七年级下数学期中试题及答案(浙教版)

合集下载

浙教版七年级下册数学期中测试题(含答案)

浙教版七年级下册数学期中测试题(含答案)

(第3题)21最新浙教版七年级下册数学期中测试题(含答案)班级___________ 姓名___________ 得分_______一.选择题(每小题3分,共30分)1.如图,直线b .c 被直线a 所截,则∠1与∠2是( ) A.内错角 B. 同位角 C. 同旁内角 D. 对顶角 2.下列方程中,属于二元一次方程的是( ) A .235x x +=- B .127x y-= C .231x y -=- D .3xy y += 3.如图,梯子的各条横档互相平行,若∠1=80o ,则∠2的度数是( ) A .80oB .120oC .110oD .100o4.下列计算正确的是( )A .326·22a a a = B .()437aa =C .3262(3b)9b a a =- D .2325a a a +=5.已知21x y =-⎧⎨=⎩是方程mx +3y =5的解,则m 的值是 ( ) A .1 B .1- C .2- D .26.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A .∠1=∠2.B . ∠3=∠4.C .∠B =∠DCE .D .∠D+∠1+∠3=180°. 7.若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( ) A .251x y x y -=⎧⎨+=⎩ B .325x y y x =+⎧⎨+=⎩ C .231x y x y =-⎧⎨-=⎩ D .351x y x y +=⎧⎨+=⎩8.计算22(4)(3)ab a b -⋅的结果是( )A. 4312a b -B. 3212a bC. 3248a b -D. 4348a b 9.下列整式乘法运算中,正确的是( )A .22()()x y y x x y +=--B .222 ()x y x y =--C .22()()b a b a b a +--=-D .22 3+69a a a -=+()10.一个正方形的边长若减小了cm 3,那么面积相应减小了392cm ,则原来这个正方形的边长为 ( )(A )5cm (B )6cm (C )7cm (D )8cm(第6题)2413A DBC(第1题)acb 21二.填空题:(本题有6小题,每小题4分,共24分)11.计算:2(3)x x y --= .12.如图,已知直线AB ∥CD ,若∠1=110º,则∠2= .13.已知22x y +=,用关于x 的代数式表示y ,则y = . 14.请你写出一个二元一次方程组: ,使它的解为12x y =⎧⎨=⎩.15.如图△ABC 平移后得到△DEF,若AE=11,DB=5,则平移的距离是_______.16.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片1()2a b a <<1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab -15,则小正方形卡片的面积是 .三.解答题(共46分)17. 计算:(每小题3分,共6分) (1)532)2(y y y ⋅+-(2)(4)(1)(3)x x x x -++-18.解方程组:(6分)(1)1322x y x y =+⎧⎨-=⎩ (2) 223210x y x y +=⎧⎨-=⎩19.(6分)先化简,再求值:2(23)(23)(2)4(1)x x x x x ++----,其中2x =-.20.(本题5分)填空FA B C DE21 (第12题图)(图2) (图3)(图1)(第15题图)D EAB如图,点E 在直线DC 上,点B 在直线AF 上,若∠1=∠2,∠3=∠4, 则∠A =∠D ,请说明理由.解:∵∠1=∠2(已知)∠2=∠DME ( ) ∴∠1=∠DME ∴BC ∥EF ( )∴∠3+∠B =180º( )又∵∠3=∠4(已知) ∴∠4+∠B =180º∴ ∥ (同旁内角互补,两直线平行) ∴∠A =∠D ( )21.(本题满分6分)如图所示,一个四边形纸片ABCD ,90B D ==∠∠,把纸片按如图所示折叠,使点B 落在AD 边上的B '点,AE 是折痕.(1)试判断B E '与DC 的位置关系; (2)如果128C =∠,求AEB ∠的度数.22.(5分)操作探究:(图一)是一个长为 2m .宽为2n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按(图二)的形状拼成一个正方形。

浙教版数学七年级下学期《期中检测卷》含答案

浙教版数学七年级下学期《期中检测卷》含答案

浙 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列计算错误的是( ) A .224235a a a += B .3226(3)9ab a b = C .236()x x =D .23a a a =2.对于有理数x ,y 定义新运算:*5x y ax by =+-,其中a ,b 为常数.已知1*29=-,(3)*32-=-,则(a b -=)A .1-B .1C .2-D .23.如图,说法正确的是( )A .A ∠和1∠是同位角B .A ∠和2∠是内错角C .A ∠和3∠是同旁内角D .A ∠和B ∠是同旁内角4.若6a b +=,4ab =,则22a ab b -+的值为( ) A .32B .12-C .28D .245.若||2017||3(2018)(4)2018m n m x n y ---++=是关于x ,y 的二元一次方程,则( ) A .2018m =±,4n =± B .2018m =-,4n =± C .2018m =±,4n =- D .2018m =-,4n = 6.下列各式能用平方差公式计算的是( ) A .(3)()a b a b +- B .(3)(3)a b a b +-- C .(3)(3)a b a b ---+D .(3)(3)a b a b -+-7.如图,直线//AB CD ,直线EF 分别交AB 、CD 于E 、F 两点,EG 平分AEF ∠,如果132∠=︒,那么2∠的度数是( )A .64︒B .68︒C .58︒D .60︒8.下列说法: ①两点之间,线段最短; ②同旁内角互补;③若AC BC =,则点C 是线段AB 的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有( ) A .1个B .2个C .3个D .4个9.若22(1)4x k x --+是完全平方式,则k 的值为( ) A .1±B .3±C .1-或3D .1或32-10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是( )A .50B .60C .70D .80二.填空题(共8小题,每题3分,满分24分)11.一种植物果实像一个微笑的无花果,质量只有0.000000076克,该质量请用科学记数法表示 克. 12.若23x y +=,用含x 的代数式表示y ,则y = . 13.如果等式3(23)1a a +-=,则使等式成立的a 的值是 .14.若关于x ,y 的方程组220x y my x y -=+⎧⎨-=⎩的解是负整数,则整数m 的值是 .15.如图,已知//AB DE ,75ABC ∠=︒,150CDE ∠=︒,则BCD ∠的度数为 .16.如图a 是长方形纸带,20DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是 度.17.某公司用3000元购进两种货物,货物卖出后,一种货物的利润率是10%,另一种货物的利润率是11%,两种货物共获利315元,如果设该公司购进这两种货物所用的费用分别为x 元,y 元,则列出的方程组是 . 18.若21a a +=,则(5)(6)a a -+= . 三.解答题(共8小题) 19.计算:(1)20190211( 3.14)()2π--+-+;(2)462322(2)x y x xy --. 20.解下列方程:(1)430210x y x y -=⎧⎨-=-⎩(2)134342x y x y ⎧-=⎪⎨⎪-=⎩. 21.先化简,再求值:22[2()(2)(2)3]()a b a b a b a a b --+-+÷-,其中3a =-,2b =. 22.在下面的括号内,填上推理的根据,如图,AF AC ⊥,CD AC ⊥,点B ,E 分别在AC ,DF 上,且//BE CD . 求证:F BED ∠=∠. 证明:AF AC ⊥,CD AC ⊥,90A ∴∠=︒,90(C ∠=︒ ). 180A C ∴∠+∠=︒,//(AF CD ∴ ).又//BE CD .//(AF BE ∴ ). (F BED ∴∠=∠ ).23.如图,在每个小正方形边长都为1的方格纸中,长方形ABCD 的四个顶点都在方格纸的格点上(每个小正方形的顶点叫格点).(1)将长方形ABCD 向上平移5格,请在图中画出平移后的长方形1111A B C D ;(点1A 的对应点为点A ,1B 的对应点为点B ,1C 的对应点为点C ,1D 的对应点为点D .)(2)将长方形ABCD 向左平移6格,请在图中画出平移后的长方形2222A B C D (点2A 的对应点为点A ,2B 的对应点为点B ,2C 的对应点为点C ,2D 的对应点为点D .) (3)连接12A A 、12D D 并直接写出四边形1221A A D D 的面积.24.列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A 、B 品牌矿泉水各多少箱? (2)全部销售完600箱矿泉水,该超市共获得多少利润?25.数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程:(1)小明的想法是:将边长为a 的正方形右下角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的起法是:在边长为a 的正方形内部任意位置剪掉一个边长为b 的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.26.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:2:1BAM BAN ∠∠=. (1)填空:BAN ∠= ︒;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且120ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列计算错误的是( ) A .2a 2+3a 2=5a 4 B .(3ab 3)2=9a 2b 6 C .(x 2)3=x 6D .a •a 2=a 3[分析]直接利用积的乘方运算法则以及同底数幂的乘法运算、合并同类项,正确掌握相关运算法则分别化简得出答案.[解析]A 、2a 2+3a 2=5a 2,符合题意; B 、(3ab 3)2=9a 2b 6,正确,不合题意; C 、(x 2)3=x 6,正确,不合题意; D 、a •a 2=a 3,正确,不合题意; 故选:A .2.对于有理数x ,y 定义新运算:x *y =ax +by ﹣5,其中a ,b 为常数.已知1*2=﹣9,(﹣3)*3=﹣2,则a ﹣b =( ) A .﹣1B .1C .﹣2D .2[分析]根据新定义列出方程组,然后利用加减消元法求出a 、b 的值,再相减即可. [解析]根据题意得,{a +2b −5=−9−3a +3b −5=−2,化简得,{a +2b =−4①a −b =−1②,①﹣②得,3b =﹣3, 解得b =﹣1,把b =﹣1代入②得,a ﹣(﹣1)=﹣1, 解得a =﹣2,∴a ﹣b =﹣2﹣(﹣1)=﹣1. 故选:A .3.如图,说法正确的是( )A.∠A和∠1是同位角B.∠A和∠2是内错角C.∠A和∠3是同旁内角D.∠A和∠B是同旁内角[分析]根据同位角、内错角和同旁内角的定义判断即可.[解析]∵∠A和∠1是内错角,∠A和∠2不是同位角、内错角和同旁内角,∠A和∠3是同位角,∠A和∠B 是同旁内角,∴D选项正确,故选:D.4.若a+b=6,ab=4,则a2﹣ab+b2的值为()A.32B.﹣12C.28D.24[分析]根据a+b=6,ab=4,应用完全平方公式,求出a2﹣ab+b2的值为多少即可.[解析]∵a+b=6,ab=4,∴a2﹣ab+b2=(a+b)2﹣3ab=36﹣3×4=36﹣12=24故选:D.5.若(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,则()A.m=±2018,n=±4B.m=﹣2018,n=±4C.m=±2018,n=﹣4D.m=﹣2018,n=4[分析]依据二元一次方程的定义求解即可.[解析]∵(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,∴{m−2018≠0 |m|−2017=1 n+4≠0|n|−3=1,解得:m=﹣2018、n=4,故选:D.6.下列各式能用平方差公式计算的是()A.(3a+b)(a﹣b)B.(3a+b)(﹣3a﹣b)C.(﹣3a﹣b)(﹣3a+b)D.(﹣3a+b)(3a﹣b)[分析]平方差公式为(a+b)(a﹣b)=a2﹣b2,根据平方差公式逐个判断即可.[解析]A、不能用平方差公式,故本选项不符合题意;B、不能用平方差公式,故本选项不符合题意;C、能用平方差公式,故本选项符合题意;D、不能用平方差公式,故本选项不符合题意;故选:C.7.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°[分析]根据平行线的性质“两直线平行,内错角相等”得到∠1=∠AEG,再利用角平分线的性质推出∠AEF =2∠1,再根据平行线的性质“两直线平行,内错角相等”就可求出∠2的度数.[解析]∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°.∴∠2=64°.故选:A.8.下列说法:①两点之间,线段最短;②同旁内角互补;③若AC=BC,则点C是线段AB的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有()A.1个B.2个C.3个D.4个[分析]依据线段的性质,平行线的性质,中点的定义以及平行公理进行判断,即可得到结论.[解析]①两点之间,线段最短,正确;②同旁内角互补,错误;③若AC=BC,则点C是线段AB的中点,错误;④经过一点有且只有一条直线与这条直线平行,错误;故选:A.9.若x2﹣2(k﹣1)x+4是完全平方式,则k的值为()A.±1B.±3C.﹣1或3D.1或﹣32[分析]利用完全平方公式的结构特征判断即可确定出k的值.[解析]∵x2﹣2(k﹣1)x+4是完全平方式,∴﹣2(k﹣1)=±4,解得:k=﹣1或3,故选:C.10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()A.50B.60C.70D.80[分析]设小长方形的长为x,宽为y,观察图形即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据长方形的面积公式即可得出每个小正方形的面积.[解析]设小长方形的长为x,宽为y,根据题意得:{3x =5yx +2=2y ,解得:{x =10y =6,∴xy =10×6=60. 故选:B . 二.填空题(共8小题)11.一种植物果实像一个微笑的无花果,质量只有0.000000076克,该质量请用科学记数法表示 7.6×10﹣8克.[分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. [解析]0.000000076=7.6×10﹣8.故答案为:7.6×10﹣8.12.若2x +y =3,用含x 的代数式表示y ,则y = 3﹣2x .[分析]把方程2x ﹣y =1写成用含x 的代数式表示y ,需要进行移项即得. [解析]移项得: y =3﹣2x ,故答案为:y =3﹣2x .13.如果等式(2a ﹣3)a +3=1,则使等式成立的a 的值是 1或2或﹣3 . [分析]直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案. [解析]∵(2a ﹣3)a +3=1,∴a +3=0或2a ﹣3=1或2a ﹣3=﹣1且a +3为偶数, 解得:a =﹣3,a =2,a =1. 故答案为:﹣3或2或1.14.若关于x ,y 的方程组{x −y =my +2x −2y =0的解是负整数,则整数m 的值是 3或2 .[分析]先解方程组用含m 的代数式表示出方程组的解,根据方程组有正整数解得出m 的值. [解析]解方程组{x −y =my +2x −2y =0得:{x =41−m y =21−m∵解是负整数,∴1﹣m =﹣2,1﹣m =﹣1∴m=3或2,故答案为:3或2.15.如图,已知AB∥DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为45°.[分析]根据两直线平行,内错角相等以及三角形外角和定理即可解答.[解析]反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=75°,∴∠CMD=180°﹣∠BMD=105°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE﹣∠CMD=150°﹣105°=45°.故答案为:45°.16.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是120度.[分析]解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.[解析]根据图示可知∠CFE=180°﹣3×20°=120°.故答案为:120°.17.某公司用3000元购进两种货物,货物卖出后,一种货物的利润率是10%,另一种货物的利润率是11%,两种货物共获利315元,如果设该公司购进这两种货物所用的费用分别为x元,y元,则列出的方程组是.[分析]设该公司购进这两种货物所用的费用分别为x元,y元,根据这两种货物的进货费用及销售后的利润,即可得出关于x ,y 的二元一次方程组,此题得解.[解析]设该公司购进这两种货物所用的费用分别为x 元,y 元,依题意,得:{x +y =300010%x +11%y =315. 故答案为:{x +y =300010%x +11%y =315. 18.若a 2+a =1,则(a ﹣5)(a +6)= ﹣29 .[分析]直接利用多项式乘法化简进而把已知代入求出答案.[解析]∵a 2+a =1,∴(a ﹣5)(a +6)=a 2+a ﹣30=1﹣30=﹣29.故答案为:﹣29.三.解答题(共8小题)19.计算:(1)﹣12019+(π﹣3.14)0+(12)﹣2; (2)2x 4y 6﹣x 2•(﹣2xy 3)2.[分析](1)根据实数运算法则进行计算;(2)运用整式运算法则解答.[解析](1)原式=﹣1+1+4=4;(2)原式=2x 4y 6﹣x 2•4x 2y 6=2x 4y 6﹣4x 4y 6=﹣2x 4y 6.20.解下列方程:(1){4x −y =30x −2y =−10(2){x 3−y 4=13x −4y =2.[分析](1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.[解答](1){4x −y =30①x −2y =−10②解:①×2﹣②得7x =70,解得:x =10,将x =10代入②得 10﹣2y =﹣10,解得:y =10,则原方程组的解为{x =10y =10; (2)方程组整理得:{4x −3y =12①3x −4y =2②, 解:①×4﹣②×3得7x =42,解得:x =6,把x =6代入①得:y =4,则方程组的解为{x =6y =4. 21.先化简,再求值:[2(a ﹣b )2﹣(2a +b )(2a ﹣b )+3a 2]÷(a ﹣b ),其中a =﹣3,b =2.[分析]原式中括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并后约分得到最简结果,将a 与b 的值代入计算即可求出值.[解析]原式=[2(a 2﹣2ab +b 2)﹣(4a 2﹣b 2)+3a 2]÷(a ﹣b )=(2a 2﹣4ab +2b 2﹣4a 2+b 2+3a 2)÷(a ﹣b )=(a 2﹣4ab +3b 2)÷(a ﹣b )=(a ﹣b )(a ﹣3b )÷(a ﹣b )=a ﹣3b ,当a =﹣3,b =2时,原式=﹣3﹣3×2=﹣3﹣6=﹣9.22.在下面的括号内,填上推理的根据,如图,AF ⊥AC ,CD ⊥AC ,点B ,E 分别在AC ,DF 上,且BE ∥CD .求证:∠F =∠BED .证明:∵AF ⊥AC ,CD ⊥AC ,∴∠A =90°,∠C =90°( 垂线的定义 ).∴∠A +∠C =180°,∴AF ∥CD ( 同旁内角互补,两直线平行 ).又∵BE ∥CD .∴AF ∥BE ( 平行于同一条直线的两直线平行 ).∴∠F=∠BED(两直线平行,同位角相等).[分析]由AF⊥AC,CD⊥AC可得出∠A=90°,∠C=90°,进而可得出∠A+∠C=180°,利用“同旁内角互补,两直线平行”可证出AF∥CD,结合BE∥CD可得出AF∥BE,再利用“两直线平行,同位角相等”可证出∠F=∠BED.[解答]证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).故答案为:垂线的定义;同旁内角互补,两直线平行;平行于同一条直线的两直线平行;两直线平行,同位角相等.23.如图,在每个小正方形边长都为1的方格纸中,长方形ABCD的四个顶点都在方格纸的格点上(每个小正方形的顶点叫格点).(1)将长方形ABCD向上平移5格,请在图中画出平移后的长方形A1B1C1D1;(点A1的对应点为点A,B1的对应点为点B,C1的对应点为点C,D1的对应点为点D.)(2)将长方形ABCD向左平移6格,请在图中画出平移后的长方形A2B2C2D2(点A2的对应点为点A,B2的对应点为点B,C2的对应点为点C,D2的对应点为点D.)(3)连接A1A2、D1D2并直接写出四边形A1A2D2D1的面积.[分析](1)依据平移的方向和距离,即可得到平移后的长方形A 1B 1C 1D 1;(2)依据平移的方向和距离,即可得到平移后的长方形A 2B 2C 2D 2;(3)依据四边形A 1A 2D 2D 1为平行四边形,运用公式即可得到其面积.[解析](1)如图所示,A 1B 1C 1D 1即为所求;(2)如图所示,A 2B 2C 2D 2即为所求;(3)四边形A 1A 2D 2D 1的面积=4×5=20.24.列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A 、B 品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?类别/单价成本价(元/箱 销售价(元/箱) A 品牌20 32 B 品牌 35 50[分析](1)设该超市进A 品牌矿泉水x 箱,B 品牌矿泉水y 箱,根据总价=单价×数量结合该超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总利润=每箱利润×数量,即可求出该超市销售万600箱矿泉水获得的利润.[解析](1)设该超市进A 品牌矿泉水x 箱,B 品牌矿泉水y 箱,依题意,得:{x +y =60020x +35y =15000,解得:{x =400y =200. 答:该超市进A 品牌矿泉水400箱,B 品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.25.数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程:(1)小明的想法是:将边长为a 的正方形右下角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的起法是:在边长为a 的正方形内部任意位置剪掉一个边长为b 的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.[分析](1)①的面积=12×(a +b )(a ﹣b )=12×(a 2﹣b 2),②的面积=12×(a +b )(a ﹣b )=12×(a 2﹣b 2)所以①+②的面积=a 2﹣b 2,所以(a +b )(a ﹣b )=a 2﹣b 2.(2)①+②的面积=(a ﹣b )b =ab ﹣b 2,③+④的面积=(a ﹣b )a =a 2﹣ab ,所以①+②+③+④=a 2﹣b 2;则(a +b )(a ﹣b )=a 2﹣b 2.[解析](1)①的面积=12×(a +b )(a ﹣b )=12×(a 2﹣b 2), ②的面积=12×(a +b )(a ﹣b )=12×(a 2﹣b 2),∴①+②的面积=a 2﹣b 2;①+②的面积=大正方形的面积﹣小正方形的面积=a 2﹣b 2,∴(a +b )(a ﹣b )=a 2﹣b 2.(2)①+②的面积=(a ﹣b )b =ab ﹣b 2,③+④的面积=(a ﹣b )a =a 2﹣ab ,∴①+②+③+④=a 2﹣b 2;①+②+③+④的面积=大正方形的面积﹣小正方形的面积=a2﹣b2,∴(a+b)(a﹣b)=a2﹣b2.26.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=60°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.[分析](1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.[解析](1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×13=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.。

浙教版七年级下册数学期中考试试题附答案

浙教版七年级下册数学期中考试试题附答案

浙教版七年级下册数学期中考试试卷一、单选题1.将如图所示的图案通过平移后可以得到的图案是( )A .B .C .D . 2.下列是二元一次方程的是( )A .310x =B .22x y =C .12y x +=D .80x y += 3.如果两个不相等的角互为补角,那么这两个角 ( )A .都是锐角B .都是钝角C .一个锐角,一个钝角D .以上答案都不对4.以23x y =-⎧⎨=⎩为解的二元一次方程是( ) A .2x -3y=-13 B .y=2x+5 C .y -4x=5 D .x=y -3 5.下列计算正确的是( ).A .347235x x x ⋅=B .325428a a a ⋅=C .336235a a a +=D .3331243x x x ÷=6.若34x =,97y =,则23x y -的值为( ).A .47B .74C .4-D .277.把一张对面互相平行的纸条折成如图所示那样,EF 是折痕,若∠EFB=32°则下列结论正确的有( )(1)∠C ′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A .1个B .2个C .3个D .4个8.如图,有下列说法:①若DE //AB ,则∠DEF +∠EFB =180°;②能与∠DEF 构成内错角的角的个数有2个;③能与∠BFE 构成同位角的角的个数有1个;④能与∠C 构成同旁内角的角的个数有4个.其中结论正确的个数有( )个A .1B .2C .3D .49.已知a m =6,a n =3,则a 2m ﹣3n 的值为( )A .43B .34C .2D .910.如图,若△DEF 是由△ABC 经过平移后得到,已知A ,D 之间的距离为1,CE =2,则EF 是( )A .1B .2C .3D .4二、填空题 11.最薄的金箔的厚度为0.000091mm ,将0.000091用科学记数法表示为_______. 12.已知24x y +=,用关于x 的代数式表示y ,则y =______.13.计算:()()202020210.1258-⨯-=______.14.如图,∠1=80°,∠2=100°,∠3=76°,则∠4的度数是______度.15.若方程组342x y +=,25x y -=与36ax by -=,25ax by +=有相同的解,则a =______,b =______.16.如图,∠C =90°,将直角三角形ABC 沿着射线BC 方向平移6cm ,得三角形A′B′C′,已知BC =3cm ,AC =4cm ,则阴影部分的面积为_____cm 2.17.有两个正方形A ,B ,现将B 放在A 的内部如图甲,将A ,B 并排放置后构造新的正方形如图乙.若图甲和图乙中阴影部分的面积分别为14和74,则正方形A ,B 的面积之和为______.三、解答题18.计算(1)()()12312π322--⎛⎫--+-- ⎪⎝⎭. (2)()()354432321510205x y x y x y x y --÷.19.解方程组(1)31x y x y +=⎧⎨-=-⎩(2)()113216x y x y ⎧+=⎪⎨⎪+-=⎩20.化简(1)先化简,再求值:()()()22232m m m +---,其中12m =-. (2)已知3ab =,1a b -=-,求223a ab b ++的值.21.如图,ABC ∠和BCD ∠的平分线交于点P ,延长CP 交AB 于点Q ,且90PBC PCB ∠+∠=︒(1)求证://AB CD .(2)探究PBC ∠与PQB ∠的数量关系.22.某车间有14名工人生产一种螺栓和螺母,每人每天平均能生产螺栓6个或螺母9个,要求1个螺栓配2个螺母,应怎样分配工人才能使每天生产的螺栓和螺母恰好配套?23.阅读以下文字并解决问题:对于形如222x ax a ++这样的二次三项式,我们可以直接用公式法把它分解成()2x a +的形式,但对于二次三项式2627x x +-,就不能直接用公式法分解了.此时,我们可以在2627x x +-中间先加上一项9,使它与26x x +的和构成一个完全平方式,然后再减去9,则整个多项式的值不变.即:()()()()()()22226276992736363693x x x x x x x x x +-=++--=+-=+++-=+-,像这样,把一个二次三项式变成含有完全平方式的形式的方法,叫做配方法.(1)利用“配方法”因式分解:2267x xy y +-.(2)如果2222264130a b c ab b c ++---+=,求a b c ++的值.24.已知AM //CN ,点B 为平面内一点,AB ⊥BC 于B .(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =5∠DBE ,求∠EBC 的度数.25.如图,//AB CD ,EF 分别交AB ,CD 于点E ,F ,FG 平分EFC ∠,交AB 于点G ,若180∠=︒,求FGE ∠的度数.参考答案1.A【详解】解:根据平移的性质,平移只改变图形的位置,不改变图形的形状与大小.观察各选项图形可知,A 选项的图案可以通过平移得到.故选A .2.D【分析】根据二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程解答即可.【详解】解:3x =10是一元一次方程,A 不正确;2x 2=y 是二元二次方程,B 不正确;12y x+=不是整式方程,所以不是二元一次方程,C 不正确; x +8y =0是二元一次方程,故选:D .【点睛】本题考查二元一次方程的概念,掌握二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程是解题的关键.3.C根据互为补角的两个角的和等于180°,分析出两个角的范围即可求解.【详解】∵两个不相等的角互为补角,∴这两个角一个角大于90°,一个角小于90°,即一个是钝角,一个是锐角,故选:C【点睛】本题考查互为补角的概念,解题的关键是根据两个角不相等得到两个角的范围.4.A【分析】把23xy=-⎧⎨=⎩分别代入下面四个方程,如果使方程成立就是方程的解,如果左边和右边不相等就不是方程的解.【详解】A. 把23xy=-⎧⎨=⎩代入2x−3y=−13,左边=2x-3y=-13=右边,即23xy=-⎧⎨=⎩是该方程的解,故本选项正确;B. 把23xy=-⎧⎨=⎩代入y=2x+5,左边=3,右边=1,左边≠右边,即23xy=-⎧⎨=⎩不是该方程的解,故本选项错误;C. 把23xy=-⎧⎨=⎩代入y−4x=5,左边=11≠右边,即23xy=-⎧⎨=⎩不是该方程的解,故本选项错误;D. 把23xy=-⎧⎨=⎩代入x=y−3, 左边=3,右边=0,左边≠右边,即23xy=-⎧⎨=⎩不是该方程的解,故本选项错误;故选A.【点睛】考查方程解的概念,使方程左右两边相等的未知数的值就是方程的解. 5.B根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【详解】解:A 、2x 3•3x 4=6x 7,故错误;B 、4a 3•2a 2=8a 5,故正确;C 、2a 3+3a 3=5a 3,故错误.D 、331243x x ÷=,故错误;故选:B .【点睛】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.A【分析】将23x y -变形为()23339y x x y =÷÷,建立与已知条件联系,代入计算即可.【详解】解:∵()22333=9=3y x y x x y -÷÷,∵34x =,97y =, ∴243=93=7x y x y -÷,故选:A【点睛】本题考查了同底数幂的除法与幂的乘方的逆用,灵活运用运算法则是解题的关键.7.D【分析】根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.【详解】解:(1)∵AE ∥BG ,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE ∥BG ,∠EFB=32°,∴∠GEF=∠C′EF=32°,∴∠AEC=180°-32°-32°=116°,故本小题正确;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故选D.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.8.C【分析】运用同位角、内错角、同旁内角的定义及平行线的性质对各个选项进行判定,即可做出判断.【详解】①项,因为DE//AB,根据“两直线平行,同旁内角互补”可知∠DEF+∠EFB=180°,故①项正确;②项,内错角是指两条直线被第三条直线所截,在截线两侧,且夹在被截线之间的两角,与∠DEF构成内错角的角有∠EDC,∠AFE,共2个,故②项正确;③项,同位角是指两条直线被第三条直线所截,在截线同侧,并且在被截线的同一方向的两个角,与∠BFE构成同位角的角有∠F AE,只有1个,故③项正确;④项,同旁内角是指两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,与∠C构成同旁内角的角有∠DEC、∠FEC、∠BAC、∠EDC、∠ABC,共5个,故④项错误;故选C.【点睛】本题考查了平行线的性质定理、内错角、同位角以及同旁内角,熟记同位角、内错角、同旁内角的特征是解题的关键.9.A【分析】原式利用同底数幂的除法法则及幂的乘方运算法则变形,将已知等式代入计算即可求出值.【详解】∵a m=6,a n=3,∴原式=(a m)2÷(a n)3=36÷27=43,故选A.【点睛】本题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.10.C【分析】根据平移的性质,结合图形可直接求解.【详解】观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,根据对应点所连的线段平行且相等,得BE=AD=CF=1,又∵CE=2 ∴EF=CE+CF=2+1=3.故答案选:C.【点睛】本题考查的知识点是平移的性质,解题的关键是熟练的掌握平移的性质.11.59.110-⨯【分析】根据科学记数法可直接进行求解.【详解】解:将0.000091用科学记数法表示为59.110-⨯;故答案为59.110-⨯.【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.12.42x -【分析】根据二元一次方程的消元思想进行求解即可.【详解】解:x +2y =4,2y =4-xy =42x -. 故答案为:42x -. 【点睛】本题主要考查了二元一次方程,将等式2x +3y =1利用消元思想进行求解成为解答本题的关键.13.8-【分析】由题意逆用积的乘方运算法则以及逆用同底数幂相乘的运算法则进行计算即可.【详解】解:()()202020210.1258-⨯- ()()202020200.1258(8)=-⨯-⨯-[]2020(0.125)(8)(8)=-⨯-⨯-1(8)=⨯- 8=-【点睛】本题考查积的乘方运算法则以及同底数幂相乘的运算法则,熟练掌握并逆用积的乘方运算法则以及逆用同底数幂相乘的运算法则是解题的关键.14.76【详解】2=51=802=1001+5=1803476a b∠∠∠︒∠︒∴∠∠︒∴∴∠=∠=︒,,15.321 【分析】先根据两方程组有相同的解,将342x y +=,25x y -=组成方程组,求出x ,y 的值,代入36ax by -=,25ax by +=组成的方程组,即可求出a 、b 的值.【详解】解:∵34225x y x y +=⎧⎨-=⎩①② 由②变形为:25y x =-,把25y x =-代入①,得()3422x x y +-=,解得:2x =,把2x =代入②,得1y =-,把2x =,1y =-代入36210ax by ax by -=⎧⎨+=⎩,得2+3645a b a b =⎧⎨-=⎩, 解得: 321a b ⎧=⎪⎨⎪=⎩, 故答案为:32;1 【点睛】此题考查了对方程组解的理解:方程组有相同的解,即四个方程有相同解.将已知系数的两个方程组成的方程组的解代入其余两方程,即可解出a 、b 的值.16.18【分析】根据图形之间关系,可得S 阴=S 平行四边形ABB′A′-S △ABC 求解即可.【详解】解:由题意平行四边形ABB′A′的面积=6×4=24(cm 2),S △ABC =12×3×4=6(cm 2),∴S 阴=S 平行四边形ABB′A′-S △ABC =24-6=18(cm 2),故答案为18.【点睛】本题考查平移的性质和三角形的面积等知识,解题的关键是熟练掌握平移的基本知识. 17.2【分析】设正方形A 、B 的边长,分别表示甲、乙图中的阴影面积,再变形可得答案;【详解】解:解:设A 的边长为x ,B 的边长为y , 由甲、乙阴影面积分别是14、74可列方程组: ()()22221474x y x y x y ⎧-=⎪⎪⎨⎪+--=⎪⎩将②化简得2xy =74③, 由①得x 2+y 2−2xy =14,将③代入可知x 2+y 2=17+44=2. ∴正方形A ,B 的面积之和为2.故答案为:2.【点睛】本题考查了完全平方公式的几何背景,根据图甲和图乙中阴影部分的面积分别为14和74,列出等式,这是解题的关键.18.(1)354;(2)32324y xy -- 【分析】(1)根据有理数的乘方,零次幂,负整指数幂,进行计算即可;(2)根据多项式除以单项式进行计算即可.【详解】(1)()()102312π322--⎛⎫--+-- ⎪⎝⎭ 18124=-+-354= (2)()()354432321510205x y x y x y x y --÷3232325(324)5x y y xy x y =--÷32324y xy =--【点睛】本题考查了有理数的乘方,零次幂,负整指数幂,多项式除以单项式,掌握以上运算法则是解题的关键.19.(1)12x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩ 【分析】(1)根据题意直接利用加减消元法解方程组即可得到答案;(2)由题意将方程化简后,利用代入消元法解方程组即可得到答案.【详解】解:(1)31x y x y +=⎧⎨-=-⎩①②, ①+②可得,22x =,解得1x =,①-②可得,24y =,解得2y =,∴原方程组的解为:12x y =⎧⎨=⎩; (2)()113216x y x y ⎧+=⎪⎨⎪+-=⎩将方程组化简,得3324x y x y -=-⎧⎨-=⎩①②, 由①得,33x y =-③,把③代入②,可得2(33)4y y --=,解得2y =,把2y =代入③,可得3x =,∴原方程组的解为:32x y =⎧⎨=⎩.【点睛】本题考查的是解二元一次方程组,熟练掌握解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.(1)221216m m -+-,452-;(2)16.【分析】(1)利用平方差公式及完全平方公式化简得出最简结果,再代入计算即可得答案; (2)利用完全平方公式变形,再代入计算即可得答案.【详解】解:(1)()()()22232m m m +---=22431212m m m --+-221216m m =-+-, 当12m =-时,原式452=-.(2)223a ab b ++()25a b ab =-+()2153=-+⨯16=.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式及平方差公式是解题关键. 21.(1)见解析;(2)90PBC PQB ∠+∠=︒【分析】(1)利用角平分线定理和平行线的判定定理即可推导得.(2)利用平行线的性质定理结合已知条件即可推导出.【详解】(1)证明:∵BP 平分ABC ∠,∴2ABC PBC ∠=∠.∵CP 平分BCD ∠,∴2BCD PCB ∠=∠,∴22ABC BCD PBC PCB ∠+∠=∠+∠又∵90PBC PCB ∠+∠=∴180ABC BCD ∠+∠=∴//AB CD .(2)解:∵CP 平分DCB ∠,∴PCD PCB ∠=∠.∵//AB CD ,∴PCD PQB ∠=∠,∴PCB PQB ∠=∠.又∵90PBC PCB ∠+∠=∴90PBC PQB ∠+∠=︒【点睛】本题考查角平分线的性质定理及平行线的判定性质等知识点,熟练掌握并理解其中的逻辑关系是解题的关键.22.6人生产螺栓,8人生产螺母【分析】设x 人生产螺栓,y 人生产螺母,根据题意列二元一次方程组解决问题.【详解】解:设x 人生产螺栓,y 人生产螺母,由题意得14629x y x y+=⎧⎨⨯=⎩, 解得68x y =⎧⎨=⎩答:6人生产螺栓,8人生产螺母能使每天生产的螺栓和螺母恰好配套.【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(1)()()7x y x y +-;(2)8a b c ++=【分析】(1)将前两项配方后即可得到22(2)4)(x y y -+,然后利用平方差公式因式分解即可; (2)由2222264130a b c ab b c ++---+=,可得222()(3)(2)0a b b c -+-+-=,求得a 、b 、c 后即可得出答案.【详解】解:(1)22222676916x xy y x xy y y +-=++-()()()()22343434x y y x y y x y y =+-=+++- ()()7x y x y =+-(2)∵2222264130a b c ab b c ++---+=∴2222269440a ab b b b c c -++-++-+=,∴()()()222320a b b c -+-+-=,∴a b =,3b =,2c =,∴8a b c ++=【点睛】本题考查了因式分解的知识,解题的关键是能够熟记完全平方公式及平方差公式的形式,并能正确的分组.24.(1)∠A +∠C =90°;(2)证明见解析;(3)99°.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B 作BG ∥DM ,根据同角的余角相等,得出∠ABD =∠CBG ,再根据平行线的性质,得出∠C =∠CBG ,即可得到∠ABD =∠C ;(3)先过点B 作BG ∥DM ,根据角平分线的定义,得出∠ABF =∠GBF ,再设∠DBE =a ,∠ABF =b ,根据∠CBF +∠BFC +∠BCF =180°,可得(2a +b )+5a +(5a +b )=180°,根据AB ⊥BC ,可得b +b +2a =90°,最后解方程组即可得到∠ABE =9°,即可得出∠EBC 的度数.【详解】解:(1)如图1,设AM 与BC 的交点为O ,AM //CN ,∴∠C=∠AOB,∵AB⊥BC,∴∠ABO=90°,∴∠A+∠AOB=90°,即∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)证明:如图2,过点B作BG//DM,∵BD AM,∴∠BDM=90°,∵BG//DM,∴∠+∠=︒BDM DBG,180∴90DBG,即∠ABD+∠ABG=90°,∠=︒⊥,∵AB BC∴∠ABC=90°,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM//CN,BG//DM,∴BG//CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG//DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠-∠=∠-∠DBF ABD CBF CBG,即∠ABF=∠GBF,设∠DBE=a,∠ABF=b,则∠ABE=a,∠ABD=∠CBG=2a,∠GBF =∠ABF=b,∠BFC=5∠DBE=5a,∴∠CBF=∠CBG+∠GBF=2a+b,∵BG//DM,∴∠AFB=∠GBF =b,∴∠AFC=∠BFC+∠AFB =5a+b,∵AM//CN,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5a+b,在△BCF中,由∠CBF+∠BFC+∠BCF=180°可得:(2a+b)+5a+(5a+b)=180°,化简得:6=90+︒a b,由AB BC,可得:b+b+2a=90°,化简得:=45+︒a b,联立6=9045a ba b+︒⎧⎨+=︒⎩,解得:=936ab︒⎧⎨=︒⎩,∴∠ABE=9°,∴∠EBC=∠ABE+∠ABC=9°+90°=99°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.25.50︒【分析】先由两直线平行,同位角相等,求出180EFD ∠=∠=︒,然后根据邻补角的定义求出100EFC ∠=︒,再根据角平分线定义求出GFC ∠度数,最后根据两直线平行,内错角相等,即可求出FGE ∠度数.【详解】∵AB//CD ,∴180EFD ∠=∠=︒,∵180EFC EFD ∠+∠=︒,∴100EFC ∠=︒,∵FG 平分EFC ∠, ∴1502GFC EFC ∠=∠=︒, ∵AB//CD ,∴FGE GFC ∠=∠,∴50FGE ∠=︒.【点睛】本题主要考查平行线的性质.平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.。

浙教版数学七年级下学期《期中考试试卷》含答案解析

浙教版数学七年级下学期《期中考试试卷》含答案解析
浙 教 版 数 学 七年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题
1.下列方程中,属于二元一次方程的是()
A.2x=yB.2x﹣3y=zC.2x2﹣x=5D.3﹣a= +1
2.用科学记数方法表示 ,得()
A. B. C. D.
故答案为:12.
[点睛]本题考查二元一次方程组的应用,巧设未知数,根据矩形的对边相等列出方程组是解题的关键.
三、解答题
17.(1)计算:
(2)化简:
[答案](1)3;(2) ;
[解析]
[分析]
(1)根据零指数幂、负整数指数幂的运算法则计算;
(_______④_______)
∴___________⑤_______(______⑥_______)
22.如图,将一张长方形纸板按图中虚线裁剪成 块,其中有 块是边长都为 厘米的大正方形, 块是边长都为 厘米的小正方形, 块是长为 厘米,宽为 厘米的一模一样的小长方形,且 ,设图中所有裁剪线(虚线部分)长之和为 厘米.
故yx=( )-2=9.
故答案为9.
[点睛]此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
14.如图,将一条对边互相平行的纸带进行折叠,折痕为 ,若 时,则 _________度.
[答案]
[解析]
[分析]
利用平行线的性质以及翻折不变性即可解决问题.
[详解]由翻折可知:∠DMN=∠NMD′= (180°-42°)=69°,
3.如图,在平移三角尺画平行线的过程中,理由是( )
A.两直线平行,同位角相等
B.两直线平行,内错角相等

浙教版数学七年级下学期《期中测试题》带答案

浙教版数学七年级下学期《期中测试题》带答案

浙 教 版 七 年 级 下 学 期期 中 测 试 卷一、细心选一选(本题有10小题,每小题2分,共20分)1. 如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是( )A. 同位角B. 内错角C. 对顶角D. 同旁内角2. 如图,若a ∥b ,∠1=50°,则∠2=( )A. 50°B. 130°C. 60°D. 120°3. 下列各式中是二元一次方程的是( ) A. 2x+3yB. xy-y=1C. x -3y =5D.7125x y += 4. 把图形(1)进行平移,得到的图形是( )A.B. C. D.5. 下列计算中正确的是( ) A 2x+3y=5xyB. x·x 4=x 4C. x 8÷x 2=x 4D. (x 2y )3=x 6y 36. 用科学记数法方法表示0.0000201得( ) A. 40.20110-⨯B. 62.0110-⨯C. 620.110-⨯D. 52.0110-⨯7. 如图所示,如果AD//BC ,则:①∠1 =∠2;②∠3 =∠4;③∠1+∠3 =∠2+∠4;上述结论中一定正确的是( )A. 只有①B. 只有②C. ①和②D. ①、②、③8. 对于方程组235(1){21(2)x y y x -==-,把(2)代入(1)得 ( )A. 2x-6x-1=5B. 2(2x-1)-3y=5C. 2x-6x+3=5D. 2x-6x-3=59. 根据两个图形中阴影部分的面积相等,可以验证( )A. (a +b )(a -b )=a 2-b 2B. (a -b )2=a 2-2ab +b 2C. (a +b )2=a 2+2ab +b 2D. (a +2b )(a -b )=a 2+ab -2b 210. 生活中有人喜欢把请人传送的便条折成图丁形状,折叠过程如图所示(阴影部分表示纸条反面),如果折成图丁形状的纸条宽xcm ,并且一端超出P 点1cm ,另一端超出P 点2cm ,那么折成的图丁所示的平面图形的面积为cm 2.( ).A.27x 3x 2+ B.29x 3x 2+ C.25x 3x 2+ D. 24x 3x +二、细心填一填(本题有10小题,每小题3分,共30分) 11. 如图,请添加一个条件:___________,使DE∥BC.12. 若32125m n x y ---=是二元一次方程,则m= _______,n= ________ .13. 计算:32()x x -=·______;( )2=4a 2b 4. 14. 在式子3m+5n -k 中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是___. 15. 一个多项式与3212x y -的积为5243343x y x y x y z --,那么这个多项式为___. 16. 已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x -y 的值为_____17. 若4x 2+kx +25=(2x -5)2,那么k 的值是________18. 已知(2017-A)2(2015-A)2 =2016,则(2017-A)2 +(2015-A)2 的值为________.19. 将一条两边沿互相平行的纸带按如图所示折叠,已知∠1=76°,则∠2的度数为______度.20. 小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .三、耐心做一做(共6题,50分)21. 解下列方程组 (1)1{24x y y x +==+(2)3213{325x y x y +=-=22. 计算 (1)()()22006011 3.142π-⎛⎫-+--- ⎪⎝⎭(2)322()()()a b ab a ÷-÷-(3)先化简,再求值:(x+2)2-(x+1)(x-1),其中x=1 223. 如图,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度数24. 在如图所示的单位正方形网格中(1)将△ABC向右平移3个单位后得到△A′B′C′;(2)连结A′A、A′B,则∠BA′A的度数是度;(3)求△ABC的面积.25. 某游泳场设计方案如图所示,其中A区为成人泳区,B区为儿童泳区,其余地区为草坪(1)游泳区和草坪面积各是多少?(2)如果游泳场需要有不少于一半的草坪,那么这个方案符合要求吗?26. “五水共治”是浙江省委十三届四次全会提出,要以治污水、防洪水、排涝水、保供水、抓节水大规模治水行动.五水共治,治污先行.市政府决定用96万元钱购买处理污水设备.现有A,B两种型号的处理污水设备,其中每台的价格、月处理污水量如下表.(1)设A、B型设备应各买入x、y台,请你列出方程或方程组;(2)用含y的代数式表示x,并写出所有满足题意的x,y的值;(3)为了使月处理污水量达到最大,A,B型设备应各买多少台?最大月处理污水量为多少吨?答案与解析一、细心选一选(本题有10小题,每小题2分,共20分)1. 如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是( )A. 同位角B. 内错角C. 对顶角D. 同旁内角【答案】B 【解析】 【分析】 图中两只手的食指和拇指构成”Z “形,根据内错角是在截线两旁,被截线之内的两角,内错角的边构成“Z ” “形即可解答.【详解】两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是内错角. 故选B.【点睛】本题考查了内错角的定义,熟知内错角的定义是解决本题的关键. 2. 如图,若a ∥b ,∠1=50°,则∠2=( )A. 50°B. 130°C. 60°D. 120°【答案】A 【解析】 【分析】【详解】解:易知∠1和∠2为同位角,当a ∥b ,∠1=∠2=50°. 故选:A【点睛】本题考查平行线性质,本题难度较低,主要考查学生对平行线性质知识点的掌握. 3. 下列各式中是二元一次方程的是( ) A. 2x+3y B. xy-y=1C. x -3y =5D. 7125x y +=【答案】C 【解析】A. 是代数式,故错误;B. 是二元二次方程,故错误;C. 是一元一次方程,故正确;D. 是分式方程,故错误;故选C.4. 把图形(1)进行平移,得到的图形是()A. B. C. D.【答案】C【解析】【分析】根据平移的意义“平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫作图形的平移运动,简称平移”.【详解】易知平移后图形形状大小不变只是位置变化了.所以选C 5. 下列计算中正确的是()A. 2x+3y=5xy B. x·x4=x4 C. x8÷x2=x4 D. (x2y)3=x6y3【答案】D【解析】【分析】【详解】解:A、2x+3y已经是最简式,无需再计算.B、x·x4=x5;C、x8÷x2=x6D. (x2y)3=x6y3,正确故选:D【点睛】本题考查整式运算,本题难度较低,主要考查学生对整式运算知识点的掌握.易错:同底数幂相乘除,指数相加减.6. 用科学记数法方法表示0.0000201得( ) A .40.20110-⨯ B. 62.0110-⨯C. 620.110-⨯D. 52.0110-⨯【答案】D 【解析】0.0000201=2.01×10−5, 故选D.7. 如图所示,如果AD//BC ,则:①∠1 =∠2;②∠3 =∠4;③∠1+∠3 =∠2+∠4;上述结论中一定正确的是( )A. 只有①B. 只有②C. ①和②D. ①、②、③【答案】A 【解析】 ∵AD ∥BC ,∴∠1=∠2,故①正确;②③错误. 故选A. 8. 对于方程组235(1){21(2)x y y x -==-,把(2)代入(1)得 ( )A. 2x-6x-1=5B. 2(2x-1)-3y=5C. 2x-6x+3=5D. 2x-6x-3=5【答案】C 【解析】把(2)代入(1)得:2x-3(2x-1)=5,即2x-6x+3=5, 故选C .9. 根据两个图形中阴影部分的面积相等,可以验证( )A. (a +b )(a -b )=a 2-b 2B. (a -b )2=a 2-2ab +b 2C. (a +b )2=a 2+2ab +b 2D. (a +2b )(a -b )=a 2+ab -2b 2【答案】A 【解析】图1中,阴影部分的面积=a 2−b 2, 根据图1可得,图2中梯形的高为(a −b), 因此图2中阴影部分的面积=12(2a+2b)(a −b)= (a +b)(a -b), 根据两个图形中阴影部分的面积相等可得a 2−b 2=(a +b)(a -b), 故选A.10. 生活中有人喜欢把请人传送的便条折成图丁形状,折叠过程如图所示(阴影部分表示纸条反面),如果折成图丁形状的纸条宽xcm ,并且一端超出P 点1cm ,另一端超出P 点2cm ,那么折成的图丁所示的平面图形的面积为cm 2.( ).A.27x 3x 2+ B.29x 3x 2+ C.25x 3x 2+ D. 24x 3x +【答案】C 【解析】如图,根据折叠的性质可知: AO=AC+CO=2+x ,BP=1, 等腰直角三角形的直角边为x , 则S=AO ⋅x+BP ⋅x+3×12x 2=2x+x 2+x+32x 2=52x 2+3x , 故选C.点睛:根据折叠的性质可知,该图形的是由两个矩形和三个等腰直角三角形组合而成的,故只需求出矩形和等腰直角三角形的面积即可求解.注意:折叠是一种对称变换,折叠前后的图形大小和形状不变,位置变化,对应边和对应角相等.二、细心填一填(本题有10小题,每小题3分,共30分) 11. 如图,请添加一个条件:___________,使DE∥BC.【答案】∠1=∠B 【解析】试题分析:依题意知,要是两直线平行,则使用其判定定理:如同位角相等∠1=∠B ;或内错角相等∠2=∠B ;用同旁内角互补如∠3+∠B=180°或∠4+∠B=180° 考点:平行线的判定点评:本题难度较低,主要考查学生对平行线的判定掌握,运用定理找对应角添加即可. 12. 若32125m n x y ---=是二元一次方程,则m= _______,n= ________ . 【答案】 (1). 1 (2). 2 【解析】 ∵3m 2n 1x2y 5---=是二元一次方程,∴3m −2=1,n −1=1, ∴m=1,n=2, 故答案为1,2. 13. 计算:32()x x -=·______;( )2=4a 2b 4 .【答案】 (1). 5x - (2). 22ab ± 【解析】根据同底数幂的乘法、积的乘方和幂的乘方进行计算得:(−x)3⋅x 2=−x 5;(±2ab 2)2=4a 2b 4. 故答案为−x 5;±2ab 2. 14. 在式子3m+5n -k 中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是___. 【答案】-7 【解析】 ∵m=−2,n=1∴3m+5n −k=1∴k=−2∵m=2,n=−3,k=−2∴3m+5n −k=3×2+5×(−3)−(−2)=−7. 15. 一个多项式与3212x y -的积为5243343x y x y x y z --,那么这个多项式为___. 【答案】22262x xy y z -++【解析】试题分析:依题意知()()524334325243343212332x y x y x y x y z x y x y x y x y z ⎛⎫-⎛⎫--÷-=--⨯ ⎪ ⎪⎝⎭⎝⎭ =22262x xy y z -++考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握.同底数幂相乘除,指数相加减. 16. 已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x -y 的值为_____ 【答案】1【解析】方程组中,①-②得:x-y=1.17. 若4x 2+kx +25=(2x -5)2,那么k 的值是________【答案】-20【解析】试题分析:(2x -5)2展开得4x 2-20x +25.所以k=-20考点:二元一次方程点评:本题难度较低,主要考查学生对二元一次方程知识点的掌握,去括号移项即可.18. 已知(2017-A)2(2015-A)2 =2016,则(2017-A)2 +(2015-A)2 的值为________.【答案】42414+【解析】设x=2017−A,y=2015−A,∴x2y2=2016,∴xy=±1214,∴x−y=2∴x2+y2=(x−y)2+2xy=4±2414∵x2+y2⩾0,∴x2+y2=4+2414∴(2017−A)2+(2015−A)2=4+2414故答案为4+2414点睛:本题考查完全平方公式,解题的关键是熟练运用完全平方公式,属于基础题型.应用时要注意:公式中的a,b可以是单项式也可以是多项式;对形如两数和或差的平方的计算,都可以用这个公式.19. 将一条两边沿互相平行的纸带按如图所示折叠,已知∠1=76°,则∠2的度数为______度.【答案】28°【解析】【分析】先找出∠1与∠ACF的关系,再根据平行线性质求出∠ACD,之后可得∠2.【详解】解:根据题意,∠ACF=∠1=76°;∵AB∥CD,∴∠ACD=180°-∠1=180°-76°=104°∴∠2=∠ACD-∠ACF=104°-76°=28°;故答案为:28.【点睛】此题运用了平行线性质,但须考虑到纸带折叠后相等的角,难度中等偏上.20. 小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为__________2mm .【答案】2375mm【解析】【分析】 设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm 【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程.三、耐心做一做(共6题,50分)21. 解下列方程组(1)1{24x y y x +==+(2)3213{325x y x y +=-=【答案】(1)12x y =-⎧⎨=⎩(2)42x y =⎧⎨=⎩ 【解析】试题分析:(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可. 试题解析:(1)把②代入①得:x 2x 41++=x 1=-把x 1=-代入②得:y 2=∴原方程组的解是12x y =-⎧⎨=⎩(2)由①+②得:6x 18=x 3=由①-②得: 4y 8=y 2=∴原方程组的解是42x y =⎧⎨=⎩ 22. 计算(1)()()22006011 3.142π-⎛⎫-+--- ⎪⎝⎭ (2)322()()()a b ab a ÷-÷-(3) 先化简,再求值: (x +2)2-(x +1)(x -1),其中x=12-【答案】(1)4(2)3a b (3)4x+5,3【解析】试题分析:(1)原式利用乘方的意义,以及零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则,以及单项式除以单项式法则计算即可得到结果;(3)原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:(1)原式=1+4-1=4(2) 解:原式=()()622a b ab a ÷-÷-=61221a b ---=3a b(3)解:原式()22x 4x 4x 1=++-- 22x 4x 4x 1=++-+=4x 5+ 当1x 2=-时,原式=1452⎛⎫⨯-+ ⎪⎝⎭=-2+5=3 23. 如图,EF ∥AD,∠1=∠2,∠BAC=70°.求∠AGD 的度数【答案】见解析【解析】【分析】此题要注意由EF ∥AD ,可得∠2=∠3,由等量代换可得∠1=∠3,可得DG ∥BA ,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【详解】∵EF ∥AD (已知) ∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG ∥AB (内错角相等,两直线平行).∴180BAC AGD ∠+∠=(两直线平行,同旁内角互补). ∵70BAC ,∠= ∴110.AGD ∠=【点睛】考查平行线的判定与性质,常见的平行线的判定方法有: 同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.24. 在如图所示的单位正方形网格中(1)将△AB C 向右平移3个单位后得到△A′B′C′; (2)连结A′A、A′B,则∠BA′A 的度数是 度;(3)求△ABC 的面积.【答案】(1)图形见解析(2)45(3)7【解析】试题分析:(1)根据图形平移的性质画出△A′B′C′即可;(2)等腰直角三角形的性质即可得;(3)利用矩形的面积减去三个顶点上三角形的面积即可.试题解析:(1)如图,∴△A′B′C′就是所求的三角形.(2)由上图可知,∠A′DB=90°,且A′D=BD,∴∠BA′A=45°,故答案为45.(3)S△ABC=3×6−12×1×4−12×2×3−12×2×6=725. 某游泳场设计方案如图所示,其中A区为成人泳区,B区为儿童泳区,其余地区为草坪(1)游泳区和草坪的面积各是多少?(2)如果游泳场需要有不少于一半的草坪,那么这个方案符合要求吗?【答案】(1)229124a a π+,229484a a π-(2)符合要求 【解析】 试题分析:(1)成人泳区为长为4a ,宽为3a 的长方形构成,利用长方形的面积求出表示出A 的面积,儿童泳区为直径为3a 的圆构成,利用圆的面积公式表示出B ,相加即可表示出泳区的面积,由大长方形的面积减去小长方形的面积减去圆的面积,即可表示出草坪的面积;(2)由泳区的面积大于等于草坪的面积的一半,即可作出判断.试题解析:(1)222394a 3a a Π12a a Π24⎛⎫⨯+=+ ⎪⎝⎭游泳区面积: 22229910a 6a-12a a Π48a a Π44⨯+=-草坪面积:() (2)()2222960a 248a a Π30a 42->=, ∴这个设计方案符合要求点睛:本题主要考查了矩形面积和圆的面积计算问题以及学生根据图形提取信息的综合能力,由图形及已知条件,根据题意列出式子,然后求解问题.26. “五水共治”是浙江省委十三届四次全会提出,要以治污水、防洪水、排涝水、保供水、抓节水的大规模治水行动.五水共治,治污先行.市政府决定用96万元钱购买处理污水设备.现有A ,B 两种型号的处理污水设备,其中每台的价格、月处理污水量如下表.A 型B 型 价格(万元/台)8 6 月处理污水量(吨/台) 120 100(1)设A 、B 型设备应各买入x 、y 台,请你列出方程或方程组;(2)用含y 的代数式表示x ,并写出所有满足题意的x ,y 的值;(3)为了使月处理污水量达到最大,A ,B 型设备应各买多少台?最大月处理污水量为多少吨?【答案】(1)8x+6y=96(2)129630{,{,{,{,{0481216x x x x x y y y y y ========== (3)最大月处理污水量为1600吨 【解析】 试题分析:(1)运用A 型机器的单价×A 型机器的数量+B 型机器的单价×B 型机器的数量就可以得出=总价96万元建立方程就可以了;(2)先移项,将不含x 的项移到等号的右边,再将x 的系数化为1,再根据x 、y 为自然数就可以满足条件的x 、y 的值;(3)计算出每种方案处理的污水吨数,再比较即可得出结论. 试题解析:(1)8x 6y 96+=()2由8x 6y 96+=得3x 12y 4=-, ∵x 、y 是自然数,∴x 12x 9x 6x 3x 0y 0y 4y 8y 12y 16;;;;{{{{{========== (3)①120×12=1440(吨)②120×9+100×4=1480(吨) ③120×6+100×8=1520(吨) ④120×3+100×12=1560(吨) ⑤100×16=1600(吨) 1440<1480<1520<1560<1600 ∴为了使月处理污水量达到最大,应选择购买A 型0台,B 型16台;最大月处理污水量为1600吨.点睛:此题考查了二元一次方程的应用,注意:找出问题中的已知条件及它们之间的关系;找出题中两个关键的未知量,并用字母表示出来;挖掘题目中的关系,找出等量关系,列出二元一次方程;根据未知数的实际意义求其整数解.。

浙教版数学七年级下学期《期中考试卷》含答案

浙教版数学七年级下学期《期中考试卷》含答案

浙 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列几个方程中,属于二元一次方程的是( )A .9xy =B .21z y -=C .1y x= D .x y +2.如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠3.下列运算中,结果正确的是( ) A .336a a a +=B .()325a a =C .348a a a ⋅=D .()3236ab a a =4.下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+B .()()ax y ax y ---C .)()(ab c ab c ---D .()()m n m n +--5.如图,点E 在AD 延长线上,下列条件能判断//AB CD 的是( )A .34∠=∠B .180C ADC ︒∠+∠= C .C CDE ∠=∠D .12∠=∠6.利用加减消元法解方程组2510536x y x y +=-⎧⎨-=⎩①②,下列做法正确的是( )A .要消去y,可以将①×5+①×2B .要消去x,可以将①×3+2×(-5)C .要消去y,可以将①×5+①×3D .要消去x,可以将①×(-5)+①×27.若34x =,97y =,则23x y -的值为( )A .47B .74C .3-D .278.父子二人并排竖直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身高的14,父子二人的身高之和为3.4米,若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组( )A . 3.4111134x y x y +=⎧⎪⎨⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩B . 3.411134x y x y +=⎧⎪⎨⎛⎫-= ⎪⎪⎝⎭⎩C . 3.411134x y x y +=⎧⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩D . 3.41134x y x y +=⎧⎪⎨=⎪⎩ 9.已知5,2x y xy +==,则下列结论中①()221x y -=,①2217x y +=①2219x xy y ++=,正确的个数是( )A .0B .1C .2D .310.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .10二、填空题(本大题共7小题,每小题3分,共21分) 11.计算:a 4÷a 2=__.12.己知2x y a=-⎧⎨=⎩是方程235x y +=的一个解,则a 的值为_____.13.已知方程236x y -=,用含y 的代数式表示x 为__________.14.计划在一块长为10米,宽为7米的长方形草坪上,修建一条宽为2米的人行道,则剩余草坪的面积为_____平方米.15.已知108=x ,1016=y ,则210x y +=__________.16.已知22118x x+=,且1x >,则代数式2285x x -+=________. 17.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.化简:(1)(x -y)(x +y)-(x -2y)(2x +y). (2)-x(3x +2)+(2x -1)2.(3)(3x +5)2-(3x -5)(3x +5). (4)(a +b)2-(a -b)2+a(1-4b).19.解方程组:(1)3221x y x y =⎧⎨+=-⎩ (2)1323222x yx y ⎧-=⎪⎨⎪+=⎩20.先化简,再求值:(1)2(1)(2)(2)a a a +----,其中2a =的值.(2)22(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中12x =-,1y =.21.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:①12∠=∠(已知), 且14∠=∠(__________), ①24∠∠=(__________). ①//BF _____(__________). ①∠____3=∠(__________). 又①B C ∠=∠(已知), ①_____________(等量代换). ①//AB CD (__________).22.如图,在三角形ABC 中, D ,E ,F 三点分别在AB ,AC ,BC 上,过点D 的直线与线段EF 的交点为点M ,已知2①1-①2=150°,2① 2-①1=30°. (1)求证:DM ①AC ;(2)若DE ①BC ,①C =50°,求①3的度数.23.用如图1所示的,A B两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,高分别为2,,2可以各做多少个(假设没有边角消耗,没有余料)?答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列几个方程中,属于二元一次方程的是( )A .9xy =B .21z y -=C .1y x= D .x y +[答案]B [分析]根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. [详解]解:A 、9xy =中xy 项的次数是2,不是二元一次方程,故不符合题意;B 、21z y -=是二元一次方程,故符合题意;C 、1y x=不是整式方程,故不符合题意; D 、x y +不是方程,故不符合题意; 故选B . [点睛]本题主要考查二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程. 2.如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠[分析]根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解. [详解]解:观察图形可知,与∠1是同位角的是∠4. 故选:C . [点睛]本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形. 3.下列运算中,结果正确的是( ) A .336a a a += B .()325a a =C .348a a a ⋅=D .()3236ab a a =[答案]D [分析]原式各项利用同底数幂的乘除法,以及合并同类项法则计算得到结果,即可作出判断. [详解]解:A 、原式=2a 3,错误; B 、原式=a 6,错误; C 、原式=a 7,错误; D 、原式=a 3b 6,正确. 故选:D .此题考查了同底数幂的乘除法,合并同类项,熟练掌握运算法则是解本题的关键. 4.下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+B .()()ax y ax y ---C .)()(ab c ab c ---D .()()m n m n +--[答案]D [分析]根据平方差公式对各选项进行逐一分析即可. [详解]解:A 、(52)(52)x ab x ab -+=222254x a b -,故能用平方差公式计算,不合题意; B 、()()ax y ax y ---=222a x y -+,故能用平方差公式计算,不合题意;C 、)()(ab c ab c ---=222c a b -,故能用平方差公式计算,不合题意;D 、()()m n m n +--=2()m n -+,故不能用平方差公式计算,符合题意; 故选D . [点睛]本题主要考查了平方差公式,熟记公式是解答本题的关键.平方差公式:(a+b)(a -b)=a 2-b 2. 5.如图,点E 在AD 延长线上,下列条件能判断//AB CD 的是( )A .34∠=∠B .180C ADC ︒∠+∠= C .C CDE ∠=∠D .12∠=∠[分析]根据平行线的判定定理即可直接作出判断.[详解]A、根据内错角相等,两直线平行即可证得BC∠AD,不能证AB∠CD,故选项错误;B、根据同旁内角互补,两直线平行,可证得BC∠AD,不能证AB∠CD,故选项错误;C、根据内错角相等,两直线平行即可证得BC∠AD,不能证AB∠CD,故选项错误;D、根据内错角相等,两直线平行即可证得AB∠DC,故选项正确.故选:D.[点睛]此题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.利用加减消元法解方程组2510536x yx y+=-⎧⎨-=⎩①②,下列做法正确的是( )A.要消去y,可以将①×5+①×2B.要消去x,可以将①×3+2×(-5) C.要消去y,可以将①×5+①×3D.要消去x,可以将①×(-5)+①×2 [答案]D[分析]方程组利用加减消元法求出解即可.[详解]解:对于原方程组,要消去x,可以将∠×(-5)+∠×2;若要消去y,则可以将∠×3+∠×5;[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.若34x =,97y =,则23x y -的值为( )A .47B .74C .3-D .27[答案]A[分析]根据同底数幂的除法和幂的乘方法则,将原式变形,然后代入求解即可.[详解]解:3x -2y =3x ÷32y =3x ÷9y =4÷7=47, 故选:A .[点睛]本题考查了同底数幂的除法,幂的乘方,解答本题的关键是掌握同底数幂的除法法则. 8.父子二人并排竖直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身高的14,父子二人的身高之和为3.4米,若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组( )A . 3.4111134x y x y +=⎧⎪⎨⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩B . 3.411134x y x y +=⎧⎪⎨⎛⎫-= ⎪⎪⎝⎭⎩ C . 3.411134x y x y +=⎧⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩D . 3.41134x y x y +=⎧⎪⎨=⎪⎩[分析]根据题意可得两个等量关系:∠爸爸的身高+儿子的身高=3.4米;∠父亲在水中的身高(1−13)x =儿子在水中的身高(1−14)y,根据等量关系可列出方程组. [详解]设爸爸的身高为x 米,儿子的身高为y 米, 由题意得: 3.4111134x y x y +=⎧⎪⎨⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩, 故选:A .[点睛]此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子浸没在水中的身高是相等的.9.已知5,2x y xy +==,则下列结论中①()221x y -=,①2217x y +=①2219x xy y ++=,正确的个数是( )A .0B .1C .2D .3 [答案]A[分析]利用完全平方公式的变形逐一计算即可.[详解]解:∠()()222454217x y x y xy -=+-=-⨯=,该项结论错误;∠()2222252221x y x y xy +=+-=-⨯=,该项结论错误;∠()22225223x xy y x y xy ++=+-=-=,该项结论错误;[点睛]本题考查利用完全平方公式的变形求代数式的值,掌握完全平方公式是解题的关键. 10.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .10[答案]A[分析] 利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差,再由S 2-S 1=3b,AD=10,列出方程求得AB 便可.[详解]解:S 1=(AB -a)•a+(CD -b)(AD -a)=(AB -a)•a+(AB -b)(AD -a),S 2=AB(AD -a)+(a -b)(AB -a),∠S 2-S 1=AB(AD -a)+(a -b)(AB -a)-(AB -a)•a -(AB -b)(AD -a)=(AD -a)(AB -AB+b)+(AB -a)(a -b -a)=b•AD -ab -b•AB+ab=b(AD -AB),∠S 2-S 1=3b,AD=10,∠b(10-AB)=3b,∠AB=7.故选:A .[点睛]本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题(本大题共7小题,每小题3分,共21分)11.计算:a 4÷a 2=__.[答案]a 2[解析][详解]解:42422a a a a -÷==.故答案为2a12.己知2x y a=-⎧⎨=⎩是方程235x y +=的一个解,则a 的值为_____. [答案]3[分析]把x 与y 代入方程计算即可求出a 的值.[详解]解:把2x y a =-⎧⎨=⎩代入方程2x+3y=5得:-4+3a=5, 解得:a=3,故答案为:3.[点睛]本题考查二元一次方程的解,解题的关键是正确理解二元一次方程的解的概念,本题属于基础题型.13.已知方程236x y -=,用含y 的代数式表示x 为__________.[答案]263x - [分析]将x 看做已知数求出y 即可.[详解]解:2x -3y=6,得到y=263x -, 故答案为:263x -. [点睛]此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .14.计划在一块长为10米,宽为7米的长方形草坪上,修建一条宽为2米的人行道,则剩余草坪的面积为_____平方米.[答案]56[分析]利用平移把草坪变为一个长为8米,宽为7米的矩形,然后根据矩形的面积计算即可.解:剩余草坪的面积=(10-2)×7=56(平方米).故答案为:56.[点睛]本题考查生活中的平移现象:利用平移的性质,把几个图形合为一个图形.15.已知108=x ,1016=y ,则210x y +=__________.[答案]1024[分析]根据10x =8,10y =16,应用幂的乘方的运算方法,以及同底数的幂的乘法法则,求出102x+y 的值是多少即可.[详解]解:∠10x =8,10y =16,∠102x =(10x )2=64,∠102x+y =102x ×10y =64×16=1024.故答案为:1024.[点睛]此题主要考查了同底数幂的乘法法则和幂的乘方,解题的关键是灵活运用运算法则.16.已知22118x x+=,且1x >,则代数式2285x x -+=________. [答案]7[分析] 根据22118x x +=得到14x x -=,可变形241x x -=,再将2285x x -+适当变形,最后代入计算.解:∠22118x x +=, ∠2212182x x+-=-, 即2116x x ⎛⎫-= ⎪⎝⎭, ∠14x x-=±, 又∠x >1, ∠14x x-=, ∠214x x -=,即2410x x --=,∠241x x -=,∠2285x x -+=()2245x x -+=215⨯+=7,故答案为7.[点睛]本题考查了代数式求值,完全平方公式的应用,解题的关键是根据22118x x+=得到241x x -=.17.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________[答案]20[解析]试题分析:过B作BE∠m,则根据平行公理及推论可知l∠BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.化简:(1)(x-y)(x+y)-(x-2y)(2x+y).(2)-x(3x+2)+(2x-1)2.(3)(3x+5)2-(3x-5)(3x+5).(4)(a+b)2-(a-b)2+a(1-4b).[答案](1)-x2+3xy+y2;(2)x2-6x+1;(3)30x+50;(4)a.[解析][分析](1)利用平方差公式和多项式乘以多项式的法则计算,然后再合并同类项;(2)利用单项式乘以多项式的法则和完全平方公式计算,然后再合并同类项;(3)利用完全平方公式和平方差公式计算,然后再合并同类项;(4))利用完全平方公式和单项式乘以多项式的法则计算,然后再合并同类项即可得到结果.[详解](1)原式=x2-y2-(2x2+xy-4xy-2y2)=x2-y2-2x2+3xy+2y2=-x2+3xy+y2;(2)原式=-3x2-2x+4x2-4x+1=x2-6x+1;(3)原式=9x2+30x+25-(9x2-25)=9x2+30x+25-9x2+25=30x+50;(4)原式=a2+2ab+b2-(a2-2ab+b2)+a-4ab=a2+2ab+b2-a2+2ab-b2+a-4ab=a.故答案为:(1)-x2+3xy+y2;(2)x2-6x+1;(3)30x+50;(4)a.[点睛]本题考查整式的混合运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,单项式乘以多项式的法则,以及多项式乘以多项式的法则,熟练掌握公式及法则是解本题的关键.19.解方程组:(1)3221 x yx y=⎧⎨+=-⎩(2)1 323222 x yx y⎧-=⎪⎨⎪+=⎩[答案](1)93xy=-⎧⎨=-⎩;(2)62xy=⎧⎨=⎩[分析](1)直接利用代入消元法解;(2)先整理方程组,再利用加减消元法解.[详解](1)3...... 221...... x yx y=⎧⎨+=-⎩①②把∠代入∠中得:6y+y=-21,解得y=-3,把y=-3代入∠中得:x=-9,所以方程组的解为:93 xy=-⎧⎨=-⎩;(2)1 323222 x yx y⎧-=⎪⎨⎪+=⎩整理方程组得:23 6...... 3222...... x yx y-=⎧⎨+=⎩①②由∠×2得:4x-6y=12……∠由∠×3得:9x+6y=66……∠由∠+∠得:13x=78,解得x=6,把x=6代入∠中得:2y=4,解得y=2,所以方程组的解为:62 xy=⎧⎨=⎩.[点睛]考查了解二元一次方程组,解题关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(1)2(1)(2)(2)a a a +----,其中2a =的值.(2)22(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中12x =-,1y =. [答案](1)25a +,9;(2)42x y -+,4[分析](1)先将括号展开,再合并同类项,最后将a 的值代入计算进而得出答案;(2)直接利用乘法公式以及多项式除以单项式运算法则化简,再将x 和y 值代入计算得出答案.[详解]解:(1)2(1)(2)(2)a a a +----=22124a a a +++-=25a +将a=2代入,原式=2×2+5=9;(2)22(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦=()2222244952x y xy x y y x ++-+-÷=()2842x xy x -+÷ =42x y -+ 将12x =-,1y =代入, 原式=14212⎛⎫-⨯-+⨯ ⎪⎝⎭=4. [点睛]此题主要考查了整式的混合运算,正确运用乘法公式是解题关键.21.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:①12∠=∠(已知),且14∠=∠(__________),①24∠∠=(__________).①//BF _____(__________).①∠____3=∠(__________).又①B C ∠=∠(已知),①_____________(等量代换).①//AB CD (__________).[答案]见解析[分析]根据平行线的判定和性质解答.[详解]解:证明:∠∠1=∠2(已知),且∠1=∠4(对顶角相等),∠∠2=∠4(等量代换),∠BF∠EC(同位角相等,两直线平行),∠∠C=∠3(两直线平行,同位角相等).又∠∠B=∠C(已知),∠∠3=∠B(等量代换),∠AB∠CD(内错角相等,两直线平行).[点睛]本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.22.如图,在三角形ABC中, D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF 的交点为点M,已知2①1-①2=150°,2① 2-①1=30°.(1)求证:DM①AC;(2)若DE①BC,①C =50°,求①3的度数.[答案](1)证明见解析(2)50°[解析]试题分析:(1) 已知2∠1-∠2=150°,2∠2-∠1=30°,可得∠1+∠2=180°,再由∠1+∠DME=180°,可得∠2=∠DME,根据内错角相等,两直线平行即可得DM∠AC;(2) 由(1)得DM∠AC,根据两直线平行,内错角相等可得∠3=∠AED ,再由DE∠BC ,可得∠AED=∠C ,所以∠3=∠C 50°.试题解析:(1)∠ 2∠1-∠2=150°,2∠2-∠1=30°,∠ ∠1+∠2=180°.∠ ∠1+∠DME=180°,∠ ∠2=∠DME .∠ DM∠AC .(2)∠ DM∠AC,∠ ∠3=∠AED .∠ DE∠BC ,∠ ∠AED=∠C .∠ ∠3=∠C .∠ ∠C=50°,∠ ∠3=50°.23.用如图1所示的,A B两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,高分别为2,,2可以各做多少个(假设没有边角消耗,没有余料)?[答案](1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.[分析](1)设制作甲x个,乙y个,则需要A,B型号的纸板如下表:从而可得答案,(2)设制作甲m 个,乙k 个,则需要A,B 型号的纸板如下表:由方程组的正整数解可得答案,(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.[详解]解:(1)设制作甲x 个,乙y 个,则34160270x y x y +=⎧⎨+=⎩,解得:2422x y =⎧⎨=⎩ , 即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数,所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.[点睛]此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.。

浙教版数学七年级下学期《期中考试试卷》附答案

浙教版数学七年级下学期《期中考试试卷》附答案
故选:B.
[点睛]本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.
2.下列计算正确的是()
A. B.
C. D.
[答案]D
[解析]
[分析]
分别根据有理数的混合运算及平方根的定义,对各个选项进行判断即可.
[详解]解:A. ,故本选项错误;
B. ,故本选项错误;
C. ,故本选项错误;
(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?
(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?
25.在平面直角坐标系中,OA=4,OC=8,四边形ABCO是平行四边形.
5.下列各式,属于二元一次方程的个数有()
①xy+2x﹣y=7;②4x+1=x﹣y;③ +y=5;④x=y;⑤x2﹣y2=2;⑥6x﹣2y;⑦x+y+z=1;⑧y(y﹣1)=2x2﹣y2+xy
A.1B.2C.3D.4
[答案]B
[解析]
[分析]
根据二元一次方程的定义对各式进行判断即可.
[详解]①xy+2x﹣y=7属于二元二次方程,故错误;
D. ,故本选项正确
故选D.
[点睛]本题主要考查了有理数的混合运算及平方根,熟记相关定义与法则是解答本题的关键.
3.下列不等式组是一元一次不等式组的是()
A. B. C. D.
[答案]B
[解析]
[分析]
根据不等式组中只含有一个未知数并且未知数的次数是一次的,可得答案.

浙教版七年级下学期数学《期中检测试卷》附答案

浙教版七年级下学期数学《期中检测试卷》附答案
三、解答题(本大题7个小题,共66分)
17.计算:(1) (2)
[答案](1) . (2)
[解析]
试题分析:(1)直接利用单项式乘以单项式运算法则求出答案;
(2)直接利用积的乘方运算法则以及同底数幂的乘法运算法则化简,进而合并同类项即可得出答案.
6.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()
A.50oB.60oC.75oD.85o
7.关于 、 二元一次方程组 的解也是二元一次方程 的解,则 的值是().
A. B. C. D.
8.已知xa=2,xb=3,则x3a+2b=()
A.17B.72C.24D.36
9.一个角的两边分别和另一个角的两边平行,已知其中一个角是60°,则另一个角的度数是()
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),∠PAC,∠APB,∠PBD之间的关系是否发生改变?请说明理由.
答案与解析
一、选择题(共10个小题,每小题3分,共30分)
1.如图,直线b、c被直线a所截,则∠1与∠2是()
A.同位角B.内错角C.同旁内角D.对顶角
[答案]A
[解析]
直线b,c被直线a所截,∠1与∠2在直线a的同侧,
[详解]如图所示:
∵AD∥BC,
∴∠CBF=∠DEF=30°,
∵AB为折痕,
∴2∠α+∠CBF=180°,
即2∠α+30°=180°,
解得∠α=75°.
故选C.
[点睛]考查了平行线 性质和图形的翻折问题;找到相等的角,利用平角列出方程是解答翻折问题的关键.
7.关于 、 的二元一次方程组 的解也是二元一次方程 的解,则 的值是().
A. B. C. D.

浙教版七年级下学期数学《期中检测卷》及答案解析

浙教版七年级下学期数学《期中检测卷》及答案解析

浙 教 版 七 年 级 下 学 期期 中 测 试 卷一、选择题(每题3分,共36分)1. 下列各现象中:①电梯的升降,②照镜子,③钟表分针的运动,④行驶中汽车车轮的运动,其中是平移现象的个数有( )A. 1个B. 2个C. 3个D. 4个2. 下列运算中正确的是( )A. 2x x x ⋅=B. ()326x x -=C. 632x x x ÷=D. ()220x x --= 3. 下列图形中,∠1与∠2不是同位角的是( ) A. B. C. D. 4. 下列是二元一次方程的是 ( )A. 36xy x y +-=B. 15y x +=C. 410x y ++=D. ()2x y z -= 5. 下列从左到右的变形是因式分解的是( )A. 2(1)(1)1x x x +-=-B. 2393(3)x x x x -=-C. 241(4)1x x x x -+=-+D. 22(2)44x x x +=++6. 如图,下面推理中,正确的是( )A. ∵∠A=∠D, ∴AB ∥CD ;B. ∵∠A=∠B, ∴AD ∥BC ;C. ∵∠A+∠D=180°, ∴AB ∥CD ;D. ∵∠B+∠C=180°, ∴AD ∥BC 7. 已知32x y =-⎧⎨=⎩是方程11()S I r I I R =-的解,则k 等于 ( ) A. 3 B. 4 C. 5D. 6 8. 二元一次方程256a b +=-,用含a 的代数式表示b ,下列各式正确的是( )A. 562b a -=B. 562b a +=-C. 265a b -=D. 265a b +=-9. 甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时,那么在乙出发后经4小时甲追上乙,求甲、乙两人的速度.设甲的速度为x 千米/小时,乙的速度为y 千米/小时,则可列方程组为( )A. 22185418x y x y +=⎧⎨-=⎩B. 22185418x y x y -=⎧⎨+=⎩C. 22185418x y x y +=⎧⎨=-⎩D. 22185418x y x y +=⎧⎨+=⎩10. 小明购买文具一共要付32元,小明钱包里只有2元和5元两种面值若干张钱,他一共有几种不同的付款方案( )A. 3种B. 4种C. 5种D. 6种11. 要使22)()x px x q ++-(的乘积中不含2x 项,则p 与q 的关系是( )A. 相等B. 互相反数C. 互为倒数D. 关系不能确定 12. 已知关于x ,y 的方程组,35225x y a x y a -=⎧⎨-=-⎩则下列结论中正确的是( ) ①当5a =时,方程组的解是1020x y =⎧⎨=⎩②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若2a-3y 722=,则2a =A. ①②④B. ①②③C. ②③④D. ②③ 二、填空题:(本题有6小题,每小题3分,共18分)13. 计算:()20172018133⎛⎫-⋅-= ⎪⎝⎭_______.14.若3x m+5y 2与x 3y n 的和是单项式,则n m =___________.15. 把一块直角三角板的直角顶点放在直尺的一边上,如图所示,现用量角器量得∠2=113°,则∠1的度数为_______.16. 如图,已知AB ∥DE ,∠ABC=70°,∠CDE=140°,则∠BCD=_____.17. 如果整式29x mx ++ 恰好是一个整式的平方,那么整数m 的值是_______18. 已知23m =,1128n =, 则3(31)m n +-=_______ 三、解答题:(共66分)19. 计算与化简:(1) 201(1)(3)3π--+--;(2)222(36)3x xy x y x --÷()20. 用适当方法解下列方程组:(1) 355212s t s t -=⎧⎨+=⎩;(2)4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩ 21. 因式分解:(1)239x xy -;(2)3349x y xy -22. 如图,在每个小正方形边长为1个单位长度的方格纸中,△ABC 的顶点都在方格纸格点上. (1)经过平移,△ABC 的顶点A 移到了点D. 请作出平移后的三角形.(2)所作的图可以看作是由△ABC 先向 平移 个单位长度,再向 平移 个单位长度得到. 23. 先化简,再求值: (31)(31)(31)(13)x x x x --++---,其中16x =. 24. 观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52× = ×25;② ×396=693× .(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a 、b ),并证明.25. 为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?26. 你会求2018201720162(1)(1)a a a a a a -+++⋅⋅⋅+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-()()23111a a a a -++=-()()324111a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋅⋅⋅+++=________ 利用上面的结论,求(2)2018201720162222221+++⋅⋅⋅+++的值;(3)求201820172016255554+++⋅⋅⋅++的值.答案与解析一、选择题(每题3分,共36分)1. 下列各现象中:①电梯的升降,②照镜子,③钟表分针的运动,④行驶中汽车车轮的运动,其中是平移现象的个数有( )A . 1个 B. 2个 C. 3个 D. 4个【答案】A【解析】分析:判断生活中的现象是否是平移,要根据平移的定义,进行判断,图形平移前后的形状和大小没有变化,只是位置发生变化.详解:①电梯的升降,是平移;②照镜子,是轴对称;③钟表分针的运动,是旋转;④行驶中汽车车轮的运动,是旋转.故平移现象有1个.故选A .点睛:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选. 2. 下列运算中正确的是( )A. 2x x x ⋅=B. ()326x x -=C. 632x x x ÷=D. ()220x x --= 【答案】D【解析】分析:根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项法则逐个判断即可.详解:A .2x x x ⋅= ,故本选项不符合题意;B .()326x x -=-,故本选项不符合题意;C .633x x x ÷=,故本选项不符合题意;D .()220x x --=,故本选项符合题意.故选D .点睛:本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项法则等知识点,能熟记知识点是解答此题的关键.3. 下列图形中,∠1与∠2不是同位角的是( ) A. B. C. D.【答案】A【解析】【分析】根据同位角的定义逐一进行分析即可得.【详解】A 图中,∠1与∠2的两条边都不在同一条直线上,不是同位角,符合题意;B 图中,∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C 图中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D 图中,∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意, 故选A .【点睛】本题主要考查了同位角、内错角、同旁内角等知识,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.4. 下列是二元一次方程的是 ( )A. 36xy x y +-=B. 15y x +=C. 410x y ++=D. ()2x y z -= 【答案】C【解析】分析:利用二元一次方程定义分别分析得出答案.详解:A .36xy x y +-=是二元二次方程,不符合题意;B .15y x+=是分式方程,不合题意; C .410x y ++=是二元一次方程,合题意;D .()2x y z -=是三元一次方程,不合题意.故选C .点睛:本题主要考查了二元一次方程定义,正确把握相关定义是解题的关键.5. 下列从左到右的变形是因式分解的是( )A. 2(1)(1)1x x x +-=-B. 2393(3)x x x x -=- C. 241(4)1x x x x -+=-+D. 22(2)44x x x +=++ 【答案】B【解析】分析:根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.详解:A.右边不是整式乘积的形式,不是因式分解,故本选项不符合题意;B.是因式分解,故本选项符合题意;C.右边不是整式乘积的形式,不是因式分解,故本选项不符合题意;D.是整式乘法,不是因式分解,故本选项不符合题意.故选B.点睛:本题考查了因式分解的意义,能熟记因式分解的意义是解答此题的关键.6. 如图,下面推理中,正确的是()A. ∵∠A=∠D, ∴AB∥CD;B. ∵∠A=∠B, ∴AD∥BC;C. ∵∠A+∠D=180°, ∴AB∥CD;D. ∵∠B+∠C=180°, ∴AD∥BC【答案】C【解析】分析:根据平行线的判定定理对各选项进行逐一分析即可.详解:A.∵∠A+∠D=180°,∴AB∥CD,故本选项错误;B.∵∠A+∠B=180°,∴AD∥BC,故本选项错误;C.∵∠A+∠D=180°,∴AB∥CD,故本选项正确;D.∵∠B+∠C=180°,∴AB∥CD,∴无法判定AD与BC的关系,故本选项错误.故选C.点睛:本题考查的是平行线的判定,用到的知识点为:同旁内角互补,两直线平行.7. 已知32xy=-⎧⎨=⎩是方程11()SI r I I R=-的解,则k等于( )A. 3B. 4C. 5D. 6【答案】C【解析】分析:知道了方程的解,可以把这对数值代入方程,得到一个含有未知数k的一元一次方程,从而可以求出k的值.详解:把32xy=-⎧⎨=⎩是代入方程2x+ky=4,得:﹣6+2k =4,解得:k =5.故选C .点睛:本题考查了二元一次方程的解的定义,解题的关键是把方程的解代入原方程,使原方程转化为以系数k 为未知数的方程.8. 二元一次方程256a b +=-,用含a 的代数式表示b ,下列各式正确的是( ) A. 562b a -= B. 562b a +=- C. 265a b -= D. 265a b +=- 【答案】D【解析】分析:用含a 的代数式表示b ,即解关于b 的一元一次方程即可.详解:根据题意得:5b =﹣6-2a ,则265a b +=-. 故选D .点睛:如果把二元一次方程其中的一个未知数当成常数就可以看作一个一元一次方程.9. 甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时,那么在乙出发后经4小时甲追上乙,求甲、乙两人的速度.设甲的速度为x 千米/小时,乙的速度为y 千米/小时,则可列方程组为( )A. 22185418x y x y +=⎧⎨-=⎩B. 22185418x y x y -=⎧⎨+=⎩C. 22185418x y x y +=⎧⎨=-⎩D. 22185418x y x y +=⎧⎨+=⎩ 【答案】A【解析】分析:根据甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇,可得2x +2y =18,根据甲比乙先出发1小时,那么在乙出发后经4小时甲追上乙,可得5x ﹣4y =18,从而可以列出相应的方程组.详解:由题意可得:22185418x y x y +=⎧⎨-=⎩.故选A . 点睛:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.10. 小明购买文具一共要付32元,小明钱包里只有2元和5元两种面值若干张钱,他一共有几种不同的付款方案( )A. 3种B. 4种C. 5种D. 6种【答案】B【解析】【分析】根据题意可列出一个整式方程,但要分情况讨论结果要符合“只有2元和5元两种面值的人民币”和“无需找零钱”两个条件,注意不要漏解.【详解】解:设付出2元钱的张数为x ,付出5元钱的张数为y ,且x ,y 的取值均为自然数,依题意可得方程:2x +5y =32.则x =3252y -,解不等式组325020y y -⎧≥⎪⎨⎪≥⎩,解得:0≤y ≤325. 又∵y 是整数,∴y =0或1或2或3或4或5或6.又∵x 是整数,∴y =0或2或4或6.从而此方程的解为:1611166420x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩,,,.共有4种不同的付款方案. 故选B .【点睛】本题考查了二元一次方程的应用.解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.要注意题解要符合生活常识.11. 要使22)()x px x q ++-(的乘积中不含2x 项,则p 与q 的关系是( )A. 相等B. 互为相反数C. 互为倒数D. 关系不能确定 【答案】A【解析】分析:先用多项式乘以多项式的运算法则展开求它们的积,并且把p 、q 看作常数合并关于x 的同类项,令x 2系数为0,得出p 与q 的关系.详解:(x 2+px +2)(x ﹣q )=x 3﹣qx 2+px 2﹣pqx +2x ﹣2q =x 3+(p ﹣q )x 2﹣(pq ﹣2)x ﹣2q因为乘积中不含x 2项,则p ﹣q =0,即p =q .故选A .点睛:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0. 12. 已知关于x ,y 的方程组,35225x y a x y a -=⎧⎨-=-⎩则下列结论中正确的是( ) ①当5a =时,方程组的解是1020x y =⎧⎨=⎩②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若2a-3y 722=,则2a =A. ①②④B. ①②③C. ②③④D. ②③【答案】D【解析】【分析】 ①把a =5代入方程组求出解,即可做出判断;②根据题意得到x +y =0,代入方程组求出a 的值,即可做出判断;③假如x =y ,得到a 无解,本选项正确;④根据题中等式得到2a ﹣3y =7,代入方程组求出a 的值,即可做出判断.【详解】解:①把a =5代入方程组得:351020x y x y -=⎧⎨-=⎩,解得:2010x y =⎧⎨=⎩,本选项错误; ②由x 与y 互为相反数,得到:x +y =0,即y =﹣x ,代入方程组得:35225x x a x x a +=⎧⎨+=-⎩,解得:a =20,本选项正确; ③若x =y ,则有225x a x a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,故不存在一个实数a 使得x =y ,本选项正确; ④方程组解得:2515x a y a =-⎧⎨=-⎩,由题意得:2a ﹣3y =7,把x =25﹣a ,y =15﹣a 代入得:2a ﹣45+3a =7,解得:a =525,本选项错误. 故正确的有②③.故选D .点睛:本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.二、填空题:(本题有6小题,每小题3分,共18分)13. 计算:()20172018133⎛⎫-⋅-= ⎪⎝⎭_______. 【答案】-3【解析】分析:直接利用幂乘方运算法则将原式变形进而得出答案.详解:原式=-(13)2017×32017×3 =-(13×3)2017×3 =-3.故答案为-3.点睛:本题主要考查了幂的乘方运算,正确将原式变形是解题的关键.14. 若3x m+5y2与x3y n的和是单项式,则n m=___________.【答案】1 4 .【解析】试题分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m+5=3,n=2,求出n,m 的值,再代入代数式计算即可.解:∵3x m+5y2与x3y n是同类项,∴m+5=3,n=2,m=﹣2,∴n m=2﹣2=.故答案为.点评:本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答,但有的学生可能会把2﹣2误算为﹣4.15. 把一块直角三角板的直角顶点放在直尺的一边上,如图所示,现用量角器量得∠2=113°,则∠1的度数为_______.【答案】23°【解析】分析:首先利用邻补角互补可得∠3的度数,再根据平行线的性质可得∠4的度数,再根据余角的定义可得答案.详解:∵∠2=113°,∴∠3=180°﹣113°=67°.∵AB∥CD,∴∠4=∠3=67°.∵∠1+∠4=90°,∴∠1=90°﹣∠4=23°.故答案为23°.点睛:本题主要考查了平行线的性质,以及余角,关键是掌握两线平行,内错角相等.16. 如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD=_____.【答案】30°【解析】分析:延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=70°,求出∠FDC=40°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.详解:延长ED交BC于F.∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°.∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠BCD=∠MFC﹣∠MDC=70°﹣40°=30°.故答案为30°.点睛:本题考查的是平行线的性质,解答此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.17. 如果整式29x mx++恰好是一个整式的平方,那么整数m的值是_______【答案】±6【解析】分析:根据完全平方公式得出mx=±2•x•3,求出即可.详解:∵整式x2+mx+9恰好是一个整式的平方,∴mx=±2•x•3,解得:m=±6.故答案为±6.点睛:本题考查了完全平方公式的应用,能熟记公式的特点是解答此题的关键,注意:完全平方公式为:①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.18. 已知23m=,1128n=,则3(31)m n+-=_______【答案】-27【解析】分析:分别利用同底数幂的乘法运算法则以及积的乘方运算法则分别化简求出即可.详解:∵2m =3,312128n n -==,∴31224m n -÷=, ∴m +2n =-2,∴331m n +-()=3(21)--=-27. 故答案为-27.点睛:本题主要考查了同底数幂的除法等知识,正确掌握运算法则是解题的关键.三、解答题:(共66分)19. 计算与化简:(1) 201(1)(3)3π--+--;(2)222(36)3x xy x y x --÷()【答案】(1)53;(2)22y xy -+⋅ 【解析】分析:(1)利用有理数的乘方、零指数幂和负整数指数幂的运算法则计算即可;(2)根据单项式乘多项式、多项式除单项式的运算法则计算即可.详解:(1)原式=1113+-=53; (2)原式 =(﹣3x 2y +6x 3y 2)÷(3x 2)=﹣y +2xy 2.点睛:本题考查的是实数的混合运算、整式的混合运算,掌握负整数指数幂和零指数幂的运算法则、多项式除单项式的法则是解题的关键.20. 用适当方法解下列方程组:(1) 355212s t s t -=⎧⎨+=⎩;(2)4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩ 【答案】(1)21s t =⎧⎨=⎩;(2)23x y =⎧⎨=⎩【解析】分析:各方程组利用代入消元法求出解即可.详解:(1)355212s t s t -=⎧⎨+=⎩①②,由①得:t =3s ﹣5,代入②得:5s +6s ﹣10=12,即s =2,把s =2代入①得:t =1,则方程组的解为21s t =⎧⎨=⎩;(2)方程组整理得:453212x y x y -=⎧⎨+=⎩①②,由①得:y =4x ﹣5,把y =4x ﹣5代入②得:3x +8x ﹣10=12,即x =2,把x =2代入得:y =3,则方程组的解为23x y =⎧⎨=⎩.点睛:本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21. 因式分解:(1)239x xy -;(2)3349x y xy -【答案】(1)()33x x y -;(2)()()2323xy x y x y +-【解析】分析:(1)提取公因式3x 即可;(2)先提公因式xy ,再用平方差公式分解即可.详解:(1)原式=3x (x ﹣3y );(2)原式=xy (4x 2-9y 2)= xy (2x +3y )(2x ﹣3y ).点睛:本题主要考查了提公因式法与公式法分解因式,在分解因式时,首先看是否有公因式,然后再看看是否符合公式法,最后要看看分解是否彻底.22. 如图,在每个小正方形边长为1个单位长度的方格纸中,△ABC 的顶点都在方格纸格点上.(1)经过平移,△ABC 的顶点A 移到了点D. 请作出平移后的三角形.(2)所作的图可以看作是由△ABC 先向平移 个单位长度,再向 平移 个单位长度得到.【答案】(1)图见解析;(2)上 、3,右、1或右、1,上、3 .【解析】分析:(1)直接利用平移性质得出对应点位置进而得出答案;(2)观察A 和D 的位置即可得出答案.详解:(1)如图所示:△DEF ,即为所求;(2)△DEF 可以看作是由△ABC 先向上平移3 个单位长度,再向右平移1个单位长度得到的或者由△ABC 先向右平移1 个单位长度,再向上平移3个单位长度得到的.点睛:本题主要考查了平移变换,正确得出对应点位置是解题的关键.23. 先化简,再求值: (31)(31)(31)(13)x x x x --++---,其中16x =. 【答案】原式=62x --=-4【解析】分析:原式利用平方差公式及完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.详解:原式=﹣9x 2﹣6x ﹣1+9x 2﹣1=﹣6x ﹣2当x =16时,原式=﹣1﹣2=﹣3. 点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.24. 观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52× = ×25; ② ×396=693× .(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【答案】解:(1)①275;572.②63;36.(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),证明见解析.【解析】【分析】根据题意可得三位数中间的数等于两数的和,根据这一规律然后进行填空,从而得出答案;根据题意得出一般性的规律,然后根据多项式的计算法则进行说明理由.【详解】(1)①275,572; ②63,36;(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a). 证明如下:∵左边两位数的十位数字为a,个位数字为b,∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,∴左边=(10a+b)×[100b+10(a+b)+a]=(10a+b)(100b+10a+10b+a)=(10a+b)(110b+11a)=11(10a+b)(10b+a),右边=[100a+10(a+b)+b]×(10b+a)=(100a+10a+10b+b)(10b+a)=(110a+11b)(10b+a)=11(10a+b)(10b+a),∴左边=右边.∴“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).考点:规律题25. 为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【答案】(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙型挖掘机,支付最少为820元【解析】分析:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.等量关系:甲、乙两种型号的挖掘机共8台;每小时挖掘土石方540m 3;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.详解:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.依题意得:86080540x y x y +=⎧⎨+=⎩,解得: 53x y =⎧⎨=⎩.答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机.依题意得:60m +80n =540,化简得:3m +4n =27,∴m =9﹣43n ,∴方程的解为53m n =⎧⎨=⎩或16m n =⎧⎨=⎩. 当m =5,n =3时,支付租金:100×5+120×3=860元当m =1,n =6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.26. 你会求2018201720162(1)(1)a a a a a a -+++⋅⋅⋅+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-()()23111a a a a -++=-()()324111a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋅⋅⋅+++=________ 利用上面的结论,求(2)2018201720162222221+++⋅⋅⋅+++的值;(3)求201820172016255554+++⋅⋅⋅++的值.【答案】(1)20191a -;(2)201921-;(3)2019594- 【解析】分析:(1)根据已知算式得出规律,即可得出答案;(2)先变形,再根据规律得出答案即可;(3)先变形,再根据算式得出即可.详解:(1)(a ﹣1)(a 2018+a 2017+a 2016+…+a 2+a +1) =a 2019﹣1. 故答案为a 2019﹣1;(2)22018+22017+22016+…+22+2+1=(2﹣1)×(22018+22017+22016+…+22+2+1)=22019﹣1故答案为22019﹣1;(3)∵201820172016220195155555151-+++⋅⋅⋅+++=-()() ∴20192018201720162515555514-+++⋅⋅⋅+++= ∴201920192018201720162515955554244--+++⋅⋅⋅++=-=. 点睛:本题考查了整式的混合运算的应用,能根据题目中的算式得出规律是解答此题的关键,难度适中.。

浙教版七年级下册数学期中考试试卷含答案

浙教版七年级下册数学期中考试试卷含答案

浙教版七年级下册数学期中考试试题一、单选题1.下列方程中,二元一次方程是( )A .8x xy +=B .112y x =- C .12x x += D .230x y +-= 2.已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是( )米A .43.510⨯B .43.510-⨯C .53.510-⨯D .63.510-⨯ 3.下列各式能用平方差公式计算的是( )A .()()3a b a b +-B .()()33a b a b +--C .()()33a b a b ---+D .()()33a b a b -+-4.在下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6a a a +-=-C .22(2)(2)2x y x y x y -+=-D .222244a b a ab b +=++() 5.如图,155∠=︒,//CD EB ,则B 的度数为( )A .145︒B .125︒C .115︒D .55︒6.下列因式分解正确的是( )A .()ax bx x a b -=+B .22(2)xy xy y y xy x -+-=--C .21(1)(1)y y y -=+-D .2269(3)a a a +-=+7.某车间有56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,y 名工人生产螺母,每天生产的螺栓和螺母按1:2配套,下面所列方程组正确的是( )A .5621624x y x y +=⎧⎨⨯=⎩B .5622416x y x y +=⎧⎨⨯=⎩C .281625x y x y +=⎧⎨=⎩D .362416x y x y +=⎧⎨=⎩8.若10a b +=,7ab =,则代数式22a ab b -+的值是( )A .72B .79C .81D .939.已知xa =2,xb =3,则x 3a +2b 的值( )A .48B .54C .72D .1710.如图,已知//BC DE ,BF 平分ABC ∠,DC 平分ADE ∠,则下列判断:①ACB E ∠=∠;①DF 平分ADC ∠;①BFD BDF ∠=∠;①ABF BCD ∠=∠中,正确的有( )A .1个B .2个C .3个D .4个二、填空题11.判断:22x y =-⎧⎨=⎩_____(填“是”或“不是”)方程组34225x y x y +=⎧⎨-=⎩的解.12.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.13.如图,DEF 是由ABC 通过平移得到,且点B ,E ,C ,F 在同一条直线上,若14BF =,4EC =,则BE 的长度是___________.14.小明在进行两个多项式的乘法运算时,不小心把乘2x y+错抄成乘以2x,结果得到2(3)x xy -,则正确的计算结果是________.15.①A 的两边与①B 的两边分别平行,①A=50°,则①B 的度数为 ____________. 16.若x 2﹣ax+16是一个完全平方式,则a =_____.17.如图,长方形ABCD 被分成若干个正方形,已知21.5AB cm =,则长方形的另一边AD =____cm .18.把某个式子看成一个整体,用一个变量取代替它,从而使问题得到简化,这叫整体代换或换元思想,请根据上面的思想解决下面问题:若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的方程组1112223()2()53()2()5a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_____. 三、解答题19.(1101(3)3π-⎛⎫-+- ⎪⎝⎭ (2)先化简,再求值.2(3)(3)(3)5()a b a b a b b a b +--+--(其中1a =,2b =-)20.给出三个多项式:a2+3ab ﹣2b2,b2﹣3ab ,ab+6b2,任请选择两个多项式进行加法运算,并把结果分解因式.21.解方程(组):(1)48313x y x y -=⎧⎨+=⎩ (2)1132(1)6x y x y ⎧+=⎪⎨⎪+-=⎩22.如图,已知AB①CD ,①AED+①C=180°.(1)请说明DE①BC 的理由;(2)若DE 平分①ADC ,①B=65°,求①A 的度数.23.利用完全平方公式因式分解在数学中的应用,请回答下列问题:(1)因式分解:244x x -+=________.(2)填空:①当2x =-时,代数式244x x ++=________;①当x =________时,代数式2690x x -+=;①代数式21020x x ++的最小值是________.(3)拓展与应用:求代数式226830a b a b +--+的最小值.24.为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户.若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的N95口罩.若需购买医用口罩,N95口罩共1200个,其中N95口罩不超过200个,钱恰好全部用完,则有几种购买方案,请列方程计算.25.小明同学计划将一个周长为50cm 的长方形ABCD 按如图方式剪出一个筝形EFGH (EH EF =,GH GF =),其中点E ,F ,H 分别在边AB BC AD ,,上,设点G 到CD 的距离为cm a ,()2cm AE BE a =+,()3cm AH BF a ==.(1)用含a 的代数式表示线段HD 的长(结果要化简);(2)用含a 的代数式表示筝形EFGH 的面积(结果要化简);(3)当()560a a -+=时,筝形EFGH 的面积为_______.参考答案1.B【分析】直接利用方程的次数以及未知数的个数,进而得出答案.【详解】解:A .x+xy=8,是二元二次方程,故此选项错误;B .y=12x ﹣1,是二元一次方程,故此选项正确; C .x+1x=2,是分式方程,故此选项错误; D .x 2+y ﹣3=0,是二元二次方程,故此选项错误.故选B .2.B【分析】根据科学记数法和负整数指数幂的性质计算,即可得到答案.【详解】0.00035米用科学记数法表示该种花粉的直径是:43.510-⨯米故选:B .【点睛】本题考查了科学记数法和负整数指数幂的知识;解题的关键是熟练掌握负整数指数幂的性质,从而完成求解.3.C【分析】根据平方差公式的特征逐一判断即可.【详解】解:A. ()()3a b a b +-=2232a ab b -+,故不符合题意,B.()()33a b a b +--= ()()()2333a b a b a b -++=-+,故不符合题意, C. ()()()22333a b a b a b ---+=-- ,符合题意,D. ()()()()()233333a b a b a b a b a b -+-=---=--,故不符合题意.故选C .【点睛】本题主要考查了对平方差公式的理解,掌握()()a b a b -+=22a b -是解答本题的关键. 4.D【分析】分别利用完全平方公式、平方差公式及多项式乘以多项式的乘法法则进行计算,即可得出结论.【详解】解:A 、222()2x y x xy y -=-+,故此选项运算错误,不符合题意;B 、2(2)(3)6a a a a +-=--,故此选项运算错误,不符合题意;C 、22(2)(2)4x y x y x y -+=- ,故此选项运算错误,不符合题意;D 、222244a b a ab b +=++(),故此选项运算正确,符合题意;故选:D .【点睛】本题考查了多项式的乘法,熟练掌握完全平方公式、平方差公式及多项式乘以多项式的乘法法则是解题的关键.5.B【分析】如下图,利用对顶角相等得到①2,再利用同旁内角互补得到①B 的大小【详解】解:如下图①①1=55°①①2=①1=55°①CD①EB①①B+①2=180°,故选B.【点睛】本题考查平行线的性质,需要注意,仅当两直线平行时,同旁内角才互补6.C【分析】运用提取公因式法、平方差公式和完全平公式逐项因式分解排除即可.【详解】解:A. ()ax bx x a b -=-,故A 选项不符合题意;B. 22(21)xy xy y y xy x -+-=---,故B 选项不符合题意;C. 21(1)(1)y y y -=+-,符合题意;D. 2269(3)a a a +-≠-,故D 选项不符合题意;故答案为C .【点睛】本题考查了因式分解的定义,熟练掌握因式分解的方法是解答本题的关键.7.A【解析】【分析】设有x 名工人生产螺栓,y 名工人生产螺母,根据“车间有56名工人,每人每天能生产螺栓16个或螺母24个,每天生产的螺栓和螺母按1:2配套”,即可列出方程组.【详解】解:设有x 名工人生产螺栓,y 名工人生产螺母,根据题意得:5621624x y x y+=⎧⎨⨯=⎩. 故选:A .本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键. 8.B【解析】【分析】把代数式22a ab b -+变形为2()3a b ab +-,代入a b +和ab 的值运算求解即可.【详解】解:①2222222()3a ab b a b ab ab ab a b ab -+=++--=+-①代入10a b +=和7ab =得:原式2103779=-⨯=故答案为:B【点睛】本题主要考查了代数式的运算和完全平方公式的变形,熟悉掌握完全平方公式是解题的关键.9.C【解析】【分析】根据同底数幂相乘及幂的乘方进行计算.【详解】①x a =2,x b =3,①x 3a+2b =(x a )3×(x b )2=23×32=72.故选C .【点睛】本题考查同底数幂相乘及幂的乘方,熟练掌握其运算法则是关键.10.B【解析】【分析】根据平行线的性质求出ACB E ∠=∠,根据角平分线定义和平行线的性质求出ABF CBF ADC EDC ∠=∠=∠=∠,推出//BF DC ,再根据平行线的性质判断即可.【详解】①//BC DE ,①ACB E ∠=∠,①①正确;①//BC DE ,①ABC ADE ∠=∠,①BF 平分ABC ∠,DC 平分ADE ∠, ①12ABF CBF ABC ∠=∠=∠,12ADC EDC ADE ∠=∠=∠, ①ABF CBF ADC EDC ∠=∠=∠=∠,①//BF DC ,①BFD FDC ∠=∠,①根据已知不能推出ADF CDF ∠=∠,①②错误;③错误;①ABF ADC ∠=∠,ADC EDC ∠=∠,①ABF EDC ∠=∠,①//DE BC ,①BCD EDC ∠=∠,①ABF BCD ∠=∠,①④正确;即正确的有2个,故选:B .【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键.11.不是【解析】【分析】将22x y =-⎧⎨=⎩代入到方程组34225x y x y +=⎧⎨-=⎩中去检验即可. 【详解】把22x y =-⎧⎨=⎩分别代入到两个方程中,可发现它是方程①的解,不是方程①的解,所以它不是这个方程组的解.故答案为:不是.【点睛】本题考查了二元一次方程组的解,解题的关键是掌握二元一次方程组解的定义即:使方程组所有方程左右两边都相等的未知数的值为二元一次方程组的解.12.2024x y x y +=⎧⎨-=-⎩(答案不唯一) 【解析】【详解】试题分析:最简单的方法就用,,即为,另外与是同解方程的都是答案.考点:二元一次议程组与解.13.5【解析】【分析】根据平移的性质得BE CF =,再利用BE EC CF BF ++=得到414BE BE ++=,然后求解即可.【详解】①DEF 是由ABC 通过平移得到,①BE CF =,①BE EC CF BF ++=,①414BE BE ++=,①5BE =.故答案为:5.【点睛】 本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.掌握平移性质及找准平移前后的对应边是解题关键.14.2232x xy y +-【解析】【分析】 错乘2x ,得到(3x 2-xy )可求出没错乘之前的结果,再乘以2x y +即可, 【详解】由题意得,()22223(3)(3)()32222x x y x y x xy x x y x y x y x xy y x ++-÷⨯=-⨯⨯=-+=+- 故答案为:3x 2+2xy-y 2.【点睛】本题考查多项式乘以多项式的计算方法,根据逆运算得出正确的计算算式是解决问题的关键.15.50°或130°【解析】【分析】根据角的两边分别平行得出①A+①B=180°或①A=①B ,代入求出即可.【详解】①①A 的两边与①B 的两边分别平行,①A=50°,①①A+①B=180°或①A=①B ,①①B=130°或50°,故答案为50°或130°【点睛】本题考查了平行线的性质的应用,注意:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补.注意:运用了分类思想.16.±8.【解析】【分析】完全平方公式:(a±b )2=a 2±2ab+b 2,这里首末两项是x 和4这两个数的平方,那么中间一项为加上或减去x 和4的积的2倍.【详解】①x 2-ax+16是一个完全平方式,①ax=±2•x×4=±8x ,①a=±8.【点睛】本题是根据完全平方公式的结构特征进行分析,对此类题要真正理解完全平方公式,并熟记公式,这样才能灵活应用.本题易错点在于:是加上或减去两数乘积的2倍,在此有正负两种情况,要全面分析,避免漏解.17.12【解析】【分析】设最小的正方形边长为x ,第二小的正方形边长为y ,根据21.5AB DC cm ==列出二元一次方程组进行求解.【详解】设最小的正方形边长为x ,第二小的正方形边长为y ,由图形知,64321.52521.5y x y x x y -+-=⎧⎨+=⎩ , 解得,x =2cm ,y =3.5cm ,①长方形的另一边44 3.5212AD y x =-=⨯-=cm ,故答案为:12.【点睛】本题考查二元一次方程组的应用,巧设未知数,根据矩形的对边相等列出方程组是解题的关键.18.7.52.5x y =⎧⎨=⎩. 【解析】【分析】根据x ,y 的方程组()()()()111222325325a x y b x y c a x y b x y c ⎧++-=⎪⎨++-=⎪⎩推出()()()()111222325325a x y b x y c a x y b x y c ⎧++-=⎪⎪⎨++-⎪=⎪⎩,对比方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得()3652()25x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,解得即可. 【详解】① ()()()()111222325325a x y b x y c a x y b x y c ⎧++-=⎪⎨++-=⎪⎩① ()()()()111222325325a x y b x y c a x y b x y c ⎧++-=⎪⎪⎨++-⎪=⎪⎩由题意知()3652()25x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,解得7.52.5x y =⎧⎨=⎩. 故答案为7.52.5x y =⎧⎨=⎩. 【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解. 19.(1)-1;(2)27ab b +,26.【解析】【分析】(1)根据实数的混合运算法则、零指数及负指数幂的运算法则依次计算即可;(2)根据完全平方公式、平方差公式及单项式与多项式相乘展开,然后合并同类项进行运算即可.【详解】(1101(3)3π-⎛⎫-+- ⎪⎝⎭ ()313=-+-1=-;(2)()()()()23335a b a b a b b a b +--+--2222296955a ab b a b ab b =++-+-+ 27ab b =+,当1a =,2b =-时,原式22826=-+=.【点睛】题目主要考查实数的运算、整式的运算法则及公式的运用,熟练掌握公式及运算法则是解题关键.20.(a+b )(a ﹣b )【解析】【详解】试题分析:根据平方差公式,可得答案.试题解析:(a2+3ab ﹣2b2)+(b2﹣3ab )=a2+3ab ﹣2b2+b2﹣3ab=a2﹣b2=(a+b )(a ﹣b ).21.(1)34x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩. 【解析】【分析】(1)运用加减消元法,两式相加消去y ,得到x 的值,并代入求出y 即可,(2)运用加减消元法,两式相加消去y ,得到x 的值,并代入求出y 即可.【详解】解:(1) 48313x y x y -=⎧⎨+=⎩①②, 由①+①得到721x =,解得:3x =,将3x =代入①:解得:4y =,即有方程组的解为:34x y =⎧⎨=⎩; (2)()113216x y x y ⎧+=⎪⎨⎪+-=⎩①②,由①+①得到:12293x x ++=, 解得:3x =,将3x =代入①,解得:2y =,即有方程组的解为:32x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解法,合理运用加减消元法和代入消元法是解题关键. 22.(1)证明见详解;(2)50°.【解析】【分析】(1)先根据两直线平行,同旁内角互补,即可得到①B+①C=180°,再根据①AED+①C=180°,即可得出①AED=①B ,最后根据同位角相等,两直线平行可得DE①BC ;(2)由(1)得①AED=①B=65°,根据两直线平行,内错角相等,可得①CDE=①AED=65°,根据DE 平分①ADC 可得①ADC=2①CDE=130°,最后根据两直线平行,同旁内角互补可以求出①A 的度数.【详解】解:(1)DE①BC ,理由如下:①AB①CD (已知),①①B+①C=180°(两直线平行,同旁内角互补),又①①AED+①C=180°(已知),①①AED=①B (同角的补角相等),①DE①BC (同位角相等,两直线平行).(2)由(1)得①AED=①B ,①①B=65°(已知),①①AED=65°(等量代换),①AB①CD (已知),①①CDE=①AED=65°(两直线平行,内错角相等),①DE 平分①ADC (已知),①①ADC=2①CDE=130°(角平分线的定义),①AB①CD (已知),①①A+①ADC=180°(两直线平行,同旁内角互补),①①A=180°-①ADC=180°-130°=50°.【点睛】本题主要考查了平行线的判定与性质,熟悉相关性质是解题的关键.23.(1)2(2)x -;(2)①0;①3;①-5;(3)5【解析】【分析】(1)直接利用完全平方公式进行分解因式,即可得到答案;(2)①先进行分解因式,再把2x =-代入计算,即可得到答案;①利用完全平方公式进行分解因式,再根据200=,即可求出x 的值;①利用完全平方公式进行配方,结合完全平方式的非负性,即可得到答案;(3)先把原式进行分解因式,在根据完全平方式的非负性,即可求出式子的最小值.【详解】解:(1)2244(2)x x x -+=-;故答案为:2(2)x -;(2)①2244(2)x x x ++=+,当2x =-时,原式=2(22)0-+=;①①2690x x -+=,①2(3)0x -=,①3x =;①21020x x ++=210255x x ++-=2(55)x +-,①2(05)x +≥,①255(5)x -≥-+,①原式的最小值为:5-;故答案为:①0;①3;①-5;(3)226830a b a b +--+=22816569a a b b +-+-++=22(3)(4)5a b -+-+,①2(3)0a -≥,2(04)b -≥,①22(3)(4)55a b -+-+≥,代数式226830a b a b +--+的最小值是5.【点睛】本题考查了完全平方公式的应用,完全平方式的非负性,公式法分解因式,解题的关键是熟练掌握完全平方公式的结构特征,熟练运用完全平方式的非负性进行求代数式的最小值. 24.(1)医用口罩的单价为2.5元/个,洗手液的单价为30元/瓶;(2)有3种购买方案,方程见解析【解析】【分析】(1)设医用口罩的单价为x 元/个,洗手液的单价为y 元/瓶,根据题意列出二元一次方程组,解方程组即可;(2)设增加购买N95口罩a 个,洗手液b 瓶,则医用口罩(1200-a )个,根据题意列出方程,将b 用a 表示出来,根据a ,b 都为正整数,得出满足题意的a,b 的值.【详解】(1)设医用口罩的单价为x 元/个,洗手液的单价为y 元/瓶,根据题意得80012056001200805400x y x y +=⎧⎨+=⎩解得 2.530x y =⎧⎨=⎩①医用口罩的单价为2.5元/个,洗手液的单价为30元/瓶.故答案为:医用口罩的单价为2.5元/个,洗手液的单价为30元/瓶(2)设增加购买N95口罩a 个,洗手液b 瓶,则医用口罩(1200-a )个,根据题意得 6a+2.5(1200-a )+30b=5400化简,得7a+60b=4800 ①b=80-760a①a ,b 都为正整数①a 为60的倍数,且a≤200①6073a b =⎧⎨=⎩,12066a b =⎧⎨=⎩,18059a b =⎧⎨=⎩①有三种购买方案故答案为:有3种购买方案,方程见解析【点睛】本题考查了二元一次方程组的应用,先找到题中未知量,根据题中的等量关系,列出方程,解方程,对方程的解进行检验,舍去不符合题意的解.25.(1)线段HD 的长为(21-5a )cm ;(2)筝形EFGH 的面积为(231542a a -++)cm 2;(3)60cm 2【解析】【分析】(1)根据长方形ABCD 的周长为50列式计算即可;(2)根据AEH BEF ABCD EFGH GMDH GMCF S S S S S S =----△△长方形筝形梯形梯形列式运用整式的运算法则逐步计算即可;(3)由()560a a -+=可得256a a -=-,再将231542a a -++变形为23(5)42a a --+,最后整体代入256a a -=-计算即可.【详解】解:(1)由题意得:2(AB +AD )=50,①AB +AD =25,即AH +HD +AE +BE =25,①HD =25-AH -AE -BE=25-3a -(a +2)-(a +2)=25-3a -a -2-a -2=21-5a ,①线段HD 的长为(21-5a )cm ;(2)由题意得:AEH BEF ABCD EFGH GMDH GMCF S S S S S S =----△△长方形筝形梯形梯形1111()()2222AB AD AE AH BE BF GM HD DM GM CF CM =⋅-⋅-⋅-+⋅-+⋅112(2)(3215)2(2)32(215)(2)22a a a a a a a a =++--⨯+⋅-⨯+-+2(2)(212)3(2)(214)(2)a a a a a a =+--+--+2222(212424)(36)(214248)a a a a a a a a =-+--+-+--22242484836214248a a a a a a a a =-+-----++231542a a =-++,①筝形EFGH 的面积为(231542a a -++)cm 2;(3)①()560a a -+=,①256a a -=-,①22315423(5)42a a a a -++=--+3(6)42=-⨯-+1842=+60=,故答案为:60.【点睛】本题考查了整式的混合运算在几何图形中的应用,熟练掌握整式的混合运算法则以及整体思想的应用是解决本题的关键.。

浙教版七年级下学期数学《期中考试题》含答案

浙教版七年级下学期数学《期中考试题》含答案

浙教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 下列二次根式中的最简二次根式是( )A.√30B.√12C.√8D.√122. 一元二次方程x2−8x−1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x−4)2=17D.(x−4)2=153. 随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A.20、20B.30、20C.30、30D.20、304. 若代数式√x+1有意义,则实数x的取值范围是( )(x−3)2A.x≥−1B.x≥−1且x≠3C.x>−1D.x>−1且x≠35. 在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为( )(提示:可以构造平行四边形)A.2<AD<14B.1<AD<7C.6<AD<8D.12<AD<166. 某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程( )A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=1757. 一个多边形截去一个角后,形成另一个多边形的内角和为720∘,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或78. 如果平行四边形ABCD被一条对角线分成两个等腰三角形,则称该平行四边形为“等腰平行四边形”,如果等腰平行四边形ABCD的一组邻边长分别为4和6,则它的面积是( )A.16√2或6√7B.8√5或6√7C.16√2D.8√59. 把代数式(a−1)√1中的a−1移到根号内,那么这个代数式等于( )1−aA.−√1−aB.√a−1C.√1−aD.−√a−110. 如下图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≅△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF;⑤S△ABE=S△CDE.其中正确的是()A.①②③B.①②④C.①②⑤D.①③④二、填空题(每小题3分,共24分)11. 标本−1,−2,0,1,2,方差是________.12. 若x=−2是关于x的方程x2−2ax+8=0的一个根,则a=________.=0有两个实数根,则k的取值范围是________.13. 方程(k−1)x2−√1−kx+1414. 在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是O(0, 0),A(−3, 0),B(0, 2),则平行四边形第四个顶点C的坐标________.15. 在证明命题“一个三角形中至少有一个内角不大于60∘”成立时,我们利用反证法,先假设________,则可推出三个内角之和大于180∘,这与三角形内角和定理相矛盾.16. 如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m 2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m .17. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90∘,若AB =5,BC =8,则EF 的长为________.18. 任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1,现对72进行如下操作:72→第一次 [√72]=8→第二次 [√8]=2→第三次 [√2]=1,这样对72只需进行3次操作即可变为1,类似地,对81只需进行________次操作后即可变为1;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.三、解答题(共6小题,共46分)19. 计算:(1)(−√5)2−√16+√(−2)2; (2)(√18−√3)×√12.20. 用适当方法解下列方程:(1)14(x +1)2=25; (2)x 2+2x −1=0.21. 关于x 的一元二次方程(a +c)x 2+2bx +(a −c)=0,其中a,b,c 分别为△ABC 三边的长.(1)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(2)如果△ABC 是等边三角形,试求这个一元二次方程的根.22. 如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF // CE.23. 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.(1)请根据图中所提供的信息填写下表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.平均数中位数体能测试成绩合格次数甲________ 65________24. 某租赁公司拥有汽车100辆.据统计,当每辆车的月租金为3000元时,可全部租出.每辆车的月租金每增加50元时,未租出的车将会增加1辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306600元?答案与解析二、选择题(每题3分,共30分)1. 下列二次根式中的最简二次根式是( )A.√30B.√12C.√8D.√12[答案]A[解析]判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.2. 一元二次方程x2−8x−1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x−4)2=17D.(x−4)2=15[答案]C[解析]常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.3. 随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A.20、20B.30、20C.30、30D.20、30[答案]C[解析]根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.4. 若代数式√x+1有意义,则实数x的取值范围是( )(x−3)2A.x≥−1B.x≥−1且x≠3C.x>−1D.x>−1且x≠3[答案]B[解析]根据被开方数大于等于0,分母不等于0列式计算即可得解.5. 在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为( )(提示:可以构造平行四边形)A.2<AD<14B.1<AD<7C.6<AD<8D.12<AD<16[答案]B[解析]作辅助线(延长AD至点E,使AD=ED)构建平行四边形6. 某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程( )A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=175[答案]D[解析]增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.7. 一个多边形截去一个角后,形成另一个多边形的内角和为720∘,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或7[答案]D[解析]首先求得内角和为720∘的多边形的边数,即可确定原多边形的边数.8. 如果平行四边形ABCD被一条对角线分成两个等腰三角形,则称该平行四边形为“等腰平行四边形”,如果等腰平行四边形ABCD的一组邻边长分别为4和6,则它的面积是( )A.16√2或6√7B.8√5或6√7C.16√2D.8√5[答案]A[解析]分AC=AB=4和AC=BC=6两种情况求得△ABC的面积后即可求得平行四边形ABCD的面积.[解答]解:如图:当AC=AB=4时,此时S△ABC=3√7,故等腰平行四边形的面积为2S△ABC=6√7;当AC=BC=6时,此时S△ABC=8√2,故等腰平行四边形的面积为2S△ABC=16√2.9. 把代数式(a−1)√1中的a−1移到根号内,那么这个代数式等于( )1−aA.−√1−aB.√a−1C.√1−aD.−√a−1[答案]A[解析] (a−1)√1(1−a)=−(1−a)√11−a=−√1−a.10. 如下图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≅△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF;⑤S△ABE=S△CDE.其中正确的是()A.①②③B.①②④C.①②⑤D.①③④[答案]B[解析]∵四边形ABCD是平行四边形,∴AD // BC,AD=BC.∴∠EAD=∠AEB.又∵AE平分∠BAD,∴∠BAE=∠DAE.∴∠BAE=∠BEA.∴AB=BE.∵AB=AE,∴△ABE是等边三角形;②正确.∴∠ABE=∠EAD=60∘.∵AB=AE,BC=AD,∴△ABC≅△EAD(SAS);①正确.∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC.又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC.∴S△ABE=S△CEF;④正确,⑤错误.若AD与AF相等,即∠AFD=∠ADF=∠DEC,即EC=CD=BE即BC=2CD,题中未限定这一条件,∴③不一定正确.二、填空题(每小题3分,共24分)11. 标本−1,−2,0,1,2,方差是________.[答案]2[解析]先计算出平均数,再根据方差的公式计算.12. 若x=−2是关于x的方程x2−2ax+8=0的一个根,则a=________.[答案]−3[解析]把x=−2代入方程得出一个关于a的方程,求出方程的解即可.=0有两个实数根,则k的取值范围是________.13. 方程(k−1)x2−√1−kx+14[答案]k<1[解析]方程有两个不相等实数根,则根的判别式△≥0,建立关于k的不等式,求得k的取值范围,且二次项系数不为零和被开方数1−k≥0.14. 在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是O(0, 0),A(−3, 0),B(0, 2),则平行四边形第四个顶点C的坐标________.[答案](3, 2)或(−3, 2)或(−3, −2)[解析]先由点的坐标求出求出线段OA,OB的长度,再分情况进行求解,即可解得C点的坐标为(3, 2)或(−3, 2)或(−3, −2).15. 在证明命题“一个三角形中至少有一个内角不大于60∘”成立时,我们利用反证法,先假设________,则可推出三个内角之和大于180∘,这与三角形内角和定理相矛盾.[答案]三角形的三个内角都大于60∘[解析]根据反证法的步骤,先假设结论不成立,即否定命题即可.16. 如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m .[答案]2 [解析]设人行通道的宽度为x 米,将两块矩形绿地合在一起长为(30−3x)m ,宽为(24−2x)m ,根据矩形绿地的面积为480m 2,即可列出关于x 的一元二次方程,解方程即可得出x 的值,经检验后得出x =20不符合题意,此题得解.17. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90∘,若AB =5,BC =8,则EF 的长为________.[答案]1.5[解析]利用直角三角形斜边上的中线等于斜边的一半,可求出DF 的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE 的长,进而求出EF 的长18. 任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1,现对72进行如下操作:72→第一次 [√72]=8→第二次 [√8]=2→第三次 [√2]=1,这样对72只需进行3次操作即可变为1,类似地,对81只需进行________次操作后即可变为1;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.[答案]3,6560[解析](1)根据运算过程得出[√81]=9,[√9]=3,[√3]=1,即可得出答案.(2)最大的正整数是6560,根据操作过程分别求出6560和6561进行几次操作,即可得出答案.[解答]解:(1)∵ [√81]=9,[√9]=3,[√3]=1,∴ 对81只需进行3次操作后变为1,(2)最大的正整数是255,理由是:∵ [√6560]=80,[√80]=8,[√8]=2,∴ 对6560只需进行3次操作后变为2,∵ [√6561]=81,[√81]=9,[√9]=3,∴ 只需进行3次操作后变为2的所有正整数中,最大的是6560.三、解答题(共6小题,共46分)19. 计算:(1)(−√5)2−√16+√(−2)2;(2)(√18−√3)×√12.解:(1)原式=5−4+2=3;(3)原式=3√2×2√3−√3×2√3=6√6−6.20. 用适当方法解下列方程:(x+1)2=25;(2)x2+2x−1=0.(1)14解:(1)∵(x+1)2=100,∴x+1=10或x+1=−10,解得:x=9或x=−11;(2)∵x2+2x=1,∴x2+2x+1=1+1,即(x+1)2=2,则x+1=±√2,∴x=−1±√221. 关于x的一元二次方程(a+c)x2+2bx+(a−c)=0,其中a,b,c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)∵方程有两个相等的实数根,∴(2b)2−4(a+c)(a−c)=0,∴4b2−4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形.(2)∵当△ABC是等边三角形,∴a=b=c,∵(a+c)x2+2bx+(a−c)=0,∴2ax2+2ax=0,∴x1=0,x2=−1.22. 如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF // CE.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB // CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,{∠AEB=∠4∠3=∠5 AB=CD,∴△ABE≅△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≅△CDF,∴AE=CF,∵∠1=∠2,∴AE // CF,∴四边形AECF是平行四边形,∴AF // CE.23. 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.(1)请根据图中所提供的信息填写下表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.解:(1)(2)①依据平均数与成绩合格的次数比较甲和乙,乙的体能测试成绩较好;②依据平均数与中位数比较甲和乙,甲的体能测试成绩较好.③从折线图上看,两名运动员体能测试成绩都呈上升趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格次数比甲多,所以乙训练的效果较好.24. 某租赁公司拥有汽车100辆.据统计,当每辆车的月租金为3000元时,可全部租出.每辆车的月租金每增加50元时,未租出的车将会增加1辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306600元?解:(1)根据题意得:100−3600−300050=88(辆),则当每辆车的月租金定为3600元时,能租出88辆车;(2)设每辆车的月租金为(3000+x)元,根据题意得:(100−x 50)[(3000+x)−150]−x 50×50=306600,解得:x 1=900,x 2=1200,∴ 3000+900=3900(元),3000+1200=4200(元),则当每辆车的月租金为3900元或4200元时,月收益达到306600元.。

浙教版数学七年级下学期《期中检测试题》附答案

浙教版数学七年级下学期《期中检测试题》附答案
∴阴影部分面积之差S=AE•AF-PC•CG=2b×AE-a×PC=2b(PC+3b-a)-aPC=(2b-a)PC+6b2-2ab,
则2b-a=0,即a=2b,
故选:A.
[点睛]此题考查了整式的混合运算的应用,弄清题意是解本题的关键.
二、填空题(共8小题,每小题3分,共24分)
11.计算: ________.
7. 如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分
可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长 为3,则另一边长是()
A. m+3B. m+6
C. 2m+3D. 2m+6
[答案]C
[解析]
[分析]
由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.
A. B. C. D.
[பைடு நூலகம்案]A
[解析]
[分析]
表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式
[详解]解:左上角阴影部分的长为AE,宽为AF=2b,右下角阴影部分的长为PC,宽为a,
∵AD=BC,即AE+ED=AE+a,BC=BP+PC=3b+PC,
∴AE+a=3b+PC,即AE-PC=3b-a,
A. B. C. D.
9.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()
A.50°B.55°C.60°D.65°

浙教版七年级下学期数学《期中测试题》附答案

浙教版七年级下学期数学《期中测试题》附答案
C.(﹣ab3)2=a2b6D.x6÷x3=x2
5.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()
A. a=2,b=3B. a=-2,b=-3
C. a=-2,b=3D. a=2,b=-3
6.如图所示,在下列四组条件中,能判定AB∥CD 是()
A.∠1=∠2B.∠ABD=∠BDC
1.下列图中的“笑脸”,由如图平移得到的是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
[详解]解:A、B、C都是由旋转得到的,D是由平移得到的.
故选:D.
[点睛]本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
[点睛]本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.
10.如图,在大长方形中放入6个形状、大小相同的小长方形,所标尺寸如图所示,则图中大长方形的面积是()
A.96B.112C.126D.140
[答案]D
[解析]
[分析]
设小长方形的长、宽分别为 、 ,根据图示可以列出方程组,然后解这个方程组即可求出小长方形的边长,接着就可以求出大长方形的面积.
11.已知某组数据的频数为56,频率为0.7,则样本容量为_____.
12.因式分解:x3﹣4x=_____.
13.已知多项式x2﹣mx+25是完全平方式,则m的值为_____.
14.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C=___________.

浙教版七年级下册数学期中考试试卷附答案

浙教版七年级下册数学期中考试试卷附答案

浙教版七年级下册数学期中考试试题一、单选题1.在下列图形中,不能..通过其中一个三角形平移得到的是()A .B .C .D .2.下列方程是二元一次方程的是()A .2x ﹣3=1﹣4xB .(x+y )(x ﹣y )=9C .112x y+=D .1332x x y =-3.下列运算正确的是()A .x 3+x 3=x 6B .(x 3)2=x 9C .x 3•x 3=x 6D .x 6÷x 2=x 34.水是生物赖以生存的必要物质,经测算,一个水分子的直径约有0.0000004mm ,数据“0.0000004”用科学记数法表示为()A .6410-⨯B .7410-⨯C .60.410-⨯D .7410⨯5.如图,下列条件中能得到//AD BC 的是()A .12∠=∠B .34∠=∠C .13∠=∠D .24∠∠=6.如图,下列说法错误的是()A .A ∠与3∠是同位角B .A ∠与2∠是内错角C .1∠与2∠是同旁内角D .A ∠与1∠是同旁内角7.用代入消元法解方程组21527y x x y =+⎧⎨-=⎩①②,将①代入②可得()A .5x ﹣2(2x+1)=7B .5x ﹣(2x+1)=7C .5x ﹣4x+1=7D .5x ﹣4x+2=78.如图,将四个长为a ,宽为b 的小长方形纸片拼成一个大正方形,用两种不同的方法表示这个大正方形的面积,则可以得出一个等式为()A .()2222a b a ab b +=++B .()()22a b a b a b+-=-C .()2222a b a ab b -=-+D .()()224a b a b ab+=-+9.某学校计划在植树节购买树苗绿化环境,是学校共花费了3400元购买了50棵桂花树苗与30棵桃花树苗,已知桂花树苗的单价比桃花树苗单价的2倍少10元,设桂花树苗的单价格为x 元,桃花树苗的单价为y 元,根据题意,下列方程组正确的是()A .21050303400x y x y =-⎧⎨+=⎩B .21030503400x y x y =-⎧⎨+=⎩C .21030503400x y x y =+⎧⎨+=⎩D .21050303400y x x y =-⎧⎨+=⎩10.一个矩形内放入两个边长分别为3cm 和4cm 的小正方形纸片,按照图①放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm 2;按照图②放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm 2,若把两张正方形纸片按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为()A .5cm 2B .6cm 2C .7cm 2D .8cm 2二、填空题11.计算(x+2)(x-2)=_____.12.如图,直线//m n ,若1125∠=︒,则2∠的度数是______.13.写出一个解是23x y =⎧⎨=-⎩的二元一次方程组_______________.14.如图,将一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果120∠=︒,那么2∠=____º.15.已知方程组239326x y x y +=⎧⎨+=⎩,则代数式x y +的值为______.16.已知()2535x +=,则代数式()()111x x +-的值为________.17.如图,把一个大长方形ABCD 分割成5小块,其中长方形①号和②号,③号和④号的形状和大小分别相同,⑤号是正方形,则⑤中的面积与大长方形ABCD 的面积之比为_______.三、解答题18.化简:(1)()3224232x x x -⋅(2)()()2121x x x +-++19.解方程组:(1)25218y x x y =+⎧⎨+=⎩(2)2322332x y x y -=⎧⎪+⎨=⎪⎩20.如图,已知125140∠=∠∠=︒,,求3∠的度数解:14∠=∠ ,()又12,∠=∠ 24∴∠=∠∴//()3∴∠+∠180=︒,()又5140∠=︒ ,3∴∠=o21.如图,C 是射线AD 上一点,已知DCE A ∠=∠.(1)求证:BCE B ∠=∠:(2)若CB 平分ACE ∠,且2B A ∠=∠.求ACB ∠的度数.22.小明同学计划将一个周长为50cm 的长方形ABCD 按如图方式剪出一个筝形EFGH (EH EF =,GH GF =),其中点E ,F ,H 分别在边AB BC AD ,,上,设点G 到CD 的距离为cm a ,()2cm AE BE a =+,()3cm AH BF a ==.(1)用含a 的代数式表示线段HD 的长(结果要化简);(2)用含a 的代数式表示筝形EFGH 的面积(结果要化简);(3)当()560a a -+=时,筝形EFGH 的面积为_______.23.如图,//DG AB ,12∠=∠,102ADB ∠=︒,求EFD ∠的度数.24.代驾已成为人们酒后出行的常见方式,其计价规则如下表:计费项目里程费时长费远途费单价2元/公里0.5元/分钟1元/公里注:代驾费由里程费,时长费,远途费三部分构成,其中里程费按行车的实际里程计算,时长费按行车的实际时间计算,远途费的收取方式:行车里程7公里以内(含7公里)不收取远途费,超过7公里的,超出部分每公里收取1元.小王和小张由于酒后出行,各自雇佣代驾,在同一地点约见,已知到达约见地点时他们的行车里程分别是6公里和8公里,两人所付代驾费相同.(1)求这两辆车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一个人早,所以提前到达约定地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的3倍,且比另一人的实际乘车时间多16分钟,计算两人各自的实际乘车时间.25.若满足()()742x x --=,求()()2274x x -+-的值,设7x a -=,4x b -=,则()()742x x ab --==,()()743a b x x +=-+-=,所以222222(7)(4)()23225x x a b a b ab -+-=+=+-=-⨯=.(1)若x 满足()()933x x --=,求()()2293x x -+-的值;(2)如图,已知正方形ABCD 的边长为x ,E ,F 分别为AD ,DC 上的点,且1AE =,4CF =,长方形EMFD 的面积是28,分别以MF ,DF 为边做正方形,求阴影部分面积.参考答案1.D 【解析】根据平移的性质即可得出结论.【详解】解:A 、能通过其中一个三角形平移得到,不合题意;B 、能通过其中一个三角形平移得到,不合题意;C 、能通过其中一个三角形平移得到,不合题意;D 、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.故选:D .2.D 【分析】根据二元一次方程的定义:含有两个未知数,且未知数的最高次数为1的整式方程,逐一判断即可.【详解】解:A、2x﹣3=1﹣4x,这是一元一次方程,故此选项错误;B、(x+y)(x﹣y)=9,这是二元二次方程,故此选项错误;C、112x y+=,这是分式方程,故此选项错误;D、1332x x y=-,这是二元一次方程,故此选项正确.故选D.3.C【分析】分别根据合并同类项法则,幂的乘方运算法则,同底数幂的乘法法则以及同底数幂的除法法则逐一判断即可.【详解】解:A、x3+x3=2x3,故A错误;B、(x3)2=x6,故B错误;C、x3•x3=x6,故C正确;D、x6÷x2=x4,故D错误;故选C.4.B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是10的指数是负整数,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000004=4×10-7,故选:B.5.D【解析】根据平行线的判定方法对各选项分析判断后利用排除法求解.【详解】解:A 、12∠=∠,可得BD 平分∠ABC ,不能判定平行,故不符合;B 、34∠=∠,可得BD 平分∠ADC ,不能判定平行,故不符合;C 、13∠=∠,可得AB ∥CD ,故不符合;D 、24∠∠=,可得AD ∥BC ,故符合;故选D .6.C 【解析】根据同位角、内错角及同旁内角的定义判断即可.【详解】解:由图可知:A ∠与3∠是同位角,故A 选项正确;A ∠与2∠是内错角,故B 选项正确;1∠与2∠是同位角,故C 选项错误;A ∠与1∠是同旁内角,故D 选项正确;故选:C .【点睛】此题考查了同位角、内错角、同旁内角的定义,解答此类题确定三线八角是关键,可直接从截线入手.7.A 【解析】【分析】根据代入消元法的定义,把①代入②就是把②中的y 换成用x 表示,即可求解.【详解】解:21527y x x y =+⎧⎨-=⎩①②把①代入②得:()52217x x -+=,故选A.【点睛】本题主要考查了代入消元法,解题的关键在于能够熟练掌握代入消元法的定义.8.D 【解析】根据题意表示出图形的边长进而得出其面积.【详解】解:由图形可得:大正方形的边长为:a +b ,则其面积为:(a +b )2,小正方形的边长为:(a -b ),则其面积为:(a -b )2,长方形面积为:ab ,正方形的面积又可以表示为(a -b )2+4ab ,故(a +b )2=(a -b )2+4ab .故选:D .【点睛】此题主要考查了完全平方公式的几何背景,正确表示出各边长是解题关键.9.A 【解析】【分析】根据“桂花树苗的单价比桃花树苗单价的2倍少10元”可列方程210x y =-;由“共花费3400元”可列方程50303400x y +=,据此可得.【详解】解:设桂花树苗的单价格为x 元,桃花树苗的单价为y 元,根据题意:21050303400x y x y =-⎧⎨+=⎩,故选:A .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.10.C 【解析】【分析】设矩形的长为x cm ,宽为y cm ,根据矩形的面积公式结合按图①②两种放置时未覆盖部分的面积,即可得出关于x 、y 的方程组,利用(②-①)÷3可得出x=y+1③,将③代入②中可得出关于y 的一元二次方程,解之取其正值,即可得到y 值,进而得出x 的值,再利用矩形面积公式得出图③摆放位置时未覆盖的面积即可得出答案.解:设矩形的长为x cm ,宽为y cm ,根据题意可得,xy=16+3(x-4)+8xy=16+3(y-4)+11⨯⎧⎨⨯⎩①②,将(②-①)÷3可得出:y-x+1=0,即x=y+1③,将③代入②中可得:y (y+1)=16+3(y-4)+11,整理得:2y -2y-15=0,解得:1y =5或2y =-3(舍),则x=y+1=6,则矩形的宽为5cm ,长为6cm ,按照图③放置的时候,未覆盖的面积为:(x-4)(y-3)(x-3)(y-4)=22+31=7+⨯⨯,故选:C .【点睛】本题考查了二元一次方程组及一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11.x 2-4【解析】【分析】依据平方差公式进行计算即可.【详解】(x+2)(x-2)=x 2-22=x 2-4.故答案为x 2-4.【点睛】本题主要考查的是平方差公式的应用,熟练掌握平方差公式是解题的关键.12.55°【解析】【分析】直接利用两直线平行同旁内角互补的性质求得∠3的度数,再根据对顶角相等求得∠2即可.【详解】解:∵//m n ,∴∠1+∠3=180°,∵∠1=125°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故答案为:55°.【点睛】本题主要考查平行线的性质及对顶角相等,解题的关键是掌握两直线平行同旁内角互补的性质.13.21 3212 x yx y+⎧⎨-⎩==【解析】【详解】本题为开放性题目,答案不唯一,只要符合条件即可,例如,2x1 3212yx y+=⎧⎨-=⎩.14.40【解析】【分析】根据BE//CD得到∠EBC=20°,依据∠ABC=60°,∠EBC=20°,由角的和差关系可求∠2=40°.【详解】解:如图,∵BE//CD,∴∠EBC=∠1=20°,∵∠A=90°,∠ACB=30°,∴∠ABC=60°,∴∠2=∠ABC-∠EBC=40°.故答案为:40.【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,解题时注意:两直线平行,内错角相等.15.3【解析】【分析】将两个方程相加,可得5x+5y=15,方程两边同时除以5,可得代数式x+y的值.【详解】解:239 326x yx y+=⎧⎨+=⎩①②,①+②,得:5x+5y=15,方程两边同时除以5,得:x+y=3,故答案为:3.【点睛】本题考查了加减消元法解二元一次方程组,解题关键是将x+y看作一个整体,可以使计算简便.16.﹣1【解析】【分析】直接利用完全平方公式及多项式乘以多项式法则计算,进而整体代入即可得出答案.【详解】解:∵()2535x+=,∴x2+10x+25=35,∴x2+10x=10,∴(x+11)(x﹣1)=x2+11x﹣x﹣11=x2+10x﹣11=10﹣11=﹣1.故答案为:﹣1.【点睛】此题主要考查了完全平方公式及多项式乘以多项式法则,正确掌握相关运算法则是解题关键.17.8∶21.【解析】【分析】设长方形①号和②号的长为a,宽为b,根据长方形的对边相等及正方形的四边相等分别表示出相关线段长,最后根据AB=CD得到a=3b,由此可得⑤号正方形的边长为4b,大长方形ABCD的长为7b,宽为6b,由此即可求得答案.【详解】解:如图,设长方形①号和②号的长为a,宽为b,则CE=FG=FM=a,CG=EF=FH=b,∴⑤号正方形的边长DK=DE=ME=FM+EF=a+b,长方形③号和④号的宽AK=LM=BL=HG=FG-FH=a-b,∴大长方形ABCD的宽BC=AD=AK+DK=a-b+a+b=2a,∴长方形③号和④号的长AL=BG=BC-CG=2a-b,∴AB =AL +BL =2a -b +a -b =3a -2b ,CD =DE +CE =a +b +a =2a +b∵大长方形ABCD 的长AB =CD ,∴3a -2b =2a +b ,解得:a =3b ,∴⑤号正方形的边长DK =a +b =4b ,大长方形ABCD 的长CD =2a +b =7b ,大长方形ABCD 的宽AD =2a =6b ,∴⑤中的面积与大长方形ABCD 的面积之比=(4b )2∶(6b·7b )=16b 2∶42b 2=8∶21,故答案为:8∶21.【点睛】本题考查了长方形的对边相等与正方形的四边相等的性质以及它们的面积计算,能够正确设出长方形①号和②号的长为a ,宽为b ,利用相关图形的性质求得a =3b 是解决本题的关键.18.(1)2x 6;(2)2【解析】【分析】(1)首先利用积的乘方及单项式乘单项式法则计算,然后合并同类项即可求解;(2)首先分别利用完全平方公式及单项式乘多项式法则计算,然后合并同类项即可求解.【详解】解:(1)()3224232x x x -⋅=8x 6﹣6x 6=2x 6;(2)(x +1)2﹣x (x +2)+1=x 2+2x +1﹣x 2﹣2x +1=2.【点睛】此题考查了整式的混合运算,解题的关键是利用整式混合运算的法则,同时也注意利用乘法公式简化计算.19.(1)24xy=⎧⎨=⎩;(2)2.51xy=⎧⎨=⎩【解析】【分析】(1)利用代入消元法求解即可;(2)先将方程组整理,再利用加减消元法求解即可.【详解】解:(1)2 5218y xx y=+⎧⎨+=⎩①②,把①代入②,得:5x+2(x+2)=18,解得:x=2,把x=2代入①得:y=4,则方程组的解为24 xy=⎧⎨=⎩;(2)原方程组整理得:232 249x yx y-=⎧⎨+=⎩①②,②-①得:7y=7,解得:y=1,将y=1代入①得:x=2.5,则原方程组的解为2.51xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.见解析【解析】【分析】根据对顶角和已知得出∠2=∠4,进而得到a∥b,再由平行线的性质和∠5的度数得到∠3的度数【详解】解:∵∠1=∠4,(对顶角相等),又∵∠1=∠2,∴∠2=∠4,∴a ∥b ,(同位角相等,两直线平行),∴∠3+∠5=180°.(两直线平行,同旁内角互补),又∵∠5=140°,∴∠3=40.故答案为:对顶角相等;a ;b ;同位角相等,两直线平行;5;两直线平行,同旁内角互补;40.【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;两直线平行,同旁内角互补.21.(1)见解析;(2)72°【解析】【分析】(1)根据平行线的判定及性质证明即可;(2)先分别证得DCE A ∠=∠,2ACB BCE A ∠=∠=∠,再根据180ACB BCE DCE ∠+∠+∠=︒即可求得36A ∠=︒,由此即可求得ACB ∠的度数.【详解】(1)证明:∵DCE A ∠=∠,∴//CE AB ,∴BCE B ∠=∠;(2)由(1)得:DCE A ∠=∠,BCE B ∠=∠,又∵2B A ∠=∠,∴2BCE A ∠=∠,∵CB 平分ACE ∠,∴2ACB BCE A ∠=∠=∠,∵180ACB BCE DCE ∠+∠+∠=︒,∴22180A A A ∠+∠+∠=︒,解得:36A ∠=︒,∴272ACB A ∠=∠=︒,∴ACB ∠的度数为72°.【点睛】本题考查了平行线的判定与性质,角平分线与平角的定义,熟练掌握平行线的判定及性质是解决本题的关键.22.(1)线段HD 的长为(21-5a )cm ;(2)筝形EFGH 的面积为(231542a a -++)cm 2;(3)60cm 2【解析】【分析】(1)根据长方形ABCD 的周长为50列式计算即可;(2)根据AEH BEF ABCD EFGH GMDH GMCF S S S S S S =----△△长方形筝形梯形梯形列式运用整式的运算法则逐步计算即可;(3)由()560a a -+=可得256a a -=-,再将231542a a -++变形为23(5)42a a --+,最后整体代入256a a -=-计算即可.【详解】解:(1)由题意得:2(AB +AD )=50,∴AB +AD =25,即AH +HD +AE +BE =25,∴HD =25-AH -AE -BE=25-3a -(a +2)-(a +2)=25-3a -a -2-a -2=21-5a ,∴线段HD 的长为(21-5a )cm ;(2)由题意得:AEH BEF ABCD EFGH GMDH GMCFS S S S S S =----△△长方形筝形梯形梯形1111()()2222AB AD AE AH BE BF GM HD DM GM CF CM =⋅-⋅-⋅-+⋅-+⋅112(2)(3215)2(2)32(215)(2)22a a a a a a a a =++--⨯+⋅-⨯+-+2(2)(212)3(2)(214)(2)a a a a a a =+--+--+2222(212424)(36)(214248)a a a a a a a a =-+--+-+--22242484836214248a a a a a a a a=-+-----++231542a a =-++,∴筝形EFGH 的面积为(231542a a -++)cm 2;(3)∵()560a a -+=,∴256a a -=-,∴22315423(5)42a a a a -++=--+3(6)42=-⨯-+1842=+60=,故答案为:60.【点睛】本题考查了整式的混合运算在几何图形中的应用,熟练掌握整式的混合运算法则以及整体思想的应用是解决本题的关键.23.∠EFD=78°.【解析】【分析】由DG ∥AB ,可得∠1=∠3,则∠2=∠3,所以EF ∥AD ,再利用两直线平行,同旁内角互补求解即可.【详解】解:∵DG ∥AB ,∴∠1=∠3,又∵∠1=∠2,∴∠2=∠3,∴EF ∥AD ;又∵∠ADB=102°,∴∠EFD=180°-∠ADB=78°.【点睛】本题考查了平行线的判定和性质:同位角相等,两直线平行;两直线平行,同旁内角互补,要灵活应用.24.(1)这两辆车的实际行车时间相差10分钟;(2)小王的实际乘车时间为23分钟,小张的实际乘车时间为13分钟.【解析】【分析】(1)设小王的实际车时间为x 分钟,小张的实际行车时间为y 分钟,根据两人所付代驾费相同列方程求解即可;(2)根据“等候另一人的时间是他自己实际乘车时间的3倍,且比另一人的实际乘车时间多16分钟”列二元一次方程,将其与(1)中的二元一次方程联立即可求解.【详解】解:(1)设小王的实际行车时间为x 分钟,小张的实际行车时间为y 分钟,由题意得:2×6+0.5x=2×8+0.5y+1×(8-7),∴0.5(x-y )=5,∴x-y=10,∴这两辆车的实际行车时间相差10分钟;(2)由(1)及题意得:10316x y y x -=⎧⎨=+⎩,解得2313x y =⎧⎨=⎩∴小王的实际乘车时间为23分钟,小张的实际乘车时间为13分钟.【点睛】本题考查了二元一次方程和二元一次方程组在实际问题中的应用,根据等量关系列方程或方程组是解题的关键.25.(1)30;(2)阴影部分的面积是33.【解析】【分析】(1)设9-x=a ,x-3=b ,根据已知等式确定出所求即可;(2)设正方形ABCD 边长为x ,进而表示出MF 与DF ,求出阴影部分面积即可.【详解】解:(1)设9-x=a ,x-3=b ,则(9-x)(x-3)=ab=3,a+b=9-x+x-3=6,∴(9-x)2+(x-3)2=a 2+b 2=(a+b)2-2ab=62-2×3=30;(2)∵正方形ABCD 的边长为x ,∴DE=x-1,DF=x-4,设x-1=a ,x-4=b ,,a-b=x-1-(x-4)=3,则S长方形EMFD=ab=28那么(a+b)2=(a-b)2+4ab=121,得a+b=11(负值已舍),∴(x-1)2-(x-4)2=a2-b2=(a+b)(a-b)=33.即阴影部分的面积是33..【点睛】本题考查了完全平方公式的几何背景.应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.。

【浙教版】七年级数学下期中试题(附答案)

【浙教版】七年级数学下期中试题(附答案)

一、选择题1.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 2.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限3.将点()1,2P 向左平移3个单位后的坐标是( ) A .()2,2-B .()1,1-C .()1,5D .()1,1--4.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍 B .纵向拉伸为原来的2倍 C .横向压缩为原来的12 D .纵向压缩为原来的125.在 1.4144-,2-,227,3π,23-,0.3•,2.121112*********...中,无理数的个数( ) A .1B .2C .3D .46.实数a 、b 在数轴上的位置如图所示,且||||b a >,则化简233||()a a b b -++-的结果是( )A .2aB .2bC .22a b +D .07.已知:m 、n 为两个连续的整数,且5m n <<,以下判断正确的是( ) A .5的整数部分与小数部分的差是45- B .3m = C .5的小数部分是0.236D .9m n +=8.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B .7C .11D .无法确定9.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75°10.能说明命题“若a b >,则22a b >”是假命题的一个反例..可以是( ) A .0a =,1b =- B .2a =,1b =C .2a =-,1b =-D .0a =,2b = 11.命题“垂直于同一条直线的两条直线互相平行”的条件是( )A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线12.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3二、填空题13.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ . 14.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.15.(1223143)8-; (2)求 (x -1)2-36=0中x 的值. 16.计算:(1)(1)|2|3-⨯-+ (2)2111(3)162⎛⎫-+--- ⎪⎝⎭17.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎣=8→82⎡=⎣→2⎤⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________. 18.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.19.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.20.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.三、解答题21.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点.(1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为()4,0,其它条件不变,如图②,求出所有符合条件的点P 的坐标.(3)若将(1)中的点M 的坐标改为()5,0,其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个(不必求出点P 的坐标).22.如图,在平面直角坐标系中,点C (-1,0),点A (-4,2),AC ⊥BC 且AC=BC , 求点B 的坐标.23.求出x 的值:()23227x += 24.求下列各式中的x 的值. (1)4x 2=9;(2)(2x ﹣1)3=﹣27.25.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.26.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-5, 1),B(4,0),C(2,5),将△ABC 向右平移2个单位长度,再向下平移1个单位长度得到△EFG .(1)画出平移后的图形,并写出△EFG的三个顶点坐标.(2)求△EFG的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图示可知A点坐标为(-3,1),它绕原点O旋转180°后得到的坐标为(3,-1),根据平移“上加下减”原则,向上平移2个单位得到的坐标为(3,1).【详解】解:根据图示可知A点坐标为(-3,1)根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,-1)根据平移“上加下减”原则∴向下平移2个单位得到的坐标为(3,1)故选C.【点睛】本题考查平面直角坐标系中点的对称点的坐标,掌握与原点对称和平移原则是解题的关键.2.B解析:B【分析】根据横坐标为负,纵坐标为正的点在第二象限解答即可.【详解】解:∵点A(-π,4)横坐标为负,纵坐标为正,∴应在第二象限.故选:B.【点睛】本题主要考查了坐标的特点,解答此题的关键是熟记平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.A解析:A【分析】向左平移3个长度单位长度,即点P的横坐标减3,纵坐标不变可得结论.【详解】解:点P(1,2)向左平移3个长度单位后,坐标为(1-3,2),即(-2,2).故选:A.【点睛】本题考查了坐标系中点的平移规律,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.B解析:B【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.5.D解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】-,有限小数,是有理数,不是无理数;1.414422,分数,是有理数,不是无理数;7•,无限循环小数,是有理数,不是无理数;0.3,3π,2-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A 【分析】根据数轴可得a>0,b<0,然后根据加法法则可得a +b <0,然后根据平方根的性质和绝对值的性质及立方根化简即可. 【详解】解:由数轴可得:a>0,b<0, ∵|a |<|b |, ∴a +b <0,∴||a b +=()a a b b ++- =2a 故选A . 【点睛】此题考查的是平方根的化简和绝对值的化简及开立方根,掌握利用数轴判断各字母的符号、加法法则、平方根的性质和绝对值的性质是解题关键.7.A解析:A 【分析】根据无理数的估算、实数的运算即可得. 【详解】459<<,<<23<<,22,则选项C 错误;∴)224-=A 正确;又m 、n 为两个连续的整数,且m n <<,2,3m n ==∴,则选项B 错误;235m n ∴+=+=,则选项D 错误;故选:A . 【点睛】本题考查了无理数的估算、实数的运算,熟练掌握无理数的估算方法是解题关键.8.B解析:B 【分析】首先利用估算的方法分别得到间),从而可判断出被覆盖的数. 【详解】 ∵221,23<<,34<<而墨迹覆盖的范围是1-3 ∴故选B. 【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.9.C解析:C 【分析】先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得. 【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒, AEG A EG '∠=∠, 55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒, 又//AD BC ,270DEF ∴∠=∠=︒, 故选:C . 【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键.10.A解析:A 【分析】选取的a 的值满足a b >,但不满足22a b >即可. 【详解】解:当a =0,b =﹣1时,满足a >b ,但不满足22a b >,故A 选项符合题意; 当a =2,b =1时,满足a >b ,也满足22a b >,故B 选项不符合题意; 当a =﹣2,b =﹣1时,不满足a >b ,故C 选项不符合题意; 当a =0,b =2时,不满足a >b ,故D 选项不符合题意; 故选:A . 【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.D解析:D 【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论. 【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”. 故选:D . 【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.12.B解析:B 【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案. 【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A 错误.B.∠2=∠4,内错角相等,两直线平行,所以B 正确.C. ∠2+∠3=180°,不能证明a ∥b ,故C 错误.D.虽然∠1=∠3,但是不能证明a ∥b ;故D 错误. 故答案选:B. 【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.二、填空题13.(62)或(42)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标从而得解【详解】∵点A (12)AC ∥x 轴∴点C 的纵坐标为2∵AC=解析:(6,2)或(-4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解. 【详解】∵点A (1,2),AC ∥x 轴, ∴点C 的纵坐标为2, ∵AC=5,∴点C 在点A 的左边时横坐标为1-5=-4, 此时,点C 的坐标为(-4,2), 点C 在点A 的右边时横坐标为1+5=6, 此时,点C 的坐标为(6,2)综上所述,则点C 的坐标是(6,2)或(-4,2). 故答案为(6,2)或(-4,2). 【点睛】本题考查了点的坐标,熟记平行于x 轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.14.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键解析:四 【分析】根据直角坐标系象限坐标特征即可判断. 【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限 ∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y >< ∴*A B 在第四象限 故答案为:四 【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.15.(1);(2)x 的值为7或﹣5【分析】(1)分别进行算术平方根运算立方根运算算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可【详解】解:(1)=4﹣﹣3=1﹣=;(2)(x -1)2-3解析:(1)12;(2)x 的值为7或﹣5【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可.【详解】解:(12 =4﹣12﹣3 =1﹣12 =12; (2)(x -1)2-36=0,移项得:(x -1)2=36,开平方得:x -1=±6,解得:x 1=7,x 2=﹣5,即(x -1)2-36=0中的x 值为7或﹣5.【点睛】本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.16.(1)1;(2)【分析】(1)先计算绝对值再计算乘法最后计算加法;(2)先同时计算乘方减法化简算术平方根再计算乘法最后计算加减法【详解】(1)==-2+3=1;(2)===【点睛】此题考查有理数的混解析:(1)1;(2)1112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法;(2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)2⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+=1112.【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键. 17.255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1得出前面的一个数最大是3再向前推一步取整的最大整数为15依此可得出答案【详解】解:(1)由题意得:64→=8→→=解析:255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.18.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°. 故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.19.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.20.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12【分析】根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.三、解答题21.(1)点P 的坐标为1,42⎛⎫ ⎪⎝⎭.(2)1715,2P ⎛⎫- ⎪ ⎪⎝⎭,2(0,4)P ,3()2,4P ,4(4,4)P .(3)若(5,0)M ,则符合条件的等腰三角形有7个.【分析】(1)因为使点P 在长方形ABCD 的一边上,△OMP 是等腰三角形,点M 的坐标是()1,0,所以点P 是线段OM 的垂直平分线于AD 的交点,即可得解;(2)分14OP OM ==,24OP OM ==,33MP OP =,44OM MP ==进行讨论即可; (3)根据条件作图求解即可;【详解】(1)符合条件的等腰OMP 只有1个;点P 的坐标为1,42⎛⎫ ⎪⎝⎭. (2)符合条件的等腰OMP 有4个.如图②,在1OPM △中,14OP OM ==,在1Rt OBP △中,72BO =,2211BP OP OB =-22742⎛⎫=- ⎪⎝⎭152=, 1715,2P ⎛⎫∴- ⎪ ⎪⎝⎭;在2Rt OMP △中,24OP OM ==,2(0,4)P ∴;在3OMP △中,33MP OP =,∴点3P 在OM 的垂直平分线上,4OM =,3(2,4)P ∴;在4Rt OMP △中,44OM MP ==,4(4,4)P ∴.(3)若(5,0)M ,则符合条件的等腰三角形有7个.点P 的位置如图③所示.【点睛】本题主要考查了等腰三角形的性质,坐标与图形的性质,准确分析计算是解题的关键. 22.(1,3)【分析】过点A 作AM x ⊥轴于M ,BN x ⊥轴于N ,证明AMC CNB ∆≅∆得到AM CN =,MC NB =,即可得到结论.【详解】过点A 作AM x ⊥轴于M ,BN x ⊥轴于N则90AMC BNC ∠=∠=︒90ACB ∠=︒190A ∴∠+∠=︒2190∠+∠=︒2A ∴∠=∠AC CB ∴=AMC CNB ∴∆≅∆AM CN ∴=,MC NB =( 1.0)C -,(4,0)M -3BN ,2ON =(1,0)N ∴()1,3B ∴【点睛】此题主要考查了坐标与图形,证明AMC CNB∆≅∆是解答此题的关键.23.x=1或x=﹣5【分析】依据平方根的性质可得到x+2的值,然后解关于x的一元一次方程即可.【详解】解:∵3(x+2)2=27,∴(x+2)2=9,∴x+2=±3,解得:x=1或x=﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.24.(1)x=32±;(2)x=﹣1.【分析】(1)先变形为x2=94,然后利用平方根的定义得到x的值;(2)先利用立方根的定义得到2x﹣1=﹣3,然后解一次方程即可.【详解】解:(1)4x2=9∴x2=94,∴x=±32;(2)(2x﹣1)3=﹣27,∴2x﹣1=﹣3,∴x=﹣1.【点睛】本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a25.(1)DE∥BC;(2)72°【分析】(1)先根据已知条件得出∠EFC=∠ADC,故AD∥EF,由平行线的性质得∠DEF=∠ADE,再由∠DEF=∠B,可知∠B=∠ADE,故可得出结论.(2)依据DE平分∠ADC,∠BDC=3∠B,即可得到∠ADC的度数,再根据平行线的性质,即可得出∠EFC的度数.【详解】解:(1)DE∥BC.理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC ,∴AD ∥EF ,∴∠DEF=∠ADE ,又∵∠DEF=∠B ,∴∠B=∠ADE ,∴DE ∥BC .(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE ,又∵DE ∥BC ,∴∠ADE=∠B ,∵∠BDC=3∠B ,∴∠BDC=3∠ADE=3∠CDE ,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD ∥EF ,∴∠EFC=∠ADC=72°.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行是解答此题的关键. 26.(1)画图见解析;()3,0E -,()6,1F -,()4,4G ;(2)21.5【分析】(1)分别作出A ,B ,C 的对应点E ,F ,G 即可解决问题.(2)利用分割法求三角形面积即可.【详解】解:(1)如图,△EFG 即为所求,E (-3,0),F (6,-1),G (4,4).(2)S△EFG=5×9-12×1×9-12×5×2-12×4×7=21.5.【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。

【浙教版】七年级下学期数学《期中检测题》带答案解析

【浙教版】七年级下学期数学《期中检测题》带答案解析

七年级下学期数学期中测试卷一、选择题(每小题3分,共30分)1.下列各式:15(1 – x ),43x π-,222x y -,25x x,其中分式有( ) A. 1个B. 2个C. 3个D. 4个2.下列代数运算正确的是( ) A. x •x 6=x 6B. (2x )3=8x 3 C . (x +2)2=x 2+4D. (x 2)3=x 83.下列各组数中,是方程2x-y=8的解的是( ) A. 1,2x y =⎧⎨=-⎩B. 2,0x y =⎧⎨=⎩C. 0.5,7x y =⎧⎨=-⎩D. 5,2x y =⎧⎨=-⎩4.下列从左边到右边的变形,是因式分解的是( ) A. (3﹣x )(3+x )=9﹣x 2 B. x 2+4x +4=x (x +4)+4C. 22111()()x x x x xx +-=-D. a 2b +ab 2+ab =ab (a +b +1)5.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是( )A. 先把△ABC 向左平移5个单位,再向下平移2个单位B. 先把△ABC 向右平移5个单位,再向下平移2个单位C. 先把△ABC 向左平移5个单位,再向上平移2个单位D. 先把△ABC 向右平移5个单位,再向上平移2个单位6.将分式253x y x y -+的分子和分母中的各项系数都化为整数应为( )A.235x yx y-+B.151535x yx y-+C. 1530610x yx y-+D.253x yx y-+7.下列各式中,不能完全用平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④m2﹣m+14;⑤4x4﹣x2+14.A. 1个B. 2个C. 3个D. 4个8.使(x2+px+8)(x2﹣3x+q)乘积中不含x2和x3项的p,q的值分别是()A. p=3,q=1B. p=﹣3,q=﹣9C. p=0,q=0D. p=﹣3,q=19.某校组织学生进行了禁毒知识竞赛,竞赛结束后,菁菁和彬彬两个人的对话如下:根据以上信息,设单选题有x道,多选题有y道,则可列方程组为( )A.40213195x yx y+=⎧⎨-+-=⎩B.402(1)953(1)x yx y+=⎧⎨-=+-⎩C.402(1)3(1)95x yx y+=⎧⎨-+-=⎩D.402395x yx y+=⎧⎨+=⎩10.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法如图:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带①的边线平行,纸带②的边线不平行B. 纸带①的边线不平行,纸带②的边线平行C. 纸带①、②的边线都平行D. 纸带①、②的边线都不平行二、填空题(每小题4分,共24分)11.PM2.5是指每立方米大气中直径小于或等于0.000 0025米的颗粒粉尘,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,将0.000 0025米用科学记数法表示为___________米.12.在二元一次方程x+4y=13中,当x=9时,y=_____.13.化简:3 22234y xx y⋅=_____;2()x yxy xxy--÷=_____.14.已知a、b分别是长方形的长和宽,它的周长为16,面积为10,那么a2b+ab2的值为_____.15.如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有______个.16.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是_____.三、解答题(本大题共8小题,满分66分)17.计算:(1)2018321(1)()32--+-;(2)20182﹣4036×2016+20162.18.如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC∥BD,∠A=∠B,试猜想AE与BF 的位置关系,并说明理由.19.先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.20.解方程组:(1)323813x yx y=+⎧⎨-=⎩(2)1229310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩.21.如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.22.学期即将结束,为了表彰优秀,班主任王老师用W元钱购买奖品.若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x.(2)若用这W元钱全部购买笔记本,总共可以买几本?(3)若王老师用这W元钱恰好能买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有).请求出所有可能的a,b值.23.阅读并解决问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣8a+12;(2)若a+b=7,ab=11,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣6x+11与﹣x2+6x﹣10的大小,说明理由.24.为更好地理清平行线与相关角关系,小明爸爸为他准备了四根细直木条AB、BC、CD、DE,做成折线ABCDE,如图1,且在折点B、C、D处均可自由转出.(1)如图2,小明将折线调节成∠B=60°,∠C=85°,∠D=25°,判别AB是否平行于ED,并说明理由;(2)如图3,若∠C=∠D=25°,调整线段AB、BC使得AB∥CD,求出此时∠B度数,要求画出图形,并写出计算过程.(3)若∠C=85°,∠D=25°,AB∥DE,求出此时∠B的度数,要求画出图形,直接写出度数,不要求计算过程.答案与解析一、选择题(每小题3分,共30分)1.下列各式:15(1 –x),43xπ-,222x y-,25xx,其中分式有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】25xx是分式;1 5(1 –x),43xπ-,222x y-是整式;故选A.点睛:本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.2.下列代数运算正确的是()A. x•x6=x6B. (2x)3=8x3C. (x+2)2=x2+4D. (x2)3=x8【答案】B【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵x·x6=x7,故选项A错误,∵(2x)3=8x3,故选项B正确,∵(x+2)2=x2+4x+4,故选项C错误,∵(x2)3=x6,故选项D错误,故选B.【点睛】本题考查幂的乘方与积的乘方、同底数幂的乘法、完全平方公式,熟练掌握幂的乘方、积的乘方、同底数幂的乘法法则及完全平方公式是解答本题的关键.3.下列各组数中,是方程2x-y=8的解的是()A. 1,2x y =⎧⎨=-⎩B. 2,0x y =⎧⎨=⎩C. 0.5,7x y =⎧⎨=-⎩D. 5,2x y =⎧⎨=-⎩【答案】C 【解析】 【分析】把各项中x 与y 的值代入方程检验即可. 【详解】解:A 、把1,2x y =⎧⎨=-⎩代入方程左边得:2+2=4,右边=8,左边≠右边,故不是方程的解;B 、把2,0x y =⎧⎨=⎩代入方程左边得:4-0=4,右边=8,左边≠右边,故不是方程的解;C 、把0.5,7x y =⎧⎨=-⎩代入方程左边得:1+7=8,右边=8,左边=右边,是方程的解;D 、把5,2x y =⎧⎨=-⎩代入方程左边得:10+2=12,右边=8,左边≠右边,故不是方程的解,故选:C .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 4.下列从左边到右边的变形,是因式分解的是( ) A. (3﹣x )(3+x )=9﹣x 2 B. x 2+4x +4=x (x +4)+4 C. 22111()()x x x x xx +-=-D. a 2b +ab 2+ab =ab (a +b +1) 【答案】D 【解析】 【分析】根据因式分解的意义,可得答案. 【详解】A 、是整式的乘法,故A 错误;B 、没把一个多项式转化成几个整式积的形式,故B 错误;C 、没把一个多项式转化成几个整式积的形式,故C 错误;D 、把一个多项式转化成几个整式积的形式,故D 正确; 故选D .【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.5.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是( )A. 先把△ABC 向左平移5个单位,再向下平移2个单位B. 先把△ABC 向右平移5个单位,再向下平移2个单位C. 先把△ABC 向左平移5个单位,再向上平移2个单位D. 先把△ABC 向右平移5个单位,再向上平移2个单位 【答案】A 【解析】【详解】解:根据网格结构,观察点对应点A 、D ,点A 向左平移5个单位,再向下平移2个单位即可到达点D 的位置,所以,平移步骤是:先把△ABC 向左平移5个单位,再向下平移2个单位. 故选A .6.将分式253x y x y -+的分子和分母中的各项系数都化为整数应为( )A. 235x y x y-+B.151535x yx y-+ C.1530610x yx y -+D.253x yx y-+【答案】C 【解析】 分析】因为分式的分子与分母都含有分母,因此把分子分母同乘所有分母的最小公倍数化简即可. 【详解】2、3、5的最小公倍数为30,253x y x y -+=3023053x y x y ⎛⎫-⨯ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=1530610x yx y-+.故选C .【点睛】此题考查利用分式的基本性质化简分式,注意找出分子分母的最小公倍数.把分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 7.下列各式中,不能完全用平方公式分解的个数为( ) ①x 2﹣10x +25;②4a 2+4a ﹣1;③x 2﹣2x ﹣1;④m 2﹣m +14;⑤4x 4﹣x 2+14. A. 1个 B. 2个C. 3个D. 4个【答案】C 【解析】 【分析】直接利用完全平方公式分解因式进而得出答案. 【详解】①x 2﹣10x +25=(x ﹣5)2,不合题意; ②4a 2+4a ﹣1无法用平方公式分解,符合题意; ③x 2﹣2x ﹣1无法用平方公式分解,符合题意;④m 2﹣m +14=(m ﹣12)2,不合题意; ⑤4x 4﹣x 2+14无法用平方公式分解,符合题意;故选C .【点睛】本题考查了利用完全平方公式分解因式,熟练掌握完全平方公式:a 2±2ab +b 2(a ±b )2是解答本题的关键.8.使(x 2+px +8)(x 2﹣3x +q )乘积中不含x 2和x 3项的p ,q 的值分别是( ) A. p =3,q =1 B. p =﹣3,q =﹣9C. p =0,q =0D. p =﹣3,q =1【答案】A 【解析】 【分析】先根据多项式乘以多项式把()()22x px 8x 3x q ++-+展开,再合并同类项,让2x 和3x 项的系数为0即可.【详解】原式=x 4+(﹣3+p)x 3+(q ﹣3p+8)x 2+(pq ﹣24)x+8q , ∵(x 2+px+8)(x 2﹣3x+q)乘积中不含x 2和x 3项, ∴﹣3+p=0,q ﹣3p+8=0, ∴p=3,q=1, 故选A .【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解题的关键. 9.某校组织学生进行了禁毒知识竞赛,竞赛结束后,菁菁和彬彬两个人的对话如下:根据以上信息,设单选题有x 道,多选题有y 道,则可列方程组( )A. 40213195x y x y +=⎧⎨-+-=⎩B. 402(1)953(1)x y x y +=⎧⎨-=+-⎩C. 402(1)3(1)95x y x y +=⎧⎨-+-=⎩D. 402395x y x y +=⎧⎨+=⎩【答案】C 【解析】【分析】依题意可知,共有40题;两种选项得分和是95分,以此可以列出方程组.【详解】根据以上信息,设单选题有x 道,多选题有y 道,则可根据:共有40题;两种选项得分和是95分,列出()()40213195x y x y +=⎧⎨-+-=⎩ 故选C【点睛】本题考核知识点:二元一次方程组应用. 解题关键点:理解题意,找出相等关系,列出对应方程组. 10.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法如图:小明对纸带①沿AB 折叠,量得∠1=∠2=50°;小丽对纸带②沿GH 折叠,发现GD 与GC 重合,HF 与HE 重合.则下列判断正确的是( )A. 纸带①的边线平行,纸带②的边线不平行B. 纸带①的边线不平行,纸带②的边线平行C. 纸带①、②的边线都平行D. 纸带①、②的边线都不平行【答案】B【解析】【分析】 直接利用翻折变换的性质结合平行线的判定方法得出答案.【详解】如图①所示:1250∠∠==,3250∠∠∴==,45180505080∠∠∴==--=,24∠∠∴≠,∴纸带①的边线不平行;如图②所示:GD 与GC 重合,HF 与HE 重合,CGH DGH 90∠∠∴==,EHG FHG 90∠∠==,CGH EHG 180∠∠∴+=,∴纸带②的边线平行.故选B .【点睛】此题主要考查了平行线的判定以及翻折变换的性质,正确掌握翻折变换的性质是解题关键.二、填空题(每小题4分,共24分)11.PM2.5是指每立方米大气中直径小于或等于0.000 0025米的颗粒粉尘,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,将0.000 0025米用科学记数法表示为___________米.【答案】2.5×10-6 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0025米用科学记数法表示为2.5×10-6; 故答案为2.5×10-6. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在二元一次方程x +4y =13中,当x =9时,y =_____.【答案】1.【解析】【分析】将x 的值代入方程,解关于y 的一元一次方程即可得.【详解】将x =9代入方程x +4y =13,得:9+4y =13,解得:y =1,故答案为1.【点睛】本题主要考查了二元一次方程的解,解题的关键是掌握二元一次方程的解是能使二元一次方程左右两边相等的一对未知数的值.13.化简:322234y x x y ⋅=_____;2()x y xy x xy --÷=_____. 【答案】 (1).6x y(2). ﹣x 2y . 【解析】【分析】约分即可得;先因式分解、除法转化为乘法,再约分即可得. 【详解】3222 346y x x x y y⋅=; ()2x y xy x xy--÷ ()x xy x y x y =-⨯- =﹣x (x ﹣y )×xy x y-=﹣x 2y . 故答案为6x y、﹣x 2y .【点睛】本题主要考查分式的乘除法,解题的关键是掌握分式的约分和乘除运算法则.14.已知a、b分别是长方形的长和宽,它的周长为16,面积为10,那么a2b+ab2的值为_____.【答案】80.【解析】【分析】直接利用已知得出a+b=8,ab=10,再将原式分解因式代入即可.【详解】∵a、b分别是长方形的长和宽,它的周长为16,面积为10,∴2(a+b)=16,ab=10,则a+b=8,a2b+ab2=ab(a+b),=10×8,=80.故答案为80.【点睛】此题主要考查了提取公因式法的应用,正确得出a+b,ab的值是解题关键.15.如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有______个.【答案】3【解析】试题分析:根据平行线的判定定理进行逐一判断即可.解:(1)如果∠3=∠4,那么AC∥BD,故(1)错误;(2)∠1=∠2,那么AB∥CD;内错角相等,两直线平行,故(2)正确;(3)∠A=∠DCE,那么AB∥CD;同位角相等,两直线平行,故(3)正确;(4)∠D+∠ABD=180°,那么AB∥CD;同旁内角互补,两直线平行,故(4)正确.即正确的有(2)(3)(4).故答案为3.16.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是_____.【答案】﹣4、2或0.【解析】【分析】分情况讨论:当x +4=0时;当x ﹣1=1时,分别讨论求解.还有﹣1的偶次幂都等于1.【详解】当x +4=0时,x =-4,原式变为(-4﹣1)0=1成立,当x ﹣1=1时,x =2,原式变为(2﹣1)6=1成立,即x =﹣4或x =2,当x =0时,原式变为(0﹣1)0+4=(﹣1)4=1成立,故本题答案为:﹣4、2或0.【点睛】主要考查了零指数幂的意义,非零数的零次幂等于1,1的任何次幂等于1,-1的偶次幂等于1,-1的奇次幂等于-1.三、解答题(本大题共8小题,满分66分)17.计算:(1)2018321(1)()32--+-; (2)20182﹣4036×2016+20162.【答案】(1)0;(2)4.【解析】【分析】(1)本题涉及乘方、负指数幂2个考点.在计算时,需要针对每个考点分别进行计算,然后根据有理数的运算法则求得计算结果.(2)利用完全平方公式进行计算即可.【详解】(1)原式=1+8﹣9=0;(2)原式=20182﹣4036×2016+20162=20182﹣2×2018×2016+20162=(2018﹣2016)2=4.【点睛】此题主要考查了有理数的混合运算,解决此题的关键是熟练掌握负整数指数幂的意义和完全平方公式.18.如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC ∥BD ,∠A =∠B ,试猜想AE 与BF 的位置关系,并说明理由.【答案】AE∥BF ,理由见解析.【解析】【分析】根据两直线平行同位角相等,可判断∠B =∠DOE ,再根据∠A =∠B ,即可得到∠DOE =∠A ,进而得出AC ∥BD . 【详解】AC ∥BD ,理由:∵AE ∥BF ,∴∠B =∠DOE .∵∠A =∠B ,∴∠DOE =∠A ,∴AC ∥BD .【点睛】本题考查了平行线的判定与性质,解答本题的关键是掌握:两直线平行同位角相等;同位角相等两直线平行.19.先化简,再求值:当|x ﹣2|+(y+1)2=0时,求[(3x+2y )(3x ﹣2y )+(2y+x )(2y ﹣3x )]÷4x 的值. 【答案】4.【解析】【分析】先利用非负性求出,x y 的值,根式整式的混合运算法则对所求式子进行化简,把,x y 的值代入运算即可. 【详解】解:()2210x y -++=, ∴2010x y -=+=,,解得,21x y ==-,,∴()()()()[3232223]4,x y x y y x y x x +-++-÷()22229446234,x y y xy xy x x =-+-+-÷()2644,x xy x =-÷1.5.x y =-当21x y ,时,1.5x y -()1.521,=⨯--31=+=4.20.解方程组:(1)323813x y x y =+⎧⎨-=⎩ (2)1229310x y z x y z x y z ++=⎧⎪+-=⎨⎪-+=⎩.【答案】(1)12x y =-⎧⎨=-⎩;(2)185235195x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩. 【解析】【分析】(1)先把二元一次方程组转化成一元一次方程,求出方程的解,再求出x 即可;(2)把三元一次方程组转化成二元一次方程组,求出方程组的解,再求出z 即可.【详解】(1)把①代入②得:3(3+2y )﹣8y =13,解得:y =﹣2,把y =﹣2代入①得:x =3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得: ++z=12,解得:z=,所以原方程组的解为.【点睛】本题考查了解三元一次方程组和解二元一次方程组,能够消元是解此题的关键.掌握把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.21.如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.【答案】(1)与∠1是同旁内角的有∠AOE,∠MOE,∠ADE;与∠2是内错角的有∠MOE,∠AOE;(2)30.【解析】【分析】(1)根据同位角、内错角的定义(两条直线被第三条直线所截,处于两条直线的同旁,位于第三条直线的一侧的两个角叫同位角,处于两条直线之间,处于第三条直线两侧的两个角叫内错角)逐个判断即可.(2)根据平行线的性质解答即可.【详解】(1)与∠1是同旁内角的有∠AOE,∠MOE,∠ADE;与∠2是内错角的有∠MOE,∠AOE;(2)∵AB∥CD,∴∠BOE=∠1=115°.∵∠BOM=45°,∴∠MOE=∠BOM﹣∠BOE=145°﹣115°=30°,∴向上折弯了30°.【点睛】本题考查了对同位角定义,内错角定义的应用,主要考查学生的理解能力,题目是一道比较好的题目,难度适中.平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.22.学期即将结束,为了表彰优秀,班主任王老师用W元钱购买奖品.若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x.(2)若用这W元钱全部购买笔记本,总共可以买几本?(3)若王老师用这W元钱恰好能买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有).请求出所有可能的a,b值.【答案】(1)32x y=; (2)360本;(3)2{9ab==,4{6ab==,6{3ab==.【解析】【分析】(1)本题中的相等关系是“以2支钢笔和3本笔记本为一份奖品,则可买60份奖品”和“以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品”,列方程组求解即可;(2)由(1)把w元用x,y的代数式表示,再除以y即得.(3)设可以选择a支钢笔和b本笔记本作为一份奖品.列方程60(2x+3y)=30(ax+by),解出后分情况讨论.【详解】(1)由题意得:60(2x+3y)=40(2x+6y),化简得:32x y =.(2)60(2x+3y)÷y=360(本)答:总共可以买360本;(3)由题意得:60(2x+3y)=30(ax+by),把32x y=代入得:3122a b+=,解得此方程的正整数解为29ab=⎧⎨=⎩,46ab=⎧⎨=⎩,63ab=⎧⎨=⎩.【点睛】此题考查的是二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,利用二元一次方程组求解的应用题一般情况下题目中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.23.阅读并解决问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣8a+12;(2)若a+b=7,ab=11,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣6x+11与﹣x2+6x﹣10的大小,说明理由.【答案】(1)(a﹣6)(a﹣2);(2)①27,②245;(3)x2﹣6x+11>﹣x2+6x﹣10.【解析】【分析】(1)把a2﹣8a+12先加上16,再减去16,利用配方法计算;(2)①加2a b再减2ab可以组成完全平方式;②在①得基础上,加2a2b2再减2a2b2,可以组成完全平方式;(3)把所给的代数式进行配方,然后比较即可.【详解】(1)a2﹣8a+12,=a2﹣8a+16﹣4,=(a﹣4)2﹣22=(a﹣6)(a﹣2);(2)①a2+b2=(a+b)2﹣2ab=49﹣22=27,②a4+b4=(a2+b2)2﹣2a2b2=487;(3)x2﹣6x+11,=(x﹣3)2+2≥2,﹣x2+6x﹣10=﹣(x﹣3)2﹣1≤﹣1,∴x2﹣6x+11>﹣x2+6x﹣10.【点睛】本题考查了配方法,先加上一次项系数一半的平方,使式中出现完全平方式,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.24.为更好地理清平行线与相关角的关系,小明爸爸为他准备了四根细直木条AB、BC、CD、DE,做成折线ABCDE,如图1,且在折点B、C、D处均可自由转出.(1)如图2,小明将折线调节成∠B=60°,∠C=85°,∠D=25°,判别AB是否平行于ED,并说明理由;(2)如图3,若∠C=∠D=25°,调整线段AB、BC使得AB∥CD,求出此时∠B的度数,要求画出图形,并写出计算过程.(3)若∠C=85°,∠D=25°,AB∥DE,求出此时∠B的度数,要求画出图形,直接写出度数,不要求计算过程.【答案】(1)AB∥DE;(2)155°;(3)∠B的度数为60°或120°或70°或110°.【解析】【分析】(1)过点C作CF∥AB,利用平行线的判定和性质解答即可;(2)分别画图3和图4,根据平行线的性质可计算∠B的度数;(3)分别画图,根据平行线的性质计算出∠B的度数.【详解】(1)AB∥DE,理由是:如图2,过点C作CF∥AB,∴∠B=∠BCF=60°.∵∠BCD=85°,∴∠CDF=25°.∵∠D=25°,∴∠D=∠DCF=25°,∴CF∥DE,∴AB∥DE;(2)如图3.∵AB∥CD,∴∠B=∠BCD=25°;如图4:∵AB∥CD,∴∠B+∠BCD=180°,∴∠ABC=180°﹣25°=155°;(3)如图2,由(1)得:∠B=85°﹣25°=60°;如图5,过C作CF∥AB,则AB∥CF∥CD,∴∠FCD=∠D=25°.∵∠BCD=85°,∴∠BCF=85°﹣25°=60°.∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=120°;如图6.∵∠C=85°,∠D=25°,∴∠CFD=180°﹣85°﹣25°=70°.∵AB∥DE,∴∠B=∠CFD=70°,如图7,同理得:∠B=25°+85°=110°.综上所述:∠B的度数为60°或120°或70°或110°.【点睛】本题主要考查了平行线的性质和三角形内角和的运用,解决问题的关键是作辅助线构造同位角以及内错角,依据平行线的性质及三角形外角性质进行推导计算.精品试卷。

浙教版七年级下册数学期中考试试卷带答案

浙教版七年级下册数学期中考试试卷带答案

浙教版七年级下册数学期中考试试题一、单选题1.下列图形中,1∠和2∠不是同位角的是()A .B.C .D.2.下列方程组中是二元一次方程组的是()A .12xy x y =⎧⎨+=⎩B .52313x y y x-=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723x x y =⎧⎪⎨+=⎪⎩3.如图,△ABC 沿BC 所在直线向右平移得到△DEF ,已知EC =2,BF =8,则平移的距离为()A .3B .4C .5D .64.如图,若//AB CD ,则下列结论正确的是()A .13∠=∠B .24∠∠=C .A C ∠=∠D .23∠∠=5.下列计算中,正确的是()A .(a +b )2=a 2+b 2B .(a 2b )3=a 5b 3C .a 2+a 3=a 5D .(a +2b )(a ﹣2b )=a 2﹣4b 26.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒、则下列方程组中符合题意的是()A .352x y y x +=⎧⎨=⎩B .3520230x y x y +=⎧⎨=⨯⎩C .3522030x y x y +=⎧⎪⎨=⎪⎩D .3530202x y y x +=⎧⎪⎨=⎪⎩7.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A .先右转45°,再左转45°B .先左转45°,再右转135°C .先左转45°,再左转45°D .先右转45°,再右转135°8.下列命题中正确的是()A .同位角相等B .过一点有且只有一条直线与已知直线平行C .如果一个角的两边分别平行于另一个角的两边,那么这两个角相等D .在同一平面内,垂直于同一条直线的两条直线互相平行9.若x =2m +1,y =4m ﹣3,则下列x ,y 关系式成立的是()A .y =(x ﹣1)2﹣4B .y =x 2﹣4C .y =2(x ﹣1)﹣3D .y =(x ﹣1)2﹣310.已知关于x ,y 的方程组22331x y k x y k +=⎧⎨+=-⎩以下结论:①当k =0时,方程组的解也是方程x ﹣2y =﹣4的解;②存在实数k ,使得x +y =0;③不论k 取什么实数,x +3y 的值始终不变;④若3x +2y =6则k =1.其中正确的是()A .①②③B .①②④C .①③④D .①④二、填空题11.如图,直线AB //CD ,∠B =70°,∠D =30°,则∠E 的度数是______.12.已知236x y -=,用x 的代数式表示y ,则y =________.13.若a m =5,a n =2,则a 3m +2n =_____.14.若关于x ,y 的二次三项式9x 2+mxy +4y 2是一个完全平方式,则m =_____.15.如图,点F 是长方形ABCD 的边BC 上一点,将长方形的一角沿AF 折叠,点B 落在点E处,若AE∥BD,∠ADB=28°,则∠AFC=_____°.16.如图,点M是AB中点,点P在MB上,分别以AP,BP为边作正方形APCD和正方形PBEF,连接MD和ME.设AP=a,BP=b,且a+b=6,ab=7,则图中阴影部分的面积为______.三、解答题17.计算:(1)(2x4)2﹣3x3•4x5;(2)(x﹣3y)2﹣(x﹣2y)(x+2y).18.解方程组:(1)5 28 x yx y=+⎧⎨-=⎩;(2)3410 435 x yx y+=⎧⎨-=⎩.19.(1)已知m,n是系数,且mx2﹣2xy+y与3x2+2nxy+3y的差中不含二次项,求m2+2mn+n2的值.(2)设b=2am,是否存在实数m使得(a+2b)2+(2a+b)(2a﹣b)﹣4b(a+b)能化简为a2,若能,请求出满足条件的m值;若不能,请说明理由.20.如图,已知∠1=∠2,∠3=40°,求∠5的度数.解:∵∠1=∠4,().又∵∠1=∠2,∴∠2=∠4,∴∥,().∴∠5+∠=180°,().又∵∠3=40°,∴∠5=°.21.点B,E分别在AC,DF上,BD,CE分别交AF于点G,H,∠AGB=∠EHF,∠C=∠D.求证:AC//DF.22.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车,据了解,3辆A型汽车和4辆B型汽车的进价共计115万元;4辆A型汽车和2辆B型汽车的进价共计120万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请试写出该公司的采购方案.x的大长方形被分割为10块,除A、B两块外,其余8块是23.如图,长为60cm,宽为cma.形状、大小完全一样的小长方形,其较短一边长为cm(1)从图可知,每个小长方形较长一边长是____________cm.(用含a的代数式表示)(2)求图中A、B两块的周长和为多少?(3)分别用含a、x和代数式表示A、B两块的面积,并求a为何值时这两块面积相等?24.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)参考答案1.C【分析】根据同位角的定义特点来分析判断即可:在截线的同侧,并且在被截线的同一方的两个角是同位角.【详解】根据同位角的定义判断,A,B,D是同位角,故选C.【点睛】此题主要考查了同位角,熟练掌握其定义是解题的关键.2.D【分析】二元一次方程是指含有两个未知数,并且所含未知数的项的次数都是1的方程.两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组.【详解】A选项中最高次数为2次,则不是;B选项中含有分式,则不是;C选项中含有3个未知数,则不是;故本题选择D.【点睛】本题主要考查的就是二元一次方程组的定义问题,对于二元一次方程组,我们只要满足这两个方程满足有2个未知数即可,例如:11xy=⎧⎨=⎩这也是一个二元一次方程组,同时这也是一个二元一次方程组的解.在解决定义问题的时候特别要注意不能含有分式,否则就不是二元一次方程组.3.A【分析】根据平移的性质证明BE=CF即可解决问题.【详解】解:由平移的性质可知,BC =EF ,∴BE =CF ,∵BF =8,EC =2,∴BE +CF =8﹣2=6,∴CF =BE =3,故选:A .【点睛】本题考查平移的性质,掌握平移的性质是解题的关键.4.B【分析】根据平行线的性质解答即可.【详解】解∵AB ∥CD ,∴24∠∠=,故选:B .【点睛】本题考查平行线的性质,熟练掌握平行线的性质,找准截线与被截线以及所得角的位置关系是解答的关键.5.D【分析】根据平方差公式、完全平方公式、幂的乘方与积的乘方公式逐项判定即可.【详解】解:A ,(a +b )2=a 2+2ab +b 2,故此选项不符合题意;B ,(a 2b )3=a 6b 3,故此选项不符合题意;C ,a 2+a 3≠a 5,故此选项不符合题意;D ,(a +2b )(a -2b )=a 2-4b 2,故此选项符合题意.故选:D .【点睛】此题考查了平方差公式、完全平方公式、幂的乘方与积的乘方公式,熟练掌握有关知识是解题的关键.6.D【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的铁皮张数+制作盒底的铁皮张数=35,再列出方程组即可.【详解】解:设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒,根据题意可列方程组:3530202x y y x +=⎧⎪⎨=⎪⎩,故选:D .【点睛】本题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.7.A【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等画出图形,根据图形直接解答即可.【详解】解:A选项画图如下:可得平行,且与原来方向相同;B 选项画图如下:可得不平行;C选项画图如下:可得不平行;D选项画图如下:可得平行,但与原来方向相反;故选A.【点睛】本题考查平行线的性质,根据题意画出图形是解答此题的关键.8.D【分析】根据对顶角的定义对A进行判断;利用平行线的性质对B、C进行判断;利用平行线的判定对D进行判断.【详解】A、相等两个角不一定是对顶角,故A错误,是假命题;B 、过直线外一点,有且只有一条直线与已知直线平行,故B 错误,是假命题;C 、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故C 错误,是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,故选D.【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.9.D【分析】根据幂的乘方法则可得y =4m -3=22m -3,由x =2m +1可得2m =x -1,再根据幂的乘方计算即可.【详解】解:∵x =2m +1,∴2m =x -1,∴y =4m -3=22m -3=(x -1)2-3,故选:D .【点睛】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.10.A【分析】直接利用二元一次一次方程组的解法表示出方程组的解进而分别分析得出答案.【详解】解:①当0k =时,原方程组可整理得:20231x y x y +=⎧⎨+=-⎩,解得:21x y =-⎧⎨=⎩,把21x y =-⎧⎨=⎩代入24-=-x y 得:2224x y -=--=-,即①正确,②解方程组22331x y k x y k +=⎧⎨+=-⎩,得:321x k y k=-⎧⎨=-⎩,若0x y +=,则(32)(1)0k k -+-=,解得:12k =,即存在实数k ,使得0x y +=,即②正确,③解方程组,22331x y k x y k +=⎧⎨+=-⎩,得:321x k y k =-⎧⎨=-⎩,3323(1)1x y k k ∴+=-+-=,∴不论k 取什么实数,3x y +的值始终不变,故③正确;④解方程组,22331x y k x y k +=⎧⎨+=-⎩,得:321x k y k =-⎧⎨=-⎩,若326x y +=107k ∴=,故④错误,故选:A .【点睛】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的技能和二元一次方程的解得定义.11.40°【分析】根据平行线的性质,得出∠BMD =∠B =70°,再根据三角形外角的性质得∠BMD =∠D +∠E ,即可得出∠E .【详解】解:∵AB ∥CD ,∴∠BMD=∠B=70°,又∵∠BMD是△MDE的外角,∴∠E=∠BMD-∠D=70°-30°=40°.故答案为:40°.【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.12.−2+2 3x【详解】移项得,−3y=6−2x,系数化为1得,y=−2+2 3 x.故答案为−2+2 3 x.13.500【分析】根据同底数幂的乘法法则以及幂的乘方运算法则计算即可.【详解】解:∵a m=5,a n=2,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=53×22=125×4=500.故答案为:500.【点睛】本题考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.14.±12【分析】结合完全平方公式:a2±2ab+b2=(a±b)2可直接求解.【详解】解:由题意得9x2+mxy+4y2=(3x±2y)2=9x2+±12xy+4y2,∴m=±12,故答案为±12.【点睛】本题主要考查完全平方式,灵活运用完全平方公式是解题的关键.15.149【分析】根据矩形的性质得∠BAD =∠ABC =90°,再根据平行线的性质,由AE ∥BD 得到∠DAE =∠ADB =28°,接着根据折叠的性质得∠BAF =∠EAF =59°,然后根据三角形外角性质计算∠AFC 的度数.【详解】解:∵四边形ABCD 为矩形,∴∠BAD =∠ABC =90°,∵AE ∥BD ,∴∠DAE =∠ADB =28°,∴∠BAE =∠BAD+∠DAE =90°+28°=118°,∵矩形ABCD 沿AF 折叠,点B 落在点E 处,∴∠BAF =∠EAF =12∠BAE =12×118°=59°,∴∠AFC =∠BAF+∠ABF =59°+90°=149°.故答案为149.【点睛】本题考查了矩形的性质和折叠的性质,熟悉相关性质是解题的关键.16.13【分析】由题意可得1()2AM BM a b ==+,再根据ADM MBE APCD PBEF S S S S S ∆∆=+--阴影正方形正方形即可求得阴影部分面积.【详解】解:AP a = ,BP b =,1()2AM BM a b ==+.ADM MBEAPCD PBEF S S S S S ∆∆∴=+--阴影正方形正方形221111()()2222a b a a b b a b =+-⋅+-⋅+2221()4a b a b =+-+221()2()4a b ab a b =+--+22162764=-⨯-⨯36149=--13=.故答案为:13.【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解,解决完全平方公式的推导过程.通过几何图形之间的数量关系对完全平方公式作出几何意义阐释.17.(1)-8x 8;(2)13y 2-6xy 【分析】根据整式的混合运算法则进行计算即可.【详解】解:(1)(2x 4)2-3x 3•4x 5=4x 8-12x 8=-8x 8.(2)(x -3y )2-(x -2y )(x +2y )=x 2+9y 2-6xy -(x 2-4y 2)=x 2+9y 2-6xy -x 2+4y 2=13y 2-6xy .【点睛】本题考查整式的混合运算,解题的关键是注意符号的变化.18.(1)32x y =⎧⎨=-⎩;(2)21x y =⎧⎨=⎩【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1)528x y x y =+⎧⎨-=⎩①②,①代入②,可得:2(5)8y y +-=,解得2y =-,把2y =-代入①,解得3x =,∴原方程组的解是32x y =⎧⎨=-⎩.(2)3410435x y x y +=⎧⎨-=⎩①②,①3⨯+②4⨯,可得2550x =,解得2x =,把2x =代入①,解得1y =,∴原方程组的解是21x y =⎧⎨=⎩.【点睛】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.19.(1)4;(2)m =±1【分析】(1)先列出算式,再化简,根据已知条件得出m -3=0,-2-2n =0,求出m 、n 的值,最后求出答案即可;(2)先算乘法,再合并同类项,最后得出5-4m 2=1,求出m 即可.【详解】解:(1)(mx 2-2xy +y )-(3x 2+2nxy +3y )=mx 2-2xy +y -3x 2-2nxy -3y=(m -3)x 2+(-2-2n )xy -2y ,∵mx 2-2xy +y 与3x 2+2nxy +3y 的差中不含二次项,∴m -3=0,-2-2n =0,解得:m =3,n =-1,∴m 2+2mn +n 2=(m +n )2=(3-1)2=4;(2)∵b =2am ,∴(a +2b )2+(2a +b )(2a -b )-4b (a +b )=a 2+4ab +4b 2+4a 2-b 2-4ab -4b 2=5a 2-b 2=5a2-(2am)2=(5-4m2)a2,当5-4m2=1时,m=±1,所以存在实数m,使得(a+2b)2+(2a+b)(2a-b)-4b(a+b)能化简为a2,此时m=±1.【点睛】本题考查了整式的混合运算与求值,能正确根据整式的运算法则进行化简是解此题的关键.20.见解析【分析】利用对顶角相等易得∠1=∠4,再用等量代换得出∠2=∠4,根据同位角相等可判定两直线平行,再根据两直线平行同旁内角互补可求∠5.【详解】解:∵∠1=∠4,(对顶角相等)又∵∠1=∠2,∴∠2=∠4,∴a//b,(同位角相等,两直线平行)∴∠5+∠3=180°,(两直线平行,同旁内角互补)又∵∠3=40°,∴∠5=140°.【点睛】本题考查平行线的判定与性质,熟记平行线的判定定理与性质是解题的关键.21.见解析【分析】由已知条件判断得到∠DGF=∠EHF,故EC∥BD,利用平行线的性质与已知条件得到∠D=∠ABD进而求证.【详解】解:证明:∵∠AGB=∠EHF,∠AGB=∠DGF,∴∠DGF=∠EHF,∴EC∥BD,∴∠C=∠ABD,∵∠C=∠D,∴∠D =∠ABD ,∴AC ∥DF .【点睛】本题考查了平行线的性质与判定,关键是找到合适的的同位角,内错角,进而判断.22.(1)A 型汽车进价为25万元/辆,B 型汽车进价为10万元/辆;(2)该公司有两种购买方案,方案1:购进A 型汽车2辆,B 型汽车15辆;方案2:购进A 型汽车4辆,B 型汽车10辆【分析】(1)设A 型汽车进价为x 万元/辆,B 型汽车进价为y 万元/辆,根据“3辆A 型汽车和4辆B 型汽车的进价共计115万元;4辆A 型汽车和2辆B 型汽车的进价共计120万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型汽车m 辆,则购进B 型汽车5(20)2m -辆,根据购进的B 种型号的新能源汽车数量多于A 种型号的新能源汽车数量,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再结合m 、5(20)2m -均为正整数,即可得出各购买方案.【详解】解:(1)设A 型汽车进价为x 万元/辆,B 型汽车进价为y 万元/辆,依题意得:3411542120x y x y +=⎧⎨+=⎩,解得:2510x y =⎧⎨=⎩.答:A 型汽车进价为25万元/辆,B 型汽车进价为10万元/辆.(2)设购进A 型汽车m 辆,则购进B 型汽车200255(20)102m m -=-辆,依题意得:5202m m ->,解得:407m <.又m 、5(20)2m -均为正整数,2m ∴=或4m =.当2m =时,520152m -=;当4m =时,520102m -=.该公司有两种购买方案,方案1:购进A型汽车2辆,B型汽车15辆;方案2:购进A型汽车4辆,B型汽车10辆.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)60-4a;(2)4x;(3)S A=(60-4a)(x-4a),S B=4a(x-60+4a),a=15 2【分析】(1)从图可知,每个小长方形较长一边长是大长方形的长-小长方形宽的4倍;(2)从图可知,A的长+B的宽=x,A的宽+B的长=x,依此求出两块阴影A、B的周长和;(3)根据长方形的面积=长×宽即可表示阴影A、B的面积,再令S A=S B,即可求出a的值.【详解】解:(1)每个小长方形较长一边长是(60-4a)cm.故答案为(60-4a);(2)∵A的长+B的宽=x,A的宽+B的长=x,∴A、B的周长和=2(A的长+A的宽)+2(B的长+B的宽)=2(A的长+B的宽)+2(B的长+A的宽)=2x+2x=4x;(3)∵S A=(60-4a)(x-4a),S B=4a(x-60+4a),∵A、B两块的面积相等,∴(60-4a)×(x-4a)=4a(x-60+4a),(60-4a)x-4a(60-4a)=4ax-4a(60-4a),(60-4a)x=4ax,(60-4a)x-4ax=0,(60-8a)x=0,60-8a=0,解得:a=15 2 .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.(1)见解析;(2)55°;(3)1118022αβ︒-+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠,BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒,55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠,BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=,1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD ∠的度数为1118022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。

浙教版数学七年级下学期《期中考试试卷》带答案解析

浙教版数学七年级下学期《期中考试试卷》带答案解析

浙教版七年级下学期期中测试卷一、选择题1.在下列的计算中,正确的是()A. 325m m m⋅= B. 623m m m÷= C. ()3326m m= D. ()2211m m+=+2.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为()A. 0.65×10﹣5B. 65×10﹣7C. 6.5×10﹣6D. 6.5×10﹣53.如图,∠B的同位角可以是()A. ∠1 B. ∠2 C. ∠3 D. ∠44.下列各组数中,不是..23x y+=的解是()A. 11x y=⎧⎨=⎩ B. 122x y⎧=⎪⎨⎪=⎩ C. 21x y=-⎧⎨=⎩ D. 15x y=-⎧⎨=⎩5.如图所示,点E在AC的延长线上,下列条件中能判断AB CD∥的是()A. 3A∠=∠ B. 12∠=∠ C. D DCE∠=∠ D. 180D ACD∠+∠=︒6.如果(x+1)(2x+m)的乘积中不含x的一次项,则m的值为()A. 2B. -2C. 0.5D. -0.57.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A. 50°B. 55°C. 60°D. 65°8.下列整式的运算可以运用平方差公式计算的有( )①()()22m n n m +-;②()()2244a b b a --;③()()x y x y +--;④()()33a b a b +-+A. 1个B. 2个C. 3个D. 4个9.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A. 5{152x y x y =+=-B. 5{1+52x y x y =+=C. 5{2-5x y x y =+=D. -5{2+5x y x y ==10.在关于x ,y 的二元一次方程组2332x y a x y a +=-⎧⎨-=⎩的下列说法中,错误的是( )A. 当2a =时,方程的两根互为相反数B. 不存在自然数a 使得x ,y 均为正整数C. x ,y 满足关系式56x y -=D. 当且仅当5a =-时解得x 为y 的2倍二、填空题11.写出一个以13x y =-⎧⎨=⎩为解的二元一次方程______. 12.如图,已知l 1∥l 2,直线l 与l 1、l 2相交于C 、D 两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=_____°.13.已知25x =,23y =,则22x y +=________.14.定义运算“*”,规定2*x y ax by =+,其中a ,b 为常数,且1*25=,2*16=,则a =______,b =______. 15.()()()()24831313131++++=______.16.现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片1()2a b a<<如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大29ab-,则小正方形卡片的面积是__.三、解答题17.计算:(1)()()012332π----+-(2)()()22234xy x y x y-⋅+18.用适当方法解下列方程组:(1)1410x yx y=-⎧⎨+=⎩(2)()34332111x yx y⎧+=⎪⎨⎪--=⎩19.先化简,再求值:(2x+3)(2x-3)-(x-2)2-3x(x-1),其中x=2.20.如图,AB//CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.请说明直线AD//BC的理由.21.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?22.阅读:已知4a b+=-,3ab=,求22a b+的值.解:∵4a b+=-,3ab=,∴()()2222242310a b a b ab+=+-=--⨯=.请你根据上述解题思路解答下面问题:(1)已知3a b -=-,2ab =-,求22a b +的值.(2)已知()1012m n p m p n --=--=-,,求()22m p n -+的值.23.为更好地理清平行线与相关角的关系,小明爸爸为他准备了四根细直木条AB 、BC 、CD 、DE ,做成折线ABCDE ,如图1,且在折点B 、C 、D 处均可自由转出.(1)如图2,小明将折线调节成60B ∠=︒,85C ∠=︒,25D ∠=︒,判断AB 是否平行于ED ,并说明现由;(2)如图3,若25C D ∠=∠=︒,调整线段AB 、BC 使得AB CD ∥,求出此时B 的度数,要求画出图形,并写出计算过程.(3)若85C ∠=︒,25D ∠=︒,AB DE ∥,请直接写出....此时B 的度数.24.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米.如图是关于我市去年全程马拉松比赛的部分信息.若每个固定医疗站安排2位医疗员,其中与补给站重合的医疗站安排1位医疗员,则需要54个医疗员;若每个固定医疗站安排3个医疗员,其中与补给站重合的医疗站安排2位医疗员,则需要83个医疗员. (1)本次马拉松比赛共设置______个补给站; (2)固定医疗站点共有多少个?(3)沿途中,补给站和固定医疗站点重合处距离起点多少千米?答案与解析一、选择题1.在下列的计算中,正确的是( ) A. 325m m m ⋅= B. 623m m m ÷=C. ()3326m m =D. ()2211m m +=+【答案】A 【解析】 【分析】各项计算得到结果,即可作出判断. 【详解】解:A 、正确,符合题意; B 、原式=m 4,不符合题意;C 、原式=8m 3,不符合题意;D 、原式=m 2+2m+1,不符合题意, 故选:A . 【点睛】此题考查整式的混合运算,熟练掌握运算法则是解题的关键.2.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A. 0.65×10﹣5B. 65×10﹣7 C. 6.5×10﹣6 D. 6.5×10﹣5 【答案】C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.0000065的小数点向右移动6位得到6.5, 所以数字0.0000065用科学记数法表示为6.5×10﹣6, 故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图,∠B 的同位角可以是( )A. ∠1B. ∠2C. ∠3D. ∠4【答案】D 【解析】 【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案. 【详解】∠B 的同位角可以是:∠4. 故选D .【点睛】此题主要考查了同位角的定义,正确把握定义是解题关键. 4.下列各组数中,不是..23x y +=的解是( )A. 11x y =⎧⎨=⎩B. 122x y ⎧=⎪⎨⎪=⎩C. 21x y =-⎧⎨=⎩D. 15x y =-⎧⎨=⎩【答案】C 【解析】 【分析】把x 与y 的值代入方程检验即可.【详解】A 、把11x y =⎧⎨=⎩代入方程得:左边=2+1=3,右边=3,∵左边=右边,∴是方程的解;B 、把122x y ⎧=⎪⎨⎪=⎩代入方程得:左边=1+2=3,右边=3,∵左边=右边,∴是方程的解; C 、把21x y =-⎧⎨=⎩代入方程得:左边=-4+1=-3,右边=3,∵左边≠右边,∴不是方程的解;D 、把15x y =-⎧⎨=⎩代入方程得:左边=-2+5=3,右边=3,∵左边=右边,∴是方程的解, 故选:C .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 5.如图所示,点E 在AC 的延长线上,下列条件中能判断AB CD ∥的是( )A. 3A ∠=∠B. 12∠=∠C. D DCE ∠=∠D. 180D ACD ∠+∠=︒【答案】B 【解析】 【分析】根据平行线的判定分别进行分析可得答案.【详解】A 、∠3=∠A ,无法得到,AB ∥CD ,故此选项错误;B 、∠1=∠2,根据内错角相等,两直线平行可得:AB ∥CD ,故此选项正确;C 、∠D=∠DCE ,根据内错角相等,两直线平行可得:BD ∥AC ,故此选项错误;D 、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD ∥AC ,故此选项错误; 故选:B .【点睛】此题考查平行线的判定,解题关键是掌握平行线的判定定理. 6.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( ) A. 2 B. -2C. 0.5D. -0.5【答案】B 【解析】 【分析】原式利用多项式乘以多项式法则计算,根据乘积中不含x 的一次项,求出m 的值即可. 【详解】(x+1)(2x+m )=2x 2+(m+2)x+m , 由乘积中不含x 的一次项,得到m+2=0, 解得:m=-2, 故选B .【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.7.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于( )A. 50°B. 55°C. 60°D. 65°【答案】A 【解析】 【分析】首先根据AD ∥BC ,求出∠FED 的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小. 【详解】解:∵AD ∥BC , ∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°, ∴∠AED′=180°-2∠FED=50°. 故∠AED′等于50°. 故选A .【点睛】本题主要考查平行线的性质及折叠的性质,掌握两直线平行内错角相等是解题的关键.8.下列整式的运算可以运用平方差公式计算的有( )①()()22m n n m +-;②()()2244a b b a --;③()()x y x y +--;④()()33a b a b +-+A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】根据组成平方差公式的前提是两式必须一项相同,另一项互为相反数,即可得出答案. 【详解】①一个数相同,一个数相反,可以运用平方差公式运算, ②两个数相反,不可以运用平方差公式运算, ③两个数相反,不可以运用平方差公式运算,④一个数相同,一个数相反,可以运用平方差公式运算. 所以可以运用平方差公式计算的有2个, 故选:B .【点睛】此题考查平方差公式,完全平方公式,根据组成平方差公式的前提是两式必须一项相同,另一项互为相反数是解题的关键.9.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A. 5{152x y x y =+=-B. 5{1+52x y x y =+=C. 5{2-5x y x y =+=D. -5{2+5x y x y ==【答案】A 【解析】 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.在关于x ,y 的二元一次方程组2332x y a x y a +=-⎧⎨-=⎩的下列说法中,错误的是( )A. 当2a =时,方程的两根互为相反数B. 不存在自然数a 使得x ,y 均为正整数C. x ,y 满足关系式56x y -=D. 当且仅当5a =-时解得x 为y 的2倍【答案】B 【解析】 【分析】利用加减法求出关于x 、y 的二元一次方程组2332x y a x y a+=-⎧⎨-=⎩的解(用含a 的代数式表示),再根据A 、B 、C、D所述列出算式、方程和不等式组,解集不存在的即为正确答案.【详解】二元一次方程组2332x y ax y a+=-⎧⎨-=⎩得,53797axay-⎧⎪⎪⎨-⎪⎪⎩==,当a=2时,=1=1xy⎧⎨-⎩,故当a=2时,方程两根互为相反数;此选项不符合题意;∵x=537a-,∴a=73 5 x+,代入y=97a-得,x-5y=6,∴x,y满足关系式x-5y=6,此选项不符合题意;当a=-5时,x=-4,y=-2,∴当且仅当a=-5时解得x为y的2倍,此选项不符合题意;当x>0,y>0时,则53090aa-⎧⎨-⎩>>,∴a>9,∴当a=16时,x=11,y=1,(x,y均为正整数),∴存在自然数a使得x,y均为正整数,此选项符合题意.故选:B.【点睛】此题考查二元一次方程组的解,同时涉及方程组的解集,解题关键在于掌握运算法则.二、填空题11.写出一个以13xy=-⎧⎨=⎩为解的二元一次方程______.【答案】x+y=2【解析】【分析】先由-1和3列出一个算式:-1+3=2,即可得出x=-1,y=3为x+y=2的解,得到正确答案.【详解】根据题意得:x+y=2.故答案为:x+y=2.【点睛】此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.12.如图,已知l 1∥l 2,直线l 与l 1、l 2相交于C 、D 两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=_____°.【答案】20【解析】先根据平行线的性质,得到∠BDC =50°,再根据∠ADB =30°,即可得出∠2=20°. 解:如图所示,∵∠1=130°, ∴∠3=50°, 又∵l 1∥l 2,∴∠BDC =∠3=50°, ∵∠ADB =30°, ∴∠2=20°, 故答案为20.13.已知25x =,23y =,则22x y +=________.【答案】75【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】∵25x =,23y =,∴22x y +=22x ×2y =(2x )2×2y =52×3=75,故答案为75.【点睛】本题考查了同底数幂乘法、幂的乘方,熟练掌握相关运算法则并能逆用进行变形是解题的关键.14.定义运算“*”,规定2*x y ax by =+,其中a ,b 为常数,且1*25=,2*16=,则a =______,b =______. 【答案】 (1). 1 (2). 2【解析】【分析】由已知条件列出方程组2=54=6a b a b +⎧⎨+⎩,求出a=1,b=2,由此能求出2*3的值. 【详解】∵x*y=ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,∴2=54=6a b a b +⎧⎨+⎩,解得a=1,b=2, 故答案为:1,2.【点睛】此题考查解二元一次方程组,解题关键在于合理运用新定义解题.15.()()()()24831313131++++=______. 【答案】16312-. 【解析】【详解】()()()()()()()24816248(31)(31)3131313131313131=312-++++-++++=- 【点睛】考点:平方差公式的应用.16.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片1()2a b a <<如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大29ab -,则小正方形卡片的面积是__.【答案】3【解析】【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,再利用整式的混合运算法则计算即可.【详解】图3中的阴影部分的面积为:2()a b -,图2中的阴影部分的面积为:2(2)b a -,由题意得,22()(2)=29a b b a ab ---- ,整理得,23b = ,则小正方形卡片的面积是3故答案为3.【点睛】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键.三、解答题17.计算:(1)()()012332π----+- (2)()()22234xy x y x y -⋅+【答案】(1)-1012;(2)4534x y x y + 【解析】【分析】 (1)原式利用负指数幂计算,有理数的乘方法则,零指数幂,解可计算.(2)首先计算乘方,然后计算同底数的幂的乘法,在合并同类项即可求解;【详解】(1)原式=-9-1-12=-1012; (2)()()22234xyx y x y -⋅+ =()24234x y x y x y⋅+=4534x y x y + 【点睛】此题考查整式的混合运算,实数的混合运算,正确理解幂的运算法则,以及整式的运算法则是解题关键.18.用适当方法解下列方程组:(1)1410x y x y =-⎧⎨+=⎩ (2)()34332111x y x y ⎧+=⎪⎨⎪--=⎩【答案】(1)=3=-2xy⎧⎨⎩;(2)=69=2xy⎧⎪⎨⎪⎩.【解析】【分析】(1)把第一个方程代入第二个方程,利用代入消元法求解即可;(2)先把方程组中的方程化为不含分母及括号的方程,再用加减消元法求解即可.【详解】解:(1)1410x yx y=-⎧⎨+=⎩①②,①代入②得,4(1-y)+y=10,解得y=-2,把y=2代入①得,x=1+2=3,所以,方程组的解是=3=-2xy⎧⎨⎩;(2)原方程组可化为3436329x yx y+⎧⎨-⎩=①=②,①-②得,6y=27,解得y=92,把y=92代入②得,3x-9=9,解得x=6,故此方程组的解为=69=2xy⎧⎪⎨⎪⎩.【点睛】此题考查解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解题的关键.19.先化简,再求值:(2x+3)(2x-3)-(x-2)2-3x(x-1),其中x=2.【答案】7x﹣13,1【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:原式=4x2﹣9﹣x2+4x﹣4﹣3x2+3x=7x﹣13,当x=2时,7x﹣13=14﹣13=1【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.20.如图,AB//CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.请说明直线AD//BC的理由.【答案】AD∥BC,理由详见解析【解析】【分析】由AB与CD平行,利用两直线平行同位角相等得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】∵AB∥DC(已知),∴∠1=∠CFE(两直线平行,同位角相等)∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠CFE=∠2(等量代换)∵∠CFE=∠E(已知),∴∠2=∠E(等量代换),∴AD∥BC(内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解答本题的关键.21.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?【答案】(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.【解析】【分析】(1)设这批学生有x人,原计划租用45座客车y辆,根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)找出每个学生都有座位时需要租两种客车各多少辆,由总租金=每辆车的租金×租车辆数分别求出租两种客车各需多少费用,比较后即可得出结论.【详解】(1)设这批学生有x 人,原计划租用45座客车y 辆,根据题意得:()=4515=601x y x y +⎧⎨-⎩, 解得:=240=5x y ⎧⎨⎩ , 答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5-1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.【点睛】此题考查二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)求出租两种客车各需多少费用.22.阅读:已知4a b +=-,3ab =,求22a b +的值.解:∵4a b +=-,3ab =,∴()()2222242310a b a b ab +=+-=--⨯=.请你根据上述解题思路解答下面问题:(1)已知3a b -=-,2ab =-,求22a b +的值.(2)已知()1012m n p m p n --=--=-,,求()22m p n -+的值. 【答案】(1)5;(2)76.【解析】【分析】(1)利用完全平方公式,先求出(a 2+b 2)的值,再计算a 2+b 2的值;(2)把m-n-P=-10变形为[(m-p )-n],利用完全平方公式仿照例题计算得结论.【详解】解:(1)因为(a-b )2=(-3)2,所以a 2-2ab+b 2=9,又∵ab=-2∴a 2+b 2=9-4=5.(2)∵(m-n-p )2=(-10)2=100,即[(m-p )-n]2=100,∴(m-p )2-2n (m-p )+n 2=100,∴(m-p )2+n 2=100+2n (m-p )=100+2×(-12)=76.【点睛】此题考查整式乘法的完全平方公式,熟练掌握完全平方公式的变形,是解决本题的关键.a 2+b 2=(a+b )2-2ab ,a 2+b 2=(a-b )2+2ab .23.为更好地理清平行线与相关角的关系,小明爸爸为他准备了四根细直木条AB 、BC 、CD 、DE ,做成折线ABCDE ,如图1,且在折点B 、C 、D 处均可自由转出.(1)如图2,小明将折线调节成60B ∠=︒,85C ∠=︒,25D ∠=︒,判断AB 是否平行于ED ,并说明现由;(2)如图3,若25C D ∠=∠=︒,调整线段AB 、BC 使得AB CD ∥,求出此时B 的度数,要求画出图形,并写出计算过程.(3)若85C ∠=︒,25D ∠=︒,AB DE ∥,请直接写出....此时B 的度数.【答案】(1)AB ∥DE ,理由见解析;(2)25°或155°;(3)60°或120°或70°或110°.【解析】【分析】(1)过点C 作CF ∥AB ,利用平行线的判定和性质解答即可;(2)分别画图3和图4,根据平行线的性质可计算∠B 的度数;(3)分别画图,根据平行线的性质计算出∠B 的度数.【详解】(1)AB ∥DE ,理由是:如图2,过点C作CF∥AB,∴∠B=∠BCF=60°,∵∠BCD=85°,∴∠CDF=25°,∵∠D=25°,∴∠D=∠DCF=25°,∴CF∥DE,∴AB∥DE;(2)如图3,∵AB∥CD,∴∠B=∠BCD=25°;如图4:∵AB∥CD,∴∠B+∠BCD=180°,∴∠ABC=180°-25°=155°;(3)如图2,由(1)得:∠B=85°-25°=60°;如图5,过C作CF∥AB,则AB∥CF∥CD,∴∠FCD=∠D=25°,∵∠BCD=85°,∴∠BCF=85°-25°=60°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=120°;如图6,∵∠C=85°,∠D=25°,∴∠CFD=180°-85°-25°=70°,∵AB∥DE,∴∠B=∠CFD=70°,如图7,同理得:∠B=25°+85°=110°,综上所述,∠B的度数为60°或120°或70°或110°.【点睛】此题考查平行线的性质和三角形内角和的运用,解题的关键是作辅助线构造同位角以及内错角,依据平行线的性质及三角形外角性质进行推导计算.24.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米.如图是关于我市去年全程马拉松比赛的部分信息.若每个固定医疗站安排2位医疗员,其中与补给站重合的医疗站安排1位医疗员,则需要54个医疗员;若每个固定医疗站安排3个医疗员,其中与补给站重合的医疗站安排2位医疗员,则需要83个医疗员.(1)本次马拉松比赛共设置______个补给站;(2)固定医疗站点共有多少个?(3)沿途中,补给站和固定医疗站点重合处距离起点多少千米?【答案】(1)10;(2)29个;(3)15千米或30千米.【解析】【分析】(1)根据从起点开始前40千米每隔5千米一个补给站及最后两个补给站相隔2千米,即可求出本次马拉松比赛设置的补给站数;(2)设有x个固定医疗站,两站重合的有y个,根据“若每个固定医疗站安排2位医疗员,其中与补给站重合的医疗站安排1位医疗员,则需要54个医疗员;若每个固定医疗站安排3个医疗员,其中与补给站重合的医疗站安排2位医疗员,则需要83个医疗员”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值;(3)设从起点到终点方向上第m个补给站和第n个固定医疗站重合,根据补给站和医疗站的间隔,即可得出m=310n,由m、n均为正整数即可求出结论.【详解】(1)(42-2)÷5+1+1=10(个).故答案为:10;(2)设有x个固定医疗站,两站重合的有y个,根据题意得:2-=543=83x yx y⎧⎨-⎩,解得:=29=4xy⎧⎨⎩,答:沿途中固定医疗站点共有29个.(3)设从起点到终点方向上第m个补给站和第n个固定医疗站重合,由(2)得:42÷(29-1)=1.5(千米).∴沿途中,每两个固定医疗站之间的距离是1.5千米.∴5m=1. 5n,∴m=310n.∵m、n是正整数,∴当n=10时,m=3,此时距离起点的距离=5×3=15(千米);当n=20时,m=6,此时距离起点的距离=5×6=30(千米);当n=30时,m=9,此时距离起点的距离=5×9=45>42,不合题意,舍去.综上所述:沿途中,补给站和固定医疗站重合处距离起点15千米或30千米.【点睛】此题考查二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据补给站的设置间隔,列式计算;(2)找准等量关系,正确列出二元一次方程组;(3)根据补给站和医疗站的间隔,找出m、n之间的关系.。

浙教版七年级下册数学期中考试试题带答案

浙教版七年级下册数学期中考试试题带答案

浙教版七年级下册数学期中考试试卷一、单选题1.下列运算正确的是()A .x 2·x 3=x 6B .633x x x ÷=C .x 3+x 3=2x 6D .(-2x)3=6-x 32.如图,下列条件中,不能判定//AB CD 的是()A .15∠∠=B .23∠∠=C .42∠∠=D .14∠∠=3.计算:(16a 3﹣12a 2+4a )÷(-4a )等于()A .﹣4a 2+3a B .4a 2﹣3a C .4a 2﹣3a +1D .﹣4a 2+3a ﹣14.贝贝解二元一次方程组2,1,x py x y +=⎧⎨+=⎩得到的解是12x y ⎧=⎪⎨⎪=∆⎩,其中y 的值被墨水盖住了,不过她通过验算求出了y 的值,进而解得p 的值为()A .12B .1C .2D .35.若a m =6,a n =4,则a 2m ﹣n 的值是()A .32B .2C .9D .196.已知方程组37x y ax by +=⎧⎨+=⎩和9,37ax by x y -=-⎧⎨-=-⎩的解相同,则a ,b 的值分别为()A .1,2a b =-⎧⎨=⎩B .1,2a b =⎧⎨=-⎩C .1,2a b =⎧⎨=⎩D .1,2a b =-⎧⎨=-⎩7.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是()A .①②③B .①②④C .①③④D .②③④8.如图,已知长方形纸片ABCD ,点E 、H 在AD 边上,点F ,G 在BC 边上,分别沿EF ,GH 折叠,使点B 和点C 都落在点P 处,若+=116EFB HGC ∠∠︒,则∠IPK 的度数为()A .129°B .128°C .127°D .126°9.有两个正方形A B ,,现将B 放在A 的内部如图甲,将A B ,并排放置后构造新的正方形如图乙.若图甲和图乙中阴影部分的面积分别为14和134,则正方形A B ,的面积之和为()A .3B .3.5C .4D .4.510.如图,两条直线l 1,l 2被第三条直线l 3所截,其中一对同位角是()A .∠1与∠4B .∠2与∠4C .∠3与∠4D .∠1与∠3二、填空题11.计算(﹣2a )3的结果是_____.12.用科学记数法表示:0.00000136=________.13.已知m +n =mn ,则(m -1)(n -1)=_______.14.已知a-b =3,ab =2则a 2+b 2的值为________________.15.若方程组31331x y a x y a +=+⎧⎨+=-⎩的解满足0x y +=,则a=________.16.如图,已知AB //EF ,∠B =40°,∠E =30°,则∠C -∠D 的度数为________________.17.已知△ABC ,AB =3cm ,将△ABC 沿着AB 方向平移得到△A ′B ′C ′,已知A ′B =1cm ,CC ′=__________cm.三、解答题18.计算:(1)a 2•(-a )3•(-a 4);(2)()()()()225x y x y x y x x y ++-+--.19.解下列方程组:(1)431775x y y x-=⎧⎨=-⎩(2)3(1)521123x y x y -=+⎧⎪+-⎨=+⎪⎩20.在计算()()x a x b ++时,甲把错b 看成了6,得到结果是:2812x x ++;乙错把a 看成了a -,得到结果:26x x +-.(1)求出,a b 的值;(2)在(1)的条件下,计算()()x a x b ++的结果.21.如图,点M 是△ABC 外的一点,请你在网格内完成作图:(1)作过点M 且平行于BC 的直线.(2)画出△ABC 先向左平移2个单位,再向上平移1个单位后的A B C '''V .22.某校准备组织七年级400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车a 辆,大客车b 辆,一次送完,且恰好每辆车都坐满.①请你设计出所有的租车方案;②若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的租车方案,并求出最少租金.23.观察下列等式:(x +1)(x 2-x +1)=x 3+1,(x +3)(x 2-3x +9)=x 3+27,(x +6)(x 2-6x +36)=x 3+216,…(1)按以上等式的规律,填空:(a +b)(________)=a 3+b 3;(2)运用上述规律猜想:(a -b)(a 2+ab +b 2)=________,并利用多项式的乘法法则,通过计算说明此等式成立;(3)利用(1)(2)中的结论,化简:(x +y)(x 2-xy +y 2)-(x -y)(x 2+xy +y 2).24.如图,//AB CD ,60A ∠=︒,C E ∠=∠,求E ∠.25.画图并填空:如图,方格纸中每个小正方形的边长都为1,在方格纸内将△ABC 经过一次平移后得到△A ′B ′C ′,图中标出了点B 的对应点B ′.(1)在给定方格纸中画出平移后的△A ′B ′C ′;(2)线段AA ′与线段BB ′的数量和位置关系是___________;(3)求△A ′B ′C ′的面积.参考答案1.B【分析】由同底数幂的乘法判断A ,由同底数幂的除法判断B ,由合并同类项判断C ,由积的乘方判断D .【详解】解:235,x x x ∙=故A 错误,633,x x x ÷=故B 正确,3332,x x x +=故C 错误,33(2)8,x x -=-故D 错误,故选B .【点睛】本题考查的是同底数幂的乘法,同底数幂的除法,合并同类项,积的乘方,掌握以上知识是解题的关键.2.A【分析】根据平行线的判定逐个判断即可.【详解】解:A 、15∠=∠ ,不能判定//AB CD ,故本选项符合题意;B 、12∠=∠ ,43∠=∠,又23∠∠=14∴∠=∠,//AB CD ∴,故本选项不符合题意;C 、根据12∠=∠,24∠∠=可以推出14∠=∠,此时//AB CD ,故本选项不符合题意;D 、14∠=∠ ,//AB CD ∴,故本选项不符合题意;故选:A .【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.3.D【分析】根据多项式除以单项式的运算法则进行运算即可.【详解】解:原式3216(4)12(4)4(4)a a a a a a =¸--¸-+¸-2431a a =-+-,故选:D .【点睛】本题考查了多项式除以单项式,属于基础题,熟练掌握运算法则,计算过程中注意符号.4.D【分析】把12x =代入1x y +=求出y 的值,再把x 、y 的值代入2x py +=即可求出p 的值;【详解】解:∵二元一次方程组2,1,x py x y +=⎧⎨+=⎩得到的解是12x y ⎧=⎪⎨⎪=∆⎩,∴把12x =代入1x y +=得到12y =,把x 、y 的值代入2x py +=得到:11222p +=,解得:3p =,故选:D ;【点睛】本题主要考查了二元一次方程组的解,解决本题的关键是熟记二元一次方程组的解的定义.5.C【分析】根据()222m n m n m n a a a a a -=÷=÷求解即可.【详解】解:∵6m a =,4n a =,∴()2222649m n m n m n a a a a a -=÷=÷=÷=,故选C.【点睛】本题主要考查了幂的乘方的逆用,同底数幂的除法的逆用,解题的关键在于能够熟练掌握相关知识进行求解.6.C【分析】根据题意列出关于x 与y 的方程组,求出方程组的解得到x 与y 的值,进而确定出关于a 与b 的方程组,求出方程组的解即可得到a 与b 的值.【详解】解:根据题意得:337x y x y +=⎧⎨-=-⎩,解得:14x y =-⎧⎨=⎩,代入得:4749a b a b -+=⎧⎨--=-⎩,解得:12a b =⎧⎨=⎩.故选:C .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组两方程成立的未知数的值.7.C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC ,证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确;证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C ,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C .【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.8.B【分析】根据折叠和矩形的性质可知90IPF KPG ∠=∠=︒,EFP EFB ∠=∠,HGP HGC ∠=∠.再根据题意可求出EFP EFB HGP HGC ∠+∠+∠+∠的值,进而可求出PFG PGF ∠+∠的值.即可由三角形内角和定理可求出FPG ∠的大小,最后由周角即可求出IPK ∠的大小.【详解】由折叠和矩形的性质可知:90IPF B KPG C ∠=∠=∠=∠=︒,EFP EFB ∠=∠,HGP HGC ∠=∠.∵116EFB HGC ∠+∠=︒,∴2116232EFP EFB HGP HGC ∠+∠+∠+∠=⨯︒=︒.∵1802360EFP EFB PFG HGP HGC PGF ∠+∠+∠+∠+∠+∠=︒⨯=︒,∴360232128PFG PGF ∠+∠=︒-︒=︒,∴180()18012852FPG PFG PGF ∠=︒-∠+∠=︒-︒=︒,∴360360529090128IPK PFG IPF KPG ∠=︒-∠-∠-∠=︒-︒-︒-︒=︒.故选:B .【点睛】本题考查矩形的性质,折叠的性质,三角形内角和定理.根据题意结合图形找到各角之间的关系是解答本题的关键.9.B【分析】通过设,A B 的面积分别为2a 和2b ,而后根据图甲、图乙列出关系式便可得.【详解】设,A B 的面积分别为2a 和2b ,则图甲阴影部分面积为()214a b -=;图乙阴影部分面积为()()222222213224a b a b a b ab a b ab +-+=++--==∴()2221131472 3.54442a b a b ab +=-+=+===故答案是B【点睛】本题实际考查利用代数式的变形来求解,掌握代数式的变形求解是解题的关键.10.A【分析】根据同位角定义即可判断.【详解】两条直线l 1,l 2被第三条直线l 3所截,是同位角的为∠1与∠4,故选:A .【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.11.﹣8a 3【分析】根据积的乘方法则进行运算即可.【详解】解:原式()33328.a a =-=-故答案为38.a -【点睛】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘,计算后直接得出答案.12.1.36×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000136=1.36×10-6.故答案为1.36×10-6【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.1【详解】试题分析:根据乘法公式多项式乘以多项式,用第一个多项式的每一项乘以第二个多项式的每一项,可求(1)(1)m n --=mn-m-n+1=mn-(m+n )+1,直接代入m+n=mn 可求得(1)(1)m n --=1.考点:整体代入法14.13【分析】根据222()2a b a b ab +=-+代入求值即可.【详解】解:∵3a b -=,2ab =∴()2222232213a b a b ab +=-+=+⨯=故答案为:13.【点睛】本题考查利用完全平方公式的变形求值.熟记完全平方公式是解题关键.15.-1【分析】将两式相加表示出x y +,再将0x y +=代入即可得出答案.【详解】31331x y a x y a +=+⎧⎨+=-⎩①②将①+②,得:4422x y a+=+102a x y +∴+==1a ∴=-故答案为:1-.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.10°【分析】过点C 作CG ∥AB ,过点D 作DH ∥EF ,根据平行线的性质可得AB ∥CG ∥DH ∥EF ,从而可得∠BCG =∠B =40°,∠EDH =∠E =30°,∠DCG =∠CDH ,即可求解.【详解】解:如图,过点C 作CG ∥AB ,过点D 作DH ∥EF ,∵AB //EF ,∴AB ∥CG ∥DH ∥EF ,∵∠B =40°,∠E =30°,∴∠BCG =∠B =40°,∠EDH =∠E =30°,∠DCG =∠CDH ,∴∠BCD -∠CDE =∠BCG -∠EDH =40°-30°=10°.故答案为:10°.【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键.17.2【分析】由AB 和A'B 可得到△ABC 的平移距离AA'的长度,即为CC'的长度.【详解】∵AB=3cm ,A'B=1cm∴AA'=3-1=2cm即△ABC 的平移距离为2cm∴CC'=2cm故答案为:2.【点睛】本题考查图形的平移,明确AA'的长度即为三角形的平移距离是解题的关键.18.(1)a 9;(2)9xy【分析】(1)根据同底数幂相乘,底数不变,指数相加即可求解;(2)根据完全平方公式、平方差公式及整式的乘除运算,然后再合并同类型即可.【详解】解:(1)原式2349()()a a a a =×-×-=,故答案为:9a ;(2)原式222224455x xy y x y x xy=+++--+45xy xy=+9xy =,故答案为:9xy .【点睛】本题考查了整式的加减乘除混合运算,熟练掌握完全平方公式、平方差公式及整式的运算法则是解决本类题的关键.19.(1)23x y =⎧⎨=-⎩;(2)610x y =⎧⎨=⎩【分析】(1)利用代入消元法求解;(2)利用加减消元法求解.【详解】解:(1)431775x y y x -=⎧⎨=-⎩①②,把②代入①得,()437517x x --=,解得:x=2,代入②中,解得:y=-3,∴原方程组的解为23x y =⎧⎨=-⎩;(2)方程组变形得:38322x y x y -=⎧⎨-=-⎩①②,①-②得,y=10,代入①中,解得:x=6,∴原方程组的解为610x y =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(1)a=2,b=3;(2)256x x ++.【分析】(1)按甲、乙错误的说法得出的系数的数值求出a ,b 的值;(2)把a ,b 的值代入原式求出整式乘法的正确结果.【详解】(1)由甲计算得:2()(6)812x a x x x ++=++∴612a =∴2a =;代入乙的式子,得2(2)()6x x b x x -+=+-∴26b -=-∴3b =.(2)(2)(3)x x ++=2326x x x +++=256x x ++.【点睛】此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,是常考题型,解题时要细心.21.(1)见解析;(2)见解析【分析】(1)利用网格根据平行线的判定即可作过点M 且平行于BC 的直线;(2)根据平移的性质即可画出△ABC 先向左平移2个单位,再向上平移1个单位后的A B C '''V .【详解】(1)如图画出平行线l ;(2)如图画出A B C '''V ,.【点睛】本题考查了作图−平移变换,解决本题的关键是掌握平移的性质.22.(1)1辆小客车和1辆大客车都坐满后一次可送65名学生;(2)①方案一:小客车20车、大客车0辆;方案二:小客车11辆,大客车4辆;方案三:小客车2辆,大客车8辆;②方案三租金最少,最少租金为3440元.【分析】(1)每辆小客车能坐a 名学生,每辆大客车能坐b 名学生,根据用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;列出方程组,再解即可;(2)①根据题意可得小客车m 辆运的人数+大客车n 辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金200元,大客车每辆租金380元分别计算出租金即可.【详解】解:(1)设每辆小客车能坐x 名学生,每辆大客车能坐y 名学生根据题意,得31052110x y x y +=⎧⎨+=⎩解得:2045x y =⎧⎨=⎩;∴204565x y +=+=(人)答:1辆小客车和1辆大客车都坐满后一次可65名学生;(2)①由题意得:2045400a b +=,∴8049a b -=,∵a 、b 为非负整数,∴200a b =⎧⎨=⎩或114a b =⎧⎨=⎩或28a b =⎧⎨=⎩,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:200×20=4000(元);方案二租金:200×11+380×4=3720(元);方案三租金:200×2+380×8=3440(元),∴方案三租金最少,最少租金为3440元.【点睛】此题主要考查了二元一次方程(组)的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.23.(1)a 2-ab +b 2;(2)a 3-b 3;(3)2y 3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b )(a 2-ab+b 2)=a 3+b 3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)根据题目所给的例子,找出公式后直接运用即可.(1)(a+b)(a2-ab+b2)=a3+b3,故答案为:a2-ab+b2;(2)(a-b)(a2+ab+b2)=a3-b3,故答案为:a3-b3,(a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3=a3-b3;(3)(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)=x3+y3-(x3-y3)=x3+y3-x3+y3=2y3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律.24.30°.【解析】【分析】依据平行线的性质,即可得到∠DOE=60°,再根据三角形外角性质,即可得到∠E的度数.【详解】解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=12∠DOE=30°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.25.(1)略;(2)平行且相等;(3)8【分析】(1)直接利用平移的性质得出各对应点位置进而得出答案;(2)利用平移的性质得出对应点连线的关系;(3)利用三角形面积求法得出答案.(1)如图所示:△A′B′C′即为所求;(2)线段AA′与线段BB′的关系是:平行且相等;故答案为:平行且相等;(3)△A′B′C′的面积与△ABC的面积相等为:12×4×4=8.【点睛】本题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.。

浙教版七年级下册数学期中考试试卷带答案

浙教版七年级下册数学期中考试试卷带答案
(1)
(2)
22.计算题
(1)
(2)
23.化简题
先化简,再求值: ,其中 .
24.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表: 总利润 单件利润 销售量
商品价格
A
B
进价 元 件
1200
1000
售价 元 件
1350
1200
(1)该商场第1次购进A、B两种商品各多少件?
浙教版七年级下册数学期中考试试卷
一、单选题
1.某种冠状病毒的直径约为0.00000012米,将0.00000012用科学计数法表示为()
A. B. C. D.
2.下列方程中,为二元一次方程的是( )
A.3x=2yB.3x﹣6=0C.2x﹣3y=xyD.x﹣ =0
3.用代入法解方程组 时,用①代入②得()
(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?
25.[数学实验探索活动]
实验材料现有若干块如图①所示的正方形和长方形硬纸片.
A. B.
C. D.
4.下列计算结果正确的是().
A. B. C. D.
5.下列各式从左到右的变形,属于因式分解的是()
Hale Waihona Puke A. B.C. D.6.若方程组 的解满足x+y=0,则a的值为( )
A.﹣1B.1C.0D.无法确定
7.方程组 用加减法来解时,用 得到()
A. B.
C. D.
8.小明到药店购买了一次性医用口罩和N95口罩共40个,其中一次性医用口罩数量比N95口罩数量的3倍多4个,设购买一次性医用口罩x个,N95口罩y个,根据题意可得方程组()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

54D 3E 21C B
A 21
B
C E
D A 七年级数学下册期中检测试卷
(满分120分,考试时间90分钟)
一、选择题(共10个小题,每小题3分,共30分)
1.下列命题正确的是( )
A .相等的角是对顶角
B .两条直线被第三条直线所截,同位角相等
C .在同一平面内,垂直于同一条直线的两条直线平行
D .同旁内角互补
2.下列运算正确的是( )
A.a 2·a 3=a 6
B.(–a )4=a 4
C. a 2+a 3=a 5
D.(a 2)3=a 5
3.下列不能进行平方差计算的是( )
A.(x+y)(-x-y) B .(2a+b )(2a-b)
C.(-3x-y)(-y+3x) D .(a 2+b )(a 2-b)
4.若方程x |a |-1+(a -2)y =3是二元一次方程,则a 的取值范围是( ).
A 、a >2
B 、a =2
C 、a =-2
D 、a <-2 5、如右图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠;
(3) 43∠=∠; (4) 5∠=∠B . A.1 B.2 C.3 D.4 6.方程组2,3x y x y ⎧+=⎪⎨+=⎪⎩的解为2,.
x y =⎧⎪⎨=⎪⎩则被遮盖的两个数分别为( ) A.2,1 B.5,1 C.2,3 D.2,4
7.下列各式由左边到右边的变形中,是分解因式的为( )
A .a (x+y )=ax+ay
B .x 2-4x+4=x (x-4)+4
C .10x 2-5x=5x (2x-1)
D .x 2-16+3x=(x-4)(x+4)+3x
8.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )
A .1-
B .1
C .2-
D .2
9. 若(1-x )1-3x =1,则x 的取值有( )个
A .1个
B .2个
C .3个
D .4个
10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是( )
A. ∠A =∠1+∠2
B. 2∠A =∠1+∠2
C. 3∠A =2∠1+∠2
D. 3∠A =2(∠1+∠2)
二、填空(本题有6个小题,每小题4分,共24分) 11.0.000000017用科学计数法表示:
12.计算:3a 3•a 2﹣2a 7÷a 2= . 13.多项式2a 2b 3+6ab 2的公因式是 .
14.如果a 3-x b 3与﹣a x+1b x+y 是同类项,那么xy= .
15.已知a +a 1=7,则a 2+21a
的值是 . 16.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为 .
三、解答题(本题有7个小题,共66分)
17.计算:
(1)计算:(﹣2016)0+()﹣2+(﹣3)3; (2)简算:982
-97×99.
18.(本题满分8分)解下列方程组 ① ②⎪⎪
⎩⎪⎪⎨⎧=+=-53
6323y x y x
19.(8分)已知|x-3|和(y-2)2 互为相反数,先化简,并求值(x-2y )2 -(x-y)(x+y)
20.(10分)如图,∠1+∠2=180︒,你能判断∠A DE 与∠3之间的大小关系吗?请说明理由.
21.(10分)(1)已知m 4,8n a b ==,用含a,b 的式子表示下列代数式。

①求: 2m 32
n + 的值 ②求: 4m 62n -的值
(2)已知2328162x ⨯⨯=,求x 的值.
22.(12分)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)
(1)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好
能将购进的纸板全部用完;
(2)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<a<136,试求在这一天加工两种纸盒时,a的所有可能值.
23.(12分)如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED=°( 2分)②猜想图①中∠AED,∠EAB,∠EDC
(2)拓展应用:
如图②,射线FE与l1,l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).(4分)
数学参考答案
一、选择题(本题有10小题,每小题3分,共30分)
题序 1 2 3 4 5 6 7 8 9 10 答
案 C B A C C B C D B B
二、填空题:(本题有6小题,每小题4分,共24分)
11. 1.7×10-8 12.a 5
13. 2ab 2 14.2
15. 47 16.29或6
三、解答题(本题有7个小题,共66分)
17.计算、化简:(每小题各3分)
(1):—22 (3分) (2) 1 (3分)
19.(本题满分8分)
①:. (4分) ②:⎩⎨⎧==6
18
y x (4分)
19. (8分)由题意得: x=3 (1分)
y=2 (1分)
原式化简得:—4xy+5y 2 (4分)
代入得: 原式=—4 (2分)
20. ∠3 =∠ADE (2分)
理由:∵∠1+∠2=180°,
∠1+ ∠EFD=180°
∴∠2=∠EFD. (4分)
∴BD∥FE. (2分)
∴∠3 =∠ADE. (2分)
21. 解:(10分)∵m 4,8n a b ==,
∴22m a =,32n b = (2分)
(1)①2m 32n +=ab (2分)
②4m 6462232222(2)(2)n m n m n -=÷=÷2
2a b = (2分)
(2)∵2328162x ⨯⨯=
∴()34232222x ⨯⨯=
∴34232222x ⨯⨯= (2分)
∴1+3x+4=23
∴x =6 (2分)
22. (1) 设加工竖式纸盒x 个,加工横式纸盒y 个,
依题意,得
(3分)
解得:
答:加工竖式纸盒200个,加工横式纸盒400个 (3分)
(2)设加工竖式纸盒x个,加工横式纸盒y个,
依题意得:
(2分)
∴y=40﹣, (1分)
∵y、a为正整数,
∴a为5的倍数,
∵120<a<136
∴满足条件的a为:125,130,135.
当a=125时,x=20,y=15;
当a=130时,x=22,y=14;
当a=135时,x=24,y=13 (3分)
23.(12分)解:(1)①∠AED=60 °(2分)
②∠AED=∠A+∠D,
证明:方法一、延长DE交AB于F,如图1,
∵AB∥CD,
∴∠DFA=∠D,
∴∠AED=∠A+∠DFA;(3分)
方法二、过E作EF∥AB,如图2,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠A=∠AEF,∠D=∠DEF,
∴∠AED=∠AEF+∠DEF=∠A+∠D;(3分)
(2)任意写一个得2分,共4分。

当P在a区域时,如图3,∠PEB=∠PFC+∠EPF;
当P点在b区域时,如图4,∠PFC=∠PEB+∠EPF;
当P点在区域c时,如图5,∠EPF+∠PEB+∠PFC=360°;当P点在区域d时,如图6,∠EPF=∠PEB+∠PFC.。

相关文档
最新文档