限时训练7 一元二次方程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时训练7 一元二次方程 (时间:45分钟)

1.下列方程中,是一元二次方程的是( A )

A .x 2-5x =0

B .x +1=0

C .2xy =0

D .2x 3-2=0

2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值为( B )

A .1

B .-1

C .±1

D .0

3.下列一元二次方程中,没有实数根的是( C )

A .x 2-2x =0

B .x 2+4x -1=0

C .2x 2-4x +3=0

D .3x 2=5x -2

4.一元二次方程y 2-y -34

=0配方后可化为( B ) A .⎝⎛⎭⎫y +122=1 B .⎝⎛⎭⎫y -122=1

C .⎝⎛⎭⎫y +122=34

D .⎝⎛⎭⎫y -122=34

5.(2019·黄冈中考))若x 1,x 2是一元二次方程x 2-4x -5=0的两根,则x 1·x 2的值为( A )

A .-5

B .5

C .-4

D .4

6.不解方程,判别方程2x 2-32x =3的根的情况是( B )

A .有两个相等的实数根

B .有两个不相等的实数根

C .有一个实数根

D .无实数根

7.若关于x 的方程x 2+2x -a =0有两个相等的实数根,则a 的值为( A )

A .-1

B .1

C .-4

D .4

8.(2019·玉林中考)若一元二次方程x 2-x -2=0的两根为x 1,x 2,则(1+x 1)+x 2(1-x 1)的值是( A )

A .4

B .2

C .1

D .-2

9.(HK 八下P 48A 组复习题T7变式)如图,有一张矩形纸片,长10 cm ,宽6 cm ,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32 cm 2,求剪去的小正方形的边长.设剪去的小正方形边长是x cm ,根据题意可列方程为( B )

A .10×6-4×6x =32

B .(10-2x )(6-2x )=32

C .(10-x )(6-x )=32

D .10×6-4x 2=32

10.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( C )

A .9人

B .10人

C .11人

D .12人

11.一元二次方程x 2-6x +c =0有一个根是2,则另一个根是 __4__.

12.某药品原价每盒25元,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是__20%__.

13.解方程:2x 2-4x -30=0.

解:方程两边同除以2,得

x 2-2x -15=0.

把方程左边分解因式,得

(x -5)(x +3)=0.

∴x -5=0或x +3=0.

解得x 1=5,x 2=-3.

14.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.

(1)若降价3元,则平均每天销售数量为________件;

(2)当每件商品降价多少元时,该商店每天销售利润为1 200元?

解:(1)26;

(2)设每件商品降价x 元时,该商店每天销售利润为1 200元,则平均每天销售数量为(20+2x)件,每件盈利为(40-x)元,且40-x ≥25,即x ≤15.

根据题意,得

(40-x)(20+2x)=1 200.

整理,得x 2-30x +200=0.

解得x 1=10,x 2=20(舍去).

答:每件商品降价10元时,该商店每天销售利润为1 200元.

15.宾馆有50间房供游客居住.当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加

10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10 890元?设房价定为x 元,则有( B )

A .(180+x -20)⎝

⎛⎭⎫50-x 10=10 890 B .(x -20)⎝

⎛⎭⎫50-x -18010=10 890 C .x ⎝

⎛⎭⎫50-x -18010-50×20=10 890 D .(x +180)⎝

⎛⎭⎫50-x 10-50×20=10 890 16.设x 1,x 2是一元二次方程x 2-mx -6=0的两个根,且x 1+x 2=1,则x 1=__-2__,x 2=__3__.

17.根据要求,解答下列问题.

(1)解下列方程(直接写出方程的解即可):

①方程x 2-2x +1=0的解为__x 1=x 2=1__;

②方程x 2-3x +2=0的解为__x 1=1,x 2=2__;

③方程x 2-4x +3=0的解为__x 1=1,x 2=3__;

……

(2)根据以上方程特征及其解的特征,请猜想:

①方程x 2-9x +8=0的解为__x 1=1,x 2=8__;

②关于x 的方程__x 2-(1+n)x +n =0__的解为x 1=1,x 2=n ;

(3)请用配方法解方程x 2-9x +8=0,以验证猜想结论的正确性.

解:(3)x 2-9x =-8.

⎝⎛⎭⎫x -922=494

. x -92=±72

. 解得x 1=1,x 2=8.

∴猜想正确.

18.关于x 的一元二次方程 ax 2+bx +1=0.

(1)当b =a +2时,利用根的判别式判断方程根的情况;

(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.

解:(1)a ≠0,当b =a +2时,

Δ=b 2-4a =(a +2)2-4a

=a 2+4a +4-4a =a 2+4.

∵a 2>0,∴Δ>0.

∴方程有两个不相等的实数根;

(2)∵方程有两个相等的实数根,

相关文档
最新文档