型的建立
为 最佳 的分析 软 件包 。 与实验 的无 数次 对 比
* e t n B a 关键字 中进行定 义。焊 点的 S ci e m o
属性 定 义如表 2 。其 中定 义 了焊点 的失效 条
18 2 0 年之 间 , 95 02 法规 买验的要 求增加 了差 等 。这些信 息都是以 L — YNA的关 键字命 坏极 限 、应 变率 参 数 等 , 料 厚度 按各 零 件 S D 材
Ls-dyna使用指南中文版本资料
![Ls-dyna使用指南中文版本资料](https://img.taocdn.com/s3/m/a809b0c577eeaeaad1f34693daef5ef7bb0d125b.png)
Ls-dyna使⽤指南中⽂版本资料第⼀章引⾔ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强⼤的前后处理结合起来。
⽤LS-DYNA的显式算法能快速求解瞬时⼤变形动⼒学、⼤变形和多重⾮线性准静态问题以及复杂的接触碰撞问题。
使⽤本程序,可以⽤ANSYS建⽴模型,⽤LS-DYNA做显式求解,然后⽤标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递⼏何信息和结果信息以执⾏连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应⽤。
1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建⽴模型(⽤PREP7前处理器)2:加载并求解(⽤SOLUTION处理器)3:查看结果(⽤POST1和POST26后处理器)本⼿册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上⾯的三个步骤。
如果熟悉ANSYS 程序,已经知道怎样执⾏这些步骤,那么本⼿册将提供执⾏显式动态分析所需的其他信息。
如果从未⽤过ANSYS,就需通过以下两本⼿册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使⽤ANSYS/LS-DYNA时,我们建议⽤户使⽤程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2显式动态分析采⽤的命令在显式动态分析中,可以使⽤与其它ANSYS分析相同的命令来建⽴模型、执⾏求解。
同样,也可以采⽤ANSYS图形⽤户界⾯(GUI)中类似的选项来建模和求解。
然⽽,在显式动态分析中有⼀些独特的命令,如下:EDADAPT:激活⾃适应⽹格EDASMP:创建部件集合EDBOUND:定义⼀个滑移或循环对称界⾯EDBVIS:指定体积粘性系数EDBX:创建接触定义中使⽤的箱形体EDCADAPT:指定⾃适应⽹格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触⾯控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使⽤⼦循环EDCTS:定义质量缩放因⼦EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进⾏有预载荷⼏何模型的初始化或显式分析的动⼒松弛EDDUMP:指定重启动⽂件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数⽬EDIS:定义完全重启动分析的应⼒初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义⽆反射边界EDNDTSD:清除噪声数据提供数据的图形化表⽰EDNROT:应⽤旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出⽂件EDPART:创建,更新,列出部件EDPC:选择、显⽰接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出⽂件读⼊到POST26的变量中EDRI:为变形体转换成刚体时产⽣的刚体定义惯性特性EDRST:定义输出RST⽂件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下⼀个状态主题EDSP:定义接触实体的⼩穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长⼤⼩绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义⽆质量焊点或⼀般焊点EDWRITE:将显式动态输⼊写成LS-DYNA输⼊⽂件PARTSEL:选择部件集合RIMPORT:把⼀个显式分析得到的初始应⼒输⼊到ANSYSREXPORT:把⼀个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新⼏何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LS-DYNA 碰撞分析调试
LS-DYNA碰撞计算模型的主要检查、调试项目有:
a、质量增加百分比小于5%;
b、总沙漏能小于5%;
c、滑移界面能;
d、检查各部件之间的连接、接触关系是否定义正确,检查模型的完整性;
e、检查数值输出的稳定性。
一、质量缩放Mass scale的检查:
质量缩放——对于时间步长小于控制卡片中设置的最小时间步长的单元,我们通常采取增加单元材料密度的方法来增大其时间步长,以减短模型的计算时间。
关于LS-DYNA中单元时间步长的计算方法请参见附录一。
1、初步检查。
让模型在dyna中运行2个时间步,在Hyper view中调出glstat 文件并检查mass scaling项(质量增加应该小于5%);调出matsum文件并检查各部件的质量增加情况,对于质量增加过大以及有快速增长趋势的部件应检查此部件的网格质量和材料参数设置(质量增加一般是由于单元的特征长度太小或者是材料参数E、ρ设置错误,导致该单元的时间步长低于控制卡片中设置的最小时间步长,从而引起质量缩放)。
2、全过程检查。
调整模型使其符合初步检查的标准,计算模型至其正常结束。
再按[初步检查]的要求检查调试整个模型直至达到要求。
一个计算收敛的模型在其整个计算过程中,最大质量缩放应小于总质量的5% 。
二、沙漏能Hourglass energy的检查:
沙漏能的出现是因为模型中采用了缩减积分引起的,我们常用的B-T单元采用的是面内单点积分,这种算法会引起沙漏效应(零能模式)。
具体介绍参见附录二。
检查:在dyna中计算模型至其正常结束。
在Hyper view中调出glstat文件并检查energy的total energy 、Hourglass energy两项,整个计算过程中沙漏能应小
三、滑移界面能sliding interface energy的检查:
滑移界面能是由摩擦和阻尼所引起的。
剧烈的滑动摩擦会引起大的正值的滑移界面能;未能检测到的穿透(undetected penetrations)常常会引起大的负值的滑移截面能。
详细介绍请参见附录三。
我们通常通过sliding interface energy / knight energy来考察计算结果的准确性。
四、模型碰撞变形模式的检查:
从碰撞动画来诊断计算结果是否准确。
1、检查各部件的碰撞变形是否合理;
2、检查整个模型,是否有漏缺的重要零件(对计算结果影响不容忽略的零件);
3、检查各部件之间的相对运动是否正确(主要是检查铰链、弹簧等联接定义是
否正确);
4、检查各部件之间是否有出现明显穿透、干涉。
五、数值输出的检查:
主要检查B柱加速度曲线及各主要截面力曲线等输出数据的可靠性,这些数值应避免出现严重的振荡。
LS-DYNA 汽车碰撞计算过程中经常遇到的问题及解决方法:
症状一:出现了很大的,并且为负值的sliding interface energy
原因分析:通常是由于模型中存在的初始穿透,而Dyna计算的初始化中无法消除掉这些初始穿透。
诊断手段:删除掉模型中所有的接触定义,运行2 cycle,再查看sleout文件查看穿透情况。
产看d3hsp文件中关于初始穿透的警告信息。
解决对策:如果是两层板的穿透,Dyna的初始穿透纠正功能可以解决部分问题。
如果是多层板的穿透,其将无能为力。
此时需要手动的消除模型的初始穿透。
症状二:模型的初始动能明显不合理
诊断手段:
1.检查d3hsp中模型的总质量
2.检查模型的三个方向的速度
3.检查d3hsp中各个部件的质量
4.刚体的质量会合并到master部件中
5.*PART_INERTIA中定义的速度优先级高于*INITIAL_VELOCITY
6.检查matsum中各个部件的能量(动能、沙漏能)
7.确认定义为*PART_INERTIA的部件都定义了初速度
8.确认定义为*PART_INERTIA的部件没有作为合并刚体中的slave(可作为
master)
9.部件出现很高的速度,通常是由于接触中的初始穿透引起。
症状三:计算异常终止
原因:计算终止通常只有以下4个原因
1.输入文件关键字定义错误。
LS-DYNA对输入文件的格式要求十分严格,除默
认值外,空白行是不被允许的。
注释行必须以符号“$”开始。
2.单元负体积。
3.节点速度无限大。
4.网格畸变严重,计算不收敛。
5.硬盘空间不足。
诊断手段:
除最后一个原因外,其他的错误原因都可以在message文件中找到解释。
症状四:体单元出现负体积
现象描述:LS-dyna计算时报错:Error:Negative volume
原因:常出现在泡沫、橡胶材料定义中。
1.加载在体单元上的载荷远大于单元的刚度
2.应力应变曲线定义出问题,当dyna外推该曲线是出现异常
3.Foam单元在回弹时出现负体积,在材料mat_low_density上增加一定的阻尼会
有帮助。
4.使用Contact_Interior定义在FOAM模型上。
5.在实体单元上附一层Null壳单元,而后使用automatic single surface contact
6.Foam材料的应力-应变曲线需要是平滑的
症状五:节点速度无限大
现象描述:在动画模型中表现为节点突然从表面呈爆炸状飞出。
LS-dyna计算时报错Error:Node velocity out of range
原因:
1.一般是由于材料参数的单位不一致引起的,在建立模型时应注意单位的统一;
2.在本该发生接触的地方没有定义接触或者接触定义错误。
诊断手段:按照以下的步骤
1.显示碰撞动画的最后一步;
2.取出带有发散点的部件
3.反转显示部件
4.检查该部件的部件号
5.在前处理中,检查该部件的网格,包括模型中的裂缝、单排单元等
6.检查对应部件的异常出现的过程,找到最初出现异常的位置
7.检查重合单元
8.检查部件的材料和属性
9.检查接触定义
10.把时间步长设小试试
症状六:时间步长太小
原因:
1.在试运行中关掉质量缩放,检查单元的时间步长信息
2.检查材料属性中是否使用了正确的单位制
3.检查Foam的应力-应变曲线
4.检查Beam单元的材料和属性
5.梁单元和阻尼单元,确定两端没有连接在零质量的节点上。
6.检查是否因为初始穿透调整,导致了单元尺寸变化
7.如果梁单元参与接触,则也应该offset
症状七:模型变形模式不正常
诊断手段:
1.查看整个模型的变形动画
2.常出现的问题有,如果是做前碰分析,也需要对后部结构的变形。
因为后部
的接触可能会出现问题
3.察看断面,确定接触计算没有异常
4.察看速度、塑性应变和应力的变化情况
症状八:*CONSTRAINED_EXTRA_NODES定义错误
现象描述:
原因:一般是因为模型中定义extra nodes的刚体被删除或者是节点所依附的单元被删除。
措施:在K文件中找出所有以下类型的关键字(Part ID或者Node ID/Node set ID 为0)并删除。
Part ID Node ID OR Node set ID
附录一。