第三章凸轮机构(运动规律)

合集下载

机械设计基础第3章凸轮机构

机械设计基础第3章凸轮机构

2)运动线图(推程):表3-1
s
h
3)运动特点:产生刚性冲击
ψ
∵ 从动件在运动开始和终止的瞬
Φ
t
时,因速度有突变,则加速度 v
a在理论上出现瞬时的无穷大,
hω/Φ
ψ
导致从动件突然产生非常大的 a
t
惯性力,因而使凸轮机构受到
ψ
极大的冲击,这种冲击称为刚
t
性冲击。
4)适用场合:低速运动或不宜单独使用。
ψ
点作各自的垂线与水平线,交点
v
Φ
即为s曲线上的点,光滑连接这
些点,得到s图。
ψ a
3)运动特点:产生柔性冲击
∵在首、末两点从动件的加速度
ψ
有突变,因此也有柔性冲击。
4)适用场合:中、低速运动。
4、正弦加速度(摆线)运动规律 从动件在运动过程中加速度呈正弦曲线规律变化。
1)运动方程:表3-1 s=h[ψ/Φ-sin(2πψ/Φ)/2π]
一、压力角α与作用力的关系
(前面已讲过)压力角α(或传动角γ)的大小反映 了机构传动性能的好坏。α↓( 或γ↑),机构的传动性能越好。
压力角α:作用在从动件上的驱动力 方向(即沿接触点处的法线方向)与该力 作用点的绝对速度方向之间所夹的锐角。 注意:对于滚子从动件,压力角要作在
理论廓线上。
F可分解为:F′= Fcosα——有效分力
4 2 3
1
图3-4
如图所示的靠模车削机 构,工件1转动时,并和靠模 板3一起向右移动,由于靠模 板的曲线轮廓推动,刀架2带 着车刀按一定的运动规律作 横向运动,从而车削出具有 曲线表面的手柄。
如图所示的绕线机构,当 具有凹槽的圆柱凸轮转动时, 迫使从动件作往复移动,从而 均匀地将线绕在轴上。

凸轮机构从动件的运动规律

凸轮机构从动件的运动规律

凸轮机构从动件的运动规律
凸轮机构从动件常用运动规律有四种,分别是:1,等速。

2,等加速-等减。

3,余弦加速度。

4,正弦加速度。

从动件在运动过程中的位移、速度、加速度随时间的变化规律称为从动件的运动规律。

常用从动件运动规律:1.等速运动规律特点:从动件在推程(回程)中的速度v=常数。

等速运动规律的位移、速度、加速度线图。

2.等加速等减速运动规律等加速、等减速运动规律,在前半程用等加速运动规律,后半程采用等减速运动规律,两部分加速度绝对值相等。

3.余弦加速度运动(简谐运动)规律余弦加速度运动规律的加速度曲线为1/2个周期的余弦曲线,位移曲线为简谐运动曲线(又称简谐运动规律)。

4.正弦加速度运动规律的加速度曲线是连续的,没有任何冲击,可用于高速。

第三章 凸轮机构介绍

第三章 凸轮机构介绍
第三章 凸轮机构
凸轮传动是通过凸轮与从动件间的接触来传递运动和动力,是一种 常见的高副机构,结构简单,只要设计出适当的凸轮轮廓曲线,就 可以使从动件实现任何预定的复杂运动规律。 §3-1 凸轮机构应用和分类 一、凸轮机构的组成和应用
内燃机
配气机构
凸轮式内燃机配气机构
自动车床上的走刀机构 1、组成:凸轮,从动件,机架 2、作用:将凸轮的转动或移动转变为从动件的移动或摆动 3、特点:(1)只需设计适当的凸轮轮廓,便可使从动件得到所需的 运动规律 (1)结构简单、紧凑,工作可靠,容易设计; (2)高副接触,易磨损 4、应用:适用于传力不大的控制机构和调节机构
推杆运动规律选取应从便于加工和动力特性来考虑。
低速轻载凸轮机构:采用圆弧、直线等易于加工的曲线作为凸 轮轮廓曲线。
高速凸轮机构:首先考虑动力特性,以避免产生过大的冲击。
大质量从动件不宜选用νmax太大的运动规律 高速度从动件不宜选用amax太大的运动规律
(2)机器工作过程对从动件的的运动规律有特殊要求
4、偏臵直动尖顶从动件盘形凸轮机构 已知条件:已知凸轮的基圆半径为r0,凸轮沿逆时针方向等速回转。 从动画中看,从动件 而推杆的运动规律已知,已知偏距e。试设计。
在反转运动中依次占 据的位臵将不在是以 凸轮回转中心作出的 径向线,而是始终与O 保持一偏距e的直线, 因此若以凸轮回转中 心O为圆心,以偏距e 为半径作圆(称为偏 距圆),则从动件在 反转运动中依次占据 的位臵必然都是偏距 圆的切线,(图 中 …)从 动件的位移 ( …) 也应沿切线量取。然 后将 …等点 用光滑的曲线连接起 来,既得偏臵直动尖 顶从动件盘形凸轮轮
按从动件运动形式 可分为直动从动件(又分为对心直动从动件和偏臵直动从动件) 和摆动从动件两种。

第3章 凸轮机构

第3章 凸轮机构

机械原理—凸轮机构
等宽凸轮机构
凸轮廓线上任意两条 平行切线间的距离都等于 框架内侧的宽度。 框架内侧的宽度。
缺点:从动件的运动规律的选择受到一定的限制, 从动件的运动规律的选择受到一定的限制,
180º 当180º范围内的凸轮廓线根据从动件运动规律确定 后,其余180º内的凸轮廓线必须符合等宽原则 其余180º 180
r = a +l
投影得凸轮廓线B点坐标: 投影得凸轮廓线 点坐标: 点坐标
x = a sin δ − l sin( δ + ϕ + ϕ 0 ) y = a cos δ − l cos( δ + ϕ + ϕ 0 )
r02 = a 2 + l 2 − 2 al cos ϕ 0
a 2 + l 2 − r02 ϕ 0 = arccos 2 al
机械原理—凸轮机构
第3章 凸轮机构
凸轮机构的组成与类型 从动件运动规律设计 凸轮轮廓的设计 凸轮机构基本尺寸的确定 凸轮机构的计算机辅助设计
机械原理—凸轮机构
3.1 凸轮机构的组成与类型 3.1.1 凸轮机构的组成
1 ─凸轮 ─从动件 2 ─从动件 3 ─机架 ─机架
}
高副机构
机械原理—凸轮机构
结束
机械原理—凸轮机构
3.4 凸轮机构基本尺寸的确定
3.4.1 移动滚子从动件盘形凸轮
机械原理—凸轮机构
(1) 压力角与许用值
F' = F cosα F → '' F = F sin α
F < fF → 锁 自 −1 1 即 α > tg : ⇒αmax ≤ [α] f
' ''

第三章 凸轮机构

第三章 凸轮机构

图3-9 等加速、等减速 运动规律线图
3.2.2.3 简谐运动规律(余弦加速度运动规律)
图3-10 简谐运动线图 当一质点在圆周上作匀速运动时,该点在这个圆的直径上
的投影所构成的运动,称为简谐运动。从动件的位移按简 谐运动变化的运动规律,称为简谐运动规律。 如图3-10所 示,设从动件升程h为直径,其从动件的位移方程为 h (3-4) s (1 cos ) 2 由图3-10可知,当θ=π时,φ=φ0,故θ=πφ/φ0代入上式可导 出从动件推程时简谐运动方程为
单,是凸轮最基本的形式。盘形凸轮分为两种:利用外轮 廓推动从动件运动的称为盘形外轮廓凸轮,如图3-1、图3-2 所示;利用曲线沟槽推动从动件运动的称为盘形槽凸轮, 如图3-4所示。 盘形凸轮作等速回转时,从动件在垂直于凸轮轴线的平面 内运动(往复移动或摆动),因此,盘形凸轮机构属于平面凸 轮机构。由于从动件的行程或摆动太大会引起凸轮径向尺 寸变化过大,不利于机构正常工作。因此,盘形凸轮机构 一般用于从动件行程或摆动较小的场合。
凸轮轮廓,便可得到从动件所需的运动规律。 缺点:凸轮与从动件属高副接触,压强大,易磨损。适用 于传力不大的控制机构和调节机构中。
3.1.2 凸轮机构的类型
3.1.2.1 按凸轮的形状分类
按凸轮的形状可分为盘形凸轮、移动凸轮和柱体凸轮3类。
(1) 盘形凸轮。是一个具有变化半径的圆盘形构件,结构简
图3-10 简谐运动线图
3.余弦加速度运动规律
5 特点: 4 加速度变化连续平缓. 3 始、末点有软性冲击. 2 6
S
7
8 H
d0
1 0
1 V
2
3
4
5
6
7

《机械设计原理》第3章凸轮机构

《机械设计原理》第3章凸轮机构

5’ 3’
1’
12’
13’ 14’
1 3 5 7 8 9 11 13 15
设计:潘存云
设计步骤小结:
①选比例尺μl作基圆rmin。 ②反向等分各运动角。原则是:陡密缓疏。
③确定反转后,从动件尖顶在各等份点的位置。
④将各尖顶点连接成一条光滑曲线。
中南大学专用
作者: 潘存云教授
2.偏置直动尖顶从动件盘形凸轮
回 凸 轮
作者:潘存云教授
优点:只需要设计适当的轮廓曲线,从动件便可获得
任意的运动规律,且结构简单、紧凑、设计方便。
缺点:线接触,容易磨损。
中南大学专用
作者: 潘存云教授
应用实例:
3
线 2 A 设计:潘存云 1
中南大学专用
绕线机构
作者: 潘存云教授
卷带轮
12 1 放 放音 音键 键
设计:潘存云
5
1.等速运动(一次多项式)运动规律 s2
在推程起始点:δ1=0, s2=0
在推程终止点:δ1=δt ,s2=h 代推入程得运: 动方C0=程0:, C1=h/δt
δt
v2
s2 =hδ1/δt
v2 a2
= =
hω1 0
/δt
同理得回程运动方程:
a2 刚性冲击 +∞
s2=h(1-δ1/δh ) v2=-hω1 /δh a =0 2 中南大学专用
5)摆动尖顶从动件盘形凸轮机构
中南大学专用
作者: 潘存云教授
一、凸轮廓线设计方法的基本原理
反转原理:
给整个凸轮机构施以-ω1时,不影响各构件之间
的相对运动,此时,凸轮将静止,而从动件尖顶复合
运动的轨迹即凸轮的轮廓曲线。

第三章凸轮机构

第三章凸轮机构
分析: 点在圆周上作匀速运动, 它在这个圆的直径上 的投影所构成的运动。 凸轮作匀速运动, S2按余弦规律变化→余弦加 速度运动→始点与终点有柔性冲击。
作图:
四.摆线运动规律(正弦运动规律):
s hh[1/[10 csoisn2(2(//0]0/)/(02)]
a2h12 sin2(/0)/02
速度、加速度均连 续没有突变,无冲击。 可用于高速传动。
冲击。用于中、低
速场合。
V0=0,
等加速等减速
s
1 2
at 2
当时间为→ 位移为 →
1 1
: :
2 4
: :
3 9
:4 :16
作图: (推程)
前半行程(h/2)→等加速 →将每半行程时 →位 1 : 4 : 9 :16 后半行程(h/2)→等减速 间分为χ(4) 份 移 16 : 9 : 4 : 1
3.3 凸轮机构的压力角
凸轮机构中的作用力与凸轮机构压力角
压力角:从动件运动方向与受力方向 夹角的锐角。 压力角越小,机构传动效率越好。 压力角过大,机构将处于自锁状态。 许用压力角:推程[α]=30°-40°
max
压力角与凸轮机构尺寸的关系
tanPCOP OC
BC BC
OCe
BCs r02e2
凸轮的轮廓线是按照从动件的运动规律来设计的
§3-2从动件的常用运动规律 p.41
(一)凸轮运动常用术语:图3-5 p.42
基圆:以轮廓的最小向径所作的圆r0-基圆半径 推程:从动件从离回转中心最近→最远的这一过程。 升程h:推程所移动的距离。
推程运动角φ0 : 与推程对应的凸轮转角
远休止角φS: 从动件在最远位置不动时对应的凸轮转角

机械设计基础第三章凸轮机构

机械设计基础第三章凸轮机构
H
位移
速度
加速度
推程
回程
2
曲线:
3
改进的等加速等减速运动规律
1
位移
5
高次代数方程
4
正弦运动规律
三、其他运动规律
3-3凸轮压力角
4图解法设计凸轮机构 直动从动件盘形凸轮轮廓的绘制
1.对心尖顶直动从动件
已知基圆半径及从动件位移曲线
1.偏心尖顶直动从动件
已知基圆半径及从动件位移曲线
120°
°
e
按从动件分:
e
h
摆动从动件凸轮机构
凹槽凸轮
滚子
直动从动件凸轮机构
a.按从动件的运动分类
01
滚子从动件凸轮机构
e
尖顶从动件凸轮机构
e
平底从动件凸轮机构
e
02
03
b.按从动件的形状分类
按从动件的运动分类
摆动从动件凹槽凸轮机构
直动从动件凸轮机构
按从动件的形状分类
滚子从动件凸轮机构
尖顶从动件凸轮机构
平底从动件凸轮机构
小结
按凸轮的形状分类
移动(板状)凸轮机构
圆柱凸轮机构
盘形凸轮机构
1
e
摆动从动件凹槽凸轮机构
直动从动件凸轮机构
按从动件的运动分类
滚子从动件凸轮机构
尖顶从动件凸轮机构
平底从动件凸轮机构
按从动件的形状分类
按凸轮的形状分类
盘形凸轮机构
圆锥凸轮机构
圆柱凸轮机构
移动(板状)凸轮机构
按高副维持接触的方法分类
凸轮机构的特点
e
h
按从动件的运动分类
摆动从动件凹槽凸轮机构
直动从动件凸轮机构

第3章 凸轮机构

第3章 凸轮机构

应用:中速、中载。
h s2 1 cos( 1 ) 2 t h1 v2 sin( 1 ) 2 t t h 2 12 a2 cos( 1 ) 2 2 t t
24
余弦加速度运动规律
从动件回程简谐运动方程
25
从动件运动规律的选择
(1)满足机器的工作要求; (2)使凸轮机构具有良好的动力性能; (3)使凸轮轮廓便于加工,尽量采用圆弧、直线等 易加工曲线。
26
3.3 凸轮轮廓设计
根据工作要求合理地选择从动件的运动 规律后,可按照结构允许的空间等具体要求, 初步确定凸轮的基圆半径,然后绘制凸轮的 轮廓。 图解法 解析法
看其中最大值max是否超 过许用压力角[] 。如超过,
应修改,常用的办法是加大
基圆半径。
42
3.4.2 基圆半径的确定
基圆大小影响凸轮机构的尺寸,欲使结构紧 凑,应减小基圆半径;但基圆半径减小会增大压 力角。 先根据凸轮的具体结构条件试选凸轮基圆半 径,对所作的凸轮轮廓校核压力角,若不满足要 求,则增大基圆半径然后再设计校核,直至满足
8’
9’ 11’ 12’
13’ 14’ 9 11 13 15
e
ω A
k12 k11 k10 k9 kk k1314 15
-ω 1
1 3 5 78
15’ 15 14’ 14 13’
设计过程
1、选比例尺μ
l
=μ s作基圆r0,偏置圆e;
12’
k 13 k21 12 k k8 k4 3 k7k6 k5 11 10 9
27
直动从动件盘形凸轮轮廓的绘制—— 反转法原理 1 对心尖顶移动从动件盘形凸轮 2 偏置尖顶移动从动件盘形凸轮 3 对心滚子移动从动件盘形凸轮 4 偏置滚子移动从动件盘形凸轮 5 摆动从动件盘形凸轮轮廓的绘制

第3章 凸轮机构

第3章 凸轮机构

2 0
02
a
4h12
/
2 0
推程时等减速段
s
h 2h(0 4h1 (0
)2 /
)
/
2 0
2 0
a
4h12
/
2 0
速度连续,加速度不
连续,称为柔性冲击。
用于中、低速场合。
§3 – 2 从动件的常用运动规律
V0=0,
等加速等减速
s
1 2
at 2
当时间为→ 位移为 →
1 1
: :
2 4
: :
对心直动尖顶从动件盘形凸轮机构 摆动滚子从动件盘形凸轮机构
§3 – 2 从动件的常用运动规律
凸轮机构的运动循环及基本名词术语
凸轮机构的一个运动循环大 致包括:推程、远休程、回 程、近休程四个部分
§3 – 2 从动件的常用运动规律
基圆:以轮廓的最小向径所作的圆 r0-基圆半径 推程:从动件从离回转中心最近→最远的这一过程。 升程h:推程所移动的距离。
机械设计基础
机械设计基础
绪论
机械零件设计概论
平面机构的自由度和速度分析
连接
平面连杆机构
齿轮传动
凸轮机构
蜗杆传动
齿轮机构
带传动和链传动
轮系
轴间歇运动机构 机构运转速 Nhomakorabea波动的调节
滑动轴承
滚动轴承
联轴器、离合器和制动器
回转件的平衡
弹簧
第3章 凸轮机构
§3 – 1 凸轮机构的应用和类型 §3 – 2 从动件的常用运动规律 §3 – 3 凸轮机构的压力角 §3 – 4 图解法设计凸轮轮廓 §3 – 5 解析法设计凸轮轮廓*
什么是凸轮机构

机械设计基础----凸轮机构设计(第三章)

机械设计基础----凸轮机构设计(第三章)


ω
步骤:
1)—5 ) 同上
1 3 5 78
O
6) 以理论轮廓曲线上各点为圆心,滚子半径 rs为半径作一系列滚子圆,过滚子圆作一 内包络线,即为滚子从动件凸轮的实际轮 廓曲线。 注意:凸轮基圆仍为理论轮廓的基圆。
实际轮廓
理论轮廓
凸轮轮廓曲线的设计
四、摆动从动件盘形凸轮机构
摆动从动件凸轮机构中, 已知凸轮的基圆半径r0,角速 度ω,摆杆长度l以及摆杆回转 中心与凸轮回转中心的距离d, d 摆杆角位移方程。 设计该凸轮轮廓曲线。 A8
●从动件的加速度:
v2
由运动线图可知: 在行程起点、中点和终点,存在加 a2 4hω2/δt2 速度突变,但突变为有限值,引起的惯 性力为有限值,在机构中产生有限冲击, 称为柔性冲击。 ∴等加速等减速运动规律可用于中、低速轻载场合。
d
从动件常用运动规律
位移线图的几何作图法:由s2 与 t2的关系作图。
0 1
4Байду номын сангаас9 4 1 0 1 2

s
3
4
5
6

s
3’ 2’ 1’
h/2
h/2
6 d
O
1 2 3 4 5 dt
从动件常用运动规律
四、余弦加速度运动规律
又称简谐运动规律,从动件加速度 按余弦规律变化。
s 5 6
4 3 2 1 1 h
推程中从动件位移: s2=h[1-cos(πδ/δt)]/2 加速度曲线为一余弦曲线。 由其运动线图可知: 在行程的起始和终止处加速 度有突变,但突变为有限值, 故产生柔性冲击。
3.1 凸轮机构的应用和分类 3.2 从动件的运动规律 3.3 盘状凸轮轮廓的设计 3.4 设计凸轮机构应注意的问题

机械基础下册 第一篇 第三章 凸轮机构和间歇运动机构

机械基础下册 第一篇 第三章 凸轮机构和间歇运动机构

◇ 尖顶从动件(图3-3) ◇ 滚子从动件(图3-1b) ◇ 平底从动件(图3-2)
Machinery Foundation
第3章 凸轮机构和间歇运动机构
3.2 从动件常用的运动规律及其选择
Machinery Foundation
第3章 凸轮机构和间歇运动机构
3.2 从动件常用的运动规律及其选择
Machinery Foundation
第一篇 机构及机械零件基础
第3章 凸轮机构和间歇性运动机构
第3章 凸轮机构和间歇运动机构
目录
3.1 凸轮机构的应用和分类 3.2 从动件常用的运动规律及其选择 3.3 用作图法设计盘形凸轮的轮廓曲线 3.4 凸轮机构基本尺寸的确定 3.5 间歇运动机构
Machinery Foundation
3.2 从动件常用的运动规律及其选择
图3-5 凸轮与从动杆的运动关系
r min: 基圆半径
1 :匀角速
h :升距
t :推程角
:远休止角 s
h :回程角

' s
:近休止角
Machinery Foundation
第3章 凸轮机构和间歇运动机构
3.2 从动件常用的运动规律及其选择
常用从动件运动规律
图3-9 反转法原理
Machinery Foundation
第3章 凸轮机构和间歇运动机构
3.3用作图法设计盘形凸轮的轮廓曲线
(一)尖顶对心直动从动件盘形凸轮轮廓曲线的绘制 几何法步骤 第一步 选择适当的比例尺 ,取横坐标表示凸轮的转角,
纵坐标表示从动件的位移
第二步 按区间等分位移曲线横坐标值,确定从动件的相
优点
结构简单、紧凑,工作可靠

第三章 凸轮机构

第三章 凸轮机构

C
机械设计基础——凸轮机构
二、从动件常用运动规律
1 等速运动 2 简谐运动
3 正弦加速度运动
机械设计基础——凸轮机构
1 等速运动——一次多项式运动规律
推程

0≤≤φ
s
Displacement
h
运动方程


位移方程: s hψ /φ 速度方程: v hw /φ 加速度方程:运动过程中 a 0 运动线图 冲击特性:始点、末点刚性冲击 适用场合:低速轻载


机械设计基础——凸轮机构
3-4 图解法设计凸轮轮廓
一、图解法的基本原理 二、作图法设计凸轮廓线
机械设计基础——凸轮机构
一、图解法的基本原理
相对运动原理法(反转法) 对心式: 对整个系统施加-w运动


此时,凸轮保持不动 推杆作复合运动=绕基圆中心 反转运动(-w) +预期运动(s)
-w
A
h
S
w
rb
s'

r
' s

机械设计基础——凸轮机构
一、凸轮机构的运动过程

从动件的运动规律是指从动件的位移、速度、加 速度等随时间t或凸轮转角变化的规律
s
A’ A φs ’ φ h 0
t
φ
推程
D
Φs
远休止
φ’
回程
φs ’
近休止
ψ
r0
φ’ φs
w
B

运动线图: 从动件的位移、速度、加速 度等随时间t或凸轮转角ψ变化关系图
1 按凸轮的形状分

盘形凸轮, 实例
凸轮呈向径变化的盘形

机械设计基础三凸轮机构

机械设计基础三凸轮机构
0/2
0/2
h
(00/2)
(0/20)
加速段
减速段
位移方程
速度方程
加速度方程
机械设计基础——凸轮机构
2 等加速等减速运动—二次多项式运动规律
运动线图 冲击特性:起、中、末点柔性冲击 适用场合:低速轻载
三、从动件运动规律的选择
机械设计基础——凸轮机构
3-3 盘形凸轮轮廓曲线的设计
01
反转法原理
根据从动件的运动规律:作出位移线图S2-δ1,并等分角度 定基圆 作出推杆在反转运动中依次占据的位置 据运动规律,求出从动件在预期运动中依次占据的位置 将两种运动复合,就求出了从动件尖端在复合运动中依次占据的位置点 将各位置点联接成光滑的曲线 在理论轮廓上再作出凸轮的实际轮廓
二、作图法设计凸轮廓线
A
从动件的运动规律是指从动件的位移、速度、加速度等随时间t或凸轮转角j变化的规律 基圆(以凸轮轮廓最小向径所组成的圆),基圆半径rb 推程,推程运动角 0 远休止,远休止角 01
0
01
0’
02
rb
0
推程
01
远休止
0’
回程
02
近休止
t
s
0
B
C
D
h
A’
机械设计基础——凸轮机构
一、凸轮机构的运动过程
α
n
n
压力角与作用力的关系
不考虑摩擦时,作用力沿法线方向。
F
F’
F”
F’----有用分力, 沿导路方向
F”----有害分力,垂直于导路
F”=F’ tg α
F’ 一定时, α↑
Ff > F’
Ff
为了保证凸轮机构正常工作,要求:

08、第三章、凸轮机构(设计凸轮机构应注意的问题)

08、第三章、凸轮机构(设计凸轮机构应注意的问题)

∵凸轮基圆半径rb越大,则凸 轮廓线的最小曲率半径ρ min也 越大; ∴也可按凸轮的基圆半径rb进
行选取凸轮的滚子半径rT; 常取rT = 0.4rb
四、凸轮的结构与材料
1、凸轮的结构 基圆半径较小时,做 成凸轮轴;
凸轮与轴的联接方式 常用有几种: 平键联接—如右图示:
圆锥销联接—如左图示:
弹性锥套和螺母联接—如右图示:
三、滚子半径的选择
设: ρ ’ — 凸轮实际轮廓曲率半径; ρ min —凸轮理论轮廓上的最小曲率半径;
rT —滚子半径。 rT取大一些,有利于减小凸轮
与滚子间的接触应力,提高滚子及 其心轴的强度和寿命。但rT过大, 机构尺寸会增大,导致从动件“运 动失真”。∴ rT的选择与ρ min有 关。 1、当理论廓线内凹时,如右图示: ρ ’ = ρ min+
第三章 凸轮机构
(设计凸轮机构应注意的问题)
机械科教师:马少萍
2005年8月制作
复习旧课:
1、按给定运动规律设计凸轮廓线的方法有哪几类? 图解法,解析法。
2、图解法设计凸轮廓线的基础是反转法,其含义是什么?
反转法的含义是:给凸轮机构施加一个与凸轮的ω等值反向的 - ω ,使凸轮相对固定不动,从动件在随同导路以- ω绕凸轮 轴心转动并相对导路按预定规律运动时,其尖端的运动轨迹 就是凸轮的廓线。 3、图解法可以设计哪几类凸轮廓线? (1)、尖底对心移动从动件盘形凸轮; (2)、滚子对心移动从动件盘形凸轮; (3)、平底对心移动从动件盘形凸轮; (4)、偏置移动从动件盘形凸轮; (5)、摆动从动件盘形凸轮机构。
3、为保证凸轮机构有良好的传力性能,避免产生自锁现象, 必须限制: α max≤[α] 一般推荐:推程运动 回程运动 移动从动件:[α]=30° [α]=70°~80° 摆动从动件:[α]=35°~45° 4、压力角的校核

机械原理第3章 凸轮机构(第二版)

机械原理第3章 凸轮机构(第二版)

二、凸轮机构的分类
1.按凸轮的形状分 (1) 盘形凸轮机构
盘形凸轮是一个具有变化向径的盘形构件,绕固定转轴回转。 它是凸轮的基本型式,应用最为广泛。
(2)移动凸轮机构
移动凸轮相对机架作往复直线运动。 凸轮与从动件的相对运动是平面运动,属于平面凸轮机构。
(3)圆柱凸轮机构
圆柱凸轮是一个在圆柱上开有曲线槽或是在 圆柱端面上作出曲线轮廓的构件。 凸轮与从动件的相对运动是空间运动,属于 空间凸轮机构.
凸轮廓线上任意 两条平行切线间 的距离都等于框 架内侧的宽度。
两滚子中心间 的距离始终保 持不变。
等径凸轮机构
共轭凸轮机构
两滚子中心间的距离 始终保持不变。
主凸轮推动从动件——正行程, 从凸轮推动从动件——反行程。 克服了等宽、等径凸轮的缺点, 结构复杂,制造精度要求高。
从动件的运动规律的选择受到一定的限制,当180º范围内的 凸轮廓线根据从动件运动规律确定后,其余180º内的凸轮廓 线必须符合等宽、等径原则。
2. 按从动件形状及运动形式分
(1)按从动件形状: 尖顶、滚子和平底从动件
尖顶从动件
尖端能以任意复杂的凸轮轮廓保持接触, 从而使从动件实现任意的运动规律。
但尖端处极易磨损,只适用于低速场合。
滚子从动件
凸轮与从动件之间为滚动摩擦, 因此摩擦磨损较小,可用于传递 较大的动力。
平底从动件
从动件与凸轮之间易形成油膜, 润滑状况好,受力平稳,传动效 率高,常用于高速场合。但与之 相配合的凸轮轮廓须全部外凸。
三、 凸轮机构的特点
●运动特点:连续回转 → 往复运动。 ●优点:可精确实现任意运动规律,简单紧凑。 ●缺点:高副,线接触,易磨损,传力不大。 ●应用:传力不大的场合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盘形凸轮机构是凸轮机构的一种常见类型,其特点在于凸轮呈盘状,并绕固定轴线转动。在盘形凸轮机构中,从动件的运动规律并非主要决定于凸轮半径的变化规律,而是由凸轮的轮廓曲线形状所决定。,不同的轮廓曲线形状将导致从动件产生不同的运动规律。从动件可能按照等速、等加速等减速或其他更复杂的运动规律进行移动或摆动。所以,判断题“盘形凸轮机构从动杆的运动规律,主要决定于凸轮半径的变化规律”的说法是不准确的。实际上,盘形凸轮机构从动杆的运动规律主要决定于凸轮轮廓曲线的形状,而非仅仅是凸轮半径的变化规律。
相关文档
最新文档